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Abstract. We consider discrete lattice gas models in a finite interval with
stochastic jump dynamics in the interior, which conserve the particle number,
and with stochastic dynamics at the boundaries chosen to model infinite particle
reservoirs at fixed chemical potentials. The unique stationary measures of these
processes support a steady particle current from the reservoir of higher chemical
potential into the lower and are non-reversible. We study the structure of the
stationary measure in the hydrodynamic limit, as the microscopic lattice size
goes to infinity. In particular, we prove as a law of large numbers that the
empirical density field converges to a deterministic limit which is the solution of
the stationary transport equation and the empirical current converges to the
deterministic limit given by Fick’s law.

1. Introduction

As acommon experience, the large scale properties of a system in a non-equilibrium
steady state are determined by the stationary solution of the relevant macroscopic
equation with appropriate boundary conditions. Just to recall a familiar example:
Let us consider a Rayleigh-Bénard cell consisting of a liquid between two plates at
different temperatures, 7; and 7,. The temperature difference is assumed to be
sufficiently small so that heat is transported only diffusively and that the velocity
field vanishes. In such a situation the hydrodynamic equations have a unique
stationary solution with density g(z), velocity v=0 and temperature 7'(z), 0<z<h,
T(0)=T, and T(h)=T,, where z is the direction of the temperature gradient.
From a microscopic point of view we may model the liquid as a collection of a
huge number of hard spheres (with a diameter of 1 A, say), whose time evolution is
governed by Newton’s equation of motion. Within this framework, the steady state
is described by a probability measure on phase space. In principle, we know how
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such a measure has to be defined. We impose thermal boundary conditions at the
upper and lower plates. This means that a particle forgets its incoming velocity
upon hitting the plate and is emitted instantaneously with outgoing velocity
distributed according to a Maxwellian with a temperature characteristic of that
plate. We have to find then a stationary solution of the Liouville equation satisfying
the thermal boundary conditions. On physical grounds we expect, for a fixed number
of particles, this stationary solution to be unique. Only for vanishing temperature
difference, T, =T,=T, we know the solution. It is the familiar canonical
distribution

~ exp [~ H/kyT] (1.1)

with H the energy (kinetic+ potential) of the system.

The stationary nonequilibrium measure in our example has a feature which is of
a general nature. We note that the density and the temperature vary slowly on the
scale measured in units of a typical interparticle distance. Therefore, we can pick a
fluid element which is so small that ¢(z) and T(z) can be considered as constant
across the element and, at the same time, so large that it still contains a huge number
of particles (say 10'?). The positions and the velocities of the particles in the fluid
element under consideration have a certain probability distribution. To an excellent
approximation this probability distribution should be given by the grand canonical
ensemble with temperature 7'(z) and chemical potential u(z). Here, u(z) is adjusted
in such a way as to produce ¢(z), and g(z), T(z) is the stationary solution of the
hydrodynamic equations. Of course, this cannot be the full story. After all, energy is
transported through the fluid. Therefore, the velocity distribution of the particles
must be a slightly distorted Maxwellian. Also, the diffusive transport gives rise to
correlations (which we ignored) on a macroscopic scale [Sch, Sp1]. However, these
are effects of higher order in the gradients. To lowest order the fluid is locally in
equilibrium with parameters determined by the steady solution of the macroscopic
equation,

Unfortunately, we are very far from being able to establish any detail of this
picture for a realistic model of a fluid, such as the Boltzmann-Gibbs model of hard
spheres. The simple models for which non-equilibrium properties can be computed,
e.g. the non-interacting gas and the perfect harmonic crystal corresponding to an
ideal fluid and an ideal solid, do not obey any macroscopic kinetic laws, such as
Fourier’s law of heat conduction [SL]. We do not understand at present the
dynamical properties responsible for real systems obeying hydrodynamic laws.
Even when it is believed with certainty that the hydrodynamical laws are obeyed, as
for the hard sphere fluid, we have too little knowledge about the stationary
nonequilibrium measure to establish them from first principles.

One of the developments of recent years is the rigorous derivation of hydro-
dynamical laws for lattice gases with stochastic dynamics. Although these models
are certainly caricatures of the models we really wish to understand, they are
accurate caricatures. They have a basic structure qualitatively similar to some real
systems and exhibit in a precise mathematical form a surprisingly rich variety
of the interesting phenomena observed in real systems. In this paper, we investi-
gate stationary nonequilibrium measures for such stochastic lattice gas models.
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These lattice gases have as their only locally conserved field the particle num-
ber. Therefore, we seek to verify Fick’s law of particle transport rather than
Fourier’s law and, rather than temperature, we impose the chemical potential (or
particle density) at the boundaries. To be precise, the models we consider are
continuous-time Markov processes on the finite state space Q={0,1}" where
A=([—M, M]nZ)" s a lattice of (2 M + 1)? sites. The components 7, x€ A of the
state vector neQ denote the occupation numbers of the sites x (1 =occupied,
0=unoccupied). In all cases we consider, the generator of the process has the form

LHm=z Y cxy;mlf&™)—fm)]

x,yeA
Ix=yl=1

+ X el r)-fm] . (1.2)
x:x1=tM
For simplicity, we have chosen the exchange dynamics to allow only nearest
neighbor jumps. More essential restrictions are

(a) finite range: c(x,y;n) depends on » only through {7, |x—z|<R,
ly—zI<R}.

(b) tramslation invariance: Let 1, be the shift by a on Z% t,n,=n,_,, aeZ".
Then for all x, yeA, neQ, acZ’

c(x, y;m)=c(x+a,y+a;tn) for
l(x+a)y, +M|>R , |(y+a),tM|>R . (1.3)
We adopt periodic boundary conditions except in the 1-direction.

(c) detailed balance : There exists a Hamiltonian H(y), which is translation-
invariant (up to boundary effects) and has finite range (R) interactions, so that

c(x, ysm)=c(x, y;n™?)e” U= (1.4)

(7™ denotes n with the occupancies at x, y interchanged, and (4, ,H)(n)
=H(@n™")—H(n).)

(d) non-degeneracy :
inf ¢(x,y;n)>0 . (1.5)

nx 1y
lx—yl=1

It is known, under these conditions, that the bulk diffusion coefficient D defined by
the Green-Kubo formula is finite and nonnegative [DIPP, Sp], so we expect good
transport properties for these systems. Note that the exchange rates c(x, x+e, ;%) in
the boundary regions |x, + M| < Rmay be chosen arbitrarily (i.e. (b) is not required)
subject to conditions (a), (c), (d). The boundary rates c(x, #) correspond to particle
creation and annihilation at the sites x: x; = + M. They represent in an idealized
way the interaction of the system with infinite particle reservoirs in equilibrium at
chemical potentials 4., and are thus required to satisfy the detailed balance
conditions

c(x’ 11)=c(x, "x)e—(AxH)(n)Mlx(l—an) ; (1.6)
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here #* is the configuration n with occupation switched at site x and A4, )= 4+ -
We also assume for these rates the finite range condition analogous to (a) above,
and non-degenracy as inf ¢(x, ) > 0. However, we make no further assumptions or

X
special choice for the b'i)undary rates. With these assumptions on the rates there is,
for each fixed M, a unique stationary measure u® for the process which is
approached exponentially quickly starting from any arbitrary state. We wish to
study the large-scale (hydrodynamic) structure of this measure.

To carry out the proofs, we must make for the bulk exchange rates one further
assumption, namely:

(e) gradient condition: there is a bounded, local function A(#) (of range R) so
that the particle current

JxyM=cx, y;n)n,—n,)
=h,(n)—h,1n) . 1.7
(Here, h.(n)=1.hy(n), etc.)

