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Abstract. We define and analyze Lipschitz spaces J^>g associated with a
representation x e g -> V(x) of the Lie algebra g by closed operators V(x) on the
Banach space J1 together with a heat semigroup S. If the action of S satisfies
certain minimal smoothness hypotheses with respect to the differential structure
of (β, g, V) then the Lipschitz spaces support representations of g for which
products V(x) V(y) are relatively bounded by the Laplacian generating S. These
regularity properties of the &SΛtq can then be exploited to obtain improved
smoothness properties of S on ̂ . In particular C4-estimates on the action of S
automatically imply C^-estimates. Finally we use these results to discuss
integrability criteria for (β, g, V).

1. Introduction

Let (β, g, V) be a representation of the Lie algebra g by a family of closable
operators V= { V(x) \xeg} acting on a dense invariant subspace OS^ of the Banach
space ^ and let

denote the Laplacian associated with the basis x1 , . . . , xd of g. If the V(x) satisfy the
usual dissipation properties required for generators of continuous one-parameter
groups then it follows from [BGJR] that (β^ , g, V) integrates to a continuous
representation U of the corresponding connected Lie group G if, and only if, A is
closable and its closure A generates a continuous semigroup S satisfying certain
smoothness properties. These latter properties are of two kinds; range conditions
St&^&n, where &n is the common domain of all nth order monomials in the
and boundedness conditions
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as ί->0. Specifically Theorem 2.10 of [BGJR] proves integrability if S satisfies the
range conditions for all n ̂  1. The principle aim of this paper is to strengthen this
result by weakening the range assumption.

The key step in the integrability result of [BGJR] is the proof that the
boundedness condition for n = 1 combined with the range condition for all n ̂  1
implies the boundedness condition for all n ̂  1. But in Theorem 6.1 we establish the
same conclusion from the assumption that the range condition is satisfied for n = 4.
Therefore the integrability theorem of [BGJR] can be considerably extended. It
suffices that the heat semigroup S satisfies C4-smoothness properties instead of C^-
properties. In the special case of unitary representations Nelson's integrability
result [Nes] is based on C3-conditions but the Banach space theorem uses an
interpolation argument which introduces the stronger C4-requirement.

Our discussion of smoothness conditions indeed follows a very indirect path. We
use the minimal smoothness conditions to construct Lipschitz spaces which
interpolate between $ and ̂ 1. These spaces support representations of g with
greater regularity properties which ensure that the heat semigroup acts in a
smoother fashion on the Lipschitz spaces. Hence its action on ̂  is also smooth.
Unfortunately the discussion of the Lipschitz spaces requires some intricate analysis
to obtain equivalent characterizations which emphasize distinct features of the
spaces. This type of analysis is commonplace for the classical Lipschitz spaces and
appears to be an unavoidable part of the present approach.

2. General Formalism

In this section we introduce the basic definitions and notation for representations of
Lie algebras. Then we recall some basic facts about Lipschitz spaces associated with
semigroups and, in particular, with holomorphic semigroups.

a) Lie Algebras

First, if W denotes a family of norm-closable operators on a Banach space $ then
we define the Q elements @n( = $n(W)) by

and the (^-elements Λ^( = Λ^(W^i) by

*oo=n *. -
n^l

Second, if g is a Lie algebra we define a representation (β, g, V} to be a family of
closed operators V={V(x)',x€g] on $ such that

1. ^oo(F) is norm-dense

2. V(x+y)a=V(x)a+V(y)a , aeΛl9x9yeg , (2.1)

3. (adV(x])(V(y))a=V((adx)(y))a ,



Heat Semigroup and Integrability of Lie Algebras 219

Third, if x1,...,xd is a basis of g we define seminorms ρn, and norms

IHU»^lby
ρB(fl)= sup lV(Xl)...V(Xta)a\\ ,

l^il,...,in^d

HIHMI + sup ρm(a) , (2.2)
l^m^/i

for ae &n(V). Then &n(V) is a Banach space with respect to the norm || ||n and
^(F) is a Frechet space with respect to the topology defined by the family of
norms {|| | |π;/ι^l}. In addition one has J*2 JΊ 2 J*2- -^- > where the
inclusion sign denotes a continuous embedding of Banach spaces. Note that in the
sequel the inclusion sign always has this interpretation. In particular the equality of
the Banach spaces is understood to incorporate equivalence of norms.

Next we associate with each basis x± , . . . , xd of g a Laplacian

Λ = - Σ V(xtf .
i = l

In particular

If A has a norm-closed extension A which generates a continuous semigroup S then
S is called a heat semigroup. In the sequel we assume the existence of a heat
semigroup with an action which is "smooth" relative to the differential structure
(βn* II ' ||n) associated with the representation. Typically we assume that St&<^&2

for t > 0. But this condition automatically implies that J*2 is a core of A. Therefore
A = A the closure of A.

b) Lipschitz Spaces

Let T7 denote a strongly continuous semigroup on the Banach space & and α, q real
parameters with values αe<0, l>,#e [1, oo], or α=l ,g = oo. The Lipschitz space
J*α

r is then defined by

(2.3)

where dμ(t) = dt/t. It follows that 0&1]q is a Banach space with respect to the norm

ι/«

if q< oo, or the corresponding supremum norm if q= oo. (For details on Lipschitz
spaces associated with semigroups we refer to the books by Butzer and Berens [BuB]
and Triebel [Tri].) It follows that J^ is a norm-dense Γ-invariant subspace of ̂ .
Moreover, if H denotes the generator of T then D(H)^όS£q and the spaces <%£q

interpolate between J* and the subspace D(H) equipped with the graph norm.
Since Γis continuous there exist TV^l and ρ^O such that \\Tt\\ ^Nexp{ρt},

t^.Q. Therefore Hρ = H+ ρl generates a continuous semigroup TQ which satisfies the
uniform bound ||77|| ^N, t^Q. This change does not affect the Lipschitz spaces.
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One has
«£, = *£

(with equivalent norms).
Next if T is holomorphic there are a variety of equivalent characterizations of

the Lipschitz spaces. Holomorphy is equivalent to the statement that Tt&^D(H)
for ί>0 and there is a c>0 such that \\HTt\\ ^cΓ1 for ίe<0, 1>. Then by a slight
variation of a theorem of Peetre ([BuB] Theorem 3.5.3)

(2.5)

for m = 1, 2, . . . , and || ||£β is equivalent to the norms

/i \ι/«
<HMI + ίΦ(θ('m-1#m^||)Ί (2.6)

\o /

if q< oo with the obvious modification if q= oo. Alternatively

^^{ae^ t^r-'llV+H^Tϊale-'eL^dμ ^πy} (2.7)

for m = 1 , 2 , . . . , and || || J q is equivalent to the norms

I γ/q

I dμ(t)(tm-«\\(I+HρrTta\\γ , (2.8)
o /

(2.9)

if q< oo, and the supremum norms if q= oo. Basically these last two equivalences
follow from applying Peetre's theorem to the semigroup with generator (/+ HQ), i. e.
the semigroup t^>Ttexp{ — (1 -hρ)ί} = Γ ί

ρexp{ — t}. But there is one new feature.
The functionals ραj€;OT defined by (2.8) are norms which dominate the norm || ||.

