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Abstract. We consider discrete lattice gas models in a finite interval with
stochastic jump dynamics in the interior, which conserve the particle number,
and with stochastic dynamics at the boundaries chosen to model infinite particle
reservoirs at fixed chemical potentials. The unique stationary measures of these
processes support a steady particle current from the reservoir of higher chemical
potential into the lower and are non-reversible. We study the structure of the
stationary measure in the hydrodynamic limit, as the microscopic lattice size
goes to infinity. In particular, we prove as a law of large numbers that the
empirical density field converges to a deterministic limit which is the solution of
the stationary transport equation and the empirical current converges to the
deterministic limit given by Pick's law.

1. Introduction

As a common experience, the large scale properties of a system in a non-equilibrium
steady state are determined by the stationary solution of the relevant macroscopic
equation with appropriate boundary conditions. Just to recall a familiar example:
Let us consider a Rayleigh-Benard cell consisting of a liquid between two plates at
different temperatures, Tγ and T2. The temperature difference is assumed to be
sufficiently small so that heat is transported only diffusively and that the velocity
field vanishes. In such a situation the hydrodynamic equations have a unique
stationary solution with density ρ(z), velocity v = 0 and temperature Γ(z), O^zg/z,
7T(0) = 7i and T(h) = T2, where z is the direction of the temperature gradient.

From a microscopic point of view we may model the liquid as a collection of a
huge number of hard spheres (with a diameter of 1 A, say), whose time evolution is
governed by Newton's equation of motion. Within this framework, the steady state
is described by a probability measure on phase space. In principle, we know how

* Supported in part by NSF Grants DMR 89-18903 and INT 8521407. H.S. also supported by the
Deutsche Forschungsgemeinschaft



254 G. Eyink, J. L. Lebowitz, and H. Spohn

such a measure has to be defined. We impose thermal boundary conditions at the
upper and lower plates. This means that a particle forgets its incoming velocity
upon hitting the plate and is emitted instantaneously with outgoing velocity
distributed according to a Maxwellian with a temperature characteristic of that
plate. We have to find then a stationary solution of the Liouville equation satisfying
the thermal boundary conditions. On physical grounds we expect, for a fixed number
of particles, this stationary solution to be unique. Only for vanishing temperature
difference, T^ = T2 = T, we know the solution. It is the familiar canonical
distribution

|exp[-ff/fcBΓ] (1.1)

with H the energy (kinetic + potential) of the system.
The stationary nonequilibrium measure in our example has a feature which is of

a general nature. We note that the density and the temperature vary slowly on the
scale measured in units of a typical interparticle distance. Therefore, we can pick a
fluid element which is so small that Q(Z) and T(z) can be considered as constant
across the element and, at the same time, so large that it still contains a huge number
of particles (say 1012). The positions and the velocities of the particles in the fluid
element under consideration have a certain probability distribution. To an excellent
approximation this probability distribution should be given by the grand canonical
ensemble with temperature T(z) and chemical potential μ(z). Here, μ(z) is adjusted
in such a way as to produce ρ(z), and ρ(z), T(z) is the stationary solution of the
hydrodynamic equations. Of course, this cannot be the full story. After all, energy is
transported through the fluid. Therefore, the velocity distribution of the particles
must be a slightly distorted Maxwellian. Also, the diffusive transport gives rise to
correlations (which we ignored) on a macroscopic scale [Sch, Spl]. However, these
are effects of higher order in the gradients. To lowest order the fluid is locally in
equilibrium with parameters determined by the steady solution of the macroscopic
equation.

Unfortunately, we are very far from being able to establish any detail of this
picture for a realistic model of a fluid, such as the Boltzmann-Gibbs model of hard
spheres. The simple models for which non-equilibrium properties can be computed,
e.g. the non-interacting gas and the perfect harmonic crystal corresponding to an
ideal fluid and an ideal solid, do not obey any macroscopic kinetic laws, such as
Fourier's law of heat conduction [SL]. We do not understand at present the
dynamical properties responsible for real systems obeying hydrodynamic laws.
Even when it is believed with certainty that the hydrodynamical laws are obeyed, as
for the hard sphere fluid, we have too little knowledge about the stationary
nonequilibrium measure to establish them from first principles.