This assumption is of a more technical nature, but is unfortunately necessary at
present. Notice it states that the microscopic current is a gradient of a local func-
tion, which is already close to the macroscopic transport law. Nontrivial examples
of rates which satisfy all of our conditions simultaneously, particularly (c) and (e),
are rare in more than one dimension. Therefore, we restrict ourselves to one-
dimensional models. Our proof actually carries over, with only minor modifica-
tions, to a somewhat more general case, namely one-dimensional models in which
the current is a ““spatial gradient” plus a “‘time-derivative”:

Jxxrr M=) = by () +(Lg) () (1.83)

for bounded, local functions 4, g. A simple example which nontrivially realizes this
structure is the “alternating rates” model of Wick [W]. Furthermore, a decom-
position of this sort is in some sense generically true (see [DPSW]), but in a weaker
form than (1.8) above. The extension of the results of the present paper to the
general (non-gradient) case seems to us of some importance as a necessary step in
the long road to an understanding of the physically realistic models.

Although most previous work on the hydrodynamics of stochastic lattice gases
has been for the time-dependent case, without reservoirs, there has been some prior
work on the stationary nonequilibrium case. The previous results may be
summarized as follows:

1. For some models the stationary measure can be computed explicitly. Typically it
has the form of a Gibbs measure with a linearly varying chemical potential. This is
the case for Ginzburg-Landau models, interacting Brownian particles, and the zero-
range process [DF]. The stationary measures can be studied by standard
equilibrium methods.

2. For the symmetric exclusion process there is no explicit formula for the
stationary measure. However, because of duality, the n't correlation function of the
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stationary measure can be expressed as an expectation for » random walks with
exclusion. This yields enough information to cover the questions of interest
[GKMP].

In the lattice gases studied here there are no such simplifying features.

For our models we prove the weak convergence of the density field in the
hydrodynamic scaling limit to a deterministic density profile obtained as the
solution of the stationary transport equation. This provides exactly the justification
required for that equation. The argument, in fact, yields further the weak
convergence of an arbitrary extensive field to a deterministic limit which is an
appropriate function of the local density. As a consequence, we establish both the
convergence in probability of the empirical current field to the deterministic limit
given by Fick’s law and a local form of the normal transport property. The strongest
result of the argument is an L? version of the local equilibrium property (LEP). By
this, we mean that for any bounded local function g, depending only on the
occupations in some neighborhood of the origin, that

A}im 1Y (gima) = <9070 > (1.9)

where ge [—1, 1], ¢ is the solution of the stationary transport equation, (- ), is the
expectation with respect to the Gibbs measure for the Hamiltonian H at density g,
and the limit is in the L? sense. This property is a precise statement of our earlier
intuitive considerations. We postpone the proof of this result, however, to a second
paper [ELS2]. There also we study, by closely related arguments, the relaxation of
initial, local equilibrium measures to the steady state on a hydrodynamic time scale.
In that case, we establish a deterministic weak limit for the time-dependent,
empirical density field to that density field which is the solution of the initial-
boundary value problem for the time-dependent non-linear diffusion equation.

Our proof is by the entropy production method of Guo, Papanicolaou and
Varadhan, adapted to the present situation [GPV]. Our paper advances the
previous work since it allows many new cases to be treated and gives a unified
treatment of all the models. Furthermore, the present proof is robust in being
independent of any specific choice of boundary dynamics. The original proofs for
the specific models made specific choices (albeit natural) for the boundary dy-
namics, whereas the details of the boundary dynamics should be irrelevant to the
bulk, hydrodynamical properties of the steady state, subject only to the require-
ment of their satisfying local detailed balance: in physical terms, the structure of the
steady state should be identical whether water, champagne, or vinegar is used for the
thermal reservoir, so long as the temperature (here, the chemical potential) is the
same. It is gratifying to be able to verify such independence in our case.
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2. Entropy Production and Hydrodynamics with Stochastic Reservoirs

In our context, the entropy production is defined as a function ¢ on the set 2 of
nonnegative measures on {0, 1} by

o=z T Xe@wyimlet Our) ”‘")“°g[ ) ]

x,yed
oyi=1 M

1 _
+5 XX clnmet O ACnTUu(r) — ()]
xedd n

eAxHO) +ax@nx=1) () :I
x lo . 2.1
g[ u(n)

The motivation for the definition of this function from macroscopic thermo-
dynamics and a further discussion of its properties is contained in a separate
paper [ELS]. Here, we simply point out that, since the function F(z)

=F(x, y)=(x—y)log (%) satisfies F(z)=0, F(Az)=AF(z) for A=0 and F(z) is

convex, o inherits these properties:

(i) (positivity) o[u]=0 , 2.2)
(i) (homogeneity) o[Au]=24cu]l , A=0, 2.3)
(iii) (convexity) o[Au +(1 =) p]1= Ao [ ]+ (1 =)o u,] ,

for 0<AZ1 . (2.4)

The corresponding properties of “marginal entropy production” functions, defined
below, prove essential in the arguments we present.

The essential, technical role of entropy production in the GPV method is that,
for measures whose entropy production is “small,” it may be shown that in a
suitable sense an arbitrary extensive field becomes a nonlinear function of the
density field in the hydrodynamic limit. This achieves the fundamental goal of
closure of the hydrodynamic equations or correlation hierarchy equations in terms
of the conserved density. More precisely, let us define a set, S(¢), of measures on
{0,1}4, or, equivalently, of densities f relative to the finite-volume (grand
canonical) Gibbs measure v, by

SE={flo*[f1sc e f20, {fH;=1} . 2.5

Here, o° denotes the entropy production function in (2.1) for A=Zn[—¢"1,¢71].
Then, we have the following:

Proposition 1. For any bounded, local function g,(n) (with finite range R) and smooth
Sfunction pe CL[—1,1],

e 11~ g xte 1l 2\ ¢
a) lim lim sup <f'[s Y ¢(sx)<gx(n)—g<7 Y ﬂy>>] > =0,
120 ¢—-0 feS(e) x=~¢g 1+R y=x e
(2.6)
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o e SR . 2\ ¢
b) lim lim sup <f-[7 > gy(n)—g(e+)] > =0, @7
120 &0 feS(e) y=—e- 11 -1) P
P —e~11- 2\ ¢
¢) lim lim sup <f '[7 > gy(n)—é(e-)] > =0 . (2.8)
1-0 &0 feS(e) y=—e-1+R 0

Here, g is the nonlinear function of the density

with expectation in the infinite-volume Gibbs measure at density ¢. For both the
static and dynamic law of large numbers in the following sections, the limits (2.6-2.8)
are the central steps in the argument. We now turn to the proof of Proposition 1.
Since the proof of this technical proposition is not necessary to an understanding of
the arguments in the following sections, the reader might wish to skip the remainder
of this section at a first reading.