Clearly the ρα>ί;m are seminorms but if ρα >q.m(ά) = Q then ||(/H-//β)
m7Jα|| =0 for

all ίe<0, 1). Now the usual resolvent estimates give the dissipativity condition

K/H-ίg-Al^Λr1!*!! (2.10)
for all beD(Hm). Hence ρβ,,.m(α) = 0 implies |τ;α|=0 for ίe<0, 1> and by
continuity ||α|=0. Thus ρα>ί;m is a norm. Next let aae&,tq.m, where

and suppose ρα,ίim(αn)^0 as «->oo and ||αn — α||-> 0 for some αe^. Then

l/β /I \ l/«

n-»oo \ ε

^lim c\\a-an\\=Q ,
«-» oθ

where the second estimate follows from the holomorphy of T. Therefore <
and QΛ,q;m(a) = Q> Hence the identity map from ^α>(2;m into & is closed.
Consequently, by the closed graph theorem, there exist CΛq.m>Q such that
\\a\\ ^Cα ,q.mQΛ ,q.m(a) for all # eJ^α q;m. Similarly the functionals given by (2.9) are
norms which dominate || ||.
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Next we consider the Poisson semigroup associated with a uniformly bounded
semigroup and the corresponding Lipschitz spaces.

Assume now that the continuous semigroup Γ, with generator H, satisfies the
uniform bound ||7j|| rgW, f 1^0. The Poisson semigroup P associated with Γis the
semigroup generated by // 1/2. It is given in terms of T by the algorithm

dsυt(s)Ts,
o

where Όt(s) = s?l2exp{ — t2/4s}. It follows that HPjrgJV and P is automatically
holomorphic (see, for example, [BeF] or [Yos] for details).

If $£q are the Lipschitz spaces corresponding to P then one has the
identification

Moreover, since P is holomorphic SS^ has the alternative characterizations

!!̂ ^^^;^^))} , (2.14)

and I ||̂  is equivalent to the norms

ι/β

ι/β
f dμ(t)(tm-«\\(I+HV2rPta\\γ (2.15)
o
oo

J
o

This follows from (2.5)-(2.9) with P replacing Γor TQ and H1/2 replacing HoτHρ.
Finally let Q denote the Poisson semigroup associated with the modified

semigroup T-*Rt = Tte~l with generator I+H. Since &£q is unchanged by the
replacement T^R the space St^q is unchanged by the replacement P^Q. Hence

and || ||̂  is equivalent to the norms

i/e

by (2.15). But it follows from the closed graph theorem that the second term in this
expression is a norm which dominates the norm || || . This is deduced by a similar
argument used for (2.9) above. Therefore || ||£ ' q is equivalent to the norms
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3. The Heat Semigroup

In this section we consider a heat semigroup S associated with the representation
(β, g, V) and analyze the implications of smoothness conditions on its action
relative to the differential structure (βn, \ ||π). Subsequently we use the results of
this analysis to characterize the Lipschitz spaces ̂ q in terms of the differential
structure under minimal smoothness hypotheses.

a) Smoothness Conditions

We assume in the sequel the existence of a strongly continuous heat semigroup S.
Continuity automatically implies bounds \\St\\ ^Nexp {ρt} for all ί^O with N^ 1
and ρ^O and the pair (N,ρ) will subsequently always indicate such bounds.

We consider two types of regularity condition on S, range restrictions and local
boundedness.

Condition Sn. For each ί>0 the heat semigroup S satisfies St&^&n.

If this condition is satisfied for n^2 then &n is a core of A and one has A = A.
Alternatively if Condition S^ is satisfied then J^n/)(zί) is a core of A. Moreover it
follows from Condition Sn , the continuous embedding &n £ Jf ? and the closed graph
theorem, that there exists a positive function Cn such that

\\Sta\\n^Cn(t)\\a\\ , *eΛ, f>0 . (3.1)
But s)|μ|| , (3.2)
for /^s>0, and consequently one can assume that Cn is uniformly bounded on
finite intervals of <0, oo>. Nevertheless the Cn can diverge as ί->0 and the next
smoothness condition specifies that the divergence should be similar to those
encountered in the group representation case [BGJR].

Condition Bn . The heat semigroup S satisfies Condition Sn and in addition there exists
a Cn > 0 such that

\\Sta\\n£Cn\\a\\t-*'2 , flE^,ί€<0,l> .

We note that it was established in [BGJR] that if ( J*, g, dU) is the representation
obtained by differentiating a continuous representation (β, G, U) of the simply
connected Lie group G having g as its Lie algebra, i.e. if dU(x) is the infinitesimal
generator of the subgroup ί-> U(etx) for each xeg, then Condition Bn is satisfied for
all n ̂  1 . More specifically for each basis xί , . . . , xd of g there exist k, f > 0 such that

\\dU(xiί)...dU(xJSta\\^k^n\\\a\\Γn^ (3.3)

for all a e 3&, t e <0, 1 >, and n ̂  1 . In fact these bounds follow from Conditions B^
and S^ simply by use of the Lie algebraic structure [BGJR, Theorem 2.1]. These
remarks motivate much of the following analysis.

First observe that if Condition B2 is satisfied then S is automatically holo-
morphic. This follows because Condition B2 implies that St &^ &2— D(Δ) and
\\ASta\\ <,d\\Sta\\2^dC2\\a\\t~ί for all αe#, and ί e <0, 1>. But this is the first basic
characterization of holomorphy for S.
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Second a variation on the proof of Theorem 2.1 of [BGJR] establishes that
Condition Bn follows from Condition Bl if one knows a priori that Condition Sn+1

is satisfied.

Proposition 3.1. If Condition B± and Sn+l are satisfied then Condition Bm is satisfied
for m = l, 2, ...,«.

Remarks 3.2. 1. Proposition 3.1 can be considerably strengthened if «Ξ>3, see
Theorem 6.1 in Sect. 6.

