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Abstract. It is shown that a unique Gibbs measure of infinite spin system with
short range interaction on one dimensional lattice satisfies log-Sobolev inequality.

0. Introduction

Log-Sobolev inequalities (shortly log-S) have been introduced in [1] and since
then many investigations of them and related problems have been published. (For
a recent bibliographical review see [2].) Although one of the important features
of these inequalities is the fact that they generalize the classical Sobolev inequalities
to infinite dimensional spaces, there are only few papers dealing specifically with
the infinite dimensional case. Let us shortly describe them. In [1] it has been shown
that any infinite product of probability measures {pM}neN satisfies log-S inequality
with a coefficient 0 < c < oo, provided each measure ρn satisfies log-S with a
corresponding coefficient 0 < cn < c.

Moreover, using this fact, in the same paper it has been proven that also any
Gaussian measure satisfies log-S. This, together with a general theory developed
in [1], yields an elegant proof of hypercontractivity estimates of Nelson [3] (see
also [4]) for the free field, so important in development of euclidean field theory.

The first example of probability measures on an infinite dimensional space
satisfying log-Sobolev inequalities and not being of product or Gaussian type
appeared in [5]. The authors used the /Vcriterion of Bakry and Emery [6] to
prove these inequalities for the measures of classical statistical mechanical systems
on a lattice with single spin space given by the 5d-sphere d ^ 2 and at sufficiently
high temperatures. The authors of this paper, Carlen and Stroock, were motivated
by investigation of Markov semigroups and in particular by applications to the
study of stochastic dynamics in statistical mechanical systems ([7-12]).
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148 B. Zegarlinski

More recently we have developed in [13,14] another method for the investi-
gation of log-Sobolev inequalities for probability measures on infinite dimensional
spaces. Our method is based on the use of Gibbs structure ([15,16,17]) together
with a kind of Dobrushin uniqueness condition [17,18,19]. Using our method
one can show log-S also in the cases when the /^-criterion does not work (e.g. in
[14] we deduced log-S inequalities for statistical mechanical systems on the lattice
Zd with single spin space {— 1, +1}). One can apply this method together with a
lattice approximation to show also that the probability measure of euclidean
(quantum) field theory with λ:expocφ:2 satisfies log-S inequality with coefficient
ΪΠQ 2, with m0 being a bare mass used to construct the probability measure in
question. (Incidentally, one can also obtain this result by using the /^-criterion.)

In the present paper we extend the ideas and methods of [13,14] to show
that each (infinite volume) Gibbs measure of one dimensional spin system with
finite range interaction satisfies log-S inequality. By this we settle also a problem
raised in [12].

In order to formulate precisely our results we need to introduce some definitions
and notations: We consider the integer lattice Z. By 3F we denote the family of
all finite subsets in Z. Let ̂ 0 be an increasing sequence of intervals whose union
contains all the lattice. We take a single spin space {—1,4-1} with discrete topology
to define a space Ω = {— 1, + 1}Z of configurations σ of the infinite spin system.
Let Σ be the σ-algebra of subsets in Ω generated by the product topology. Let
σi:Ω^>{ — 1, + 1}, I'eZ, be the ith coordinate function, called a spin at site i. For
A c= Z we will use ΣΛ to denote σ-algebra of subsets of Ω generated by the functions
{<τ,:ieΛ}.

If a function / i s ΣΛ — (respectively Σ —) measurable we write fsΣΛ

(respectively feΣ). By μ0 we will denote the free measure on (Ω,Σ) defined as the
product of uniform probability measures on {—1,+ 1}. For any probability
measure μ on (Ω, Σ\ the expectation value of a function feΣ with respect to μ is
denoted by μf or μ(f). A two point truncated correlation function of f,geΣ is by
definition

μ(f,g) = μfg-μfμg (O.i)

For further purposes we define a "differentiation" Bt with respect to the fth

coordinate as the projector on nonconstant functions with respect to σt given by

γ)σh (0.2)

where /)(T.= + i denotes the evaluation of the function / on Ω at the point σeΩ
with σf = + 1 , and similarly for f\σi=-χ. We set also

At=l-Bt (0.3)

and define for A a Z

2 Σ 2 (0.4)Σ
ieΛ

If A = Z we will write simply B = Bz.
Let Jί denote the set of bounded measurable real functions on (Ω,Σ). By

definition an interaction is a function
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An interaction Φ has finite range r = r(Φ) iff there exist reN which is a smallest
number such that