One of the developments of recent years is the rigorous derivation of hydro-
dynamical laws for lattice gases with stochastic dynamics. Although these models
are certainly caricatures of the models we really wish to understand, they are
accurate caricatures. They have a basic structure qualitatively similar to some real
systems and exhibit in a precise mathematical form a surprisingly rich variety
of the interesting phenomena observed in real systems. In this paper, we investi-
gate stationary nonequilibrium measures for such stochastic lattice gas models.
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These lattice gases have as their only locally conserved field the particle num-
ber. Therefore, we seek to verify Pick's law of particle transport rather than
Fourier's law and, rather than temperature, we impose the chemical potential (or
particle density) at the boundaries. To be precise, the models we consider are
continuous-time Markov processes on the finite state space Ω = {0, \}A where
A = ([ - M, M]nZ)d is a lattice of (2M+ l)d sites. The components ηχ9 x e A of the
state vector η e Ω denote the occupation numbers of the sites x (1 = occupied,
0 = unoccupied). In all cases we consider, the generator of the process has the form

(Lf)(η)=± Σ c(x,y 9 η ) [ f ( ή * v)-f(η)]
x,yeΛ

|χ-y| = l

+ Σ ^M [/Of )-/(>/)] - (1-2)
x:xι=±M

For simplicity, we have chosen the exchange dynamics to allow only nearest
neighbor jumps. More essential restrictions are

(a) finite range: c(x,y;η) depends on η only through {ηz\ \x — z\^

(b) translation invariance: Let τα be the shift by a on TLά, τaηx = ηx_a, aeZd.
Then for all x,yeΛ, ηeΩ,

for

\±M\>R . (1.3)

We adopt periodic boundary conditions except in the 1 -direction.

(c) detailed balance : There exists a Hamiltonian H(rj), which is translation-
invariant (up to boundary effects) and has finite range (R) interactions, so that

(1.4)

(ηx'y denotes η with the occupancies at x,y interchanged, and (Δx yH)(η)

(d) non-degeneracy:

inf c(x,y,η)>0 . (1.5)

It is known, under these conditions, that the bulk diffusion coefficient D defined by
the Green-Kubo formula is finite and nonnegative [DIPP, Sp], so we expect good
transport properties for these systems. Note that the exchange rates c(x, x + eμ; η) in
the boundary regions \x^ ± M\ ̂  R may be chosen arbitrarily (i.e. (b) is not required)
subject to conditions (a), (c), (d). The boundary rates c(x, η) correspond to particle
creation and annihilation at the sites x: x1 = ± M. They represent in an idealized
way the interaction of the system with infinite particle reservoirs in equilibrium at
chemical potentials λ±, and are thus required to satisfy the detailed balance
conditions

-2η*> (1.6)
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here ηx is the configuration η with occupation switched at site x and λ(±MtX^ = λ± .
We also assume for these rates the finite range condition analogous to (a) above,
and non-degenracy as inf c(x, η) > 0. However, we make no further assumptions or

η,x
special choice for the boundary rates. With these assumptions on the rates there is,
for each fixed M, a unique stationary measure μ(^} for the process which is
approached exponentially quickly starting from any arbitrary state. We wish to
study the large-scale (hydrodynamic) structure of this measure.

To carry out the proofs, we must make for the bulk exchange rates one further
assumption, namely:

(e) gradient condition: there is a bounded, local function h(ή) (of range K) so
that the particle current

= hx(η)-hy(η) . (1.7)

(Here, hx(η) = τxhQ(η\ etc.)

This assumption is of a more technical nature, but is unfortunately necessary at
present. Notice it states that the microscopic current is a gradient of a local func-
tion, which is already close to the macroscopic transport law. Nontrivial examples
of rates which satisfy all of our conditions simultaneously, particularly (c) and (e),
are rare in more than one dimension. Therefore, we restrict ourselves to one-
dimensional models. Our proof actually carries over, with only minor modifica-
tions, to a somewhat more general case, namely one-dimensional models in which
the current is a "spatial gradient" plus a "time-derivative":

Jx,x+M = hM-hx+ί(η) + (Lgx)(η) , (1.8)

for bounded, local functions Λ, g. A simple example which nontrivially realizes this
structure is the "alternating rates" model of Wick [W]. Furthermore, a decom-
position of this sort is in some sense generically true (see [DPSW]), but in a weaker
form than (1.8) above. The extension of the results of the present paper to the
general (non-gradient) case seems to us of some importance as a necessary step in
the long road to an understanding of the physically realistic models.

Although most previous work on the hydrodynamics of stochastic lattice gases
has been for the time-dependent case, without reservoirs, there has been some prior
work on the stationary nonequilibrium case. The previous results may be
summarized as follows:

1 . For some models the stationary measure can be computed explicitly. Typically it
has the form of a Gibbs measure with a linearly varying chemical potential. This is
the case for Ginzburg-Landau models, interacting Brownian particles, and the zero-
range process [DF]. The stationary measures can be studied by standard
equilibrium methods.

