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Abstract. This is the continuation of a series of articles concerning a class of
quantum spin systems with Hamiltonian operators of the form

H,= Z S, + Z l”""‘ltm,

xeA yo<A

where A is a graph, 1 is a small parameter and s, has a gap =1 for all xeA\&.
In the singular set & < A, the gap of s, can be arbitrarily small. Part III is devoted
to the proof of a preliminary result, while in Part IV we consider the case in which
& is a subset of finite density of A. This completes the first iteration step of the
deterministic part of the proof of localization in the ground state of the random
field quantum XY model.
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Part III. A New Representation with the Ground State of Compact Support

7. Introduction, Notations and Results

In this part, I consider the same model studied in Part II of [ 1], but we make two
additional hypotheses. The Hamiltonian operator is

Hy=Y s+ Y alvole=tg 7.1
xeA yo<A
where the operators s, have a gap =1 between the ground state and the first

excited state for all xeA\&. However, as in Part II, such gap could be smaller for
xe4. Here, we introduce the following new assumptions:

Additional Hypotheses:

(i) There is a finite gap2g >0 among the ground state and the first excited
state of (7.1).

(ii) The size |0.2,] of the set

0%, = {xeA such that (n — 1) L d(x, &) < n} (7.2)
grows at most exponentially fast in n, i.e. there is a constant ¢, such that
|07, < 5| <. (1.3)

foralln=1,2,....

In Part II, I consider the unitary dressing transformation U (1) computed for
the regularized Hamiltonian

Hit= 5 s+ T(U—Py)+ ¥ Ambie, (7.4)

xeA\¥ xe¥ Yo A

with the method indicated in Part I. By applying such transformation to the original
Hamiltonian (7.1), one finds the self adjoint operator

S + V() + W(3) = U(A)™'H,U(3) — E=5(3), (1.5)

where EF8(1) is the ground state energy of H®. Let E, be the ground state energy
of the dressed Hamiltonian (7.3). If

u=Yuz,|0) (7.6)

is an eigenstate of S+ V(1)+ W(A) with energy < E,+14, then thanks to Corollary
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4.2, we have
Y S (eod) (7.7)
y:dg, (B.s0)zk
forall A<cand k=1,2,..., where n, is an integer to be fixed in Sect. 8 and whose
order of magnitude is
logeol &

) 7.
°= Tog col] (78)

Let n be an integer > n, and let u, be the ground state of the operator

S(1) =S + Vi (A) + Wy (1) — Eq,(A), (7.9)

where Eo,(4) is the ground state energy of S+ V;; (/1) + Wj (4). Clearly, u, has no
excitations outside #,. The aim of this Part of the paper is to construct a unitary
dressing transformatlon that solves perturbatively the ground state problem for
S+ V(4) + W(J), by starting from u,. More precisely, if we set

V()= Vs (D) + Vo3 (A) + Wys (), (7.10)
our aim is to compute a skew symmetric operator R(4), analytic for 1 < ¢, such that
e RNS(2) + V(4)efPuy = Eq(A)u,. (7.11)

For fixed 1 < ¢, R(J) is constructed as the value at f = 1/* of an operator-valued
function expressed by a convergent power expansion

mm=§wm¢ (7.12)
R,(P) is such that
e RO(S(2) + V(BA24))eRPuy = E(B)ug (7.13)

for all e[0,4*]. In the following, the subscript 1 of R,(f) is omitted.
The operators R; have the form

R_J': Z TiTiy (7.14)
s(y)e ~Fp
where 7, is the operator
fw = n Tx,v(:c) T;o,y(xo) Tn (7.15)
x€(s(y)\xo)

Here, x, is any point of s(y). T, , and T, , are operators acting only on the spin
in the site x and are defined as follows:

T, =100, <01 +10), <ol (7.16)

=|a>xx<0l—l0>xx<<xl, (7.17)

where |a), is an excited eigenstate of S,. T;, acts on the spins inside &, and is an
operator of the form

T;, =1, > Cuol £ Jug p <oy, s (7.18)

where the minus sign has to be taken in case s(y) = (J; otherwise, the plus sign is
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there. |a;, > can be either equal to |u, ), or it is a state of I*-norm with excitations
only inside &, and orthogonal to |ug ).

_ Let us remark that the operators presently defined are skewsymmetric, so that
e® is a unitary operator. Unlike the t operators used in Part I, the operators (7.15)
are strongly noncommutative. However, this is not a shortcoming here. In fact,
since the problems is of local character, no cluster expansion is needed and the
convergence of the perturbative expansion can be controlled by means of a global
norm.

The following is the main result of this Part:

Theorem 7.1. Under the hypothesis above, if 1 < c and

logc| | cllogcgl
|logci|’ “|logcil| )’

n;n0+max<c (7.19)

then there is one and only one operator R(A) of the form (7.12) which solves the
conjugacy problem (7.13). R(A) admits a convergent expansion

R =3 R, a0 (7.20)
k

=1
with

kz,l l Ra,k 2,1 = (Col)(l/‘”("_"ms (7.21)
where ||-||,., is the norm for which

Y 6,00 5))

~ n
s ~Z,

= Y eyl (1.22)

2,1 s~y

where ¢, e H (Z).

In the rest of this section, the strategy for the proof of Theorem 7.1 is described,
while the details are deferred to the next sections.
Let us introduce the operators V,(4) such that

e}

V(pA¥4) =Y V() (7.23)
k=1

The operators R; are uniquely determined by the requirements of having the form

(7.12) and of solving the following recurrence relations that are obtained by

expanding in powers of § both the members of (7.13):

_ ~ 1
Rj|u0>'=_HOS—1{ ) Il

Dt tig=j k'
k22

[-[8R;]R,,]

1 -~ - _
+Y ) ~,[-~-[V,,Rh]~--Rik]}|uo>, (7.24)
1S i =1 k!
where
Il,=1-P,, (7.25)

and P, , is the orthogonal projection along |u, ).
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In order to control the expansion generated by the identities (7.24), we use the
numerical sequence

r=

(7.26)

ISDE,,IUO>

2,1
Here

S=M=Y2 4 1>v2§ (7.27)

and IT='/? (respectively IT”'/?) is the orthogonal projection onto the eigenspace
of § with energy <1 (respectively = 1).

In Sect. 10, we derive recurrence inequalities for the sequence (7.26) that permit,
in Sect. 11, to conclude the proof of Theorem 7.1. To find such estimates, one has
to treat separately low energy and high energy excitations, i.e. one has to control
with different arguments the couplings with the states in IT='/>#(A) and those
with the states in 1T~ #(A). In fact, the perturbation V has a relative bound
with respect to S that is of order A, while in typical applications we have g « .
However, since V is able to induce with large amplitude only excitations far away
from &, it can hardly induce transitions from the ground state to an eigenstate of
low energy. In fact, such states are essentially different from the ground state only
near &, and they approach it exponentially fast away from <. Hence, in the
perturbation expansion, small divisors like g~! appear multiplied by factors that
are exponentially small in the distance (n — n,) between 0%, and %,,. On the other
hand, the transitions to states of high energy occur with amplitude of order 4. that
is much smaller than the energy gap that for such states is 2 1.

To turn such intuitive arguments into a rigorous proof, one has to establish
three sorts of bounds. First, one needs to prove that if n satisfies a bound of the
form (7.19), then the operator S has a gap g, 2g being the gap we assumed S + V + W
to have. Second, one has to bound in I? and in [*! operator norm the operator
VIT<'72 that contains the couplings with low energy excitations. Third, one has
to find a relative boundedness estimate for ¥ with respect to S, that permits to
control high energy excitations. The first two tasks require similar techniques and
they are accomplished in Sect. 8, while Sect. 9 contains the relative boundedness
result that is needed in Sect. 10.

8. Effective Coupling of Low Energy Excitations

This section has three goals. First, I fix the integer n, in (7.7). Second, I prove that
if S+ V + W has gap 2g and n is large enough, then S has a gap = g. Finally, two
relative boundedness estimates for ¥, with respect to S are proven, one in 12 norm
and one in I*! norm.