Φx^O (0.5)

for Xe^9 diam(X) ̂  r, where diampf) is the diameter of the set X. Φ is called
translation invariant iff

Φχ+a(σ) = Φχ(σ-a) (0.6)

for any I e « f and aeZ.
We will assume that the norm of interaction we consider, defined by

|| Φ || EE sup X H Φ J I L , (0.7)
ieZ Xe&

ieX

is finite (|| || „ denotes the supremum norm). This is of course satisfied for finite
range translation invariant interactions. Since the case r = 1 is trivial (then we have
a product measure already discussed in [1]) we restrict ourselves to the interactions
with range r > 1. For an interaction Φ we define an interaction functional UΛ at
a volume Λe^ by

U = y φ (0.8)

Now let us introduce the probability kernels

E\{'):=δσ

μ°'Λ{e ^ (0.9)

where Λe^,δσ is the point measure concentrated at σeΩ and μ0|/l denotes the
conditional expectation of μ0 with respect to ΣΛC.

The family $ = { £ Λ } Λ e # forms a local specification in the sense of [15,16], i.e.
it satisfies:

i) for any feΣ and

EΛfeΣΛC,

and if feΣΛc then

EσJ = f(σ). (0.10)

ii) (Compatibility condition) for any Λ,Λf€^,Λcz A\

E\.EA = E\,. (0.11)

A probability measure μ on (Ω,Σ) satisfying

μEΛ = μ (0.12)

for all Λe^ is called a Gibbs measure for $. The set of Gibbs measures for a local
specification $ is denoted by <&($).

It is known (see e.g. [20]) that in one dimension for a finite range interaction
() consists of a unique Gibbs measure μ. Moreover this measure has an

exponential decay of correlations, i.e.

(0.13)
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with some constants 0 < C, m< oo independent off,geΣ and with

d{f, g) = dist (supp /, supp g). (0.14)

A probability measure μ on (Ω, Σ) is said to satisfy a log-Sobolev inequality iff there
is a constant 0 < c < oo such that

μf2\og\f\^cμ\Bf\2+μf2log(μfψ2 (0.15)

for any function fsΣ for which μ\Bf\2 < oo and μf2 < oo.
For investigation of Glauber's stochastic dynamics [21] associated with the

spin system one uses a semigroup with generator S£ defined by

) :=Σ C »( /V)-/(*)) (0-16)
keZ

for all functions feΣ for which the right-hand side of (0.16) is finite, where the
functions ck(σ) are defined by

(0.17)
Ake-ϋ*

and

" !O r ! " ϊ . (0.18)

— σk for ί = k

One can show, see e.g. [7,8], that for any Gibbs measure μ one has

0 (0.19)
and so any Gibbs measure is a stationary measure for the corresponding stochastic
dynamics. We refer to [7-12] for an extensive study of stochastic dynamics. Let
us note (see [7]) that for the quadratic form which is uniquely given by — if and
the Gibbs measure μ one has

μ(f( ~ 2f)) = \Σ μck(σ)(f(σk) - f{σ)f = 2Σμck(σ)\BJ(σ)\2. (0.20)
* k k

Since by our assumption (0.7) and (0.17) we have

0 < i ( l - t Λ | | Φ | | ) < c k ( σ K l , (0.21)

it follows that the inequality (0.15) is equivalent with the following log-S inequality
for the Gibbs measure μ

μf2 log I/I < c'μ(/( - 2 f)) + μf2 log (μ/ 2 ) 1 / 2 , (0.22)

with the constant 0 < d < oo independent of function feΣ.
By the general theory developed in [1] the inequality (0.22) implies hyper-

contractivity of the semigroup exp(ίif) and the existence of a mass gap for
the generator jSf as an operator in L2(μ). (By mass gap we understand as usual
the gap in the spectrum of the positive self-adjoint operator — if in L2(μ) between
the infimum of its spectrum and the rest of the spectrum).

The main result of the present paper is summarized in the following theorem.
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Theorem 0.1. Let μ be a Gibbs measure of a one dimensional lattice spin system
with finite range interaction of bounded norm. Then μ satisfies the log-Sobolev
inequality. O

Let us remark that due to the geometry of a one dimensional lattice no
assumption on the temperature (as in [13,14 or 5]) is needed. We shall discuss
the inequality (0.15), but we should keep in mind that it is equivalent with (0.22),
which has direct application in statistical mechanics.