2. For the symmetric exclusion process there is no explicit formula for the
stationary measure. However, because of duality, the nih correlation function of the
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stationary measure can be expressed as an expectation for n random walks with
exclusion. This yields enough information to cover the questions of interest
[GKMP].

In the lattice gases studied here there are no such simplifying features.
For our models we prove the weak convergence of the density field in the

hydrodynamic scaling limit to a deterministic density profile obtained as the
solution of the stationary transport equation. This provides exactly the justification
required for that equation. The argument, in fact, yields further the weak
convergence of an arbitrary extensive field to a deterministic limit which is an
appropriate function of the local density. As a consequence, we establish both the
convergence in probability of the empirical current field to the deterministic limit
given by Pick's law and a local form of the normal transport property. The strongest
result of the argument is an L2 version of the local equilibrium property (LEP). By
this, we mean that for any bounded local function g0 depending only on the
occupations in some neighborhood of the origin, that

lim μ(£}(giMqi) = <0o>Q(q) > O 9)
Λί->oo

where q e [ — 1,1 ], ρ is the solution of the stationary transport equation, < >ρ is the
expectation with respect to the Gibbs measure for the Hamiltonian H at density ρ,
and the limit is in the L2 sense. This property is a precise statement of our earlier
intuitive considerations. We postpone the proof of this result, however, to a second
paper [ELS 2]. There also we study, by closely related arguments, the relaxation of
initial, local equilibrium measures to the steady state on a hydrodynamic time scale.
In that case, we establish a deterministic weak limit for the time-dependent,
empirical density field to that density field which is the solution of the initial-
boundary value problem for the time-dependent non-linear diffusion equation.

Our proof is by the entropy production method of Guo, Papanicolaou and
Varadhan, adapted to the present situation [GPV]. Our paper advances the
previous work since it allows many new cases to be treated and gives a unified
treatment of all the models. Furthermore, the present proof is robust in being
independent of any specific choice of boundary dynamics. The original proofs for
the specific models made specific choices (albeit natural) for the boundary dy-
namics, whereas the details of the boundary dynamics should be irrelevant to the
bulk, hydrodynamical properties of the steady state, subject only to the require-
ment of their satisfying local detailed balance: in physical terms, the structure of the
steady state should be identical whether water, champagne, or vinegar is used for the
thermal reservoir, so long as the temperature (here, the chemical potential) is the
same. It is gratifying to be able to verify such independence in our case.
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2. Entropy Production and Hydrodynamics with Stochastic Reservoirs

In our context, the entropy production is defined as a function σ on the set 3f of
nonnegative measures on {0, \}Λ by

ι ΓeΔχ'yH(η)u.(nxy}^\
=ϊ Σ Σ<(*>>^)ί^ yH<"V(^)-M»?)]iog - rr^

4 x.yεΛ „ L A*W J

~ Σ

<2 "
The motivation for the definition of this function from macroscopic thermo-
dynamics and a further discussion of its properties is contained in a separate
paper [ELS]. Here, we simply point out that, since the function F(z)

/γ\

= F(x,y) = (x-y)\og{-\ satisfies F(z)^Q, F(λz) = λF(z) for Λ^O and F(z) is

convex, σ inherits these properties :

(i) (positivity)σ[μ]^0 , (2.2)

(ii) (homogeneity) σ [λμ] = λσ [μ] , 1^0 , (2.3)

(iii) (convexity) σ[λμ1+(ί-λ)μ2]^λσ[μl]-\-(l-λ)σ[μ2] ,

. (2.4)

The corresponding properties of "marginal entropy production" functions, defined
below, prove essential in the arguments we present.

The essential, technical role of entropy production in the GPV method is that,
for measures whose entropy production is "small," it may be shown that in a
suitable sense an arbitrary extensive field becomes a nonlinear function of the
density field in the hydrodynamic limit. This achieves the fundamental goal of
closure of the hydrodynamic equations or correlation hierarchy equations in terms
of the conserved density. More precisely, let us define a set, S(ε), of measures on
{0,1}^, or, equivalently, of densities / relative to the finite-volume (grand
canonical) Gibbs measure vε

ρ by

!} . (2.5)

Here, σε denotes the entropy production function in (2.1) for Λ =
Then, we have the following :

Proposition 1. For any bounded, local function gQ(η) (with finite range R) and smooth
function φeCo°[-l,l],