The methods in Part II apply also to the operator

S() + V(pA34) (8.1)

for Be[0,4'*] and they permit one to conclude that any eigenfunction of (8.1)
with energy less than the ground state energy E(f) plus 1/2 fulfill the decay estimate

1/2
( > Iuy(ﬂ)V) S (coA) 72" 8.2)

dg, (B)zk



242 C. Albanese

for some
logc|&|
<
o= llogcd|’

where none of the constants here depend on B, as far as fe[0,A!/4]. Let us fix n,
as the minimum integer for which (8.2) holds. We have

(8.3)

Lemma 8.1. Under the hypothesis of Theorem 7.1, the following is true:
(i) Ifg(B)isthe gap between the ground state and the first excited state of (8.1), then

g(B)z 29 — (cA)! P " 2 g (8.4)
for all Be[0, A1/4]
(i) We have
IVIT<2 |51 S (coA)t2mm) (8.5)
for all integers 1 = 1.
(iti) We have
IVT<12 ], < (cod)H/2n ) (8.6)

for all integers 1 = 1.

Proof. (i) Let Ey(f) and E,(B) be the ground state energy and the first excited
level of the operator (8.1), respectively. Let uy(f) and u,(f) be the corresponding
eigenstates. Eq(f) and E,(f) are continuous functions and they are analytic in the
interval [0, A1/4], except for B belonging to a discrete set (see [4]), corresponding
to those values for which there is an intersection of levels. In the points of analyticity,
we have

d ~
15 ED = <DV B Dluc(h) )
where
V(8= 35 V0 = 5 VI &9

The methods used to prove Theorem 1.2 (ii) and Lemma 5.2 lead to the bound

I<ul V(B, ) lup| < CulSiy +S 5 |u), 8.9)
valid for all ue#(A). We have
WS uBY< S T luBRGIS oIy

k=1 4dg(s).@)=k

<Sksl Y P

k=1 dg (s D)=k

< IS] Z k(col)(”z)(“"""’) _S_(Cl)(lm(n—no)_ (8.10)
k=1
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Moreover, we have

Cu(B)1 S5, 1u(B)) < Z Y (o) MPUTDLu(B)]s,|u(B)>

i=1 4x09)=
n—no

=Y Y (coA) BT Diy(B)|2s|
J=1 dg (s)@)2n—no—Jj

”""l

Z (CoA)H/RMn=no+ 1) 5| < () 1/3)Hn=no), (8.11)
<o
Hence, we have
‘fﬁ_;ﬁ(ﬂ < (cA)/3n=no), (8.12)
Since the bound (8.2) holds also for u,(f), we have
dEd lt(iﬁ) < (cA I (8.13)

in all points of analyticity. Since the points of nonanalyticity form at most a discrete
set, (8.4) follows by integration of the differential inequality

dg(B)
dp

that is true almost everywhere. Q.E.D.

< (cA)H3n o) (8.14)

(i) The range of the projection IT<'/2, is the space generated by the wave-
functions of the form

u>®10_5), (8.15)

where |u) is an eigenstate of S, + V; + W with energy <E,, +31. Due to
Theorem 4.1 and our choice of n,, such exgenstates satisfy the bound (8.2). Being
a bound in L?-norm, it must be valid for all wavefunctions in the range of IT<'/2,
Hence, it suffices to prove that

1714 @105 5) 12,1 < (cod)Nr=r (8.16)

for all states |u)e#(F,) satisfying (8.2).
Following the same procedure used in the proof of Lemma 6.3, we can
decompose ¥, as follows:

V= Z ulyo) = Z ad vy(yo), (8.17)
Yo Yo
where v,(y,) is an operator with support y, and ad v,(y,) is the operator such that
advy(yo)ly) =ad 0i(70)7,10> = [v)(yo), 7,110 (8.18)
for all excitations |y ). Let us also introduce the operators
(o) = Z Fyado(yo)F, (8.19)
70NZn=70

for all y, = #,, where F, and F, are defined as in (6.25) and (6.26). Due to the
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bounds in Sect. 2, for all xe#, we have

Y 180l S (coh)! T4 (8.20)
Y0'X€Y0
Y0Sn
Hence, we have
I 171(Iu>®]0~yn> 1= Y, 15Dl S 1Sz [u) 2 (8.21)
Yocy’n

where the last bound can be proven as Theorem 1.2 (iv). Due to (8.11), we have
8.5. Q.E.D.

(iii) This bound follows from the estimate
[<ulViup] < CulSky, +S_g |u) (822)
holding for all ue #(A) and from (8.10), (8.11). Q.E.D.

9. A Relative Boundedness Result

This section contains the proof of the following relative boundedness result that
permits to control high energy excitations in the perturbative expansions considered
in this part of the paper:

Lemma 9.1. Under the hypothesis of Theorem 7.1, we have

1V <1 ©.1)
Proof. 1t suffices to prove that for all ue #(A) we have
1Vullzy S 11Sully,s- 9:2)
Let us expand u as follows
u= Y 4,05,10_5) 93)
sty)e ~5/’"
with (t)ye;/f(g’,,). We have
1Sullzs < 1 Sull,s. (9:4)

In fact

S ¥ ¢®110~y>

sty ~ P,

(H<1/2+SH>1/2)¢Q®IO~5’>+S Y ¢,®1,[0_5,>

sy ~Z, 2,1
sN#D
=|T="2+8I=" )¢, +|§ Y ¢,®1,10 5
sy Py 2,1
s(y)# &
=8¢y, +|[S Y ¢>®r10~y> —u§uuz,1. 9.5)
sy ~Py

sy # D
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Moreover, we have

o 1 1
“S Y @050 25ldolat| Y 4,050,023
sy)e~&y 2,1 e~ 2,1

s)#J
Hence

318ullyy +4luls, < 1 Sull,,,
and it suffices to prove that
I Vj“”2,1 §%H Su Hz,1 +%”“”2,1

for all u.
We have

WViullan s Y 1Vid,®1,00 5 Y24
s~y
and

ISullzn= Y lEw)+55 )9,

e~y

245

lullz,.-

9.6)

©.7)

9.8)

%.9)

(9.10)

Hence, it suffices to show that for all functions ¢pes#(<¥,) and all excitations y with

support in ~&%,, we have

1Vi¢®1,10_5 >0 S G +520) +355)é 115
Let A4; be the annular region

Aj={x:d(x,0%,)<j—1}.

9.11)

9.12)

The operator V; is given by a sum of clusters of operators v(y,) with support

Yo A, ie.
Vj = z Uj(yo)'

VOCAI

Since V;|0) =0, we can express V; in the following alternative way:
Vi= 2 adu;(yo),
Yo <4
where ad V;(y,) is the operator acting as follows:
ad v;(yo)ly'> = ad v;(yo)7, 10> = [v;(¥0), 7, 110).
We have

I Vj¢®1y10~9,,>”2,x= z Ifadvj(70)¢®fy10~i,,>”2,1

yYons(y)# @

+ Z |ad vj(y0)¢®ryl0~§’,,>”2,l'

yons(y)= @

The first term in (9.16) is
S (coAIsI P ll2 = (coe) I @ -

9.13)

(9.14)

(9.15)

9.16)

9.17)
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The second term can be bounded by using the operators
;(yo) = Z Fiadv;(yo)F, (9-18)
70N Fn=70
with y, < &%, and F, and F, defined as in (6.25), (6.26). Due to the estimates in
Sect. 2, we have

sup yWZEN I1;(vo)ll2 =1 6.19)
for A < c. With this definition of 7;(y,) and thanks to (9.17), it suffices to prove that
T 1500812 =16 +355)8 1. 9.20)
By proceeding exactloy a; in the proof of Theorem 1.2 (iii), one can see that
CZ‘? 15;(00) @ ll2 <211S4,81l2- 6.21)
Hence, we are reduced to y;ro;e the following bound:

154,612 =11 +255)0 .. 922)