Proof of Proposition 1. The method is by now standard but a few modifications are
necessary for lack of translation invariance, etc. To set notation, let

A(g,[a,b])= X 9., (2.10)

1
# [A[a,b]] xe A[a.b]

with A, ,,=An[a,b]and # () counting measure. Up to anerror of order O(/?), we

have the inequality
e x+e~ 1 2\ ¢
DY (p(EX)<gx(n)—g<7 > rly))
y=x Q
e~ 1(1-1)

(e 2,
§2<fs Y <p(e‘X)(gx(n)—A<g,[x,x+e“l]>>
x=-g"1+R

+2<f8

=(2+0()) <f €

e~ -1

2>s
e- i1 -1)

> <p(sx)<A(g,[x,x+s“1])—g‘<;:xi m))

x=—¢g"1+R >
€
>e

e-1(1—1)

> awee-; T o)

x==-g~1(1-1) y=x—¢g~1
e~ 1(1-1)

+2(|e[3+0() <f ey (A(g, [x, x+&"1])

x=-g~1-R

&

2
A, [x,x+a-111») >

[4

e~ 1(1-1) P x 2\ ¢
§4ilg||2w<f~8 Y <¢(8x)—7 Y <p(ey)>>

x=-e"11-1 y=x—ge" 1l Py
e~ 1(1-1)

ralpli(re "5 U@ tmeren

xX=—g"

€

2
—4(A@, [x,x+s‘1l]))> > - (2.11)

Q
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The first term vanishes as ¢—0, /-0 (note [9]o=sup |g0(11)|>.
n

The result (a) is a consequence of the inequality (2.11) above and

Lemma 1.

lim lim sup
1-0 e~0 feS(e)

~<f~<s Y v e ) =G(AG, [x,x+s-111))|2)> =0
e RNCRD)

Proof. We partition
[x,x+e U=

i

B (x) s 2.13)

uC&.

where the B;(x)’s are disjoint intervals of length k, except B,;(x) whose length is
(possibly) less than k. Let us suppress the x-dependence for awhile. We have

|A(g, [xa x+3—11])“é(14(’7, [x’ x+s_ll]))|2

é'; Z A(ga BJ)_é(A(r', [xax+8

II/\

J
; |4(g, B;)—4(A(n, B))

Y 14(A(n, B))—g(An, [x, x+e

e,

1 J 2
§2< 2 4(9,B)— g(A(mB))I>

1 2 :
+2<7 T, 19(An. B)) =4 (A [x7x+8"‘”)>'>

2 J
<5 ¥ (0. B)=g(40r, B)IF

2 J
+7 Z; 19(A(n, B)—g(n, [x, x+& D . (2.14)

In the last term, we Taylor expand to first order

16(A G, B)) — (A, [x, x+&~ I
<"1 14(n, B)) — Ay, [x, x+& D

e (13 :
s11 (3 3 10 8)-40. 2))

A 1 J
<4925 X 140 B)—A@, B, 2.15)
i=1
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It suffices then to prove the following two results:
(one block estimate)

e~ 1(1-1 €
lim lim sup sup <f'8 > ) lA(g7Bj(x))‘é(A(”’Bj(x))lz> =0

k= -0 15j<5J feS(e) x=—¢ 1+R
(2.16)
(two block estimate)
lim lim lim sup sup
k=0 -0 e-0 1=<i,j<J feS(e)
e~ 11 -1 &
'<f'8 Y IA(mBj(X))—A(mBi(x))|2> =0 . (2.17)
x=—¢g~1+R [4

A few words of explanation may be helpful here. (2.12) says that a spatial average of
afunction, depending only on a finite number of occupation variables, over a “small
macroscopic’ block is close to a certain function of the density in the same block.
The proof of this result is then divided into two steps. In the first step, we prove the
analogous statement for a “large microscopic” block. In the second step, we show
that the densities in two ““large microscopic” blocks are almost the same when these
blocks are “macroscopically close.”

Proof of the One-Block Estimate. Without loss of generality, we may take the
range of g to be also R. Then only the marginal of f* in an interval of the form
[x—R, x+k+ R] is required. Denote this by f;°. Now we observe that the entropy
production ¢ is subadditive in the following sense: for any partition of A into
intervals A=A+ B, it follows that

o4l fult+oplfel<salf], (2.18)

where f, is the density with respect to v, 4 (the grand canonical distribution at
density g in the finite block 4) of the marginal of the measure y= fv, in the block 4,
given by
fA(r,A)EZ f(n)vg,BiA(nBlnA) > (2.19)
nB

and o, is defined as in (2.1) but with the summations over AUdA restricted to those
lattice sites x for which N, < 4 (with N, the set of lattice sites within distance R of site
x). The inequality (2.18) is obtained from the convexity properties of the ‘““marginal
entropies” g 4, og and Jensen’s inequality. As a direct consequence, there follows the
monotonicity property

ou[falS0lf] (2.20)
for any sub-block 4= A. For the present case, denoting the “marginal entropy
production” on the fixed block [x — R, x+k+R] by g,, one has the formula

x+k

nlfil=y ¥ T et r+im)Aar ™)

y,y+1
—fl(m)uog[%]vl,m) , 2.21)
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where v, , is the marginal on the block [x— R, x+k+R] of the (grand canonical)
Gibbs measure v, at chemical potential A(g), as above. This marginal entropy
production inherits the essential properties of ¢: it is non-negative and strictly
convex when restricted to f;’s supported by configurations with fixed occupancies
n, for x within R of the boundary of [x — R, x+k + R] and fixed number of particles
in the interior region [x, x +k]. It therefore has a unique minimum when restricted
to that class. In fact, as a consequence of the detailed balance condition

ey, y+1sn)=c(y, y+1;nP> e Uy (2.22)

this minimum is the finite marginal of a grand canonical Gibbs measure for H,
conditioned to have specified occupancies outside the interior region [x,x+k]
and a specified total particle number inside [x, x+k]. It is thus a canonical Gibbs
measure for the finite block. Note the minimum value of the entropy production for
each such subclass is zero.

Now, as a consequence of monotonicity and the bound in (2.5) it follows that

o [fflsc-e . (2.23)
Therefore, any weak limit point fi* of fi as ¢—»0 must have
o [f1*]=0, (2.24)

i.e. it must be a convex combination of the canonical Gibbs measures ¥, on
[x—R,x+k+ R] described above. The estimate

iné <f1€ : IA(ga [X,X+k])—é(A(?], [X,X+k]))'2>

1,e

Ssup v(14(g, [1, k) — 44 @, [1,EkDP) , (2.25)

ve¥.

uniform in x, and the limit

lim sup v(l4(g, [1,k])—g(A(r, [1,k])?)=0 , (2.26)

k=0 ve¥%,

provided by the law of large numbers for canonical Gibbs measures and the
equivalence of ensembles, yield then the result (2.16).

For the two block estimate we first isolate two essential estimates. Let us choose
an interval I, of the form I={x,...,x+¢~'/}. Then let B, B;c1I be two disjoint
intervals of length k. Points in B;U B are separated at most by a distance ¢~ '/. Let f;
be the marginal density of f onto /and let f;;be that onto B;uB;. Consider a process
of the symmetric exclusion with speed-change type with only “long-range” jumps
between the two blocks B;, B;. For specificity, we choose the process with generator

1
LN =535 L L ey:nlfer) -/l , (2.27)

xeB; yeBj
where
E(x, y;m)=e @xyD 2 (2.28)
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obeys detailed balance with respect to the Gibbs measures for the Hamiltonian H.
Notice that there are constants ¢;, ¢, >0 such that

&< inf e~ (=, yH)(m)2 (2.29)
xeBi,nx¥ny
yeBj
supe” “x>yBiZ <z (2.30)
xeB;
yeB;

since the Hamiltonian is finite-ranged, translation invariant and the exchange of
occupancies at x, y alters the value of only a finite number of bounded interactions.
The corresponding Dirichlet form is defined by

1 g X,
Di(f=575 Y Y Cy:mf@)-fmi, . (2.31)
2k xeB; yeB;
Lemma 2.
Dy()/ f;) Sconste o, [ f;] . (2.32)
Proof. We define the exchange operator by
(T, Y= (™) . (2.33)
An exchange between x and y, x <y, can be written as
];c,y=];,x+1'”T;:—l,yT)')—l,y—Z.“T;c+l,x . (234)

