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Abstract. We define and analyze Lipschitz spaces %, , associated with a
representation x e g— V(x) of the Lie algebra g by closed operators V' (x) on the
Banach space Z together with a heat semigroup S. If the action of .S satisfies
certain minimal smoothness hypotheses with respect to the differential structure
of (4,9, V) then the Lipschitz spaces support representations of g for which
products V(x) V(y) are relatively bounded by the Laplacian generating S. These
regularity properties of the %, , can then be exploited to obtain improved
smoothness properties of S on 4. In particular C,-estimates on the action of §
automatically imply C,_-estimates. Finally we use these results to discuss
integrability criteria for (4, g, V).

1. Introduction

Let (4,9, V) be a representation of the Lie algebra g by a family of closable
operators V' ={V(x); x eg} acting on a dense invariant subspace %, of the Banach
space % and let

4=— i V(x;)?
i=1

denote the Laplacian associated with the basis x,,..., x, of g. If the V(x) satisfy the
usual dissipation properties required for generators of continuous one-parameter
groups then it follows from [BGJR] that (4,9, V) integrates to a continuous
representation U of the corresponding connected Lie group G if, and only if, 4 is
closable and its closure 4 generates a continuous semigroup S satisfying certain
smoothness properties. These latter properties are of two kinds; range conditions
S, B < #,, where 4, is the common domain of all nth order monomials in the V(x);,
and boundedness conditions

[V(x,)...V(x)S,|=0@""?)
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as t—0. Specifically Theorem 2.10 of [BGJR] proves integrability if S satisfies the
range conditions for all # > 1. The principle aim of this paper is to strengthen this
result by weakening the range assumption.

The key step in the integrability result of [BGJR] is the proof that the
boundedness condition for #=1 combined with the range condition for all n>1
implies the boundedness condition for all » > 1. But in Theorem 6.1 we establish the
same conclusion from the assumption that the range condition is satisfied for n=4.
Therefore the integrability theorem of [BGJR] can be considerably extended. It
suffices that the heat semigroup S satisfies C,-smoothness properties instead of C -
properties. In the special case of unitary representations Nelson’s integrability
result [Nes] is based on Cj-conditions but the Banach space theorem uses an
interpolation argument which introduces the stronger C,-requirement.

Our discussion of smoothness conditions indeed follows a very indirect path. We
use the minimal smoothness conditions to construct Lipschitz spaces which
interpolate between # and %,. These spaces support representations of g with
greater regularity properties which ensure that the heat semigroup acts in a
smoother fashion on the Lipschitz spaces. Hence its action on 4 is also smooth.
Unfortunately the discussion of the Lipschitz spaces requires some intricate analysis
to obtain equivalent characterizations which emphasize distinct features of the
spaces. This type of analysis is commonplace for the classical Lipschitz spaces and
appears to be an unavoidable part of the present approach.

2. General Formalism

In this section we introduce the basic definitions and notation for representations of
Lie algebras. Then we recall some basic facts about Lipschitz spaces associated with
semigroups and, in particular, with holomorphic semigroups.

a) Lie Algebras

First, if W denotes a family of norm-closable operators on a Banach space 4 then
we define the C,-elements 4,(=4%,(W)) by

#=_ () DOV,

Wi,...,

and the C-elements #_ (=%, (W)) by
Bo=1() B, -

nz1

Second, if g is a Lie algebra we define a representation (4, g, V) to be a family of
closed operators V={V(x);xeg} on # such that

1. #,(V) is norm-dense
2. Vix+y)a=V(x)a+V(y)a , aesB,,x,yeg , 2.1)
3. @dVx)(V(yna=V(@dx)(y)a , ae,,x,yeg .
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Third, if x;,...,x; is a basis of g we define seminorms g,, and norms
I+[lasnz1 by
Qn(a)z1 sup , HV(xi)"'V(xi")a“ )

Sit,eninS

lall.=lall+ sup en@ . 2.2)

for ae #,(V). Then 4,(V) is a Banach space with respect to the norm ||- |, and
B, (V) is a Fréchet space with respect to the topology defined by the family of
norms {|- ||,,,n>1} In addition one has #2%,2%,2...24%,2..., where the
inclusion sign denotes a continuous embedding of Banach spaces. Note that in the
sequel the inclusion sign always has this interpretation. In particular the equality of
the Banach spaces is understood to incorporate equivalence of norms.

Next we associate with each basis x,,..., x; of g a Laplacian

d
A==Y V(x)* .
i=1
In particular

D(4) =(j\ D(V(x)?)24%, .

If 4 has a norm-closed extension 4 which generates a continuous semigroup S then
S is called a heat semigroup. In the sequel we assume the existence of a heat
semigroup with an action which is “smooth” relative to the differential structure
(@, || ||.) associated with the representation. Typically we assume that S, 8 < %,
for t> 0. But this condition automatically implies that 2, is a core of 4. Therefore
A=A the closure of 4.

b) Lipschitz Spaces

Let T'denote a strongly continuous semigroup on the Banach space 4 and a, q real
parameters with values ae<0,1),g€[1, 0], or a=1,g=o00. The Lipschitz space
By, is then defined by

B ={aeB; 11| (I-T)a| e L(dp;<0,1»)} , 2.3)

where du(t)=dt/t. It follows that 4, , is a Banach space with respect to the norm

1 1/q
a=lalZ,=[al +(] du e} a~Taly)

if g < 00, or the corresponding supremum norm if g= co. (For details on Lipschitz
spaces associated with semigroups we refer to the books by Butzer and Berens [BuB]
and Triebel [Tri].) It follows that 8, is a norm-dense T-invariant subspace of %.
Moreover, if H denotes the generator of T then D(H)<= %, , and the spaces %),
interpolate between 4 and the subspace D(H) equipped with the graph norm.
Since T is continuous there exist N>1 and ¢ >0 such that | T}|| < Nexp {ot},
t=0. Therefore H,= H + ¢l generates a continuous semigroup 7 which satisfies the
uniform bound | 72| <N, t=0. This change does not affect the Lipschitz spaces.
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One has
ZHINE A
(with equivalent norms).