This bound follows from the positivity of the operator
(1+285)* - 83, (9.23)

and the following I prove that the ground state energy for such operator is positive.
Let us remark that it is possible to assume that

i< [" - "°], 9.24)
2
where [ -] denotes the integer part. In fact, if
(coA¥ =m0 | <3 (9.25)

one can simply use a bound in L*!-operator norm on ¥ to control (9.1). Due to

the hypothesis we make that the growth of |6S,| as n1 o is exponentially bounded,
the condition (9.25) can be expressed in the form

logc|Z|
— Ny 9.26
LR |logcA|’ (©.26)
and thus we can assume it to be fulfilled.
Let us suppose that (9.23) holds and let
n2=no+["_2"°]. 9.27)
Let us decompose § 7, as follows:
§7.=85_ +8:5 +35.5.5 (9.28)
where
S5, =S85 +Vs +Ws —Si —Eon (9.29)
Si7, = Saz, + Vg, ¥ Wz, » (9.30)
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and

~

07, =Sg05,. T Varg, —So5, - (9.31)
We have
(1+285)* -85, =1+28; +45% +48%;
+48% . 5 —S4,+4{8% 55,7}
+4{8,5. 855} +4{55,.5:5,} (9.32)

where {-,} denotes the anticommutator.
We have S; =0 by definition and 82 20, S2,>0 by selfadjointness.
Also, the followxng operator is positive:

4'557’,,\9',,2 - Sij = 4(59’,,\9,,2 - Sg;';,,z - Sij) + 4{89,,\9’ Sg;" Vg '\, } + 4Vy AY N
. 33)

In fact, for 1 =0 this operator has a nondegenerate ground state in #(%, \9",,2),
namely |0, A, > with eigenvalue 0. The ground state energy is separated from the
fixed excited level by a gap = 3, for A= 0. For 4> 0, the second and the third term
in (9.31) do not vanish, but |Oyn\yn2> is still an eigenfunction with eigenvalue 0.

Thanks to Theorem 1.2 (iv), we have
ulV3, g5, 14> S(cod)*<ulS 5, u) <(cod)?<uldSS 5 lu>.  (934)

In a similar way, one can prove that
Kul{Ss,z, = Soz, s Vanz, > S 8(col)**<ulSF 5, u). (9.35)

Hence, the ground state energy of (9.31) is 0 and it is separated by a gap equal to
3 —0 (4%4) from the rest of the spectrum.
Due to Theorem 4.3, we have

inf spec (§im) > —(cod)t T2, (9.36)
Hence, we have
4{8; .55, } 2 4infspec(§y )2 —4(cod)! * /D", 9.37)

For the second anticommutator in (9.30), we have

~

{859,875, } = 25:3,(S5 *,,\9» -85, )+ {V59 Ss05,,— 555}
+{Say » ,,\y }+{VW 2 Vana., }
+{Wiz, 85,5, + Vors,)}- (9.38)

The second, third and fourth term have a relative bound of order (c,4)!/? with
respect to the first term. Moreover, the last term has an L?-operator norm

é(COl)"zlylcglsl —_:(coi)nzlylcgnz—m)lsl

which is smaller than (c,4)!/? for a suitable choice of the constants in (7.19). Hence,
we have

{Say ’ ,\y }> —(cA)'2. (.39)
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Finally, to control the last term in (9.30), let us split Sy-,m as follows:
87,,= 87, Vs, + Wz, = S5, ~ Bo) + (Siz,,+ Vag,, + Was, )
+(Sy e +V““‘ —S‘y )= S, +SW +Sy T (9.40)

where [ introduce self explanatory notations. Since, up to exponentially small
terms, S Wt Say and Sag, have disconnected supports, we have

{85, + Sas»,,o, a§’,,2} Z - (Col)(” 22
2 —(cod) /P 4 infspec(gg,,"0 +3,5,)
+infspec(§35—,,m)g — (coA) Dm0 (¢ A1/t (9 41)
Moreover, the bound
(85,9, 807, ) 2 —(co))'? (6.42)

can be derived as (9.37).
The bounds (9.35), (9.37), (9.39) and (9.40), and the positivity of the other terms
in (9.30), permit to conclude that

(1+28; ) =83 21— (cH)"* 0. (6.43)
This completes the proof of Lemma 9.1. Q.E.D.

10. Recurrence Inequalities

In this section I prove a set of inequalities for the sequence
¥ =IISR;|uo)ll2.:- (10.1)

Let us recall that the operators R; have the form (7.14) and that they are uniquely
determined by the following recurrence relations:

Rlluo>*— _Ho 1V1|“o> (10.2)

=

_ - 1 -~ —
Ryluo) = —Hos-*{ Y BRI
vy 0y Lromra- R,kj}luo> (103)

I=1iy+-+ixg=j— lk'

i

for all j> 1.

Notations. Let us introduce some notations to be used here and in the following
section. Let

F*(B) ~ 2 P, (10.4)

Until the convergence of the series (10.4) is established, we have to treat r*(f) as
a formal power series. If

1B~ 5 18 (10.5
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is any formal power series, let us denote with { f(f)}; the coefficient f;. Let F(f)
be the function

F(B)=e** —1—48. (10.6)
Lemma 10.1. We have
1S9 Heph) P (10.7)
and
7 < {(1+8g7 Hco)MP™mNB(1 — B)TFX(B) + g~ (1 — B)TIF(F*(B))};.  (10.8)
Proof. Thanks to Lemma 8.1 (ii), we have
= 18R uo> N2, = 1857 V1lug) 2,0 S HeoHMP7 (109)

so that (10.7) is verified.

In order to establish (10.8), it is necessary to consider separately the terms in
(10.3) containing one and more than one commutators. We have

IS8T, [V, R;- 1o > 2.0 S I1SS™UTGR; - W)lup ) 1.1, (10.10)

+ (| SSTUTIT2 VR, lup) | 5.1, (10.11)
+ ISST T IT <2V R, |ug) |l - (10.12)
Equation (10.10) is bounded from above by
IS8~ Moo N TR, - 15,1 | Viluo D 1 (10.13)
We have
I o R;- 1150 S Y NF5—1, N Ty,
?
=< 221fj—1,y[ =2| Ej-—ll“()) ll2,1
Y
S4|SR;_lug) i, = 47%,, (10.14)
where I used again (9.5). Hence,
(10.10) < 4g ~ (coA)1/ANm =m0l (10.15)

For the second term, we have
(10.11) < | S§= 1T 212, | V,S ™ 0, ISR, luod 20 7%, (10.16)

Finally, we have
(10.12) S | SST T IT =12 ||, | IT=Y2V [l 1 IR -ilto I,

< 297 Hegh IO mOFE (10.17)

where I used Lemma (8.1), (ii) and the following estimate deriving from the self
adjointness of V;:

T2V, = sup |I2Fju) )y,

Hull2,1=1
= sup [I='"2Vup|, < sup |IT<'2V|u)],
Hull2,1=1 llull2=1

= TPV, = [T PTY* [l = VT2, S (cod) P07,
(10.18)
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Finally, let us pass to the terms containing more than one commutator. We have

“s°§-1no{ +z k,[ -[S,R;]-R,]

+ig=j
k=2

Z D A AE R,k1}|u0>

ctig=j—1
k_>__2

A= Jk' =1
k=2

e 13k, = =
<88 1H0"21{ .. Z <t)||Ri.||z,1“’||Ri,||z,1

~ k-1 k
“I8R,,,, R.kluo>1|21+2 > Z()

I=1ip+- k+l'i j—t=1 \t
'Ei, ”2,1"‘”&,“2,1" vlﬁit+1"'ﬁik|u0>”2,1}' (10.19)
We have
”SRz,H : —ik|“0>"21
= )y L RN T | 1 SOUERE M [ 79 PO

S+ SE ~ Sy

IIA

N spend | VP I8T, Lo D 2y + -+ + 18T, 140 l12,0)

St 4 1S4 1)~ I

) s ivend | P (NSTy oD N2y + - + 18T, [uo > Ml2,1)

S0t 4 VoSV E ~ Py

NP e P 27T HIST,, oD 2y o 18T, luo > 1120
S+ 1) s ~Sp

=2"ISR,,, o) g+ 1SRG, 1o D24
<2k t— lr:kﬂ f:( (1020)
Similarly, we can find
I VIR_it+1"'Eikiu0>"2,l

<UIVS IS 2. ISR, Ry Juo> 121
SkTtTIEE LR (10.21)

e+’

A

IIA

Moreover, we have

”R-il|2,1= Z_IfiylllTi,yllzé2 Z lfiyl

st)e ~, st ~F,
=2 Z - [Pyl I Tyluo D 12,4
s~
=4| Rilup) i, < 47F. (10.22)

Hence, we have

-2 4 )
(10. 19)<lz0 . ;k o :Er* FE
k22

=g (1 - P 'FGF*p)}; QED. (10.23)
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11. Convergence of the Perturbative Expansion

In this section, I prove that if 7¥ is a series of positive numbers such that the
bounds in Lemma 10.1 hold, i.e.
F¥< g™ (oA /P (11.1)
and
F¥ < {(1 4897 HeoH)M PN B(L — B~ 7 (B + g~ {1 — BT IF(F*(B))};  (11.2)
and if

(coAyH/dnre) <mm<2g00 “1J6) (11.3)
then the power series expansion
()= Y. Fp (114)
converges for "
0<p=i (11.5)
and
F¥(B) < (coA) 4N =ro), (11.6)

This concludes the proof of Theorem 7.1.