By adding and subtracting terms and applying the elementary inequality

n—1 2 n—1
[Z (xi—xi+l)_J s=n-1) Z (i =xi44) (2.35)
i=1 i=1
it follows that

(T T =Y TDese z ATyas = Ty VT s VT =V,

y—1
+e Y Twr ToryTymt gz Tvn,2)

(T V=V, (2.36)
or
(Tl =VIY Qgs-llz‘;: O R SR TR TR DX
el yf (e (Taizvs o Tymay i Ty T g H = H)
x(n;l,;V7—V7>2>g : 2.37)

Each of the energy differences receives contributions from the reversal of only a
fixed, finite number of interactions, independent of k, ¢ and /. Thus,

(T T~V T Peseonstes™ Y, (T Y0 - Q39)
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Exploiting then (2.30) and the similar non-degeneracy condition

0<e, = inf ce(x,x+1;n) , (2.39)

x,n
. Nx FNx
it follows that "

(T, VI =V
<conste™!/ yf ez 15T ar [ =Y/ TP, - (2.40)

By the inequality

[Z]
2(1/—1/5)2§(u—v)1og<;> , (2.41)
&y, ) f =V,
vt Tz'r,z+1f

<conste™ !/ i <C(Z,Z+1;n)(Tl,,+1f—f)log<~—7——>>

<conste Yo, [f1] . (2.42)
Summing over x € B;, y€ B; yields then (2.32). O

Lemma 3. There exists a constant c, independent of ¢, [ and k such that

(S A (. B)—A(n, B,.»2>g§c(D,-,-q/f‘,-,~)+%> . (2.43)

Proof. By a well-known variational characterization of the Dirichlet form (see
[Str]), we have for any u with u>0

— iy uT Ly SDy()/ fy) - (2.44)
Denoting
Ly, Y=, y;m) [f (") — f ()] (2.45)
for xe B;, ye B;, and choosing
u(n)=exp [k(A(n, B’ +A(n. B))*)] , (2.46)

we observe that

L, ,u

2
(T> (m=¢(x, y;m2n,(1—n,) {exp [2(/1 (n, B;)—A(n, B,-))+E]— 1}

2
+2¢(x, y;m(1 -nx)ny{exp [Z(A(n, B;)— A, B,~))+;]—1} .

Summing now over x€ B;, y € B; and exploiting (2.29) gives (2.47)

- (L”“> () Zconst {A (1. B)(1 ~ A(1. B) (1 —exp [2(A (1. B)—A(n, By) +-,i—]>

u

2
+(1—A4(®, B;))A(n, B;) (1 —exp [2(A(n, B)—A(n, B))) +E])} ,
(2.48)
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so that

- <%ﬁ) () 2 const [— %+<A (n, B))— A, B,-))z] ; (2.49)
and thus, by (2.44),
<fij(A (n, B;)— A, Bj))2>e <const (%+ Du(l/fj)> .0 (2.50)

Proof of the Two Block Estimate. Let f € S(g). Out of the intervals {x,...,x+¢~ 1/}
which appear in (2.17) we produce covers of {—M,..., M} except for border
intervals of length less than ¢~!/. There are at most £~/ such covers labelled, say,
by the leftmost lattice site y in that interval of the cover containing the origin.
(y=—¢"+1,...,—1,0). Let I(m), m= —1/l,...,0,...,1/] be one such cover. f ™
is the marginal of f onto I(m) and fY is the marginal of f onto
B,(m)uB;(m)<I(m), for B;(m), B;(m) containing k lattice sites. Combining
Lemmas 2 and 3, we have

11

1Y S5 (A, B(m)— A(n, B;(m)*>;

m=—1/l

2 1/l
gconst<k—+l z Dy /ﬁ;m)))

m=—1]/1
11

2
§c0nst (;"'28—1[2 Z G](m) [f(m)]>

m=—1/1

<const (%-I—s"’lza[f])
1
§const<;+12> : (2.51)

In the next to the last line we used the subadditivity of the entropy production [ f].
Clearly, the bound is independent of ¢, the choice of the pair i, j and the choice of the
cover. Since we may bound the sum in (2.17) by an average over the ¢!/ covers:

e~ 1(1-1)

e Y, 1A, B;(x)— A, B(x)P

x=—g"1

1 0 1/1
=5 > [1 ) IA(n,Bj(m+y))—A(n,Bi(m+y))lz] 2.52)

y=—"1u-1) L m=-11

the estimate follows.
Now, from the combination of the one and two-block estimates, and the
inequalities (2.14), (2.15), Lemma 1 follows, and, in particular, the limitin (a). O

The remaining inequalities of Proposition 1 follow in a similar fashion. We
consider only the estimate (b), for the right boundary: the treatment of the left
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boundary is entirely identical. From the inequality

(0.7 (=D, D=0
1 J
<77 L MG@.B)-i)
J
=i 5 M0.B) =440, B)+9A@, B)~9(Alr B)
1
HGA B) 4@+ 140 B)—d(e.)

J
é ; {14(9, B))—§(A(n, B))|+g"|| |4 (1, B;) — A, By)|}

\ I

1
+|,éllw'A(n7BO)_Q+,+j 14(9, Bo)—4d ()l , (2.53)

where B; are blocks of k +2 R spins counted successively from the right boundary
and J=[e " '//k+2R], it follows further by Cauchy-Schwartz that

(A(g, [e (1 =1), 6" D~d (2. ))
82k2 J
§4{o (,—2)%;1 (A(g, B;)—§(A(n, B,)))?
+g'l% 5 (A(mB) A(n, By)P

+|19‘Hi(A(n,BO)—e+)2} . 2.54)

It appears that it is sufficient to show that

(one block estimates)

lim lim sup {f-(4(g,Bo)—4(e+))*>=0 , (2.55)

k= -0 feS(e)

lim lim sup sup {f*(A(g, B)— (A, B)PY;=0 (2.56)

k~w &0 j feS()
(two block estimate)

lim lim lim sup sup {f - (4(, B;) — A(n, Bo))2>2=0 . (2.57)

k- 120 =0 j feS(e)

Proof of the One-Block Estimates. Now the marginal of f?v, in the interval
[e7'—k—R, ¢ ']isrequired. Denote the density of this marginal by f¢, considered
as a measure on configurations in a fixed interval [—k—R,0]. With
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o111 i <c<x x— 1) Lf (=)= ﬂ(n)]log[f*}’f‘(’;)_ )]>

§<c+<0 Dl ~Hem-Dy, )

(A+ =) @2no—1) 0
X log[e - (n)f Ay )]> , 2.58)
it follows that
o [filSce (2.59)

and thus any weak limit /¥ along a subsequence has g, [ f*¥]=0. As previously, o,
is a non-negative, convex functional, which, now, is strictly convex on sets of
measures with fixed occupancy in the boundary interval [—k — R, —k —1]. Itiseasy
to see that the unique minimum on this class is the finite version of the (grand
canonical) Gibbs measure at chemical potential A(g,). By the L*-law of large
numbers for such ensembles it therefore follows that

lim lim {f*-(4(g, Bo)— g(@+))2><hm <(A(9, B)) =4 (@)D 4,0, =0

k= &0

(2.60)

The second one-block estimate is obtained exactly as in (a), by using the L?-law of
large numbers for the canonical Gibbs measure.