Next if 7"is holomorphic there are a variety of equivalent characterizations of
the Lipschitz spaces. Holomorphy is equivalent to the statement that 7,4 < D(H)
for £>0 and there is a ¢>0 such that | HT,| <ct™* for 1€<0, 1). Then by a slight
variation of a theorem of Peetre ([BuB] Theorem 3.5.3)

B, ={acB;t—>1m"*|H"T,a| e L (du;<0,1))} (2.5
form=1,2,...,and ||-||7 is equivalent to the norms
1 1/q
a— d] +< i du(t)(t""“”H"‘]}a”)") 2.6)
0
if g< oo with the obvious modification if ¢= co. Alternatively
Bl ,={acB;t—>1m*|(I+H,)"Tale 'e L,(du;<0, )} 2.7
for m=1,2,...,and |- |7, is equivalent to the norms
1 1/q
a-»(j du(t)(t'"_““(f-i—Ho)'"Y;au)q> , (2.8)
0
© 1/q
a—»( | dy(t)(t"‘”’l]([+Ho)’”Tfa”e")") 2.9)
0

if ¢ < 00, and the supremum norms if ¢ = co. Basically these last two equivalences
follow from applying Peetre’s theorem to the semigroup with generator (/+ H,), 1.e.
the semigroup t— T exp { —(1+¢)t}=T?exp { —t}. But there is one new feature.
The functionals g, ,.,, defined by (2.8) are norms which dominate the norm |- |.
Clearly the g, ,.,, are seminorms but if g, ,.,, (@) =0 then l[(l + Ho)’"ﬂa“ =0 for
all te{0,1>. Now the usual resolvent estimates give the dissipativity condition

[+ H,)"b| =N "] (2.10)

for all be D(H™). Hence g, ,.,(a)=0 implies ||T;a|=0 for t€(0,1)> and by
continuity |la|=0. Thus g, ., is a norm. Next let a,e % where

a,q;m>
By gm={acB;t>t""*||(I+H,)"T,a| € L,(dy;<0,1))}

and suppose g, ,.,.(a,)—~0 as n— oo and ||a,—al| -0 for some ae #. Then

1 1/q 1 1/q
(F o la+rzaly) s tim (§dutoe =+ Hr Ta=aly)
<lim c|a—a,| =0,

where the second estimate follows from the holomorphy of 7. Therefore ae 4, ,.
and @, ,..(@)=0. Hence the identity map from 4%, ,, into # is closed.
Consequently, by the closed graph theorem, there exist C, ,,>0 such that
la]| £ C,, 4 m0a,g;m@) for all ae B Similarly the functionals given by (2.9) are
norms which dominate |- |.

a,q;m*
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Next we consider the Poisson semigroup associated with a uniformly bounded
semigroup and the corresponding Lipschitz spaces.

Assume now that the continuous semigroup 7, with generator H, satisfies the
uniform bound ||7;| <N, 20. The Poisson semigroup P associated with T is the
semigroup generated by H'/2. It is given in terms of T by the algorithm

P=(@m)"'P1 [ dso ()T,
0
where v,(s)=s>2exp { —1?/4s}. It follows that |P||<N and P is automatically
holomorphic (see, for example, [BeF] or [Yos] for details).
If 87, are the Lipschitz spaces corresponding to P then one has the
identification
*@:q='@£2,q :

Moreover, since P is holomorphic % o has the alternative characterizations

BY ={acB;1—>1""*|H™* Pa| e L (du;<0,1>)} ,

B, ={aecB;t—>1""|(I+H"*)"P,alle” € L (du; <0, 0))} , (2.14)

and |-|?_is equivalent to the norms

1 1/
= ol +(] durer+| 172 pal)
R 1/g
a-+<j du(t)(tM—-a“(I-i-H1/2)m1)ta”)q> (2.15)
0

© 1/q
a-»()' du(t)(t"““”([-&—H”z)"'P‘,aHe")") .
0
This follows from (2.5)—(2.9) with P replacing T or 7¢ and H'/? replacing H or H,.
Finally let Q denote the Poisson semigroup associated with the modified
semigroup T—R,=T,e™* with generator I+ H. Since 4, , is unchanged by the
replacement 7— R the space %, is unchanged by the replacement P—(Q. Hence

Bl ={acB; 11"+ H)"* Q,a| € L,(du; <0, 1))}

and |-||?, is equivalent to the norms

1 1/q
a—|al +(£ dy(t)(z""au(uﬂ)mﬂQ,an)q>

by (2.15). But it follows from the closed graph theorem that the second term in this
expression is a norm which dominates the norm |- ||. This is deduced by a similar
argument used for (2.9) above. Therefore ||-||Z is equivalent to the norms

1 1/q
a—»((j) du(t)(t'”‘“||(l+H)'"/2Q;a”)q> -
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3. The Heat Semigroup

In this section we consider a heat semigroup S associated with the representation
(#,9,V) and analyze the implications of smoothness conditions on its action
relative to the differential structure (4, |- |,). Subsequently we use the results of
this analysis to characterize the Lipschitz spaces 487 , in terms of the differential
structure under minimal smoothness hypotheses.

a) Smoothness Conditions

We assume in the sequel the existence of a strongly continuous heat semigroup S.
Continuity automatically implies bounds ||S,| <Nexp {ot} for all 1>0 with N> 1
and ¢=0 and the pair (N, ¢) will subsequently always indicate such bounds.

We consider two types of regularity condition on S, range restrictions and local
boundedness.

Condition S,. For each t>0 the heat semigroup S satisfies S,B<%,.

If this condition is satisfied for n>2 then 4, is a core of 4 and one has A=4.
Alternatively if Condition S| is satisfied then 8, "D (4) is a core of 4. Moreover it
follows from Condition S,, the continuous embedding £, < 4, and the closed graph
theorem, that there exists a positive function C, such that

IS.al.<Cu(D)]a]| , aec®,t>0 . (3.1)

But
1S,a), < C,()]S, - a NC,(s)e*~9]a (32)

for t=5>0, and consequently one can assume that C, is uniformly bounded on
finite intervals of 0, o). Nevertheless the C, can diverge as t—0 and the next
smoothness condition specifies that the divergence should be similar to those
encountered in the group representation case [BGJR].