It is easy to argue that the series (11.4) converges for some > 0. In fact, let
a(p) be the function implicitly defined as the solution to the following equation:
a(B) = g™ (coNM B+ (1 + 897 (co2) V" )B(1 — )L a(B)

+g7'(1 = B)” ' F(a(p)). (11.7)

Due to the implicit function theorem, a(f) is analytic in a neighborhood of = 0.
Moreover, the coefficients of the power series expansion

a(f)= 3, a;p’ (11.8)
=
for a(p) are all positive and such that
F¥<a;. (11.9)

Hence, also the series (11.4) converges for f small.
Let 8, be the maximum positive number such that the series (11.4) converges and

*(/})<mm<4 1Oog,(co)»)“/"’)(" "")) (11.10)
Our aim is to show that
Boz i (11.11)
Let us remark that, if 0 < x <%, we have

F(x)=e** —4x — 1 <20x2. (11.12)
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Hence, if fe[0, min (8,, 1/4)], we have

PH(B) S g™ (oD + (1 + 89 (oAU — B)HFH()
+31 =B TIHB S g7 o) IO + (G 4+ 89 eo )P (B)

(11.13)
that gives the bound
FH(B) < g™ cod) M — Bg e )P !
1 . (1 g _
<> L9 (1/4)n=no) | 11.14
< 5 min (4, 100" (€0 ) (11.14)

Since this bound is 1/2 of the bound in (11.10) used to define f,, we see that 8,
must be larger than 1/4 because, otherwise, it could not be maximal. Q.E.D.

Part IV. The Ground State Problem in the Presence of a Finite Density
of Singular Sites

12. Introduction, Notations and Results

Let A be a large connected graph and let us consider a quantum spin system on
A with Hamiltonian operator

Hy=Y s.+ Y, Abvl=tg (12.1)
xeA Yo A

where the notations are as in Part 1. The operators s, are assumed to have a
gap =1 for xeA\&. In this Part, the set & = A on which the gap of s, can be
< 1,1s assumed to consist of the union of a finite density of small clusters separated
by a large distance. Each one of these clusters has the property that the Hamiltonian
operator obtained by restricting (12.1) to a large neighborhood of it, has a gap
2 g, g being a constant < 1 independent of the cluster. I consider the problem of
constructing perturbatively the ground state of H, by starting from the ground
state of the operator obtained from H, by removing the couplings among large
and non-intersecting neighbourhoods of the clusters of &. This is a problem of
many-body perturbation theory involving a perturbation whose relative bound
with respect to the main part of the Hamiltonian is proportional to the number
of clusters. Since & is a set of finite density, in the infinite volume limit such relative
bound diverges and it is necessary to use a dressing transformation. The main goal
of this part is to construct such a transformation. As applications, the stability of
the gap and the exponential decay of truncated correlations are established.

In this section, I introduce some notations and state the main results. Section 13
contains the preliminary constructions that are needed to reduce the problem to
a conjugacy problem similar to the one considered in Part I. We define a
representation in which the operator (12.1) has the form

SW + V() + W), (12.2)

W (1) being the perturbation. S(%) is unitarily equivalent to the operator (12.1)
with the couplings among the different clusters of & removed and V(4) is an
operator relatively bounded with respect to S(1). Here, two additional difficulties
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are met that are not present in Part 1. First, one has to prove that SR+ Ve(d)
has a gap =1g,9 being the gap of S(4). Second, a decay estimate on a
pole-subtracted Green’s function of (S(4) + V(1)) is needed because this operator
is not diagonal in the basis of local excitations we use. Sections 14 and 15 are
dedicated to these two problems, respectively. In Sect. 16, there are recurrence
inequalities for a numerical sequence that permit us in Sect. 17 to establish the
convergence of our perturbation scheme. Section 17 contains also the proof of two
corollaries concerning the existence of a gap =4g for the operators (12.1) and
(12.2) and the exponential decay of truncated correlations.

Let us formulate some hypothesis and introduce a few notations. Let us suppose
that the graph A enjoys the following geometric property:

Condition b. There is a constant cq > 0 such that

sup#{yeAld(x,y)=n} < cp (12.3)
xe A
for all integers n > 0.
Let N be the number
N =max N, (12.4)

and let us suppose that N is a constant independent of A.
The set & is supposed to be of the form

= C, (12.5)
[
where . is a set of indices and {C,},., is a family of subsets of A. Let 2L, be the
minimum distance among two components of &, i.e.
L, =% min d(C,, Cy). (12.6)
a,fe s
a#*f

Let M be the maximum volume of the components

M=r£1ea;xlCa|. (12.7)
Let {B,},., be a partition of A into connected components such that C, = B, and
d(C,,A\B,) =1L, (12.8)
for all ae#. If A is a subset of A, let H,(A4) denote the operator
Hi(A)=Y s+ Y Abvel=tg (12.9)
xed Yoo A

and let E, ;(A) be its ground state energy. Let g, denote the energy gap between
the ground state and the first excited state of H,(B,) and let

g=infg,. (12.10)

ae.f

The kind of statements that are relevant in this part hold under conditions of
the form

Asc, Ly 2F(g,M), (12.11)
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where the constant ¢ and the function F(g, M) do not depend on A.
If A< Ais a subset, let H?8(A) be the operator

HEs(A)= Y, s+ Y (A—=Pg )+ Z Alrole=1y (12.12)
xeA\¥ xeAn o= A

and let EG%(A) be its ground state energy. Let U,(A4) denote the unitary dressing
transformatlon for H%®(A) constructed as in Part I. Let L, be a constant to be
fixed later so that L, « L; and let

C,= {xeAld(x,C,) < Ly} (12.13)
and
7=JC.
aeSf

Thanks to Condition b above, we have

M =max|C,| £ Mcg°. (12.14)
Let |0>,e#(C,) be the ground state of the operator
U(C) ™ Hy(CHU(C,). (12.15)
Finally, let
Iuo>=<®i0>a>®l0A\g,>. (12.16)
ac S

The state |u, ) will be taken as the starting point in the construction of the ground
state of the operator (12.1). More precisely, a unitary operator U is constructed
such that Ulu0> is the ground state of (12.1).