1. Proof of Theorem 0.1

The proof of our main result is based on some extension of ideas of [13] and [14]
where was shown that log-S satisfied by the finite volume kernels E\eS with
IAI = n for some neN, uniformly in boundary conditions σeΩ, by some "generalized
induction" imply log-S inequality for infinite volume measure μe^{S). It was
assumed there that the temperature of the spin system is sufficiently large. Here
we take advantage of geometry of one dimension to obtain a stronger estimate
sufficient to get the result for any temperature.

We consider an interaction Φ of finite range r = r(Φ)eZ + satisfying

II * II < oo (l.i)

with || || given by (0.7). Let LeN, L > 1. (This is a number we will control.) Let
Γo = {Λk}keZ consist of intervals Λk = [αfc,ftfc] where ak,bkeZ, fceZ are restricted
by the conditions

bk-ak = (2L+l)r)

ak+ι-bk = r (1.2)

ax = r. J
We define also Γi = {Λk}keZ as a translation of Γo by (L+ l)r.

We note that the following fact holds:

Lemma 1.1. For any AeFt (i = 0,1) and any measurable function f we have

E y 2 l o g | / I ^c0E°Λ\BJ\2 + E'Λf
2log(E"Λf

2Y'2, (1.3)

where

0<c 0 ^Clog |y l | (1.4)

with a constant 0 < C < oo independent of Λ, σeΩ and a function f. O

REM. As we shall see below it is sufficient for our purposes to have the estimate

0 < c o ^ e x p ( C | Λ | ε ) (1.5)

with some 0 < C < oo and 0 < ε < 1 independent of Λ, σeΩ and /. O

Proof of Lemma 1.1. Under condition (1.1) on the finite range interaction, our
lemma follows by use of property (0.21) and Lemma 1.5 in [12] (see also [11]
Sect. 6) where the property (1.3) is shown for finite volume measures with the form
of corresponding operator - <£ on right-hand side.
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Now let us define a sequence {Γ{k):= Γ(kmod2)}keZ+9 where femod2 equals 0 for
k even and 1 otherwise. Similarly as in [13,14] we have to consider the following
arguments, based on the definition of the Gibbs measure (0.12) and use of the log-S
inequality for conditional measures Eσ

Λ,ΛeΓ{k\keZ+. For Λ1eΓi0) we have

= c0μ\BΛJ\2 + μ(EΛJ
2\og{EΛJ

2Y'2). (1.6)

By applying the same argument to the second term on right-hand side (1.6) for
some yl 2 eΓ ( 0 ) . We get

μ/2log I/I ύ c0μ\BΛJ\2 + c0μ\BΛl(EΛJψ2\2

+ μ(EΛ2EΛJ
2 \og{EMEΛJ

2γl2). (1.7)

Since BAl affects only the function / not the measures EΛι, for yt 1,Λ 2eΓ ( 0 ),
Λi / Λ2, we have the estimate

\BΛ2(EΛJψ2\2ϊEΛt\BΛJ\2. (1.8)

This together with (1.7) gives

μf2\og\f\ϊc0μ\BΛιuΛJ\2 + μ(EΛ2EΛJ
2log(EΛ2EΛJ

2Ϋ'2). (1-9)

An iteration of the above arguments leads to the inequality

μ/2 log I/I ίc0μ\Brmf\2 +μ(EΓ(o>f2\og(Ermf2)ίl2), (1.10)

where we used the notations

|βr(o,/ι2= ΣJJβf/l2 (i.ii)

*
(with an abuse of notation we used Γ(0) to denote < \J Λk:ΛkeΓ(0) >; we will keep

such a notation also in the rest of this paper) and

/ 2 = lim EΛn-EΛJ
2. (1.12)

Γ , o , / 2 = lim EΛn-EΛ
|n|->oo

Note that the right-hand side of (1.12) is independent of the ordering of elements
in Γ ( 0 ) .

Now we take sets ΛkeΓ(1) and apply similar arguments to the second term
on the right-hand side of (1.10). Afterwards we shall repeat all this with the sets from
Γ{2) and iterate further the procedure. These inductive arguments after N steps
yield the following inequality

£ }
+ μ(£Γ<N> EΓ(O)/2 log (EΓim - £ Γ «»/ 2 ) 1 / 2 ) . (1.13)

We will use the following lemma to control the right-hand side of (1.13) as iV-> oo.