2. If the V(xi\ /=1,2,. . . , d are ra-dissipative, i.e. if

\\(I+εV(xi))a\\^m\\a\\ (3.4)

for all ae$Sί9 small ε > 0, and /=!,...,</, where m e <0, 1 ] then Condition £w implies
Condition Bp for /? = !,...,«. This converse to Proposition 3.1 follows because m-
dissipativity implies

for all a e &2 •> l > 0, and ί = 1 ,...,</, by the proof of Lemma 2.3 in [Rob 2].
We have already noted that Condition Bn is always satisfied for the differential

(β, g, dU) of a group representation (β, G, U) but more is true. The representation
£7 has the property U^m(dU) = ̂ m(dU) and the restriction Um of t/to &m(dU) is
|| ||m-continuous. Moreover S&m(dU) c @m(dU) and the restriction of S to &m(dU)
is a heat semigroup for the representation (βm, g, dUm}. Therefore Condition Bn is
valid for the latter representation and this states that there are Cn > w>0 such that

|^|m+n^Cn,m|α||mί-"/2 (3.5)

for all ae&m and t e <0, 1 >. The next proposition establishes that Conditions B± and
Sn + 1 imply a weak version of these estimates.

Proposition 3.3. If Conditions B1 and Sn + ί are satisfied then there is a Cw'>0 such
that

Sta\Λ£Cί\a\Λ_ιt-w (3.6)

for all aE&mn and ίe<0, 1>, w/zerβ mn = n if n is even andmn = n + \ if n is odd.

Proof. Again this follows by a slight variation of the proof of Theorem 2.1 in
[BGJR].

Remarks 3.4. 1. Since Condition Sn+ί implies Condition Sn the conclusion of
Proposition 3.3 can be iterated, i.e. there are C'n ,p>0 such that

for all 06 ̂ mn,ίe<0, 1>, and /? = 1,2 ,...,«. But it does not appear that one can
remove the restriction a e &mn without assuming S is || || Abounded uniformly for /
in a neighbourhood of the origin. Specifically one has the following.

2. If S satisfies Condition B± and S^ and in addition S is | ^-bounded for



224 D. W. Robinson

for some k>Q and all ίe<0, 1>, then there is a C2'>0 such that

for all a e J^ and f e <0, 1 >. This follows from Proposition 3.3 because Ss

for 0 < s < t and

\\Sta\\2 = \\St_s(Ssa)\\2^^ .

Hence taking the limit 5 ->0, and redefining C2k as C2, one obtains the desired
bound.

b) Lipschitz Spaces

Let j£€ denote the Lipschitz spaces defined in Sect. 2 but now S denotes a heat
semigroup. Our aim is to give alternative characterizations of the Lipschitz spaces
which involve the differential structure of the representation of g.

First suppose S satisfies Condition Sn, then for each m = l ,2 , . . . ,«we define
spaces by

^g;m = {α6^;^r/2-α||^||meL,(φ;<0?l»} (3.7)

with corresponding norms

/i \ι/β
ΉHL;m= (I dμ(t)(t^-«\\sta\\m)Λ (3.8)

\o /

if q < oo and the supremum norm if q = oo. Again it is evident that the || ||α>4;m are
seminorms but in fact they are norms, and each || α q.m dominates || ||. The proof
of these statements is completely analogous to the proof of similar statements for
the norm (2.8). But now the analogue of the second estimate in (2.1 1) follows from
(3.1) and (3.2), which are implied by Condition Sn.

It is subsequently useful to note that the norms || ||α>β;TO are also equivalent to the
norms

/oo \ l / «

a^ f dμ(t)(r*-*\\S°a\\me-<γ} , (3.9)
\ o /

ra = l,2,...,«, where Sβ denotes the uniformly bounded semigroup with Sf
= S'ίexp{— ρt}. Clearly the latter norm dominates || ||α>g;m but one also has

/oo

0\ 0

/oo \l/q

+ Ncm(l)\\a\\e-< f dμ(t)(tm'2-«e-<γ) ,
\ι /

where we have used the estimate (3.2). Since the norm || || is dominated by || ||α^.m

by the reasoning of the previous paragraph one now concludes that the norm given
by (3.9) is dominated by || ||α n ; m. Therefore the norms are equivalent.

Our aim is to identify the ̂ q and the 28^q.m and a third family of spaces which
interpolate between J* and the subspaces J*n. Theses spaces are defined in terms of
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the interpolation functions

where \^n^m and we set K(^ = K(^n\ The corresponding spaces are defined by

a^{a€a;t^t-ΛK^(t)eLq(dμι^Q9ίy)} (3.10)

and they are Banach spaces with respect to the norms

ι/«

for q< oo with the obvious modification if q= oo. The spaces &£\ = &£'q
n} are the

standard interpolation spaces between $ and 3$n whilst the spaces $£'q
m) interpolate

between & and ^n>m, the || ||n-closure of &m in &n.
In relating these various spaces we often use two inequalities due to Hardy :

i / i \ι/β /i γ/4
! dμ(t)(r $ dμ(s)fw) ^α-MfφίOίrvW , (3.11)
o V o / \o /

I oo \ l / g /oo \ l / β

f rfμ(0(ί« f dμ(s)f(sW ^α'1 J rfμ(0(/"/(0)β , (3-12)
o ί / \ o /

which are valid for appropriately measurable positive functions / and all α > 0.
In fact these inequalities follow from Minkowski's inequality after a change of
variables s-+tu.

Theorem 3.5. If S satisfies Condition B± and Condition Sn+lfor some n^.2 then

/mS _ κa _ xE8(l,m + l)
^a/2,q-^a/2,q;m-^afq

for m = l,2,...,n.

Proof. The proof is in five steps.

Let SQ denote the semigroup with generator Aρ = A+Ql. Then ||Sf

β|| ^N for
and Sρ satisfies Condition Bί . Hence, by use of the Duhamel formula,

Consequently (3.12) implies that

But it follows from (2.9), with Tρ = Sρ and Hρ = Aβ, that the integrals on the right
define a norm equivalent to || ||α/2,r Therefore || ||α/2^ dominates || ||β/2,β;ι and
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It follows from Proposition 3.3 that

for allαe^,ίe<0, 1>, and m = 2,3,...,n. Hence H^, ,.,„,-! dominates | ||β/2,,;m

for m = 2, 3,...,n.

Step 3. ̂ /2>β;n£^S/2,4-
Again let 5ρ denote the modified semigroup with generator Aρ = A+ρI. We aim

to estimate the norm || ||f/2>β in the equivalent form given by (2.9), with Te = SQ and
Hρ = Aρ. There are two cases to consider, n odd or n even.