U enjoys some clustering properties that are 1mportant to establish its existence
and that are useful in applications. To describe them, it is convenient to consider
the graph A whose vertices form the set (A\y)uf Let us denote with symbols
like X, j the vertices of A. Two vertices X, A are joined by a line in the following
cases

(i) x,jeA\S and %, j are joined by a line in A;

(i) xeA\S, yef and X is Jomed by a line in A to some sites of C

One can define a quantum spin system on A that is equivalent to our quantum
spin system originally defined on A. To this end, let us associated to each site xe A
the Hilbert space #, = CV**! if x = xe A\ &, and the space 5, = #(C,) if xe.#.
We have

H(N)=QRQC"' = H, (12.17)
xe A 3€A
Let us fix a basis
1005 INeDs (12.18)

of #, for all xeA. If X = xe A\ &, then (12.18) is the same basis (1.3) in which s,
is diagonal. If Xxe.#, the vectors (12.18) are the eigenstates of the operator

UiC) ™ HACYU,(C,) (12.19)
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arranged in order of increasing energy. Let us remark that

luo)> = &) 10),. (12.20)
xeA

Let ||-|l;,; denote the norm such that, if a state u is written in the form

u= Y ¢,®In, (12.21)
ysple ~F
then
lulza= X Nyl (12.22)
ys)e ~&
We suppose that

Lo = |logcA| ™ YclogeM + c|logcgl), (12.23)

and L, <3L,, so that by virtue of Theorem 7.1 there exists a unitary operator
exp(R,) in s (B,), for all e #, such that |0), is the ground state of :

e RaU,(B,) " 'H(B,)U,(B,)e". (12.24)
Let us remark that if 1 < ¢, we have
Ly < (logcy) " *(logeM + |logcgl), (12.25)

where ¢, is the constant in (12.14). Hence, since g < 1, we have

M <cg™ M2 (12.26)
The operator U we construct has the form
U= UAA)(H eﬁa) lim ef' .. K (12.27)
aef v
If
R =Y #(f) (12.28)
yocA

is the expansion of the operator R” into a sum of operators #*(j,) with support
7o, let us introduce the following quantity:

P*Z)=sup ) ¥ Z"Folc1F Go)luo) .1 (12.29)
%eA jo:%egp V=1

7*(Z) measures the size of the local deviations of the ground state of (12.1) from
the unperturbed ground state of the partially decoupled problem which is given by

U,I(A)< Y eﬁ«>|uo>. (12.30)

aeSf

We have
Theorem 12.1. If /<,
L, — Ly =|logcd|™(c + |logg| + log (MN™)), (12.31)
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where M is defined in (12.14) and satisfies (12.26), and
1S Z ScA™ 118, (12.32)

then there exists a unitary operator U of the form (12.27) such that l7|u0> is the
ground state of the operator (12.1) and

*(Z) < (cl)“/“)("‘ ~Lo). (12.33)

The ground state energy is separated by a gap = %g from the rest of the spectrum.
Moreover, if 05, and 0;, are two operators of I*'-operator norm 1 and with
support 7; and 7,, respectively, then we have

[<Ouo|0;,0;,1Uttg > — {Uuo| 0;, | Ui » {Uuo| 0| Dug Y| < (A M2, (12.34)

13. Preliminary Constructions

In this section, I perform some preliminary constructions that reduce the ground
state problem to a conjugacy problem for a unitary operator. This problem is
solved by a unitary dressing transformation with good clustering properties that
is formally defined in this section and whose existence is proven in Sects. 15,16
and 17.

Thanks to Theorem 7.1, if

cloch Cllogcgl
°="llogcd| = |logcd]

and L, <3iL,, for all @ we can construct a skew-symmetric operator R,(4)
acting on J#(B,) such that

(13.1)

UA(B)e™ (105, ® 0,6, >) (132)

is the ground state of H,(B,). Here, |0), is the ground state of H,(C,). Moreover,
we have

I Ry(A) 12,1 S(Co )Mo, (13.3)
Let U, be the unitary operator
U, =[] et (13.4)

aeS
It is convenient to study our problem in the representation in which the
Hamiltonian is the following selfadjoint operator:

U UAA) ™ HU (MU, — 3 EG4(B,). (13.5)

The operator (13.5) has to be split into the sum of a main part having |u, ) as
ground state, plus a “small” perturbation. The relative bound of the perturbation
with respect to the main part is proportional to the number of clusters C, contained
in &. Hence, the relative bound of the perturbation with respect to the main part
diverges in the infinite volume limit. However, it is possible to organize the terms
of the Hamiltonian so that the perturbation is an operator given by a cluster
expansion such that the sum of all the clusters containing one site XeA is
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exponentially small in the parameter L, in (12.8), uniformly in %eA. This suffices
to set up a convergent perturbative expansion for the ground state.
Let us introduce the operators S,, V,(4) and W,(4) so that

Ui.(Ba)_ 1H1(Ba)U).(Ba) - E{)e.%.(Ba) = Sa + Va()‘) + Wa(l)a (136)
where
S,= Y 5., (13.7)
xeB,
Vi(A)=U,(B,) 'Hy¥B)U,(B,) —Eg4(B,)— Y s.— 2 (1=Py ) (138)
xeB,\C, xeC,y

and W,(4) is the remainder. Let VV:(/I) be the operator such that

e RS, + V(2) + Wy(A))eRD = S, + V,(A) + W, (2), (13.9)
and let us introduce the following notations:
SN =S, + V,(h) + W) (13.10)
and
ShH=Y 5,0). (13.11)
scs
We have
S, (1)]0)>,=0. (13.12)

Let V_gz(4) be the operator
Vg =U~ ) Hi~ AW~ F)=Egf(~F)— ¥ s, (1313)

xe~
and let
Vaae ) = UiBNC) ™ Hy(B,\CHU(BAC,) — Eo 4(B\C,) — E:ch_ sy (13.14)
Let us define the boundary operator V() as follows: T
Vi =V_ (A= 3 Ve, (D). (13.15)

(24

The first basic property of V(1) is that it is equal to the boundary V-operator on
the full space

Vi) - Y. Vi (A) (13.16)
aeSf
up to corrections exponentially small in (L, — L,). The second property is that,
unlike the operator (13.16), V(1) is zero on all states with support in &. In
particular, we have

Vr(Mlug) =0. (13.18)
The operator (13.5) is equal to the following operator for = 1:
Sh+Veo)+ ¥ B () (13.19)

no=L;—Lo
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where the operators W, (4) are such that

i Wra@ =071 [ W@H -3 Wa(l)] U,

no=Ly—La

+ 05t [ Viy)-Y Va(,l)] U, — Vr(d). (13.20)

The definition of W, (4) can be given as follows. The operator on the right hand
side of (13.20) can be expressed as the sum of commutators of the form

[-[[s0 R, 1Ry D, R-j,l "'R_j,] (13.21)

and of the form
[--[[--[tyRi,1 - RGIR;, D, R, (13.22)
Wr () is the sum of all the terms given by commutators of the form (13.21) with
L+ i j e+ j=n, (13.23)

or by commutators of the form (13.22) with
[Yole + iy + -+ iy +ji + - +ji=no. (13.24)

The sum starts from (L, — L,) because this is the lowest possibly nonvanishing
order in the expansion of the second term of the right-hand side of (13.20). The
first term gives contribution only to terms of order ny > L, .

Let us expand the operator Wi, (4) as follows

Wra) = 3 Wra(Fo) (13.25)
FocA
where wr, (7o) is an operator with support 7oA. If ng<|7,l, we have
Wr ao(70) = 0. Moreover, thanks to the estimates in Parts I and III, we have

SUp 3 W rao(Fo 2, S (). (1326)
XeA Jqo:Xepg
Hence, the f-dependent part of (13.19) is a perturbation locally small with
respect to g~! and MN™ that, as discussed in the following, are the two large
factors to be killed. To construct the ground state of (13.19), one can start from
|ug ) that, as proven in Sect. 14, is the ground state of (S(1) + V(4)). Since the
relative bound of the perturbation in (13.19) with respect to (§(,1)+.Vr(l)) is
proportional to the volume |A|, a technique based on dressing transformations is
necessary.
Let us consider the following conjugacy problem:
G+ 1)L~ Lo)—1

U8~ [(§(/1) +Vr()) + ,-21 B/ Wr,no(l)] U(B)luo>

=Eq (B)luo), (13.27)

where the unknown operator U,() has to be unitary for § real and analytic for
|B| < 1.1t is convenient to study this problem on the lattice A introduced in Sect. 12.
One can obtain a unique solution by imposing some restrictions on the form of

no = j(L1 — Lo)
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U 2(B). Let us choose to look for an operator of the form
0,(f) = lim %P R0, (13.28)

where the operators R5(8), v=1,2,..., are skew-adjoint for § real and analytic
for |B] £ 1. They can be expanded in power series in 8

Ri(6)= 3, BB (13.29)
where
R=Y #.(dr,. (13.30)

Is(=v
Here and in the following, all sums over 7 run over all excitations in A. The
operators t; for excitations y in A are defined exactly as the operators 1, for
excitations y in A are defined in Sect. 2.
The coefficients #,,(4) are uniquely determined by the condition

%, R(luod = KW (o) (1331)

if n=1, and by the following recurrence relations if n = 2:

‘ZRﬁ(l)(uO K(l){ »y —[ LE@ + Vr ), RED]- Ri(A)]