Lemma 1.2
a) There is a constant 0<cί< oo such that

\BMEΓ^fΎl2\2 ^ c.E^Bn2 (1.14)
for any measurable function f.



Log-Sobolev Inequalities 153

b) There is LeN such that for flwy/e^y +D)

|B Γ (« + i )(£ Γ («)/ 2 ) 1 / 2 | 2 S λEΓ<n)\BΓ<n)f\
2 (1.15)

with a constant 0 < λ < 1 independent ofneZ+ and a function f. O

We shall give the proof of Lemma 1.2 in a while, but first we like to show how
using this lemma one completes the proof of Theorem 0.1. For n ^ 2 w e set

(1.16)

It is easy to see that we have/ll_2e£r<ii+2\r(II~1)- Application of Lemma 1.2 b) gives

ΪBME^-^fLi^ΎύλE^-^B^-^^l2. (1.17)

If n > 2 we can repeat the arguments and by induction we get

I ^^(^(ΐ:^^-1) - - .E^ojy2)1/212 ̂  A<Λ ~ 1>£:jr(«-1>.« £:̂ (i> | S^IKJE ^ O ) / ' 2 ) 1 / 2 |2. (i.iβ)

This together with Lemma 1.2 a) yields

(1.19)

The inequality (1.19) has two consequences. First of all, as one can easily see, that
its combination with property (0.12) implies

lim EΓ(n) £ Γ (0)/ 2 = μ/ 2 , μ - a.e. (1.20)
n->oo

for any measurable / such that μ\Bf\2 < oo.
Secondly using (1.19) (and property (0.12)) we see that the sum in the curly

bracket on the right-hand side of (1.13) is bounded by

[ 1 + c Λ l - λ Γ 1 ] μ\Bf\\ (1.21)

From (1.20), (1.21) and (1.13) we obtain the inequality

μf2log\f\ϊcμ\Bf\2+μf2log(μf2γl2 (1.22)
with

c = co(l + Ci(l - λ)'1) < oo. (1.23)

This ends the proof of Theorem 0.1. O

Proof of Lemma 1.2 a). Although we closely follow the arguments given in [14,13],
for the readers convenience, we present here a selfconsistent proof. In Lemma 1.3
below we show that for any ΛkeΓi0\ Λk = lak9bk] and jeΓ(1\ d(j,Λk)^r, the
following inequality is true

\Bj(EΛkfψ
2\ g ^ ( £ ^ 1 V I 2 ) 1 ' 2 + C2(EΛk\BΛJ\ψ2 (1.24)

with some constants 0 < CUC2 < oo independent of Λk, j and any measurable
function /. Suppose now that je(bk,ak+1) (otherwise the left-hand side of (1.24)
equals to zero). Let us set Γ = Γm\(ΛkvΛk+1). Using (1.24) we get

(1.25)
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Taking into account that in the second term on the right-hand side of (1.25) BΛk

affects only the function / and not the measure EΛk+ίEp, we can bound (1.25) as
follows

|2*;(£Γ<o)/2)1/2l ̂  CάE^BjiE^Erf2)1'2?)1*2 + C2{ErW\BAJ\ψ2. (1.26)

Applying (1.24) in the first term on the right-hand side of (1.26) and using the
triangle inequality together with arguments similar to those used in passing from
(1.25) to (1.26), we obtain

+ C2{EΓw\BΛJ\2γi\ (1.27)

Squaring and summing over jeΓ(1) we get the bound

Iβ^n^o)/ 2 ) 1 / 2 ! 2 ^ 2CtEΓm\BΓii)χr(0)f\2

+ 2C|(1 + C2)r2(4L+2)ΈΓ(o)|JBΓ(θ)/|2. (1.28)

Hence taking

Cί = 2max[C4,C2(l + C 2 ) r 2 ( 4 L + 2 ) r ] (1.29)

we get Lemma 1.2a). O

We shall now show that (1.24) is true.