Assume « is odd. Then

K/+ Jρ)
(M + 1)/25^|| = IK/4- J^"

Sf2α||M_1 . (3.13)

Now \fb = (I+ΔQ)S«l2a, \henb = S^(I+Ae)S^ae@n+l c J>M? and it follows from
Proposition 3.3 that

S?/2tf^

^(l+ρ + dϊC^lShalt-1*2 (3.14)

for all ίe<0, 1>. Therefore combining (3.13) and (3.14) gives

for Ze<0, 1>. But Condition B2 is satisfied by Proposition 3.1 and hence

^

for all t > 1. One immediately concludes from these estimates that there are Cα>q,
dΛ q>0 such that

( oo \ l / g

o ρ ' ) *'q

But the norm || || is dominated by || ||α/2,q;n

 and therefore || ||f/2>ί is dominated by

Next assume n is even. Then

and the estimate proceeds as above with the norm corresponding to (2.9) with
m = n/2.

Step 4. ̂ α

s

/2>ρ£^" + 1>£... £<;2).
Since Sβ1^ @n+ί for ί>0,
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Hence by Minkowski's inequality

Since || ||α>β;1 is equivalent to || \\χ/2,q by the previous steps the desired result follows
immediately.

5 4?(1'2)d (%s

J. ^Λyq ±=v0Λβ,q

First, if α0 e & then
1(7-^)^1

for all ίε<0, 1>. Second, if α2e^2 then

by DuhameΓs formula and Proposition 3.3. Consequently if a =

where C=max((H-Λfeβ),2rfC1

/). Therefore Λ^cj^.β
The above proof is only valid for # < oo but the case q = oo is similar but simpler.

We omit the details.

Corollary 3.6. If S satisfies Conditions Bl andS3 and if, in addition S is || ^-bounded
uniformly for ίe<0, 1>, i.e. HS^H^^H^/or α// ΛG^ andtεζQ, 1>,

Proof. It follows from Step 4 of the above proof that J^^G^W. But then by
Remark 3.4.2 one has a bound

for all αe J^ and /e<0, 1>. Hence ^\^^lβ^ by the proof in Step 5.

Finally we identify the spaces Jff ̂  with a family of spaces which involve the
action of the Poisson semigroup P associated with the heat semigroup S and the
differential structure of the representation. The semigroup P is now defined as the
semigroup with generator (A +ρ/)1/2. Hence it is given in terms of 5 by the analogue
of (2. 12)

Pt = (4πΓ1/2t f dsΌt(s)S,e-" , (3.15)

where υt(s) = s~3/2exp{-t2/4s}. It inherits smoothness properties from S.

Lemma 3.7. If S satisfies Condition Bn then Pt$<^@nfor allt>0and there is a C'ή
such that

\\Pta
for allae® andt€<Q, 1>.

Proof. If ίe<0, 1> then
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by Condition Bn, but if ί^l

But now it follows from (3.15) by a standard closure argument that Pt&^&n for
and

for fe<0, l>.

Lemma 3.8. IfS satisfies Condition B1 and Condition Sn+ί with n^2 then there is a
C" > 0 such that

for all a e &mn and t e <0, 1 >, where mn = n is even and mn = n + \ if n is odd.

This result follows from Proposition 3 . 3 and (3.15) by the same estimates used to
prove Lemma 3.6.

Now we are prepared to introduce the new family of spaces associated with P by

with norms || ||;>q.m given by

\ι/β

if q < oo and with the supremum norm if q— oo. It follows once again by the closed
graph theorem that the || \\'Λtq.m dominate || ||.

Theorem 3.9. If S satisfies Condition B± and Condition Sn+ΐ for some n^.2 then

ύΰS _ fflt
e>0a/2,g~e>0a,g;m

for ra = l,2,...,m.

Proof. Since @ϊl2,q = @£q it suffices to prove that Λβ% = Λ f l[ f ί ϊ m, m= 1, 2,...,«. The
proof is in three steps which are essentially a repetition of Steps 1, 2, and 3, in the
proof of Theorem 3.5 but now the uniformly bounded semigroup Sβ with generator
ΔQ is replaced by the Poisson semigroup P with generator Δ1J2 . The equivalent norm
(2.9) used in the previous proof is then replaced by its analogue in (2. 1 5). Moreover
Condition Bn and the estimates of Proposition 3.3 are replaced by the statements of
Lemmas 3.7 and 3.8. We omit further details.

4. A Priori Estimates

In this section we examine estimates for the operators V(x) and their products
V(x) V(y) on the Lipschitz spaces ^f/2,β. Our principal aim is to show that the V(x)
are relatively bounded by P = (^ϊ+ρ/)1/2, the generator of the Poisson semigroup
and that the products V(x) V(y) are relatively bounded by Δ. These estimates are
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similar to those derived earlier in the group representation case [Rob I] but now they
are established from minimal smoothness hypotheses on the heat semigroup. They
reflect the increased regularity of the Lipschitz spaces and the corresponding
representation of g.

Theorem 4.1. Assume S satisfies Conditions B± andS3 , then there is a kΛ ς > 0 such that

sup

for all a e ̂ 3 , where xί9...9xd is a basis of g.
If in addition S satisfies Condition S4 then there is an lΛ>q>Q such that

sup in^n^ilk^^llσ+^llkβ - (4.2)
l^U^d

for all ae&4, where Aρ = A+ρI.

Proof. The proof is accomplished by estimates similar to those used to establish
Theorems 6.2 and 6.3 in [RobI]. For brevity we omit the details.

Next we remark that one can also establish converses to (4.1) and (4.2). The
converse to (4.2) is the easiest to discuss and can be obtained in a strong form. For
example, if

then

all^d sup \\V(Xi)V(Xj)a\\lβ<q (4.3)

for all ae3S2ίa/2,q> and in particular for all αe^4. In analogy one might expect a
converse to (4.1) for those a^9t^[\ΛlβΛ

 suc^ that ^(x)a^^a/2,q f°r all jtegr. But
the difficulty is to first establish that these a are in D(V}. This apparently requires
stronger continuity hypotheses on S (see Theorem 4. 5 below). Nevertheless one
does have the following strict converse of (4.1).

Proposition 4.2. Assume S satisfies Conditions Bί and S3. Then there is a k'Λ q>0
such that

IIN£/2,4^;9(HI£/2,4+
 su? l|n*tH&.«) (4 4>

for all ae&3, where x^ , . . . , xd is a basis of g.