Condition B, . The heat semigroup S satisfies Condition S, and in addition there exists
a C,>0 such that

|S.a|,<C,lallt™* , aeB,1e0,1) .

We note that it was established in [BGJR] that if (4, g, dU) is the representation
obtained by differentiating a continuous representation (%, G, U) of the simply
connected Lie group G having g as its Lie algebra, i.e. if dU(x) is the infinitesimal
generator of the subgroup ¢ — U(e™*) for each x e g, then Condition B, is satisfied for
all n>1. More specifically for each basis x, ,..., x; of g there exist k, £ >0 such that

|dU(x,,)...dU(x; ) S.a| <k¢"n|a|t "2 (3.3)

for all ae 4, 1te<0,1)>, and n>1. In fact these bounds follow from Conditions B,
and S, simply by use of the Lie algebraic structure [BGJR, Theorem 2.1]. These
remarks motivate much of the following analysis.

First observe that if Condition B, is satisfied then S is automatically holo-
morphic. This follows because Condition B, implies that S, 4<%, < D(4) and
|48,a| <d|S,a|,<dC,||a|t " forallae 8, and te 0, 1). But this is the first basic
characterization of holomorphy for S.
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Second a variation on the proof of Theorem 2.1 of [BGJR] establishes that
Condition B, follows from Condition B if one knows a priori that Condition S, ;
is satisfied.

Proposition 3.1. If Condition B, and S, , , are satisfied then Condition B,, is satisfied
form=1,2,...,n.

Remarks 3.2. 1. Proposition 3.1 can be considerably strengthened if n>3, see
Theorem 6.1 in Sect. 6.
2. If the V(x;),i=1,2,...,d are m-dissipative, i.e. if

[ +eV(x)a| zm|a| (3.4)

forallae %,,smalle>0,and i=1,..., d, where me (0, 1] then Condition B, implies
Condition B, for p=1,..., n. This converse to Proposition 3.1 follows because m-
dissipativity implies

[Vix)a]| <t 2m= |V (x)?a| +(1 +m™ )t~ |a

for all ae 4,,t>0, and i=1,...,d, by the proof of Lemma 2.3 in [Rob2].

We have already noted that Condition B, is always satisfied for the differential
(4, 9,dU) of a group representation (%, G, U) but more is true. The representation
U has the property U4,,(dU)=4%,,(dU) and the restriction U,, of U to 4,,(dU) is
|| - | w-continuous. Moreover S4,,(dU) < 4,,(dU) and the restriction of S to 4,,(dU)
is a heat semigroup for the representation (%,,, g, dU,,). Therefore Condition B, is
valid for the latter representation and this states that there are C, ,,>0 such that

”Sta”m+n§ n,mHaHmt—"/2 (35)

forallae 4,,and t€ <0, 1. The next proposition establishes that Conditions B, and
S,+1 imply a weak version of these estimates.

Proposition 3.3. If Conditions B, and S, are satisfied then there is a C,>0 such
that
|S.all,=Cplall,-y e 712 (3.6)

for all ae B, and te0,1), where m,=n if n is even and m,=n+1 if n is odd.

Proof. Again this follows by a slight variation of the proof of Theorem 2.1 in
[BGIR].

Remarks 3.4. 1. Since Condition S, ,; implies Condition S, the conclusion of
Proposition 3.3 can be iterated, i.e. there are C, ,>0 such that

|Sall.=Cs,

jallapr 7"

for all ae 4,,,,t€<0,1), and p=1,2,...,n. But it does not appear that one can
remove the restriction a € 4,, without assuming S'is || - | ,-bounded uniformly for ¢
in a neighbourhood of the origin. Specifically one has the following.
2. If S satisfies Condition B, and S, and in addition S is |- |;-bounded for
1e0,13, i.e.
I3.al, Sklal,
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for some k>0 and all 1€ {0,1), then there is a C; >0 such that
IS4, <C3laf 2717

for allae #, and te (0, 1). This follows from Proposition 3.3 because S;ac %, < %,
for 0<s<t and

ISial=||S.- S|, = C||S,al)s (1 =) < (CiK) a1 =)™

Hence taking the limit s—0, and redefining C;k as C,, one obtains the desired
bound.

b) Lipschitz Spaces

Let 47 , denote the Lipschitz spaces defined in Sect. 2 but now S denotes a heat
semigroup. Our aim is to give alternative characterizations of the Lipschitz spaces
which involve the differential structure of the representation of g.

First suppose S satisfies Condition S,, then for each m=1,2,...,n we define
spaces by

By gm={a€B; 11" S, € L, (du; €0.1))} (3.7
with corresponding norms
1 1/q
4=l g a5 08
0

if g < 00 and the supremum norm if g= oo. Again it is evident that the |- |,, ... are
seminorms but in fact they are norms, and each |- ||, ,.,, dominates | - |. The proof
of these statements is completely analogous to the proof of similar statements for
the norm (2.8). But now the analogue of the second estimate in (2.11) follows from
(3.1) and (3.2), which are implied by Condition S,,.

It is subsequently useful to note that the norms | -
norms

are also equivalent to the

a,g;m

® 1/q
a-»( | d,u(t)(t"”z’“HS,‘?aHme")“> , (3.9)
0

m=1,2,...,n, where S? denotes the uniformly bounded semigroup with S?
=S,exp { —ot}. Clearly the latter norm dominates ||- |,,,.,, but one also has

0 1/q
(g du(t)(t’””"'lleaHme")q) < lalam

© 1/q
+Ncm(1)||a!|e'“<§ du(z)(rm/z-“e-')q) :

where we have used the estimate (3.2). Since the norm | - | is dominated by |« |, :m
by the reasoning of the previous paragraph one now concludes that the norm given
by (3.9) is dominated by ]| . ”a .m- Therefore the norms are equivalent.