Lemma 1.3. There are constants 0 < Cί9 C2 < oo such that

\Bj(EΛkfψ
2\ ^ C^JBjflψ2 + C2(EΛk\BΛkf\ψ2 (1.30)

for any ΛkJeΓil\ d{j,Λk) ̂  r and any measurable function f. O

Proof. Let us first observe that for any function F we have

BjF2 = 2AjFBjF. (1.31)

Using this in order to get (1.30), it is sufficient to show that

\BjEAkf
2\ ^ 2 A i ( E A j Y ' 2 [rhs(1.30)]. (1.32)

By the definition of Bj in (0.2) we have

*j(W2)si[«*^^ ( L 3 3 )

We would like to study the right-hand side of (1.33) by using the fundamental
theorem of calculus. To do that we introduce the interpolating functions

fSj(σ) ^ f(σzχpsj):= AJ + Bjf sj9 (1.34)

where SjS[ — l, 1] and

Sjf = ̂ - (1-35)

We need also interpolating measures EΛktSj, s 7e[—1,1] defined by setting in the
definition (0.9)

Λlt Sj. (1.36)
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Using this we have

\BjEΛkf
2\ = lUsJ2EΛk,Sj(fSjdjfSj) + ί-\i

155

(1.37)

with dj = -—.
dSj

Let us consider the first term on the right-hand side of (1.37). By Hoelder
inequality we get

2γι\ (1.38)

(1.39)

Now observe that

and that the density

satisfies

^Λk

From (1.38)-(1.41) we obtain

\EΛk,Sj(fSjdjfSj)\ ϊ

Let us now note that by Hoelder inequality we get

We have also

(1.40)

(1.41)

(1.42)

(1.43)

+ (EΛk(ffσj= _t

(1.44)

Combining (1.38), (1.42)-(1.44) we obtain the bound

\ I dSjEΛk<Sj(fSjd}fSj) ϊ A}(EΛkfψ
2 l^2e»φ\EΛk\B}f\ψ2-\. (1.45)

Now we shall consider the second term on the right-hand side of (1.37). We use
the property (1.39) for UΛktSj and the identity

EΛk,Sj(fl, Bj UΛk) = \Eλk,Sj <g> EΛk,Sj(f l{σ) -f2

Sj(d)){B^Ak(o) - B, UAk(σ)),

(1.46)

where σ (respectively σ) is the integration variable with respect to EΛkSj (respectively
EΛkSj an isomorphic copy of EΛkSj). To simplify the notation we will write F
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respectively F for F(σ) respectively F(σ), From (1.46) one easily gets

\EΛk,Sj(fl,BjUM)\ i£ \mEAk,Sj®E^Sj\pSj-fl\

ύ 2|| ΦUEΛk,Sjrtyi2(EΛk,Sj® EΛk,Sj(fSj -fS])ψ2. (1.47)

Now we use (1.41) to increase the right-hand side of (1.47) as follows:

{E^if^BjU^l g 2|| ΦWe^E^flΫ'^E^ΘE^f^-lfr2. (1.48)

Integration of both sides of (1.48) with respect to Sj and application of Hoelder
inequality yield

1 i

•(EΛk®EΛkAj(f-f)ψ2.

From this, by similar arguments as in (1.44), we get

(1.49)

(1.50)

To estimate the last factor on the right-hand side of (1.50) let us note that

g (EΛk® EM{f-f)2)m + 2(EΛk®EΛk(Bjf-BJf)
2)^2

^{E^E^if-βψ2 + 4iEΛk\Bjf\ψ2. (1.51)

Note also that since EΛk satisfies log-S with coefficient c0, so also EΛk ® EΛk satisfies
that with the same coefficient. This, by arguments of [22] (see also [23]) implies
the mass gap inequality

2EΛk® EΛk{f-ff ί c0EΛk®EΛJABΛJ\2 + \Bj\2) = 2c0EΛk\BΛJ\2. (1.52)

Therefore

{E^E^iAjif-βψl'^^E^Bjnψ' + ch^E^B^nψ2. (1.53)

Inserting (1.53) into the right-hand side of (1.50) we obtain

JdEtfidU

(1.54)

(1.55)

(1.56)

(1.57)

g 2 ^ . ( £ Λ k / 2 ) 1 ' 2 21/21| Φ||e8»* l l[4(EΛk |BJ./|2)1/2

This together with (1.45) and (1.37) yields the inequality (1.32), i.e.

\BjEΛkf
2\fί 2AJ(EΛkfψ

2{C1(EΛk\Bjf\ψ2 + C2(EΛk\BΛkf\
2Y'2}

with
C 1 Ξ(4| |Φ

C2 =

This ends the proof of Lemma 1.3 (and hence also of Lemma 1.2a).
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Proof of Lemma 1.2b. Let / e £ r o v ( " + 1 ) # τ h i s means that

supp/cΓ ( n ) (1.58)

and

d(f,Z\Γin))^Lr. (1.59)

In this situation, for jeΓin\ we have

BjEΓ(n)f = 0. (1.60)

Let us consider;eΓ{n+ 1)\Jπ(n). Let us assume n to be even and jG(bk9 ak + 1) for some
fceZ (the case w odd can be treated similarly).