Proof. In order to establish (4.4) it is first useful to note that one can effectively
replace V by (/+ Jρ)

1/2, where Aρ = Δ+Q!. This is a consequence of standard
semigroup estimates.

Lemma 4.3. Let The a strongly continuous semigroup with generator H satisfying the
uniform bound \Tt\^N. It follows that D(H1/2) = D((I+H)1/2) and

N\\a\\ (4.5)

for all aeD(Hi/2). Consequently

||//1/2fl||^(l+7V2)||(/+^)1/2α|| (4.6)

for allaeD(H112).
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Proof. The proof follows by simple estimation once one remarks that

Hγi2a = \imΓ(-\j2Γl f dμ(t)Γί/2(I-Tt)a ,
e-»0 ε

where the limit exists if, and only if, aεD(H112) (see, for example, [Yos] but note
that we use a different convention for the sign of the generator). Similarly

(7+#)1/2β = limΓ(-l/2)-1 f </μ(0*~1/2(/-ϊ;έ?~')* >
ε->0 ε

where once again the limit exists if, and only if, aeD((I+H)1/2).
Now let us return to the proof of (4.4).

It follows from Lemma 4.3 that

for all aeD(V). Consequently

1'aα||;i€ (4.7)

for all aεD(V) such that Fαe#£q. In particular (4.7) is valid for all ae #3.
Next remark that || ||£g, and hence || ||α

9

/2ί, is equivalent to the norm

ι/β

where Q is the Poisson semigroup with generator (/+ Jρ)
1/2 associated with the

semigroup ί^Sf

1+ρ = 5texp{ — (1 +ρ)f}. This equivalence of norms follows from
the discussion at the end of Sect. 2. Therefore

/i
^ Cβi jμ| + f dμ(i)(t- \ZQta\f (4.8)

\o

for a suitable Cα>ί>0. But

βll!} . (4.9)

Moreover it follows from Theorem 3.8, applied to the pair S1+β and β, that

I / d \«\l/« <l

n^αiu ^rfα,g Σ lln^Hlf/2,, (4.10)
for a suitable dΛ q>0. Next one has

(adQt)(V(Xi))a\\^ dsυ^e-^^adS^^x^al . (4.11)
o
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But since αe^3 and Stae&3 for />0

o

Now (adzl)(F(^)) is of second order in the V(Xj) and hence

HΓ1/2!!^ (4.12)
0

for a suitable o 0. Therefore combining (4.1 1) and (4.12) one obtains the estimate

||(ad a)

= Cπ 1/2ί j dvv 1e vl4 j du(\
o o

Therefore, by the Minkowski inequality,

\ι/«

vo
oo 1 /I \ l/4

J dvv~le~v/4 J Jw(l — w)~1/2 I J
0 0 \0

oo 1
1/2 j dvv~"/2e~v/4 J dww~1 + α / 2(l -w)~1/2

0 0

oo \ l / q

0 /

But the first two integrals converge and the third integral defines a norm equivalent
to ||' ||α/2,β;2 and hence || ||f/2>g, by the discussion at the beginning of Sect. 3b and
Theorem 3.4. Finally (4.4) follows from (4.8)-(4.13) and the equivalence of the
various norms involved.

Next we aim to strengthen the conclusion of Proposition 4.2 by exploitation of a
stronger continuity hypothesis for S. But as a preliminary it is useful to note that the
estimates (4.1) and (4.4) can be rephrased as an equivalence of norms.

Lemma 4.4. Assume S satisfies Condition B^ and S3. Then the following norms are
equivalent on ^3:

_ I I I I π

sup

\ι/«
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Proof. First note &«/2,q = ̂ «^3) by Theorem 3.5. Hence there is a CΛ>q > 0 such that

ιyιs <£ ||έi||(1'3)

But for a e &3 one has

i γ/g

o /

Thus for all a e J*3 one has estimates

Second since S satisfies Condition £3 one has

StV(x)a= V(x)Sta + ] dsSt_s(adA)(V(x))Ssa
o

for all ae£%3 and xeg. Hence there is a C>0 such that

ill(/-^)n^||-||n^)(/-^)«Nc}*||5sa||2o

for all ίe<0,1>. Consequently

\ι/β

l/β

α||f/2,ς (4.15)

by another application of Theorem 3.5.
Finally the statement of the lemma follows straightforwardly from combination

of (4. 14) and (4. 15).
The interest of Lemma 4.4 rests on the observations that the second norm of the

lemma can be identified as a Lipschitz norm with respect to the Banach space ̂ l .
Then it is natural to examine the space of elements for which this norm is finite.
Theorem 4.1 and Lemma 4.4 indicates that this space contains D(V) and the next
theorem elaborates this connection. In this theorem we identify D(V\ q as the
subspace of ̂  q formed by those aeD(V) such that Vae^q equipped with the
norm α - > ( / + F ) α £ . Moreover we define

(4.16)
ό )

equipped with the norm

l l« l l i ; . , β =ll« l ι+f f *(θ(ί"β||(/-5ί)α||1)
βY/β. (4.1?)
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Theorem 4.5. Assume S satisfies Condition B± and S3 and that αe<0, l/2>,
l, oo>. It follows that

If, in addition, S restricted to J^ is \\ ^-continuous, then

Proof. First, from Theorem 4.1, Proposition 4.2, Lemma 4.4, and the dissipativity
estimates ( / + P ) α ^ 7 V ~ 1 α one obtains bounds

for all a e ̂ 3, and suitable Cα q, C^q > 0. Now the two statements of the theorem are
obtained by extending these bounds by continuity.

The semigroup S leaves $1\q invariant and since q < oo it follows the Lebesgue
dominated convergence theorem that the restriction of S to j£β is || ||α,β-
continuous. Let Fα ^ denote the generator of the restricted semigroup. Next as
$#£ Jf3c/)(j)c#£g for all f >0 it follows that

®=\J st@lq
ί>0

is a I ||£g-dense S-invariant subspace of AΛ>β and hence a core of AΛ>q. But
^^J*3^Z)(zlαί) and consequently J*3 is a core of Aa >q. Now by general semigroup
theory each core of ΔΛ>q is a core of AΛtq = (AΛtq + ρ7)1/2 and V^q is the restriction of V
to D(F)α>β. Hence J*3 is dense in D(V\ q with respect to the norm α-> || (7+ Γ)α||f t β.
Therefore the estimate on the left of (4.18) extends to all aεD(V\q by continuity
and one has .