15T S0 w ()1
t ks ():[ [Wr(A), R ()] Ry (/1)]}10> (13.32)

i1+ +ig=n—1

The operator K(4) in (13.31) and (13.32) is the pole-subtracted Green’s function
defined as the analytic continuation to z =0 of the operator

@A) + V(D) —2) P, (13.33)

In Sect. 14, it is proven that |u, ) is the ground state of (S(1) + V(4)). Its energy
is zero and it is separated by a gap =g from the rest of the spectrum of
(S + V(). In partxcular the operator K(A) exists and its L?-operator norm is
<2g7~ 1. Section 15 is dedicated to the study of the kernel of the operator K(4). It
is shown that, in the basis of the excitations 7 on A, the following decay estimate
in L?'! norm holds:

sup
7

Y 1FTISKIFY

LGP =k

S g7 HepA)VBK, (13.34)

2,1

where k is any integer =0 and § is the operator such that

S17> =1s)I7>. (13.35)

Let us introduce also the operator S, such that

Sl7> =1s@\7> (13.36)
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for all excitations |7 in A, and the operator

0=110Q. (13.37)

aeS

where Q, is such that
Q.lyy = max(1, N¥(cd)/ ) (13.38)

for all excitations y in A. N is defined in (12.4) and the constant ¢ appearing in
(13.32) is fixed as in Corollary 15.2. Since we are going to assume that (L; — L) =
cMlog N, we have

s(Q,) < B,. (13.39)

In order to control the expansion (13.26), it is convenient to use the following
sequence:
FA(Z)=sup || P,OZ SR, |uo) |l2,1- (13.40)
feA
In Sect. 16, recurrence inequalities for this sequence are proved that allow us in
Sect. 17 to conclude the proof of Theorem 12.1.

14. The Gap of S(1) + V(4)

The ground state |u,> of S(1) has support in & and, thus, it is annihilated by
Vr(4). In this section, we show that |u, ) is also the ground state of S(1) + V(A).
Namely, we have

Lemma 14.1. |u,) is the nondegenerate ground state of S()+ V(1) and it is
separated by a gap = %g from the rest of the spectrum.

Remark. The proof of this lemma is a little delicate because the relative bound of
Vr(4) with respect to S(1) is of order 4, but we are not supposing that A«g.
The situation here is similar to the one met in Part III. The boundary perturbation
V(2) is able to induce transitions with large probability amplitude, only among
states with excitations for away from &. But the energy of such states is of the
order of the number of the excitations. Hence, these couplings can be controlled
with a relative boundedness estimate and are not associated to small divisors. On
the other hand, states with low energy give rise to small divisors, but, in the dressed
representation, they are exponentially close to the unperturbed vacuum far from
S. Hence, they are almost annihilated by V(1) and the small divisors are
outweighted by factors of order (cA)-.

Proof of Lemma 14.1. The paper [2] contains an idea that is useful also in the
present situation. Namely, let € be the circle

¢ ={zeCllz| =14} (14.1)

and let us consider the spectral projection

P;= §%(z =8y —6vr(h)~t (14.2)

¢
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for 6e€[0, 1]. It suffices to prove that
dimRanP;=1 (14.3)

for all 6e[0,1]. In fact, |u, ) is an eigenstate with eigenvalue zero of S(A) + 0V (4)
for all 6. In turn, (14.3) follows from the following estimate in L?-operator norm:

| Ps—Poll<1, (14.4)

holding for all §¢[0,1].
Let IT<'? be_the orthogonal projection onto the space spanned by the
eigenfunctions of S(1) with energy <% and let IT3'/2 =1 — IT<'/2, We have

I Ps—Polla S |(Ps— Po)IT<"2 ||, + | [T =3Py — Po)IT=11? |,
+ [ IT2Y2(Ps— Po)IT =12,
S2((Py— PMI <2, + | IT212(Py— P)ITZ 2|, (14.5)

Hence, to prove (14.4) it suffices to bound separately the two terms in (14.5).
Let us expand (P; — P,) in geometric series

@ ..d - ~ )
(Ps—Po)= ), & §2—;(Z —SA) T V(A - S() 1] (14.6)
=1 ¢
We have
[[(Ps— P)IT <172,
Ssup { Iz — S) 3N V(AT <12,

ze¥

3 1= SV — Sy ni-l}

S4g7 A i sup || (z — 8(2)) "2V (A)z — 8(2) "2 147, (14.7)

Ji=1 ze¥¢

where Lemma 8.1 is used, and

IT2112(P, — Po)IIZ /2|,

1 ~ ® ~ ~ .
=5 gsup { Iz — S()~ 2112123 ,Zl Iz — S() ™2V (D) (z — S(A) =12 ||12}

z2e¥ J=

s i supll(z ~8(2)) "> Vr(A)(z — §()~ 2 11, (14.8)

J=1 ze¢
where (12.10) is used. Hence, it suffices to verify that the relative form bound of
V(1) with respect to S(1) is <cA. Since
Iz = 8(4)) ™2V ()(z — §(A) 21,
<1182z — 8(2) 213154~ 12V (AS(A) 2l
<2082V rSA) T s (14.9)
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we are reduced to prove the following bound:
I<ul Vir(A)lud| < (cA)<ulS(A)|u)-. (14.10)

This result can be established by means of the techniques developed in Sect. 6 and
the details are omitted.

15. Decay of the Pole-Subtracted Green’s Function K

This section in dedicated to the study of the decay of the kernel of the pole-
subtracted Green’s function.

K() = (S(A) + V(4)) 1 1T,. (15.1)
Hence
I,=1-P (15.2)

and P, , is the orthogonal projection along |u, ), the ground state of S + Ve(d).
Since in Sect. 14 it is shown that |u, ) is a nondegenerate eigenstate, K(4) is well
defined by (15.1). Moreover, from Lemma 14.1 follows that the L?-operator norm
of K(1) is <2g~!. This section contains two bounds on the exponential decay of
the kernel of K(4) with respect to the L?**-norm.

lug)

Lemma 15.1. For all integers k =0, we have

sup sup Y T ISKA®I0, )| g7 HeAHMPE (15.3)
Toc A uek o) 17 d o, 53 =k 2.1
”“"z_1=l

Corollary 15.2. If the constant c in the definition (13.38) is chosen to be equal to the
constant ¢ in (15.3), then for all |Z = 1 and all integers k = 0, we have

sup sup
FocA ueH(Gy)
"“(lz,l-‘-l

ég—lzk(cll)(l/16)k. (15.4)

Notation. In the following, the dependency of operators on A is not explicitly
denoted.

Y PTIZ QKO Z Hu®10)._;, )

7':d70.8(") =k

2,1

Proof of Lemma 15.1. Let us split the operator S + V- as follows:
S+Vr=8;48 343 Ve + Y Wo+ Vr, (15.5)

where
Vaéa = VBa - Véa - VBa\Ea’ (15.6)
and
Wa = U; 1(§6¢ + Sau\c'a + VaEa) U). - (~c'u + Sum\Cu + Vac'“) + 01— 1(Waa - Wc'a)ﬁz-
(15.7)
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By construction, we have
(Vae, + W2)l0,> =0, (15.8)

where |0, ) is the ground state of S + 85,6,
Let us expand V- in sum of operators V¢, (¥o) With support 7, < (B,\Cpu
{a} = A:

Vie, = Zvac,(v‘o), (159)

and let us define ad v,c,(¥o) as the operator acting as follows on the basis of
excitations |7 ):

[0 (oh 5,110,> i s,

15.10
Vo, (Pl 7 if aes(y). (15.10)

ad v,c (70)|7) = {

Analogously one can define w(7,) and EEW,,(%). Thanks to (15.8), we have
Vie, Wo=3 ad vyc, (7o) + ad W,(Fo). (15.11)
i)
Let us remark that the operators ad V¢, (Vo) and ad wa(7,) have nonvanishing
matrix elements only among excitations ly) |7'> with

di(s(7), (7)) = 7ol (15.12)
Let T® be the operator
TO= Y ador(po)+Y ¥ ad vy (o) +ad Wy(Fo) (15.13)
o MF @ lfole=k

Pole=k
where k = 2 is an integer.