Proof of the Two Block Estimate. Let I, denote the block {¢™'(1—1),...,e7 '},
J
I, = | B;. Exactly as in the proof of the previous two-block estimate, we intro-
j=0
duce the exclusion process with only “long-range” jumps between B, and B; with
the generator

(Lo f)(m) = Y. 2 e yimf ) =S ) (2.61)

a2
2k x€Bo yeBj

and corresponding Dirichlet form

Do;(f)= Y, Y L ysmf () —f I, - (2.62)

€Bo yeB;

2k2 N
It follows as previously that

{f*(A(n, B;)— A(n, By))*» <const <%+Doj(l/j—‘0;)) from Lemma 3 (2.63)
<const (%-}-s“lo“ [f;.]) from Lemma 2 (2.64)

<const <%+l> , (2.65)

by the monotonicity of the entropy production. This yields the two block estimate
(2.57). This completes the proof of Proposition1. [J
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Suppose that (u®le > 0) is a sequence of probability measures, u®e S(¢) for each
€>0. Let .4, be the set of all measurable functions ¢ on [—1,1] such that
0=9(q) =1 almost everywhere, equipped with the topology of weak convergence.
For a microscopic configuration ne24 set

@D =Ne1q) (2.66)

so that ¢°e #, ([-] denotes the integer part). The measure u°® induces via this
identification a measure P° on .4, . Consider now any weak limit P* of P®as ¢—~0
(as we see later, such limits always exist by compactness). From the arguments
above we can infer some regularity in the support of P* which shall be required in
the proof of the following section. We state the result as:

Lemma 4. For all de(0,d,),

1-d
E*[ | dq(g(q+d)—g(q))2]§const da . (2.67)
-1
Consequently, ge H* P*-a.s. and, in fact,
1
E*l: § dq(g'(q))z]gconst . (2.68)
1
Also,
) 1 1 2
lim E* [(7 f dqg(q)~g+> ]=0 (2.69)
1-0 1-1
and
1 -1+ 2
limE*|:(7 | dqg(q)—g_) ]=O . (2.70)
-0 -1
Hence,
(£ 1) =94 P*-a.s. 2.71)

Proof. 1t follows from the proof of the two-block estimate that

sup <f8[s s_l%—d) AW, [x,x+k])—A(n, [x+s”‘d—k,x+s“d]))2}>

SeS() x=—g"1
<const <%+d2> . 2.72)

[See especially Eqgs. (2.51-52).] Now we write

e~ 1(1—d
<f8 (Z )(A(n,[x,x+£'ll])—A(11,[x+£‘1(d—l),x+a‘1d]))2>

x=—g~1

e~ 1(1-1
§<f8 i ) (A, [x, x+e7 D) — A, [x,x+k]))2>

x=—g~1

+ <fa " l%_d) AW, [x,x+k])—A@W, [x+e 1d—k, x+s‘1d]))2>

x=—g-1

+<f8 " %—d) AW, [x+e 'd—k,x+e71d))

x=—-g~1

—A(n, [x+s'1(d—l),x+a‘1d]))2> : 2.73)
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As a consequence of the two-block estimate (2.17) [see also (2.15)] and (2.72), we
have

fim fim <f-s S A Do e - 4G, [x+s—1(d—l>,x+a-‘d1»2>

1-0 £-0 x=—g~1
<constd?* . (2.79)

We may replace step-function averages by averages with the smooth functions ¥, ,
e 1(1—d)

and the discrete sume¢ ), by an integral [see the discussion in the following
= —g~ 1

section, after (3.30)] to obtam finally

r 1-4
lim imE®| e | dq(X(W,,,l))—X(l//q“’,))z]gconst d? . (2.75)
-0 -0 | =1
Then it follows, taking the limits, that for all de (0, d,)
[[1—-d
E*| | dg(e(g) —e(q+d»2]gconst & (2.76)
L —1

which is (2.67). We next observe that

1 2
sup | | dgo'(9)e(q)dq
peCe[-1,1]{ -1
llell2=1
. 1 _ —'d 2
= sup lim| | dq(———('o(q) 3(‘1 )>g(q)
@:llell2=1 d=0|—-1+4d

1-d ) — 5
o:llollz=1 d-0| —1
<lim j d (M‘%f@) by Cauchy-Schwartz . (2.78)
-0 -1
Since
+d 1-d d)— )
j . (M) = | dq‘””(M) 2.79)

is a measurable function of ¢ (as a supremum of continuous functions), Fatou’s
lemma may be applied to obtain
Z:I

[hm i dg (@(q+d) e(q))]
d—»0 -1 d
éh_mE*[ i da (e(q+d; e(q)H

<const , (2.80)

I dqo'(9)e(q)

-1

E*[ sup

o:llell2=1
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by the bound (2.67). From (2.80) and the Riesz theorem we infer that ge H* P*-a.s.
In that case, further,

1 2

) dgo’(9)e(q)| P*-a.s. (2.81)

e:liei2=1 ] -

eli=, |

and (2.68) follows. The Egs. (2.69-70) follow in a very similar manner from (2.7-8)
[for go (1) =n,], replacing step function averages by averages with respect to 4, 4,
taking e—0 and then returning to step functions. From these it follows that along a
subsequence (/ |new), 1,0,

1 1
lim T | dgo(q)=0, P*-a.s. , (2.82)
n2o ‘p 1-1I,
and
1 -1+,
lim T | dgo(g)=¢- P*-as. (2.83)
n—ow ‘p -1

by the Borel-Cantelli theorem. By the P*-a.s. continuity of g, the boundary
conditions (2.71) follow. 0O

3. Stationary Hydrodynamics (Hydrostatics)

The main result of the present section is a hydrodynamic law of large numbers for
the stationary state of the models presented in the Introduction. However, the
method of proof should give the same result for the steady state of all gradient
models with local reversibility. We have observed already in the previous section
that there is a unique measure uég on 24, A=Zn[— M, M] with M ~! =¢, stationary
under the dynamics. Let ¢ e C°[—1, 1]. The density field is defined by

M
X(p)=¢ Y o0, . (3.1

x=-M

We shall prove that for every 6 >0

1
lingu'ss( X(9)~ | dgo(g)a(q) >5>=0 , (3.2)
3 -1
where g(q) is the solution of the stationary hydrodynamic equation
0,[D(e(9))0,0(9)]=0 (3.3)
with boundary conditions
o(+)=e:+ - (3.4)

(Here, g, are the density in the global equilibrium state at temperature f and
chemical potential A, .) In (3.3), D(g) is the bulk diffusion coefficient calculated
from the Green-Kubo formula:

D(9)=h"(@)=<c(0,e,) (o ~1.,)*>, - (3.5
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We state the theorem and then sketch its proof. As in the preceding section, let
M, be the set of all measurable functions g on [—1, 1] such that 0=<¢(g) <1 almost
everywhere, equipped with the topology of weak convergence. For a microscopic
configuration n €24 set

C@D=ENEq] (3.6)

so that ¢°e ., . The measure ugg induces via this identification a measure P® on /4,
and a corresponding random field

X (p)= _jl dqp(q9)e°(q) . (3.7)

1
Note that X(¢)= [ dqe(g)e(g) for all pe Cs°[—1, 1] uniquely determines ¢. Now
-1

consider the deterministic density field

X(p)= _fl dgo(9)a(q) , (3.8)

where ¢(g) is the (unique) solution of the boundary-value problem (3.3—4) and let P
be the delta-distribution of that field on .#;. Then:

Theorem 1. P is the weak limit of P* as ¢—0.

We first outline the proof and then sketch the details. The proof requires the
verification of two statements:

(1) Tightness of (P¢e>0).