Conversely, if S is || l^-continuous there are N^ί and ρ^O such that
for all ί>0. Therefore

and in particular ^f;α^ is S'-invariant. But it also follows from || ^ -continuity that

Hence, by the Lebesgue dominated convergence theorem, S restricted to ^f.^q is
|| ||f.^-continuous. Now since St&f.a>q £ J*3 £#f;α>q it follows that ̂ 3 is || |fι;α^-
dense in J^f.α>q. Therefore the estimate on the right of (4.18) extends to all <ze Jf?;α>g

by continuity and one has ^f;α,q^7)(F)α q.
Finally we note that the spaces &?.a,q correspond to the Lipschitz spaces of S

restricted to J^ and they can be identified as interpolation spaces between Jt

1 and
Jf2 In fact if St$^&3 for ί>0 then the spaces interpolate between ^1 and the
|| j|2-closure of J*3 in ̂ 2.

5. Lipschitz Representations

In this section we demonstrate, under mild smoothness hypotheses on S, that the
representation of g on $ defines a representation on each Lipschitz space, by
restriction. In addition we analyze the regularity properties of these representations.
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First define VΛ q(x),xGg, on J*fq by

and

for all aeD(VΛ q(x)). Since the V(x) are norm-closed and <S%q is continuously
embedded in 38 it follows that the VΛtq(x) are || ||^-closed.

Second introduce the sequence of subspaces

where xί9...9xd is a basis of g, and set

$ = Γ\ gfl

Since the V^q are restrictions of the V(x) and since J^.αtq^&n, it immediately
follows that

Thus the family ^>q = {f^β(x);xe0} on j£β satisfies the properties (2.1) of a
representation of g except for the density of Λ^Λ ,q ̂

n ̂ ί,β ^ ̂ s our a^m to establish
this density property from the estimates of Theorem 4.1 whenever q<ao.

First remark that the &n.Λ>q are Banach spaces with respect to the norms

ΛHHUα,β=|H|+ SUP βm;«,β(«) »

1 ^m^n

where the seminorms ρm.Λtq are defined by

β«ϊ« fβ(Λ)= sup \\V^q(xil)...V^q(xiJa\\lq .
l^iι,. . ., im^d

Second note that the restriction of S to j£β is a semigroup which satisfies the
same bounds as 5 on J1, i.e.,

for all a e ̂ f,β anc^ ^ = O Moreover, if ^ < oo the restriction is || ||f ^-continuous, by
the Lebesgue dominated convergence theorem. Hence the generator of the
restriction AΛ>q is well-defined as a norm-closed, norm-densely defined, operator on

and in fact ΔΛtq is the restriction of A to the domain

Next ΔΛfq + ρI generates a semigroup on 3S^q which is uniformly bounded and
consequently Pα>β = (^α>ί 4- ρ/)1/2 is also well-defined. This latter operator generates
the Poisson semigroup associated with the restriction of 5 to SS^q or, equivalently,
the restriction to j£,« °f ^e Poisson semigroup associated with 5 on J*.
Alternatively V^q can be identified as the restriction of F = ( Δ -h ρ/)1/2 to the domain
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Note that since the Poisson semigroup associated with S is uniformly bounded with
bound N one has the dissipativity estimates

for all a e D ( V™q ), and m = 1 , 2 , . . . . Moreover, the subspaces D ( V™q ) of j£ q are all
norm-dense in 0&1 and are Banach spaces with respect to the equivalent norms

OSpSm

If m = 2n is even then V^"q = Δ"tq and one also has the equivalent norms

sup

Now density of the ^w;α>β follows by comparison with the

Theorem 5.1. Assume S satisfies Conditions B± and S4, and that αe<0, l/2>,
#e[l,oo>. Then

Λ2 n.α f β = -D(Fβ^) = /)(2i;>β) (5.2)
and

-1) (5.3)

for all n = 1 , 2 , . . . . /« particular the subspaces are -dense in q .

Proof. Throughout the proof we will work on J^ q and for notational simplicity we
omit the suffices α, q on the F, P, and J. Thus we identify V(x) and ^>eW, P and
Fα >€, and Zl will now denote the closed Laplacian on ̂ q which generates the
restriction of S.

We begin by proving (5.2) and (5.3) for n= 1.

The estimates (4.1) and (4.2) establish that

and
(5.4)

(5.5)

for all a e J^4 and zj = 1 , . . . , rf, where jcx , . . . , xd is an arbitrary of g. Now i
then Staε<%4 and ||Sfα-fl||£β->0, ||FSf0- Ffl||2 fβ->0, as ί^O, because 5is || ||£fί-
continuous. Therefore (5.4) extends to all αeD(P) by continuity and this together
with (5.1) establishes that

(5.6)

a — 4α||£ϊβ-»0, as ί-»0. But it also
»0 as ί->0. Therefore (5.5) extends

to all aeD(Δ). But by general semigroup theory one has dissipativity estimates

ΊMI (5 7)

Similarly if aeD(A) then \\Sta-a\\s

Λ>q-+Q,
follows from (5.4) that || V(xi)Sta-V(xi)a Λ,q
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and relative bounds

for all aeD(Δ). Combination of these estimates establishes that || ||2;αiβ is
dominated by the norm aeD(Δ)-+\\(I+(Δ + ρI))a\\%tq and hence

Conversely (4.3) states that

\\Aa\\s^d\\a\\2.^

for all 0e^2;α,4 and it follows from this estimate and (5.7) that

This result combined with the previous inclusion establishes (5.2) with n = l.

In order to establish (5.2) and (5.3) for higher n we use the structure relations of
g and the property St&^&4^&3 to deduce that

for al\ae& where P2(V) is a second order polynomial in the V(xt). In particular

Δ V(x)Sta = V(x)StΔa + P2(V)Sta (5.8)

for all aeD(Δ). If, however, aeD(Ϋ3)^D(Δ) then \\Sta-a\\s

a>q-^Q,
\\StΔa-Δa\\%q->Q, and in addition it follows from (5.4) and (5.5)' that
|| V(x)Sta- V(x)a\\s

Λtq-+0, \\ V(x)StΔa-V(x)Δa\\l^ and \\P2(V)Sta
— P2(V)a\\Λ q-*®9 as f-»0. Therefore one concludes from (5.8) by continuity that
aeD(ΔV(x)). Thus D(V*}<^D(ΔV(x)) and also

Consequently D(F3) is a subspace of £92.Λtq. But it then follows from (5.4), (5.5),
and the structure relations of g that

\\V(xί)V(xJ)V(xk)a\\lq^k^q(\\a\\s

ΛΛ+ sup ||F-α||f,β) (5.9)
l^m^3

for all αe/)(F3), all ij,k = l,...,d, and a suitable k^q. In combination with the
previous estimates this gives

Next since St&^£$4 it follows from another application of the structure
relations of g that

ΔV(x)V(y)Sta= V(x)V(y)StΔa + P^V)Sta

for aeD(Δ) and x,yeg, where P3(F) is a third order polynomial in the V(x).
Consequently arguing as above one deduces from (5.4), (5.5), and (5.9), that
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V(x)V(y)D(A2)^D(A) for all x,yeg and in addition one has an estimate

||K(*ίl)...F(xi4)α||Sί^Λ;ιί(||β||*ί+ sup ||P»fl||?,,)
1 ^m^4

for all aeD(A2). In combination with the earlier estimates this gives

Z>(d2) = D

Combining these conclusions one has

and this establishes (5.2) and (5.3) for n = 1, 2. The proof for higher values of n then
proceeds by induction.