Our aim is to identify the 4, , and the 4, ., and a third family of spaces which
interpolate between % and the subspaces 4,. Theses spaces are defined in terms of
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the interpolation functions

t>0-K"™(t)=inf {||a,| +t|an||,; a=a0+a,, a0 B, a, € B,,} ,

where 1 <n<m and we set K" =K™". The corresponding spaces are defined by
B ={acB;t—>1""KP(t)e L,(du;<0,1>)} (3.10)

and they are Banach spaces with respect to the norms

1 1/q
a= ol =lal +({ duto KL Oy
0

for g < oo with the obvious modification if g= 0. The spaces ) =2{"," are the
standard interpolation spaces between % and %, whilst the spaces ﬂ(" -m) mterpolate
between £ and 4, ,,, the |- [,-closure of 4,, in 4,

In relating these various spaces we often use two inequalities due to Hardy:

1 t 1/q 1 1/q
((f) dﬂ(f)<f—“ (f) du(s)f(s)“) <a™! <£ dll(t)(t—“f(f))q) , (311

1/q

1 © © 1/q
(g dp () (e | d#(S)f(S))"> <ot ((f) dﬂ(’)(‘“f(’))") , (3.12)

which are valid for appropriately measurable positive functions f and all «>0.
In fact these inequalities follow from Minkowski’s inequality after a change of
variables s—tu.

Theorem 3.5. If S satisfies Condition B, and Condition S, for some n>2 then
B =B =B

a/2,9;m

for m=1,2,....n
Proof. The proof is in five steps.
Step 1. @a/z aSEBap g -

Let S¢ denote the semigroup with generator 4,=A4+¢l. Then |S?| <N for t>0
and S¢ satisfies Condition B,. Hence, by use of the Duhamel formula,

|S¢al,e '<j ds||S&, (I+4,)SE,ale™*

<l/2? j' dss™'2||(I4+4,)S%alle™ .
Consequently (3.12) implies that
afp 0 s S26-92C, (1 —2)1 (? du(t)(tl""‘/2|}(I+AQ)S,‘?a||e“)‘1>1/q
But it follows from (2.9), with T¢=S¢ and H,=4,, that the integrals on the right

define a norm equivalent to |- |3, .. Therefore H lla/Z,q dominates |- ||, and
gaa/z 0SBz, q51-
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Step 2. Bop, a1 S Bap,q:2S - S Bz gin-
It follows from Proposition 3.3 that
ISall = CollSpal|m-r (/2712

for allae 8,1€<0,1), and m=2,3,...,n. Hence |||
for m=2,3,...,n

@/2,¢sm—1 dominates “ : ”a/Z,q;m

Step 3. e@01/2 q; n—g?aIZ

Againlet S¢ denote the modified semigroup with generator 4,= 4+ ¢l. We aim
to estimate the norm || [lm/2 o 1n the equivalent form given by (2. 9) with 7¢=S?and
H,=4,. There are two cases to consider, n odd or n even.

Assume n is odd. Then

|7+ 4+ DR Sea| = ||+ 4,)" 2SI+ 4,) S, a
S +o+d)" V2|Se,(I+4,)S%a|,—, - (3.13)

Now if b=(I+4,)S¢,a, then b=SE, (I+4,)S¢,ae B, ., < A,, and it follows from
Proposition 3.3 that

IS8 I+ 4,)S%a|,—1 SCi—y |+ 4,)S% a2 (1/2) "2
<)2(+e+d)C,_,|Stal, 71" (3.14)
for all 10, 1). Therefore combining (3.13) and (3.14) gives
|+4, )(n+1)/2Soa“<1/(1+Q+d)(n+1)/2 _1|S&,al, e
for t€<0,1). But Condition B, is satisfied by Proposition 3.1 and hence
|+, V2 Seal| S [T+ 4,) Sjsr)| "2 SE 1
<k, |a]
for all 1> 1. One immediately concludes from these estimates that there are C, ,,
d, ,>0 such that

o 1/q
(I du(e) ("R (1 + 50)‘"”’/251"a||e"')"> =G, ol +d.glaluz.gn

But the norm |- || is dominated by |- || and therefore |- |5, , is dominated by

I+ ez, s .
Next assume » is even. Then

|+ 4,7 Seal| (1 + 0 +d)"|Stal,

and the estimate proceeds as above with the norm corresponding to (2.9) with
m=n/2.

o/2,q;n

Step 4. By, S BL" V.. cBLD.
Since S, #< %, for t>0,

K& KO0 <||(T-Sp)al| + 1] Seal,
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Hence by Minkowski’s inequality

lalle? = laley =2 alGe o+ ] e e

Since ||+ |41 is equivalent to ||+ ||, , by the previous steps the desired result follows
immediately.

Step 5. BLD =By 4
First, if a,e # then
[(I=Sp)a,| S (1+ Nev)|a,|

for all 1€ {0,1). Second, if a, e %, then
2
|I=Sp)a,| <d | ds||S.a, ],
0

<2dC{|a, |, t
by Duhamel’s formula and Proposition 3.3. Consequently if a=a,+aq,,
|U=Sp)al| =CKE2(1)
where C=max ((1+Ne®),2dCy). Therefore 81,2 <&, ,.

a,q —

The above proof'is only valid for g < oo but the case g = oo is similar but simpler.
We omit the details.

Corollary 3.6. If S satisfies Conditions B, and Sy and if, in addition S is | - ||, -bounded
uniformly for te (0,1, i.e. |S,a|, <kl||a|, for all ae B, and te 0,1, then

S _ g
ggaﬂ,q-ggi,; '

Proof. It follows from Step 4 of the above proof that #5, ,<%_'). But then by
Remark 3.4.2 one has a bound

|S:al.<Cla] 712

for all ae %, and 1€ {0,1). Hence ') = %5, , by the proof in Step 5.

a,q—

Finally we identify the spaces 47, with a family of spaces which involve the
action of the Poisson semigroup P associated with the heat semigroup .S and the
differential structure of the representation. The semigroup P is now defined as the
semigroup with generator (4 + oI)!/*. Hence it is given in terms of S by the analogue
of (2.12)

P=@4mn)"'?¢ | dsv,(s)S,e™ , (3.15)
0

where v,(s) =s~3?exp { —#?/4s}. It inherits smoothness properties from S.

Lemma 3.7. If S satisfies Condition B, then P, < %, for all t >0 and there is a C)
such that

|P.all,=Clalle =
for all ae # and t0,1>.