(2) For any weak limit point P* of the sequence (P*|l¢>0) and ¢,y e C°[—1,1],

1
a) _fl dqo"(q) E*[h(e(9)]=0 , (3.9
b) _51 _Il dqdp{¢"(@)y(P)E*[h(e(9))e(p)]
+o(@y"(P)E*[h(e(p))e()]} =0 . (3.10)

It is shown that the conditions of (2) require, in fact, that the weak limit £* be a
delta distribution d; on the unique density profile ¢ which satisfies the (weak)
stationary hydrodynamic equation

1
_51 dgo"(@h@(@)=0 , with g(+1)=¢: ; (G.11)

this, together with the statement of tightness in (1), gives the final result. To
understand, in intuitive terms, why the equations in (2) give uniqueness, linearize
Eq. (3.10) around the solution ¢ as

e(g)=2a(q)+0e(q) (3.12)
to obtain (formally)

04[D(@(9)) E*(30(9)d2(p)]+0;[D(@(P) E* (do(9) 30 (p))]1=0 .  (3.13)
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This linear equation for E*(6g(q)de(p)) is the same as that derived for the
fluctuation covariance by fluctuating hydrodynamics [Sch], except that there is no
delta-function source term on the right-hand side. It has the solution (unique subject
to the conditions of vanishing at ¢,p= +1)

E*(de(9)0e(p)=0 , (.14

which implies, of course, that the density profile g(¢g) in the measure P* is
deterministic and given by g(g). The proof we sketch below makes rigorous this
formal argument.

In order to verify the statements (1) and (2) for Theorem 1, we must first show
that Proposition 1 is applicable to the steady state measure ugg. We state this as:

Proposition 2. yfge S(e), i.e.
o' luss]<C-¢  for some C>0 . (3.15)
Proof. To obtain the upper bound (3.15), we observe that ¢*[u] may be written as

o*[ul= =3, (L*p)(m)(log p(n) + H(n))

+ae Youmjc+i- Y umj- () (3.16)

(see [ELS])). In this expression, the boundary currents j, are defined by

Jem=c(xM,n)C2niy—1) , (3.17)
and L* is the adjoint with respect to counting measure of the generator defined in
(1.2):

L*m=5 Y [l y;n)um™)—clx y;mumn)]

x,yeA
Ix=yl=1

+ Y leGn)pm) —clumum) - (3.18)
x:x1;=*M
Since the defining property of the stationary measure is that L*ugs=0, it follows
from (3.16) that
o [uss]= A+ —2) <1 (055 (3.19)

if { - >is denotes expectation with respect to ugs. We have employed the consequence
of stationarity and conservation of particle number

Jedss= =5 =U1(X)D5s » (3.20)
for xe A. If we define the current
1 M-R
» = j 3.21
Jara(m) 2(M=R) .. ‘Z ]x,x+1(’1) ( )

(M—R)

averaged over the interior block [—(M—R), M —R], then the same reasoning
implies that

1055 =, 1055 (322
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On the other hand, by the gradient condition (1.7),
hy-r(M)—h_ /(M)

Jara(m)= 2 —R) (3.23)
Because A, (1) is a bounded function uniformly in x, 7
1
n =0 — 3.24
Jar, () 0<M), (3.24)

uniformly in . Thus, the upper bound (3.15) follows by the combination of (3.19),
(3.22) and (3.24). O

(1)

The key point for (1) is that .#, is a compact, metrizable space in the weak topology.
The proof of this is an easy modification of the well-known proof that the set of
probability measures 2(X) on a compact metric space X is itself a compact,
metrizable space in the weak topology (see e.g. [P]). We therefore make only a
few remarks. The proof proceeds by imbedding .#; in the compact product space
[—2,2]® via the mapping

1
T(Q)=|: _fl dqgk(q)Q(CI)Ikew] ; (3.25)

for (g,/kew) a sequence of elements dense in the unit ball of C[—1,1]. The
important point to verify is that T[.#,] is closed in [—2,2]”. The estimate for
geC[—1,1]

1, (9)|=

1
) dqg(q)en(q)l§2l|gll,, (3.26)

gives for any weak limit u the same estimate, [u(g)| 2| g, and, hence, absolute
continuity with respect to Lebesgue measure by the Riesz theorem. It is easy to
verify the bounds 0 <¢(g) =1 a.e. for the density, so that g is the preimage in .#, of
the limit point of T'(g,) in [—2,2]°.

Then, since .4, is a compact, metric space, it follows automatically that the
sequence of measures (P*|e >0) on ./ is relatively compact in the weak topology.

)
The proof of (2a) depends upon the fact that

Ln,=(4h).(n) (3.27)

for |x + M| > R, which is the consequence of the gradient condition. We shall prove
the results first for ¢ with compact supportin[—1, 1],1.e. vanishing in an interval of
the boundaries, and then for arbitrary ¢ € C5°[—1, 1] by approximation. We note
that for such ¢ we can choose ¢ sufficiently small that ¢ (ex) =0 for |[x + M| <R, and

that
e 11-1)

e 2LX (P)=¢ ) 1<f>(8>€)8“2(41/1),5(11)

x=—g"
e~ 1(1-1)

=¢ Y @"(ex)h,(m)+O0C) . (3.28)

x=—g-1
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By stationarity,
e~ 11 -1
Hss [8 )y ¢ (ex) hx(n)] =0() . (3.29)

We now introduce a class of smooth “averaging functions” y, ;, ge[—1,1-1],
1€(0, [,), defined by

1)1 q'elq+0,q9+1-6]
0 qg'e[-1,1\g,q+11,

and which interpolate between these values on the intervals (g, g+ 6) and (g +/—9,
q+1) as a C* function, <1//. (A é-dependence should be indicated for the func-
tiony, ;, which we have omitted ; we shall consider a limit in which /-0, 6//—0.) We
note that

wq,z(q’)={ (3.30)

XS(!/@,;)-? +Z l fy §2_[(E , (3.31)
and thus, T
e~ 1(1-1) x+e 1
u§s<8 Py ¢”(8x)<ﬁ(X£(l//£x,,))—5<§ 2 m)))
26
<A 9"l (332)

so that from (3.29) and (3.32)

e~ 1(1-0

€ _Z_l ¢ (eX) EF[A(X* (Yo, 1)]
e~ ll-n g xte U
e Yy l¢”(ex)(hx(n)—ﬁ(7 Z ny>>’> (3.33)

+#§s<
xX==—€"

Thus, by (3.33) and the fundamental Proposition 1 (a),

e~ ta-n

26

<conste+ |A'|| [ @"]: ;

(pll

lim lime Y  ¢"(x)E[AX*(,.)]=0 , (3.34)
or
1-1
yg} liir; _fl dq" (@) E*[h(X(Y,,)]1=0 , (3.35)
8/1-0

using |¢[[ge 1] —g|<e and the nice properties of ¢, 4 and Yo
Since A(X (,,1)) is a bounded, continuous function on .4, , it follows that for any
weakly convergent subsequence (P™|new), P*"— P*, that

}'ifg En[A(X (0, )= E*[A(X (Y, ))] (3:36)

and by dominated convergence

1-1
fim _jl dq$" (q)E* [h(X (Y, )] =0 . (3.37)

4/1-0
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Since, by the Lebesgue-Vitali theorem and dominated convergence,

Eljl; E*[A(X (Y, )]=E*[h(e(@)] a.e. ge[-1,1] , (3.38)
/10

it follows from (3.37) (again by dominated convergence) that

_fl dq¢” (9) E* [h(e(9)]=0 . (3.39)

Finally, the restriction to ¢ with compact support can be removed easily by
approximating elements of Cg°[—1,1] by such ¢ and applying (once more!)
dominated convergence.