Let us assume (5.2) and (5.3) are true for n — 1,2,..., N where N^ 2. Next set/?!
-(7+Cd+ρ/))-1 andS'=(/+Γ)-1. Then D(r2N + l) = RNS0cD(r) and

N /N
RN~n(zdR)n(V(x))Sa . (5.10)

But

for all αe Jf, because D(V*} = RS@ = @^q. Moreover

for a\\ae&3.Λίq, where P2(*0 is a second-order polynomial in the F(x). Therefore

(5.11)

for all aeSS. But if one then successively defines polynomials Pm(V) of order m
much that

for all a e @tm + 2 . α, 4

 an(i m = 2,,. ,N then iteration of this argument establishes that

(ad/?)"(F(x))5α = (-l)n^πPn + 1(K)ΛMfe (5.13)

for a e & and n = 2,...,N because

The equality D(Δn) = @t2n,aq follows from the induction hypothesis and the
inclusion Λ 2π ;« f« — ̂ π+2;α f β f°U°ws because n^2. But combining (5.10), (5.1 1), and
(5.12), gives

+ £ (-l)*(N\Pn+l(V)R*)Sa

for all αeJ*. In particular one concludes that V(x)D(V2Ή+l)<^D(V2"). But
D(V2N) = &2N.Λ>qby the induction hypothesis and hence D(V2 N+ 1 ) is in the domain
of all monomials of order 27V -hi in the V(x). Therefore, using the induction
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hypothesis and the structure relations of g, one estimates that if aeD(V2N+l) then

2N

Π V(xtj)]V(x)a £k sup \Δ'V(x)a\^

+ sup \\(adA*)(V(x))a\\l

But (adzlp)(F(x)) is a polynomial of order 2p in the V(xi) and since 2p^2N one
has

Π V(xtl) V(x)a
J=ι

sup ||F'β||ί(<

by another use of the induction hypothesis. This establishes that

Next a very similar calculation gives

for all ae&, where the polynomials Q are now defined successively by

for and

for all a e ̂ w+2.α q

 and w = 3 , . . . , JV. In order to justify this calculation it is sufficient
that D(Δn+ί)^@n+3.Λfqϊorz\\n^N. But D(V2n+l)^D(V2n+1)ca2n+1.atqbythe
induction hypothesis ifn<N and by the previous argument if n = N. Therefore one
deduces that V(x) V(y)D(AN+1)^D(ΔN), and hence D(AN + ί ) is in the domain of
all monomials of order 2 (N+ 1 ) in the V(x). Then if a E D (A N + 1 ) one estimates that

^k sup \\Δ"V(x)V(y)a\
J = l

Π V(xij)\V(x)V(y)a

sup \Δ'a\

sup

by the induction hypothesis. Since (adAp)(V(x)V(y)) is a polynomial of order
2/7 + 1 in the V(xi), and/7^JV, it then follows from the earlier calculation that

Therefore

Π V(xii)V(x)V(y)a. ^ sup
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Conversely if 2;α q then

d
a\\lq^ £ ..

i ι = l

d

Σ
in + ι = l

( N + l \

Π V(x^)a
J=ι /

and consequently

Combining these conclusions one deduces that (5.2) and (5.3) are now valid for
n = N+l. Therefore (5.2) and (5.3) are valid for all n^l by induction.

It is unclear whether the hypotheses of Theorem 5.1 are sufficient to ensure that
^n-i α^^^C^q"1)- Theorem 4.5 gives a result in this direction,

but the proof requires || ^-continuity of S restricted to ^1 in addition to Con-
ditions Bί and S3 . Moreover, the spaces f̂ ; β j€ defined by (4.16) and (4.17) differ in
a significant manner from the spaces ^ι;α>ί. But this motivates the comparison of
D(V"q) with the higher order analogues of the ^f;α>β, i.e. with the spaces

equipped with the norms

/i \ι/β

HI2;..«= l«ll.+ f^iOir-K/-^^!!^ .
\o /

If Cleaves J*n invariant and is || ^-continuous on 3#n then these spaces correspond
to the Lipschitz spaces of S restricted to 3$n. If on the other hand 5 does not leave &n

invariant these spaces could be quite sparse and this indicates that strong
smoothness properties of S would be necessary to prove that D(Pα"g)^ J^;orjq. This
is indeed the case. One has

sup ||zlmα||f ^£/n | |tf| |fn.α q ,

and hence &2n ,v.,q — D(Δ",q) w^h no smoothness assumptions but the converse
inclusion is more delicate. If, for example, one has St$^&2

 and S is || ^-con-
tinuous on J*2 then

\\(I-St)a\\2ί\dS\\SsΔa\\2

for all ae$2. Consequently

\ι/β

and it follows from Theorems 3.5 and 5.1 that
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if S also satisfies Conditions B± and S4. Thus Conditions £15 53, and || ^-con-
tinuity of S ensure that

and Conditions J^1? S4, and || ||2-continuity of S give

These arguments can be generalized to conclude that if S satisfies Conditions Bl

and Sn+2, and S restricted to 3ft n is | ^-continuous, then

for m = 1, 2, . . . , n. This is in particular the case if (β, g, V) is the differential of a
continuous group representation because all the smoothness and continuity
conditions on S are satisfied for all n.

6. Smoothness and Integrability

Finally we can use the foregoing analysis to analyze smoothness properties of the
heat semigroup and criteria for integrability of the representation of g. In particular
we improve some of the recent results on these topics [BGJR].

Theorem 6.1. Assume S satisfies Conditions Bί and S4.
It follows that S satisfies Conditions Bn and Sn for all n ̂  1 .