Proof. If t<0,1) then
IS:alle”*<Cyllafje="2
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by Condition B,, but if 1>1
ISial,e e <GS - alle*<C,Nale™

But now it follows from (3.15) by a standard closure argument that P,% < 4, for
t>0and

|Pal,= ] dov)NC,(1-+5~)]a]
0

<cy

jafle=
for te0,1).
Lemma 3.8. If S satisfies Condition B, and Condition S, , , with n=2 then there is a

C,” >0 such that
|Pal<CY]

afl,— 17
for all ae #,, and te0,1), where m,=n is even and m,=n+1 if n is odd.

This result follows from Proposition 3.3 and (3.15) by the same estimates used to
prove Lemma 3.6.
Now we are prepared to introduce the new family of spaces associated with P by

B, ym={aeB;1>1""%|Pa|, e L,(dp;<0,1))}

with norms | -||; ... given by

/g
= { 1Pl

if g < oo and with the supremum norm if ¢ = 00. It follows once again by the closed
dominate |- |.

a q;m
Theorem 3.9. If S satisfies Condition B, and Condition S, ., for some n=2 then
B2 =R,

a,q;m

form=1,2,....m

Proof. Since #;, , =27, it suffices to prove that 8, =%, .., m=1,2,...,n. The
proof is in three steps which are essentially a repetition of Steps 1, 2, and 3, in the
proof of Theorem 3.5 but now the uniformly bounded semigroup S¢ with generator
4,is replaced by the Poisson semigroup P with generator 4}/2. The equivalent norm
(2.9) used in the previous proofis then replaced by its analogue in (2.15). Moreover
Condition B, and the estimates of Proposition 3.3 are replaced by the statements of

Lemmas 3.7 and 3.8. We omit further details.

4. A Priori Estimates

In this section we examine estimates for the operators ¥(x) and their products
V(x) V(y) on the Lipschitz spaces ;Zia 2,4~ Our principal aim is to show that the ¥ (x)
are relatively bounded by ¥ =(4 +I)!?, the generator of the Poisson semigroup
and that the products ¥ (x) V() are relatively bounded by 4. These estimates are



Heat Semigroup and Integrability of Lie Algebras 229

similar to those derived earlier in the group representation case [RobI] but now they
are established from minimal smoothness hypotheses on the heat semigroup. They
reflect the increased regularity of the Lipschitz spaces and the corresponding
representation of g.

Theorem 4.1. Assume S satisfies Conditions B, and S5, then thereisak, ,>0such that

153811 ” V(xi)anaz/Z q=Na, q” I+ V)a“aﬂ,q (4.1)

for all ac B, where x,...,x, is a basis of g.
If in addition S satisfies Condition S, then there is an I, ,>0 such that

sup V)V 0)alSa g Sk Aalin 42)

for all ae B,, where 4,=A+ol.

Proof. The proof is accomplished by estimates similar to those used to establish
Theorems 6.2 and 6.3 in [RobI]. For brevity we omit the details.

Next we remark that one can also establish converses to (4.1) and (4.2). The
converse to (4.2) is the easiest to discuss and can be obtained in a strong form. For
example, if

Bryug={0EB,; V(X)V(V)ae B .. X, y€g} |
then

”Aa”a/z q= Z H V(x; )ZaHa/z q—d Sup H Vix) Vix; )a“a/z,q (4.3)

for all ae 4,,,, ,, and in particular for all ae %,. In analogy one might expect a
converse to (4.1) for those ae %, (45, , such that V(x)ae B;), , for all xeg. But
the difficulty is to first establish that these a are in D (V). This apparently requires
stronger continuity hypotheses on S (see Theorem 4.5 below). Nevertheless one
does have the following strict converse of (4.1).

Proposition 4.2. Assume S satisfies Conditions B, and Sy. Then there is a k, ;>0
such that

Va2, k., q(l\a“f/z,q“‘li‘zgd [V(xal3z.q) 4.4

Jor all ae B4, where x,,...,x, is a basis of g.

Proof. In order to establish (4.4) it is first useful to note that one can effectively
replace ¥ by (I+4,)"?, where A4,=A+¢l. This is a consequence of standard
semigroup estimates.

Lemma 4.3. Let T be a strongly continuous semigroup with generator H satisfying the
uniform bound | T|| < N. It follows that D(H"?)=D((I+ H)'") and

H(I+H)1/2a—H1/2aH§N|]a“ 4.5)
for all ae D(H"*). Consequently
“H”za”§(1+N2)”(I+H)1/20H (4.6)

for all ae D(H'?).
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Proof. The proof follows by simple estimation once one remarks that

H'2g=lim [ (=1/2)"" | du(t)t"*(I-T)a ,

e—0 £

where the limit exists if, and only if, ae D(H'/?) (see, for example, [Yos] but note
that we use a different convention for the sign of the generator). Similarly

(I+H)a=lim ['(=1/2)"" | du(t)t ' P(I—Te a ,
e—0 £

where once again the limit exists if, and only if, ae D((I+ H)'?).
Now let us return to the proof of (4.4).
It follows from Lemma 4.3 that
[u=S)val=[7u-s)a
SA+N)|I-S)UT+4,)?a|
for all ae D(V'). Consequently

[Va|S , <1 +N?)|I+4,) als, 4.7

%, q=

for all ae D(F) such that Vae@iq. In particular (4.7) is valid for all ae %,.
Next remark that ||-||? , and hence |- |} ,,, is equivalent to the norm

a,q° /2,9

1 1/q
a=laly=(§ e+ 2 0aly)

where Q is the Poisson semigroup with generator (I+4,)'/ associated with the
semigroup t— S} *¢=S,exp { —(1+¢)t}. This equivalence of norms follows from
the discussion at the end of Sect. 2. Therefore

1 1/q
l+ 22l =( | dutoc1u+ 2@l

1 /g
<Colal+(§ duto | 30.al) 4

for a suitable C, ,>0. But

d
|42ia] £ 3 {12 Vx)a]; +ad @)V (xal .} 4.9)