2

=° >

/ Γ e"1<1-') / /ε x+ε~11

a) l imlim sup (/• ε Σ Φ(^(βM"S(7 Σ
Z->0 ε~»0 /eS(ε) \ L^ -ε^+Λ \ V y = x

(2.6)
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ε'ί~R

Σ gy(η)b) limlim sup (/•
/-»0 ε->0 feS(ε)

c) limlim sup (/• - £ 0
2-0 ε-> 0 /eS(ε) \ |_* y = - £ - 1 + R

Here, # is the nonlinear function of the density

Ί2V
-9(Q+)\ ) =0

J / ρ

Ί 2 \ ε

-0fe-) ) =0 .
J / ρ
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(2.7)

(2.8)

(2.9)

with expectation in the infinite-volume Gibbs measure at density ρ. For both the
static and dynamic law of large numbers in the following sections, the limits (2.6-2.8)
are the central steps in the argument. We now turn to the proof of Proposition 1.
Since the proof of this technical proposition is not necessary to an understanding of
the arguments in the following sections, the reader might wish to skip the remainder
of this section at a first reading.

Proof of Proposition 1. The method is by now standard but a few modifications are
necessary for lack of translation invariance, etc. To set notation, let

1
(2.10)

with Λla b] = A n [a, b ] and # ( ) counting measure. Up to an error of order O (/2), we
have the inequality

φ(εx)9x(l)-9j
/

2 \ ε

^2 /
X = - ε - ! + R

2\ ε

+ 2(f
o

T Σ 1
« =

2\ ε

2\ ε

£

2\ ε

x=-ε~ 1 ( l-0

' °

2\ ε

2\ ε

(2.11)
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The first term vanishes as ε-»0, /->() note l^lloo^sup^oO?)! )•
V * /

The result (a) is a consequence of the inequality (2.11) above and

Lemma 1.
lim lim sup
l-»0 ε->0 /eS(ε)

/ -£-!(!-/

/•(β Σ = 0 .

Proof. We partition

^=ΰ

(2.12)

(2.13)

where the Bj(x)'s are disjoint intervals of length k, except Bj(x) whose length is
(possibly) less than k. Let us suppress the x-dependence for awhile. We have

-
J j = l

- Σ
J j=ι

+-, Σ
J =l

Σ
7=1

Σ
7 j=l

+7 Σ
J j = ι

In the last term, we Taylor expand to first order

(2.14)

^1^111(7 Σ \A(η,Bj)-A(η,Bt)\\2

\J i=l /

^l^'lli T Σ [A(η,Bj)-A(η,Bt)\
J = l

(2.15)
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It suffices then to prove the following two results :
(one block estimate)

l imlim sup sup(/ ε * £ °
fc^oo ε-»0 ί^j^J /eS(ε) \ x=-ε-ι+R /ρ

(2.16)
(two block estimate)

lim lim lim sup sup
fc^oo /-»0 ε-+0 l^iJ^J /eS(ε)

f ε £ " [A(η,Bj(xy)-A(η,Bt(xy)\2)**0 . (2.17)
x = - ε ~ 1 + JR / Q

A few words of explanation may be helpful here. (2. 12) says that a spatial average of
a function, depending only on a finite number of occupation variables, over a "small
macroscopic" block is close to a certain function of the density in the same block.
The proof of this result is then divided into two steps. In the first step, we prove the
analogous statement for a "large microscopic" block. In the second step, we show
that the densities in two "large microscopic" blocks are almost the same when these
blocks are "macroscopically close."

Proof of the One-Block Estimate. Without loss of generality, we may take the
range of g to be also R. Then only the marginal of fε in an interval of the form
[x — R, x + k + R] is required. Denote this by f f . Now we observe that the entropy
production σ is subadditive in the following sense : for any partition of A into
intervals Λ = A+B, it follows that

σ A [ f A ] + σ B [ f B ] ^ σ [ f ] , (2.18)

where fA is the density with respect to ve%A (the grand canonical distribution at
density ρ in the finite block A ) of the marginal of the measure μ = fvρ in the block A,
given by

.B\A(lB\lA) , (2.19)

and σA is defined as in (2.1) but with the summations over AudA restricted to those
lattice sites x for which Nxc:A (with Nx the set of lattice sites within distance R of site
x). The inequality (2.18) is obtained from the convexity properties of the "marginal
entropies" σA, σB and Jensen's inequality. As a direct consequence, there follows the
monotonicity property

[f] (2.20)

for any sub-block Ad A. For the present case, denoting the "marginal entropy
production" on the fixed block [x — R, x+k+R] by σl9 one has the formula

= Σ* Σ^j+

(2.21)