We follow the strategy of the proof of Lemma 1.3 and want to find a
corresponding estimation of the form (1.32). Now we shall to consider the quantity

BjErMf2 EE BjEVkEf.Mf2 = i ( £ K k | σ j = +,E-Γc,/2 - EVk{σj= _,E-Γ<»,/2), (1.61)

where we have set

Vk = ΛkuΛk+1 (1.62)

and

Γin) = Γ{n)\Vk. (1.63)

Let us note that, due to the finite range of our interaction, we have

BjEΓwf2 = E^BjEvJ
2. (1.64)

By using the fundamental theorem of calculus we obtain

BjEyJ2 = 1 ^ dsjEVkfSj(f2, dj UVktSj). (1.65)

By a similar identity as (1.46) and application of (1.39) for UVkyS. we get

EVk,sM2,djUVk<Sj) = i £ K k > S J ® £ K k > S j ( / 2 -Z 2 )^.U V k - BjUVk). (1.66)

From the definition of UVk with a potential of range r it follows that

supp Bj UVk c (bk - r, ak+1 + r) (1.67)

and so

d(/,^ l/ K k )^(L-l )r, (1.68)

with/here treated as a function of the integration variables only in Vkn(Γ(n)\Γ(n+1)).
We would like to take advantage of (1.68) and the fact that our lattice is one
dimensional to get a better bound on (1.66) than in the similar situation which
occurred in the proof of Lemma 1.2a. To do that let us define the sets

by setting

xt = ak + (L - 1 + ϊ)r
(1.69a)
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and

We set also

Let for ί = 0,...,L,

L + l

We need also to introduce the following notation: For Z = 1 , . . . , L + 1 ,

# 1 = Σ φ *

and

Wί. ι + i= Σ <*V

We will define the interpolating functions as in the proof of Lemma 1.3. With the
notation just introduced we have

L + l L

VVk,Sj=UVk0+ ΣHι+Σ Wu+1 + WL+UL+2waj. (1.74)
1=1 1=1

Let us observe that by the definition of E%k with a fixed external conditions
σeΩ we have

j ( / 2 - 7 2 ) ( ^ ^κ k - Bj vVk)

iBjUVk-BjϋVk))}, (1.75)

where (ZykfSj)~2 is a normalization factor. Let us compute the expectation with
respect to the point measure δό®δό on the right-hand side of (1.75) and consider
UVkίSj and UVk as functions on the configurations {σe Ψ'.σ^ = σ^. For simplicity
of notation, from now on we will suppress explicit dependence on σιvc Let us
consider the curly bracket on the right-hand side of (1.75) (with evaluated
expectation with respect to the point measure). Using the fact that the interaction
is of finite range r, by taking the conditional expectation associated to the measure

μQy ®μOv with respect to σ-algebraXj | J Xι 1, we can represent this curly bracket
as follows? \1-2 '

•exp(-(Us.(Vk\Vkt2) + 0SJ(Vk\Vkα) + H2 + HM (1.76)

where
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and where we used, for typographical reasons, the notation Us.(Vk\VkΛ) respectively
U(VkΛ) as subscripts and similarly with Vkt2 The functions F(ί)(σ,σ) have two
important properties. First of all, due to the finite range of interaction, we
have

F^(σ,σ) = F^(σX2,σX2), (1.78)

i.e. F ( 1 ) is a function only of the spins in the set X2 (if σ is fixed). Moreover F{1)

satisfies

2 2 2 9 σ X 2 ) . (1.79)

Therefore we can write it in the form

2 9 σ X 2 ) μ ^ v ® β 0 { v ( ( f f ) G ;

(1.80)

where Gϊ2 *s a particular case of the following notation:

Wu + ί(σXιiσXι + ί)-Wu + ι(σXι,σXι + 1))l (1.81)

Now we consider (1.76) and compute the conditional expectation of the integrand

with respect to Σ\ (J Xι). This gives

ί1-76) - ^ ^ ® / V J f ( 2 V, σ)(Bj UVk - Sj ΌVk)