Moreover it follows from Theorem 3.8, applied to the pair S'*¢ and Q, that

1 d 1/q d
(; d,u(t)(t“"‘ 5 nQ,V(x,.)anl)") <d, 3 Vwalt, @10
0 i=1 =

for a suitable d, ,>0. Next one has

ad @) (V(x)al s é:f dsv,(s)e” " *9%|(ad S,)(V(x,))a], - (4.11)
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But since ae %3 and S,ae %#; for t>0
(ad S))(V(x;))a =js' duS,_, (ad )(V(x;))S,a .
0
Now (ad 4)(V(x;)) is of second order in the V(x;) and hence

(ad $,)(V (xyaly £ dul S, o (ad YV (x)) Suals

<c j du(s—u)"'?||S,a|, (4.12)
0

for a suitable ¢ > 0. Therefore combining (4.11) and (4.12) one obtains the estimate
© 1
|ad Q) (V(x) s SC [ dsvy(s)s | du(1 —w)~*2 ]S}, eal
0 0

) 1
=Cn 21 | dov™te " [ du(1 —u)~'|Skteal, .
0 0

Therefore, by the Minkowski inequality,
1 1/q
(f dﬂ(t)(t"“H(adQ,)(V(xi))alll)“>
0
© 1 1 1/q
SCn 2 [ dovte ™™ [ du(1 —u)~'? (j du(t)(zz-"|1S,12:,3a1|2)¢>
0 [ 0
© 1
SCAm) ™2 [ dvo™Pe™"" [ duu 2 (1 —u)™'?
0 0

© 1/q
( j du(z)(tl‘“/Z“S,@auze")‘l) . @.13)

But the first two integrals converge and the third integral defines a norm equivalent
t0 ||+ |42, 4:2 @nd hence ||- |5, ., by the discussion at the beginning of Sect. 3b and
Theorem 3.4. Finally (4.4) follows from (4.8)—(4.13) and the equivalence of the
various norms involved.

Next we aim to strengthen the conclusion of Proposition 4.2 by exploitation of a
stronger continuity hypothesis for S. But as a preliminary it is useful to note that the
estimates (4.1) and (4.4) can be rephrased as an equivalence of norms.

Lemma 4.4. Assume S satisfies Condition B, and S,. Then the following norms are
equivalent on %y :

ae B |al3z, .+ sup Ivixdal3s., »
1=5isd

1 1/q
ae@3->||a||1+((j) du(t)(r“/zn(l—S,)a||1)q> )
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Proof. First note 85, ,= A, by Theorem 3.5. Hence there is a C, ,> 0 such that

laldz.o= Cagllalles® -

But for ae %#; one has

o= § ducoreet =) el
Thus for all ae %, one has estimates
lalSe. oS Calll SCrallalin ot sup Veallg) . @14
Second since S satisfies Condition S; one ha; _
S, V(x)a= V(x)S,a+:£ dsS,_,(ad A)(V(x))S,a
for all ae #, and xeg. Hence there is a C>0 such that
T=S)V(x)a| - |V(x)T—-S)al|<C 5) ds||S,al,

for all e <0, 1). Consequently

1 1/ 1 1/q
‘(I d#(t)(t‘“’zll(l-S,)V(JC)GI[)“) q-<£ dp(n) (e~ V(X)(I—S,)a?l)")
0

<C(1—a)! (y Aty (- ||s,a|12)4)”q

<C'lals., @15)

by another application of Theorem 3.5.

Finally the statement of the lemma follows straightforwardly from combination
of (4.14) and (4.15).

The interest of Lemma 4.4 rests on the observations that the second norm of the
lemma can be identified as a Lipschitz norm with respect to the Banach space %, .
Then it is natural to examine the space of elements for which this norm is finite.
Theorem 4.1 and Lemma 4.4 indicates that this space contains D(F) and the next
theorem elaborates this connection. In this theorem we identify D(),,, as the
subspace of 47 , formed by those ae D(V') such that Vae %; , equipped with the
norm a— || (I+ V)a" . Moreover we define

B={ae BB ] 0=l < o} @i
equipped with the norm

1 /g
o =l § w0 =5pal, ) @1
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Theorem 4.5. Assume S satisfies Condition B, and S; and that ae<0,1/2),
qge {1, 0. It follows that
D(V), s SB uy -

If, in addition, S restricted to %, is ||- | -continuous, then
D (V)a,q=gig;a,q .

Proof. First, from Theorem 4.1, Proposition 4.2, Lemma 4.4, and the dissipativity
estimates |[(/+V)a|3 , =N "*||a|$ , one obtains bounds

Cuglallin = [T+7alz,=C; lalie (4.16)

for allae %,, and suitable C, ,, C, ,>0. Now the two statements of the theorem are
obtained by extending these bounds by continuity.

The semigroup S leaves 4 , invariant and since g < oo it follows the Lebesgue
dominated convergence theorem that the restriction of S to 45, is |-|5 -
continuous. Let V, . denote the generator of the restricted semigroup. Next as
SHB<B,=D(A)< 932‘1 for all ¢>0 it follows that

2=\) S,.%;,
t>0
is a |+|3,-dense S-invariant subspace of 4,, and hence a core of 4, ,. But
9 < By< D(4,,,) and consequently %, is a core of 4, ,. Now by general semigroup
theory each core of 4, ,is a core of 4, ,= (4, ,+¢I)'”* and V, , is the restriction of ¥
to D(V),,,. Hence %, is dense in D(V),, , with respect to the norm a— | (I+V)al$ ,.
Therefore the estimate on the left of (4.18) extends to all ae D(V),, , by continuity
and one has D(V), ,S %}, ..

Conversely, if S is ||-[;-continuous there are N;>1 and g, =0 such that

S| <Ny exp {o,t} for all #>0. Therefore

|a—~8)S,af, <Nyev*|I—S)al,
and in particular %5, ,is S-invariant. But it also follows from || - [|;-continuity that

lim [(7-S)(I=S,)al, =0 .

Hence, by the Lebesgue dominated convergence theorem, S restricted to %7, , is
-], ,continuous. Now since S, %7, ,S B, < B}, , it follows that 2 is | - Hfa i
dense in 83, ,. Therefore the estimate on the right of (4.18) extends to allac %7, ,
by continuity and one has %{,, ,SD(V), ,.

Finally we note that the spaces %7, , correspond to the Lipschitz spaces of S
restricted to 4, and they can be identified as interpolation spaces between %, and
A, . In fact if S, <%, for t>0 then the spaces interpolate between %, and the

|| - ||,-closure of 2 in %, .