Proof. First it follows from Proposition 3.1 that S satisfies B2 and B3. But Condi-
tion B2 implies that S is holomorphic, i.e. there is a c>0 such that|| J5r|| ̂ ct~l for
all t e <0, 1 >. This, however, implies that the restrictions of S to the Lipschitz spaces
έ%a,q> # < oo, are also holomorphic. The restrictions are || ||f ^-continuous because
q< oo, by the Lebesgue dominated convergence theorem, but in addition one has
the estimates

/i \ι/β
μ vILHM vll + f

for all /e<0, 1> and this is equivalent to holomorphy.
Second let ΔΛtq denote the generator of S restricted to J .̂ It follows from the

holomorphy property that

for all n^l and />0. But if αe<0, l/2> then Theorem 5.1 gives the identification

Therefore

for a l l w ^ l and />0.
Finally one has
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for all t > 0 by Condition S4 and hence

Therefore 5 satisfies Condition Sn for all n^l ana, by Proposition 3.1, it also
satisfies Condition Bn for all n ̂  1 .

If Theorem 6.1 is combined with Theorem 2.1 and Corollary 2.6 of [BGJR] one
obtains an even more striking conclusion.

Corollary 6.2. Assume S satisfies Conditions Bί and S4 , then S^^OU^ for all t > 0
and there exist k,j?>Q such that

sup \\V(x^...V(xin)Sta\\^krn\\\a\\
^

/or all t e <0, 1 >, α e J*, αrcd w ̂  1 , w/zere xΐ,...,xd is a basis of g. In particular the
representation (β,g, V) has a dense set of analytic elements.

The primary interest of this last conclusion is that it can be used to give criteria
which ensure that (β,Q, V) is integrable, i.e. there exists a group representation
(β, G, U) such that V= dU. It is necessary for integrability that the V(x) are weakly
conservative in the sense that there exists a basis xί9...,xd of g, <5, we<0, 1>, and
ω > 0, such that „

for all ae J*n, all n = 1,2,..., all εe< — δ, δ>, and all /=!, . . . , d. Now combination
of the previous results with those of [BGJR] and [BBR] gives the following
integrability criteria.

Theorem 6.3. Let (β, g, V) be a representation of the Lie algebra gfor which the V are
weakly conservative and let A be the Laplacian associated with some basis xi,...,xd

of g. Then the following conditions are equivalent',

1. a) Δ has an extension which generates a strongly continuous semigroup S,
b) Sf<#c#4(K), f > 0 ,
c) there is a c> 0 such that

sup \\V(Xi)Sta\^c\a\\rW
"

for all ae @ and f e<0, 1>,

2. a) Δ has an extension Δ which generates a strongly continuous holomorphic
semigroup,
b) D(^)^^(V) for some n^2,
c) D(Δ)^^^(V) and there is a c'>0 such that

sup \\V(Xi)a\\^ε\\Aa\\+c'ε-ι\\a\\
1 ^i^d

for allaeD(Δ) and εe <0, 1>,

3. (β,g, V) is integrable.

Proof. The equivalence of Conditions 1 and 3 follows from Theorem 2.8 and
Remark 2.9 of [BGJR] together with Theorem 6.1 above once one remarks that
Condition Ib implies that the generator of S is the closure Δ of Δ.
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Next Condition 1 implies S satisfies Condition B2 by Proposition 3.1 and hence
S is holomorphic. Moreover Condition 1 implies the estimates of Corollary 6.2 and
by Laplace transformation one concludes that D(Δ m) ̂  J^Π(F), where m=n/2 + 1 if
n is even and m = (/i + 1)/2 if rc is odd. Then the estimate of Condition 2c follows from
that of Condition Ic by Laplace transformation as in Lemma 2.2 of [BGJR], Thus
2=>1.

We conclude with a few remarks about the integrability criteria of Theorem 6.3.

First, if the representation (β, g, V) is integrable then A is closable and its
closure Δ generates a continuous semigroup *S, and hence integrability implies that
A is the unique generator extension of A .

Second, if Conditions la and Ib are satisfied then the generator of S is again J,
because (J St&^D(A) by Condition Ib. Similarly if Conditions 2a and 2b are

ί>0

valid then A =Δ. This follows because \J St&^D(An)^^4(V)^D(A), where the
ί>0

first inclusion results from holomorphy of S and the second from Condition 2b.
Third, Condition la does not necessarily imply Conditions Ib and Ic nor does

Condition 2a imply Conditions 2b and 2c. For example, if ^ = C0(0, oo), the
continuous functions over <0, oo> vanishing at 0 and oo, and ifδ = d/dx, with D(δ)
the absolutely continuous functions /e^ such that f'eόS, then — δ2 is closed
(see [BBR, Example 3.3]) but it is not a generator. Nevertheless it has many
extensions which generate holomorphic semigroups, e.g. the operator A with D(A)
the absolutely continuous / e 3ft with absolutely continuous derivative / ' such that
/"eC0(0, oo). This operator generates the holomorphic semigroup S with action

($/)(*)= J dy(pt(x-y)-pt(x+y))f(y) ,

where /?Λx) = (4πO~1/2exp{-*2/4ί} but D(δ2}^D(A)£D(δ).
Fourth, if the V(xi) are conservative, i.e. if

for all ae J^1? /=!,. . ., d, and εe< — δ, <5>, where <5>0, then A is dissipative (see
[Rob2, Lemma 3.3]) and hence closable. If the closure A of A generates a holo-
morphic semigroup S then it is conceivable that Conditions 2b and 2c follow
automatically for A. In particular this is the situation of d= 1. In this special case
there is a unique closed operator V, A = — F2, and

for all α e D(V2) and ε > 0 by Lemma 2.3 of [Rob 2]. It follows that Δ = Δ = - V2,
and hence one has

(6.1)

But one cannot expect (6.1) to be valid if d> 1. For example, this identification is
false [Orn] for the Lie algebra obtained by differentiating the group G = lRd acting as
translations on the Banach space L1(Rd) whenever d>\. Nevertheless since this
example comes from a group representation, each Laplacian A is closable, A
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generates a holomorphic semigroup,

for each n ̂  1 , and there is a c> 0 such that

for all aeD(A),i=i,...,d, and εe<0, 1>. The last statements follow from the
estimates of [BGJR].

Finally we remark that stronger results are to be expected if ̂  is a C* -algebra
and the V(xi) are *-derivations. For example, it has then been established [BBR,
BrJ] that the V(xi) are conservative if, and only if, the Laplacian A is dissipative and
it is feasible that the representation is integrable if, and only if, A generates a
holomorphic contraction semigroup. One possible approach to this problem is to
prove the validity of Conditions 2b and 2c of Theorem 6.3 for A.
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