The proof of (2b) is very similar, but is based on the identity

L(n,n,) —(Lndn,—n.(Ln,) =G, ,—,41.,)c(x, x+15m)
+(0,,y=0x-1,,)c (e, x—1;1) (3.40)

instead of (3.27), for both [x+M|>R, |[y+M|>R. From this, the gradient
condition, and stationarity, it follows that for ¢,y of compact support

Y @)y (ey)uss [(Ah) (mn, +n.(4h), ()]

= =) ussle(x, x+1;m][p(ex) Y (ex) — p(ex+e) Y (ex)

—@EX)Y(ex+e)+plex+e)y(ex+¢)]+0(e) (3.41)
or,
Hs [(8 Yo (sx)hx(n)> <8 > !/f(sy)ny)+<8 ) qo(sx)nx) (8 )y t//”(sy)hy(n))]

=—& ) @' (ex)¥' (ex) pgs(c(x, x+1;m) +O(E) . (3.42)

Thus, : )
llir;Ee[X(h;<p”)X(l//)+X(<P)X(h;lII")]=0 , (3.43)
<with, of course, X(h;¢")=¢ E—Z—R qa”(ax)hx(r,).> From here we proceed

x=—-¢"1+R

similarly as for (2a), so we sketch the argument in broad strokes.
Using Proposition 1 (a)

ey (p(ex)<hx(q)—h‘<% xi )){:0 , (3.44)

y=x

lim lim E*
120 -0

and the bounds |X*(y)|<const |y, |X*(p)|<const ¢
averaging functions , ;, we obtain from (3.43)

|;, and introducing the

-0 ¢—0
3/1-0

1-1
+ _fl dpl/f”(p)EE[5(X(ll/p,z))X(¢)]}=0 : (3.45)

lim lim{ jl dqe" (@) E°Th(X (0, ) X(¥)]
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Then, by dominated convergence
1-1
}irrg { § dgo" (@ E* [A(X(Yg )X (W)
- -1
4/1-0

1-1
+ _51 dpy” (p) E* [ﬁ(X(lﬁp,z))X(¢)]}=0 (3.46)

Lo . 12!
by considering a subsequence P*-P*. Replacing X(y,,) by 7 | dq'0(q"),
q

employing the Lebesgue-Vitali theorem and dominated convergence gives
1 1
[ dgo"(@E*[h(e@)XW)]+ | dpy"(P)E*[X(@)h(e(@)]=0  (3.47)
-1 -1

which is (2b).

We may now give the argument for a deterministic limit §;. As a matter of fact,
note that there is a unique solution ¢ of the weak stationary hydrodynamic
equations

1
[ dgo"(@he(g)=0, @eC[-1,1], (3.48)
-1
1 1 1 —1+1
with the weak boundary conditions lim Vi | dge(g@)=¢,, lim Vi [ dge(q)
1-0 1-1 -0 -1

=g_. This follows here by elementary arguments, since (3.48) implies that, as a
distribution on C°[—1, 1], A(0(g)) is a linear function of q. Also, % (o) is smooth for
0€[0,1] and, further

1
2x(0)

so that 4 is strictly monotonic. Hence, the unicity follows easily and, in fact, the
result that g is C*®.
We consider now the following correlation function G : [— 1, 1]* > R defined by

G(g,p)=E*[0(q)oh(p)]

h'(0)= <e(0, ) (1o —1c,)*>>0 (3.49)

=E*[(e(¢9) - (@) (h(e(p))—h@(P)] , (3.50)
as a bounded continuous function. By monotonicity of 4, on the diagonal
G(g, 920, (3.51)
and by the P*-a.s. b.c.’s (2.71),
G(q,p)=0 for gq,ped[—1,1F . (3.52)
Hence, we may expand G as a Fourier series
G(g,p)=). cpn&marm (3.53)

where the convergence is for a.e. (g, p). In fact, we have the following
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Lemma 5. The distributional partial derivatives
0,G, 0,G 0;,Ge*([-1,1P) (3.549)

and thus . c, ,&*™ %™ converges absolutely (therefore uniformly) to G(q,p).

n,m

Proof. Consider 3,G. By the definition of the distributional derivative and the
Fubini theorem, it follows that

0,G(g.p)=E*[de'(9)0h(p)] , (3.55)

assuming the regularity of Lemma 4. Then, by Cauchy-Schwartz and the boud
(2.68) it follows that

1 1 1 1
_fl dq _§1 dplo,G(q, p)I' = _Il dgE*[(5¢' ()] _Il dpE*[(8h(p))*]

<const . (3.56)
The proofs for 0,G, 07 ,G are identical.
The Fourier coefficients associated to G(g, p) are given, we recall, by
L dg 1 4 .
Cam= | 7q {—e‘““"‘”“”’G(q, p . (3.57)
-1 -1
We now observe that
S lepml=lool+ ¥ ~nleyolt T —mleglt Y ——nemle, )
i I - N T O i Tmz nom "

1 1
silol /2 g i | T

+(2 Z 2 l/ n2m2 lcn,mlz . (3.58)

Then for example,

1
Yy n? ICn,o|2=(7n)—2 Y. Qmn)*le, o

1 Lodgl Yt 4 2
e 4, 3|1, Tecwn]

-1 -1
1

gW |6,G|3 by Cauchy-Schwartz . (3.59)

Likewise,

1
% ool S 557 19,613 (3.60)
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and
1
2.2 2 2 2
wm*|c, .I° = 2; G5, (3.61)
g':" n,m (271:)4 ” q.p ”2

so that the result follows.
Because ¢ satisfies the stationary hydrodynamic equation and the equations
(3.9), (3.10) are valid, the equation

0,G(g,p)+0;G(p,q)=0 (3.62)
holds in a distributional sense. Consequently, for all n,m
M2 Cp  + 12 C =0 (3.63)
in particular, for m= —n,
Cp—ntC_p,=0. (3.64)

Now, by absolute convergence of the Fourier series, we have that

1 1
| dgG(g,q)=Y. | dg™"*™-¢c, =% ¢, _,
...1 n

nm —1

FY (Cnontep)=0. (3.65)

On the other hand, for every ge.#,, ge[—1,1], by monotonicity of 4,
(e(9) —2(@)(h(e(9) —h(@(9) 20 . (3.66)

It therefore follows from

1
[ dqE*[(e(9)—a(q)) (h(e(@)—A(@(@)]=0 , (3.67)
-1

that
o(g)=0(q) a.e.q , P*-as. (3.68)

This concludes the proof of Theorem 1. O

The attentive reader may have noted that considerably more was established
than simply the static law of large numbers for the empirical density field. An
immediate consequence of the arguments of Proposition 1 is a rather weak form of
the local equilibrium property, namely, that the marginal distribution in any
microscopic block approaches, as ¢—0, a convex combination of canonical Gibbs
measures. A little more work, in fact, produces from the proofs of Proposition 1 and
Theorem 1 a somewhat stronger result, the law of large numbers for an arbitrary
extensive field, and two consequences of special physical interest: Fick’s law for the
current field and the normal transport property. Here, we harvest the work of the
previous sections to derive these results.

First, we have the following: let g, (1) be any bounded, local (depending only on
variables at sites x : [x| < R) function of the configuration, and define an .#,-valued
random variable

9 @D=91q > (3.69)
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with ./, the set of measurable functions ¢ on [—1,1] such that | ¢, Ssup lg ).
Alternatwely, we may consider the random field

e"1-R

G)= Y Y(ex)g.m) (3.70)

x=—-g"1+R

At the risk of some confusion, we denote both the probability measure on ./,
induced by pu§s and the law of the random field G*(y) by P;. We define also the
deterministic field

1
GWy)= _Il dqy(9)§(2(9)) 3.1

with the law P, (equivalently, the measure P,=d4.; on .#,). Then, we have the
result:
Theorem 2 (Convergence of the extensive fields). P, is the weak limit of P; as 0.