5. Lipschitz Representations

In this section we demonstrate, under mild smoothness hypotheses on S, that the
representation of g on # defines a representation on each Lipschitz space, by
restriction. In addition we analyze the regularity properties of these representations.
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First define ¥, ,(x),xeg, on %5 by

DV, (x)={aeD(V(x))n%; ,; V(x)ac B} ,}
and
Via(®a=V(x)a

for all ae D(V, ,(x)). Since the V(x) are norm-closed and ZM 24 18 continuously
embedded in 4 it follows that the V, (x) are ||- |5 -closed.
Second introduce the sequence of subspaces
'@n;az,q=1 m D( q(xu) Va,q(xi,.)) ’

Sit,...,insSd

where x,,...,x, is a basis of g, and set
ooaq ﬂ ganlzq .

Since the ¥, , are restrictions of the V(x) and since 4,,, ,S%,, it immediately
follows that

I{z,q('xj_l_y)a=I/azq(x)a—‘_ I/az,q(y)a s xayeg>aeg1;a,q >
(@d Vv, ,NV, ,(»a=V, ((adx)(y)a , x,yeg,ae%,,, -

Thus the family V, ,={V, ,(x);xeg} on #; , satisfies the properties (2.1) of a
representation of ¢ except for the density of 4,,,, ,in % ,. It is our aim to establish
this density property from the estimates of Theorem 4.1 whenever g < co.

First remark that the 4,,, , are Banach spaces with respect to the norms

0= |afag=la] + SUP on.q(@)
where the seminorms g,,, , are defined by

Qm a, q(a)-— Sup “ I/:l,q(xh)"'I/G,q(xim)auf»q :
1=<ig,..., im=d

Second note that the restriction of S to %} , is a semigroup which satisfies the
same bounds as S on 4, i.e.,

1S4l = Ne*|alz,

a, g=

forallae 85 ,and 120. Moreover, if ¢ < oo the restriction is || - |§ ,-continuous, by
the Lebesgue dominated convergence theorem. Hence the generator of the
restriction 4, , is well-defined as a norm-closed, norm-densely defined, operator on
%, , and in fact 4,4 1s the restriction of 4 to the domain

D(4, ,)={aeD(4); Aae%a,q} )

Next 4, ,+ol generates a semigroup on %; , which is uniformly bounded and
consequently = (4, ,+ 0D is also well- deﬁned This latter operator generates
the Poisson semlgroup assomated with the restriction of S to % , or, equivalently,
the restriction to ﬂs of the Poisson semigroup as5001ated with S on 4.
Alternatively V, ,can be identified as the restriction of 7 = (4+ o) to the domain

a,q)={a€D(V); Vaeﬂm} .
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Note that since the Poisson semigroup associated with S is uniformly bounded with
bound N one has the dissipativity estimates

|U+7.mala 2N ali 2N a] .1

a,q9=

forallae D(V,",), and m=1,2,.... Moreover, the subspaces D(V;",) of B gareall
norm-dense in %; , and are Banach spaces with respect to the equivalent norms

a—»”([*ﬁ- Va,q)ma”iq >
a— sup ”(Va,q)pa“iq !
Os=ps=m

If m=2n is even then V27=47  and one also has the equivalent norms

a-[({(A+)I+4,,) alz,

a— sup (4, )74, .
O<p=n

Now density of the 4,,, , follows by comparison with the D(F,).

Theorem 5.1. Assume S satisfies Conditions B, and S,, and that o {0,1/25,
ge[l, ). Then

'g’?Zn;a,q:D(V:n):D(A:,q) (52)

>q
and

B 110,g2 D2 (53)
Jor all n=1,2,.... In particular the subspaces %,,, , are |] . “f g dense in 935, .

Proof. Throughout the proof we will work on %; , and for notational simplicity we
omit the suffices a, ¢ on the ¥V, V, and A. Thus we identify V'(x) and ¥V, ,(x), ¥ and
V... and 4 will now denote the closed Laplacian on %; , which generates the

restriction of S.
We begin by proving (5.2) and (5.3) for n=1.

The estimates (4.1) and (4.2) establish that

4 ” V(xi)a”iqékh,qn(l'i' V)a”iq (5'4)
an
V) Vxpals <5, U+ +eD)alS, (5.5)

forallae %, and i,j=1,...,d, where x,..., x, is an arbitrary of g. Now if ae D(V)
then S,ae @, and ||S,a—a|$ , -0, [V S,a—Val ,—0, as -0, because S'is |- |5 -
continuous. Therefore (5.4) extends to all ae D(V') by continuity and this together
with (5.1) establishes that

D(V)S B, - (5.6)

Similarly if ae D(4) then | S,a—alf] ,—0, |4S,a—4al|5 ,~0, as 1—0. But it also
follows from (5.4) that |V (x,)S,a—V(x;)a|3 ,—~0 as t—0. Therefore (5.5) extends
to all ae D(4). But by general semigroup theory one has dissipativity estimates

[+ (a+eD)alls ,2N""a]3 ,2N""|a] 5.7
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and relative bounds
[T+ V)a|s <k; T+ (A4 +eD)al,

for all aeD(4). Combination of these estimates establishes that |-|,,,, is
dominated by the norm ae D(4)- |(I+ (4+¢D))a|$ , and hence

D(A)YS B,y -
Conversely (4.3) states that

|4a]z.=dlal2.u.q

ng=
for all ae %,,, , and it follows from this estimate and (5.7) that
B0, =D(4) .

This result combined with the previous inclusion establishes (5.2) with n=1.