•exp(-(VMj{Vk\Vk,3)+ϋ,J{Vk\Vk,3) + H3 + HM (1.82)

with

F^\σ,σ) = F'2\σX3,σX3)^μOίχβμΰJF'1\σX2,σX2)Glre-{H^^). (1.83)

Applying inductively these arguments we see that the expectation in the curly
bracket on the right-hand side of (1.75) equals

e χ p ( - ( Σ (Hi + Hι)+ υ(vkΛ) + u(vκo)+ wL+UL+2,, + wL+UL+2,Sj

(1.84)

We bound the absolute value of (1.84) by taking the absolute value of the integrand
in this expectation. Multiplying and dividing the integrand of the estimator obtained
in this way by the quanity

Π G M + I (1-85)

we obtain

^ / l / 2 -/ 2 IJΠ yil«/^κfc - S/ί7KfcΛ (1.86)
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with
ί ί , , , „

(1.87)

From this, (1.75)-(1.84) we get

{(LΊδ^SllBjUy^BjϋyJ^Ey^^Ey^lp-pl (1.88)

with

ftlL. (1.89)

Let us note that by the very definition of γ we have

0<y < 1. (1.90)

Now we take into account that

EVk,Sj®EVk,Sj\f2-p\ϊe*mEVk®EVk\f2-f2\ (1.91)

and

EVk ®EvJf2-f2\Z (EVk ® EVk(f + J)ψ2(EVk ® EyJLf - 7)2)1'2

^ 2(EK J Y ' V O SKJBKJΊ 2) 1 ' 2, (1.92)

where co = co(\Vk\). In the last step of (1.92) we used the fact that EVic is an
isomorphic copy of EVk together with the triangle inequality and the mass gap
inequality for the measure EVk ® fKk(see (1.52)). Using (1.91), (1.92) and (1.88)
together with the fact that

(1.93)

we obtain the bound

\(lJ5)\^4\\Φ\\e4mcyY(EvJψ\EyJByJ\ψ2. (1.94)

From this, (1.65), (1.64) and Hoelder inequality for the measure Ef w we get

\BjEΓ^f2\ ̂ A\\Φ\\eAmcy2yL{EΓ^ fψ2(EΓ^\BVkf\
2γ'2. (1.95)

Since

(£r<n)/y/2 g e^AjiE^f2)1^ (1.96)

so by the same arguments as in (1.31) and (1.32) we get

\Bj{E^f2y'21 ύ 2IIΦII e5m4<2γL(EΓ»A V¥J\ψ\ (1.97)

Squaring (1.97) and summing over;eΓ' ("+1) taking into account (1.60) we obtain

|B r<»+i>(£>/ 2) 1 / 2 | 2 ^ λ£ rw|βΓ(-»/|2 (1.98)

with

/iΞSrllΦllV011*11^21. (1.99)

By Lemma 1.1 and the fact that

|F, |g4(L+l)r (1.100)
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our c0 = co(\Vk\) satisfies

0 < c0 < Clog(4(L + l)r). (1.101)

Using (1.101), (1.99) together with (1.90) we conclude that we can get

0 < Λ < l (1.102)

by taking L sufficiently big.
This ends the proof of Lemma 1.2b.

2. Concluding Remarks

We have shown that each Gibbs measure of an infinite discrete spin system with
finite range interactions (at any temperature) on a one dimensional lattice satisfies
the log-Sobolev inequality. The same result is expected to hold for continuous
spins. (Some details of the proof are even simpler in this case.)

Let us stress that, despite the fact that we considered above a one dimensional
system, the results of the present paper concern in a sense a more general situation
than the one of [14], where the log-Sobolev inequalities have been proven for any
lattice system in the Dobrushin uniqueness region. Namely in the situation
considered in the present paper we work in Dobrushin-Shlosman uniqueness
region. One may expect that the logarithmic Sobolev inequalities hold in
Dobrushin-Shlosman uniqueness region for systems on an arbitrary lattice. This
problem should be a subject of future investigations. It should be treated as a part
of more general studies towards an understanding of the connections between
dynamical and equilibrium description of statistical mechanical systems. In
particular it would be interesting to show that there is a one to one correspondence
between the structure of phases in the equilibrium description and structure of
dynamical phases, the latter being distinguished (in the simplest case) by a rate of
return to equilibrium in the corresponding dissipative dynamics. (For some issues
connected to this programme as well as other interesting problems see also the
discussion in [14].)
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