Proof. For the purposes of the proof, it is convenient to consider P, to be the joint
distribution of the random fields G*(/), X*(¢). Then, tightness of (P;|e > 0) follows
as before. The result (a) of Proposition 1,

&y, Y(ex) <gx(f7)—é (; ) Z m))

along with Theorem 1 is then seen to give for any weak limit point P} that

7 (

1
GW)= _fl dqy(9)§(e(q)) Pf-a.s. (3.74)

2
lim lim #SS( )=0 , (3.72)

120 £—0

1
GW)—
-1

2
>=0 , (3.73)

i.e.

Thus, the stated result follows. O
From this corollary of the proof of Theorem 1 we may infer the following:

Proposition 3 (Fick’s law and normal transport). Consider the bounded, local
Sfunction j; (n)=c(0,1;n)(n,—n.), which is the (systematic) current for the con-
figuration y. Then, as ¢—0,

e X0 W) — _fl dqy(q)D(0(9))0,6(q) ; (3.75)

weakly

in particular, the current field converges in probability with respect to g to the
deterministic limit given by Fick’s law. Furthermore, for every qe[—1,1],

1i1138'l<j1,[e-1q]1>§s= —D(2(9))9,0(9) - (3.76)

( However, note that both sides of the equality are independent of q!)
Proof. By employing the gradient condition we can write

e 1 Xy ) =X (h; ¥ )+ OC(e) . 3.77)
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Hence, applying the previous result we have that the law for the random field
e 1X*(j,; ¥) converges weakly to that for the deterministic field

X(h;l//')=_§1 dqy'(9)h(@(q))
1
= _Il dqy (q)h'(@(9))3,0(q)

1
=— I dqy(9)D(2(9))0,2(q) - (3.78)

This gives (3.75). Now consider any € Cs°[—1, 1] such that j dqy(q)=1. From

the first part of the Proposition and the fact that e "1 X*(j, ; ) = X ‘(h; )+ 0(e) is
uniformly bounded (in ), it follows that

1
Hss(e™ XU ¥) —=5 _fx dqy(q)D(2(9))9,6(9) - (3.79)

However, since both pgs(jy, [-147) and j@= —D((¢9))0,0(q) are in fact inde-
pendent of g, we can infer the pointwise statement (3.76). O

4. Discussion

The models we have been investigating in this work satisfy, in the hydrodynamic
limit, the expectations from standard nonequilibrium thermodynamics of station-
ary states. The theorems we have proved for lattice gases are likely to hold also,
mutatis mutandis, for more realistic but intractable cases, such as the hard sphere
fluid. Of course, our methods of proof will not carry over in an obvious way. The
dynamical properties such as “ergodicity” or “stochasticity” which it would
presumably be necessary to establish a priori for deterministic dynamical models in
order to derive hydrodynamics, are here incorporated by hand by our adoption of a
stochastic dynamics. Even for the generic lattice gas of the type presented in the
. Introduction, we have not been able to carry through the proofs. On the other hand,
our models may help to clarify some of the unusual features of the structure of the
non-equilibrium steady state.

As an example of this, we would like to discuss at some length the subject of
long-ranged hydrodynamic correlations. These are well-known to occur for non-
equilibrium steady states in general [Sch, GLMS] and rigorously proved to be
present for certain stochastic lattice gas models [Sp]. At first thought, this might cast
doubt on a law of large numbers for such a measure, since usually such results
depend upon some rapid decay of correlations. In fact, we have found a law of large
numbers to hold, and, furhermore, our method of proof was essentially to show that
the correlations vanish in the hydrodynamic limit! The question arises how this may
be reconciled with the feature of long-ranged correlations.

The key pointis that the long-range density-density correlation is a weaker effect
(higher order in ¢) than is seen in the hydrodynamic scaling. To observe the



Hydrodynamics for Some Stochastic Lattice Gas Models 281

correlations we must consider the fluctuations about the deterministic limit.
Introduce, for any bounded, local function g(y), the fluctuation field

e"1-R

Yi(g;0)=¢" Y o(ex)[g.(n) —uis(9,)] - 4.1)

x=—-g"1+R

It follows then directly from the identity (3.40) that
Hss[Yo(h; ") Yo+ pss [ Yo (P) Yo(hs )] = — pss[XF(c; oY )1+ O(e) . (4.2)

We have introduced here the special notation
Yi@)=e* 3 o@Ex).~ussy) 4.3)

for the fluctuation field of the conserved density. The convergence of the extensive
fields established in Theorem 2 of Sect. 3 implies then that

lim s [X“(c; 991 = dao’ @Y @<c(0, Dz

= [ dao' @V’ (@ 21D)(@(@)) - (4.4)

On the other hand, one expects that as e—0, the fluctuations of the fast variables are
just projections onto the fluctuations of the slow, conserved variables (here, the
density):

Ye(g;9)~Y(4,0) , (4.5)
where 4, is the linear operator
(4,9)(@)=d"@@)e(9) - (4.6)

(We refer the reader to the discussion in [DPSW].) For the fluctuation covariance C,
given by

[ dq | dpo(q)y (p)C(g, p)=lim uss [Y*(§) Y'(V)] (4.7

one derives, from (4.2) and a (presumed) rigorous version of (4.5), the equation

[ dq | dple”" (@)¥(p)D(@(9)+e(@¥" (P)D@(P)IC(g, p)
=-2{dg¢' @V (@(D)@(g) ,  (48)

which is a weak version of the equation

(AC) (g, p)+(CA*)(q, ) =20,[(xD)(2(9))0,6(g—p)] , 4.9)
where A is the linearized evolution operator
(Af)@=0;[D@@)f(9)] - (4.10)

This is the same equation for the fluctuation covariance as derived by the method of
fluctuating hydrodynamics [Sch, Sp1]. It is a form of the fluctuation-dissipation
theorem valid for the non-equilibrium steady state (equivalent to the so-called
“extended local equilibrium hypothesis™). However, the solution of (4.9) has a
behavior quite different from the equilibrium case, where the corresponding
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covariance
Ceq(q, P)=1(2)6(q—p) 4.11)

is delta-correlated. To exhibit this, it is useful to decompose C(g, p) into a local
equilibrium part

CL(g, P)=2x(2(9))o(g—p) 4.12)

and a “mode-coupling” part C,,, as
Clg.1)=CL4, P+ Culg,p) - (4.13)
Substituting (4.12-13) into (4.9), one easily finds the equation satisfied by C,, as
(ACy)(g, p)+(CyA*)(g, p)= —(xD)(2(9))"6(¢9 —p) - (4.14)

The formal solution of (5.14) is

Cou(g. p) = T dt [ dre*(q, Y (D)@Y e (r, p) . (4.15)

which is hard to evaluate exactly, in general, because of the spatial variation of
(xD)(a(r))". For the case of symmetric, simple exclusion (yD)(@(r))" =% (0« —0-)*
and A is the Laplacian 4 on [—1, 1] with Dirichlet boundary conditions, leading to

Cu(g,p)=5(+—0-)*47"(q,p) , (4.16)

which behaves, away from the boundary, asymptotically like ~|g—p|. (In
dimension d, the behavior is like ~|g—p|~%*2.) The same qualitative behavior is
present in all cases.

From this discussion it should be clear that the presence of “long-ranged
correlations™ is perfectly consistent with a deterministic limit. The latter require
that the function G(g, p) =0, with G the correlation function defined in (3.49):

G(g, p)=E*[d0(q)0h(p)] . 4.17)

However, the long-ranged decay occurs in the fluctuation covariance C(g, p), which
probes a different scale.
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