Lemma 15.3. We have
IT®ul5, S A IE +S_pulla,s (15.14)
for all integers k = 0 and all states ue #(A) orthogonal to u,. Here k = max (k, 1).
Proof of Lemma 15.3. Let us expand ue #(A) as follows:
u=y uly>. (15.15)
Since we have '
18 +S_pulzy =T lullS +S NP> 21, (15.16)
Y

it is enough to prove (15.14) in case u is an excitation |} ).

Let IT;'? be the orthogonal projection onto the space spanned by the
eigenstates of S -+ 85.\¢, with energy <1/2 and let ITZ'/? =1— IT; '/, Thanks
to Lemma 8.1 we have

Y. llad vy (FolT 5 2 ul5 ; < (cA)HDET0
I7olc=k

S gAML (VS + Sp e TS 2ull,,
(15.17)
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for all states ue #(B,) with u L]0, ). Moreover, by virtue of Lemma 9.1, we have

Y lad vy G T2 2ull, < (M%) (S, + S5\ JITE 2 ul,,.  (15.18)

IFolc=k

Hence, we have

Y Y lad o Golidla: S @)Y Y 18z + S5 e )7 i

aes(PU.f lygl.=k aes(y)
= () S5+ S_ )T N (15.19)

for all excitations |7 ).
Due to Theorem 7.1, we have

Y. llad WoFoull 5,1 < (caytroth
IFole=k

< gleh) ¥ < (c2) ¥ Bz, + S ull - (15.20)
For all ue #(B,) with u 1 |0,)>. Hence

Y Y 1adwGo)l7) 2, < @AY G5+ S o) T 2.1 (15.21)

aes() 17ol.=k

To bound the first term in the expression (15.13) for T®, one can use Theorem 1.2
and complete the proof of Lemma 15.13. Q.E.D.

The operator T® defined in (15.13) has non-vanishing matrix elements only

among excitations 7,7’ with d,(s(p), s(7")) £ k. Moreover, we have
S+Vr=8;+S_5+ Y T®. (15.22)
k=1

Thanks to Lemma 15.3, the geometric series expansion for K

K= +Vvp) o,

= 320(; +S_5)" ‘[(i T"">(§y—, +5_g)" 1]1170 (15.23)

is convergent in L?!-operator norm. By using (15.14), we find

sup sup Y T ISKu®|0~7, >
Joc A ueH(Fg) 115 d5o.SGF N=k 2,1
flull =1
< Y M@+ 8.l [T I TS, + S5 Iy,
r=1ki+-- +k,2k i=1
kiyeons kr20
¢} - -
<Y L gTienyrhrh (15.24)
r=1k+ o +kzk
Ky, 20

If F(B)= Y, fiB* is a power series, let us denote with {F(f)}, the coefficient f,.
k=0
The right-hand side of (5.24) can be written as follows:
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% =11 Gy + - +F)
{,; ’ Y g HcAp) }

kiyoons kr20

= {g -1 ;1 ( .21 (clﬁ)(1/4)f>r }k

=g~ H{eAB(1 + (1 = cAB)™H[1 —cAp(L + (1 —cAB)™H] ™'},
<g el
for A < c. This completes the proof of Lemma 15.1. Q.E.D.

Proof of Corollary 15.2. Let 7,7’ be two excitations in A with d(s(}),s(7")) = k.
Then, we have

k

8

—/ S

and
<)’|Q| > ( ) (1/16)k
Gty = ’

where c is the constant in the definition (13.32). If this constant is fixed to be equal
to the constant ¢ in (15.3), then (15.4) follows from (15.3), (15.26) and (15.27). Q.E.D.

(15.27)

16. Recurrence Inequalities

This section contains the derivation of a set of inequalities for the sequence #¥(Z)
defined in (13.40) and used in the following section to control the convergence of
our perturbative expansion. We have

PX(Z) = sup || P,QZ5SR, |uo > ||,

xeA
=sup ). Q(GNZ Vsl I, (16.1)
xed jixes(y)
where, if 7, = A, we define
Q(7,) = H‘ max (1, N(c)"0o), (16.2)
We have
Lemma 16.1. If A<c,
(Ly —Lo)=cMlogN (16.3)
and
1S Z <A its, (16.4)
we have

f’{‘(Z)§g‘1(c/1)“/12)"““"°) (165)
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and

f,’:‘(Z)< 8g I MNM ﬂ f5(2)

(+1)L1—Lo)—1
8(cA)/12mog =1 z FHZ). (16.6)

no=j(Ly—Lo) i1+:-+ik+j=n

Lo

Proof. We have

—Lo)—1
f¥(Z)=sup | P; QZscSK 2 Wr noltho? (16.7)
xeA - no=Li—Lo 2,1
Let us decompose K as follows:
= Z K
m=0
where K, has matrix elements
. GIKIYY if dds@),s(7)=m
K, \y>= : 16.8
PIKnl7 {O ottherwise, (168)
By virtue of Corollary 15.2, we have
1QZ5SKnZ Q™ 5,1 S g (A O™ (16.9)
Hence,
_ — _ 2(L1-Lo)—1
#1(Z) < sup Z sup (QZS‘K.,.Z‘S‘Q'I)<P;ZS‘Q > Wr,no>|“o>
€A m=0 j:d(x,5)=m no=Li—Lo 2,1

Ly —Lo)
PZSQ Z Wr ol o

s
2,1

Z g— lzm(cl)(1/16)m(M[m/(Lx Lo)]cm) sup
ieA no=Ly—Lo
(16.10)
where the estimate
sup #{jeA such that d(%, ) = m} < M1~ Lol¢ (16.11)
€A
is used. Thus, if A< c and Z <A™ 16, we have
_ 2(L1 —Lo)
PZ)Sg  sup|PZ%Q Y Wrluod (16.12)
xeA no=Ly—Lo 2,1
Due to Lemma 13.1, we have
sup || P, QZS Wr aoltio ) ll2,1 < sup Z Zok|| OWr (o) ll2,1
€A xeA jg:xeTo
< ZroN oLy = La)IM gy Z I W rono(Fo) I 2,1

%eA Fo:XgePo
< Z "o Nlmo/(L1—~Lo))IM (c /1)(1/4)'!0

é(CNM/(L‘ _Lo)ll“2)"0(0211/12)"0(61)(1/12)"°§(cl)(1/12)"°.
(16.13)
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This bound implies (16.5).
To prove (16.6), one can find the following bound with arguments similar to
the ones above:

PiQZ§c§K{ Y Z ()'
i+ tig=nvy <
k=2

F¥(Z) =sup —[-[(§+Vp),R%],..., R

xeA

G+1)Li—Lo)—1

+3

[ [Wr o R, R }|u0>

no=j(Li—Lo) i1+ - +tiktj=nviS--Sox

()'

- 1 v R
o LT X SR IPQZ L S+ VLR, Rl Lo
k>2

oo (j+1)Li—Lo)—-1

-1
f;

2,1

IIA

no=j(L1~Lo) i1t -+ictj=nvyS--Sox

o1 ), sup [ P,QZ5[ -+ [Wr o, R 1, ..., RET (U6 ) 12,1 (16.14)
%eA
Let k be an integer = 1 and let us fix the integers v,,...,0,,i;,...,i, SO that
1Sy, 2L (16.15)
and

I - B (16.16)

Let #,(7,) be the operator with support 7, = A such that
fi('y-z) = Z r’};fy-. (16.17)

7:5() =7,

For all integers j such that 0 < j <k, let us define inductively the operators 7 /(7,),
with 7, A, such that 7 (o) = w - no(Po)and, if j2 1,

Ti@)= Y [I77'00).F,32)] (16.18)

F1VT2 =70

Let us remark that 7 ¥(7,) contains at most n, + j centers of noncommutativity.
Moreover 7 (3,) =0 if

[Yol >no + vy + -+ + ;. (16.19)

If Ac #, s being the set of indices a for the clusters C,, let us introduce the
following family of pseudonorms for operators 0;, with support y, = A:

1015, = sup [QZ50, (us® 042, (16.20)
u4€X(4)
and
110;,11%,1 =sup (N=M4%lj @, 13 ,). (16.21)

Ades
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If 7, < A, we have

1721151 < NMP204 250 g ) N1 2,1 (16.22)
Moreover, thanks to the bounds in the proof of (16.5), we have
sup ) 17 %(Fo)ll%.1 = (cA)H /12, (16.23)
%eA jgiXevq

We have
Lemma 16.2. If j = 1, then

1T 9G35 S2 Y 4@ i) I T IS 1QZ5F, T ) ue > N2, (16.24)

71T =70

where q(7,,7,) =1 if 7, contains one of the centers of noncommutativity of 7, and

1710721
AN

q(71:72) = (16.25)

otherwise.
Proof of Lemma 16.2. Let us fix a set A = .# and a state
[u) =lus) @104 (16.26)
with |u>e#(A). Let 7, and 7, be two subsets of A with 7, U7, = 7,. We have
1QZ5[T I (o) rey(F)]Nu) 12,0
<4(Y1,72)Q(}’0)Z|7°| {” Tt )’1)””@2’”) I rij(fz)”él
S A VIV T ERY BN A1 ity ¥ (16.27)
We have
(Au@nINNTI + 1720 Al =1AnTol + 171N TN S (16.28)
Hence, by using (16.6) and the definition (16.15), we find
(16.27) £ 29(71,72)Q(F0)Q(71) ™ Q(F,) 1 Zolem ke r2le
ANMIARTINMIOT2 0N TG ) |50 QZ5F () oD l2g- (16.29)
Since ol <171l + 72| and
070)Q(F1) ' Q(F,) " S N-MMonns, (16.30)
we have
(16.27) < 2q(7,, ) NM1470 | 7972 (G,) 1%, 1QZ5F, (7,)luo D 2., (16.31)
This proves Lemma 16.2. Q.E.D.
By iterating (16.24) and using (16.23), we find
sup z(vk( 57 1PQZ5L [Wr gy REt T, RED 1) Nz

€A v1S

Ul__ § vl

k .
§2"(col)“/”’"° Z _})_ l_[ [( +j—1 +M+ Uj)
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sup Y. | Qz§=fij(v'o)iuo>nz,1]
XeA §g:X€7g
17ol=1;

k s =
=< 8"(6'0'1)(1/12)'lo H [Sul_" z I QZS°Sfi,~(7o)|uo> ”2,1]

i=1]_ xzeA jo:%evp
I7ol=v;
k
= 8k(co )12 [T £2(2). (16.32)
=1

To complete the proof of (16.14), we still have to bound the first term. Let us
expand S + V- into a sum of operators S(7,) + v,-(7,) with support ,, i.e.

S+ Vr= 2. 8(0) + vr(Fo)- (16.33)
FocA
Let
Swot Veme= Y 7o)+ (o) (16.34)
To:l¥ole =10

For all ny = 1, we have

sup z I13(70) + v r(Fo) 13 1

%eA Jo:%efy

Ssup ) QGo)Z™" [|3(70) + vr(Fo) l12.1

xeA Fo:l¥ole=ng
Xeg

< Zmo N *lno/Li ~LoDM sup Z I S"()jo) + 0o 2.1

XeA  Jo:Xey
[P0lc=no

é ZnON(l +[no/Ly -Lo])M(c;L)nOM
< MNM(cj) /1 2mo, (16.36)

Fixed a k=2 and two k-tuples i,,...,i, vy,...,0; of integers =1 such that
v; < --- £ vy, one can define the operators 77(7,) so that

T %70) = (7o) + vr (7o) (16.37)

and (16.18) holds for all j= 1. By using Lemma 16.2 that is still valid and by
replacing the bound (16.23) with the bound (16.36), we find

isup y 1

no=1 xed vi£-Svk (U)'

1P, QZ5[ - [8py + Vino R, -+ RETug |l

) k
< Y MNY8ed) 12 [] 73(2)
j=

no=1
k
< MNMgEY P (2). (16.38)
i=j

Due to (16.14), this implies (16.6). Q.E.D.
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17. Convergence of the Perturbative Expansion
In this section, the proof of Theorem 12.1 is completed.

To prove the convergence of the cluster expansions giving the operators RY(B)
in (13.22), one can show that if A < ¢ and

L, — Lo 2 |logci| ~X(c + log g + log (MN™)), (17.1)
then the series
P, 2)= ), FH2)B" (17.2)
n=1
converges for f€[0,1] and Z such that
1< Z <A™ ts, (17.3)
Moreover, we have to show that
£*(1, Z) < (cA)H/24Ls~Lo), (17.4)

One can rewrite the inequalities (16.5) and (16.6) in the form
{F*(B,2)}, < {g ™ (cA11DUE1~LoB 4 649~ MN#¥( B, Z)*(1 — 8%(B, Z)) "
+g° I(CA)(UIZ)(L: —Lo)(l _ (C/l)(l/lz)(l“ —Lo))— 1(1 _ 8?*(}?, Z))_ l}n. (17'5)

Let us consider the function a(f) defined as the function analytic near =0
that solves the equation

a(B) =g~ (e DT LB 4 64~ MN™a(B)*(1 — 8a(B)) ™!
+ g YA 1D Lo (] — (7)1 "L 1(] _ga(B))L.  (17.6)
If

0

a(B)= Y, a,p" (17.7)

n=1

is the power series expansion for a(f}), we have
mZ)<a, (17.8)

for all n = 1. Hence, it suffices to show that, under the conditions above, the function
a(P) is analytic for |f| <1 and

a(1) £ A = (cA) 1291 =Lo) (17.9)

Let [0,8,] be the largest interval such that the function a(f) is analytic for
Bel0, By] and fulfills (17.9). For all B€[0, 8,1N[0, 1], we have

a(f) < g~ cA M1 =10 L [128g™ LMINY AT A + 4g™ YcA)M1DL~Lo (17.10)

where A is assumed to be so small that (cA)!/? 21 ~Lo <1 and 4 <L Hence, under
a condition of the form (17.1), we have

a(ﬁ) < %(CA)(I/Z“‘)UA —Lo) + %(C;L)U/Z‘*)(Ll ~Lo) < 4. (17.11)

This implies that B, > 1. The proof of convergence is thus completed.
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To prove the stability of the gap, let us introduce the operator V such that

U YS+V)+ W0 =E+V)+7. (17.12)
Since U solves the conjugacy problem (13.27) for = 1, we have
Vuey =0. (17.13)

The stability of the gap is a consequence of the following relative boundedness result:
Lemma 17.1. We have

[<ul V]uy] < (V2D Ly § + Viu). (17.14)
Proof of Lemma 17.1. Let us expand u as follows:
u=Y ¥ ,5,®10.5)) (17.15)

Jo<= A yist)=7o\F
where ¢, €#(joN.#). Thanks to (17.13) and to the decay estimates in L*'-
operator norm for R, we have

[<ulV|u)
<2y % (z Y <¢y,,9;,®(rv|0~y>)lVlasy,%@(rvlow—»»)

Foc A y:sty) =T\ yocAv s) =70\

S2) Y Afollehyrdtattofg ;. (17.16)

To<=A y:s()=7o\S

On the other hand, we have

Cul§+ Viluy =%<u|S+ YV, + W5u)|u>

acS
<u

S+2< v, + W +Vac+Wac+V,,\c)+Vr

2

2 (134
1
ZE<“|S+Z(VQ+W6¢)|">
|
2y X Egl?olﬂcby,y-ollz, (17.17)

Jo 130 =Fo\F

where the first inequality follows from a positivity argument similar to the one
used in Sect. 6. Equations (17.16) and (17.17) imply (17.14), under a condition of
the form (17.1). Q.E.D.

Finally, we have to prove the following decay estimate for the truncated expectation
value in the ground state of the product of two operators O, 2500 of L*!-operator
norm 1 and with supports 7,75 < A, respectively:

1<t 05,0, | Oty — < Otq| 0, Tty y (Vg Oy, | Ty < (c2) 70, (17.18)

This follows from the unitarity of U and the fact that the cluster expansions for
the functions

| U™10;,05, Ulug (17.19)



272 C. Albanese

and
CuolU10, Ulug ) <ol U105, Ulug ) (17.20)

differ only by terms involving commutators of operators whose supports connect
7o to 75. Due to the decay estimates in Sect. 2, Sect. 11 and in this section, (17.18)
follows. Q.E.D.
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