In order to establish (5.2) and (5.3) for higher n we use the structure relations of
g and the property S,% < %, < %5 to deduce that

(ad 4)(V(x))S,a=P,(V)S,a
for all ae # where P,(V) is a second order polynomial in the ¥(x;). In particular
A4V(x)S,a=V(x)S,da+P,(V)S,a (5.8)

for all aeD(4). If, however, aeD(V®)<D(4) then |S,a—al 0,

a,q
IS,4a— 4a|$ ,~0, and in addition it follows from (5.4) and (5.5) that
[V(x)S,a—V(x)a|S ,~0, |V(x)S,da—V(x)4a|,~0, and ||Py(V)S,a
—PZ(V)a”f, 4—0, as t—0. Therefore one concludes from (5.8) by continuity that

aeD(4V(x)). Thus D(F3)=D(4V(x)) and also

V(x)D(V*)SD(A4)= B, -

Consequently D(V?) is a subspace of %,,, ,. But it then follows from (5.4), (5.5),
and the structure relations of g that

Ve vepvioals sk als,+ s [Pmall)  69)
for all ae D(V3), all i,j,k=1,...,d, and a suitable k, 4 In combination with the
previous estimates this gives

D(V3) =B, -

Next since S,Z< 4%, it follows from another application of the structure
relations of g that

AV(x)V(y)S,a=V(x)V(y)S,da+Ps(V)S,a

for ae D(4) and x,yeg, where P;(V) is a third order polynomial in the V(x).
Consequently arguing as above one deduces from (5.4), (5.5), and (5.9), that
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V(x)V(y)D(4*)= D(4) for all x,yeg and in addition one has an estimate
“V(xix)"'V(xia)a“iq-éka’z,,q(“a"asr,q+ sup ”Vma”iq)
1=m=4

for all ae D(4?). In combination with the earlier estimates this gives
D(A4*)=D(V*) S B,,,, -
Combining these conclusions one has

RBasa,g=D(V*)=D(4?)

and this establishes (5.2) and (5.3) for n=1, 2. The proof for higher values of n then
proceeds by induction.
Let us assume (5.2) and (5.3) are true forn=1,2,..., N where N =2. Next set R
=({I+(4+ol)) ! and S=(+V)" . Then D(F*"*!)=R"SB<D(V) and
V(x)RNSa=R"V(x)Sa—(ad RV)(V(x))Sa

N

=R"V(x)Sa+ Y, (f) R¥""(ad R)"(V(x))Sa . (5.10)

n=1

But
(ad R)(V(x))Sa= — R(ad A)(V(x))R Sa
for all ae 4, because D(V3)=RS%=%B,,, ,. Moreover
(adV)(V(x))a=P,(V)a

for all ae 8,,, ,, where P, (V) is a second-order polynomial in the ¥(x). Therefore
(ad R)(V(x))Sa=R P,(V)R Sa 5.11)

for all ae #. But if one then successively defines polynomials P, (V) of order m
much that
(ad 4)(P,(V))a=P,. (V)a

forallae 8, ,,, ,and m=2,,..., N then iteration of this argument establishes that
(ad R)"(V(x))Sa=(—-1)"R"P,,(V)R"Sa (5.13)
for ae % and n=2,..., N because
R'SB=D(V*" ") D(A*") =B 1.0.4S Br+2,0.q -

The equality D(4")=%,,,,,, follows from the induction hypothesis and the
inclusion B, ,., 4 S By +2,4,q fOllows because n = 2. But combining (5.10), (5.11), and
(5.12), gives

N N

VE)RYSa=R¥V(x)+ ¥ (—1)" (n ) P,.,(V)R")Sa
n=1

for all ae4. In particular one concludes that V(x)D(V*"¥*1)cD(V?¥). But

D(V?N)y=B, ., by the induction hypothesis and hence D(V2V*!)is in the domain

of all monomials of order 2N +1 in the V(x). Therefore, using the induction
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hypothesis and the structure relations of g, one estimates that if ae D(F2¥*1) then

S
o

2N
(H V(xij)) V(x)a

<k sup |4°V(x)al,
q Osp=EN

§k’< sup ||V*as,

0Sps2N+1

+ 5p (ad AP)(V(x»allf,J :

But (ad 47)(V(x)) is a polynomial of order 2p in the V(x;) and since 2p <2 N one

has
S

<k" sup ||V¥a|§,
2, q O0=p=2N+1

2N
( H V(xij)> V(x)a

by another use of the induction hypothesis. This establishes that
D(V2N+1) g'@2N+ 10,9 °

Next a very similar calculation gives
N

VEVGIRY a=R V)V () + Y (~1)"(nN )Q..H(V)R")Ra

n=1

for all ae %, where the polynomials Q are now defined successively by

(ad H(V(X) V(y)a=0;(V)a
for ae 4,,,, and

(d 4)(Q,(V)a=Q,..(V)a

forallac B,,,,,, ,andm=3,..., N. In order to justify this calculation it is sufficient
that D(4"* )= B, 1 3,, ,foralln<N. But D(F2"* ) S D(V*"*1)S B, 11,4, by the
induction hypothesis if n < N and by the previous argument if n= N. Therefore one
deduces that V(x) V(y)D(4V*1)= D(4"), and hence D(4"*!) is in the domain of
all monomials of order 2(N + 1) in the ¥(x). Thenif ae D(4"*!) one estimates that

S
<k sup [4*V(x)V(»)a|s,
]

=Pp=N

N
( I V(xi,.)) V)V (»a

i=1 a,q

gk'( sup | 4%al,

O<p=N+1

+,sup ad 47 (V0 V(y))allf,q)

by the induction hypothesis. Since (ad 47)(V(x)V(y)) is a polynomial of order
2p+1in the V(x;), and p<N, it then follows from the earlier calculation that

S

N
( I1 V(xij)) V) V(y)a

<k" sup |Pra|S, .
j=1 0sSp=2N

2, q

Therefore
D(A N+1)§ga2N+2;a,q .
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Conversely if ae B,y 5,4 4 then

d N

48,5 5 o X

i1=1 ine1=1

s
x, q

vamf}
j=1

g’?ZN+2;a,q§D(AN+1) .

and consequently

Combining these conclusions one deduces that (5.2) and (5.3) are now valid for
n=N+1. Therefore (5.2) and (5.3) are valid for all n=1 by induction.

It is unclear whether the hypotheses of Theorem 5.1 are sufficient to ensure that
Bon-1,0.q=D(V22~"). Theorem 4.5 gives a result in this direction,

gaf;a,q:D(Va,q) >

but the proof requires ||- [;-continuity of S restricted to 4, in addition to Con-
ditions B, and S;. Moreover, the spaces 47, , defined by (4.16) and (4.17) differ in
a significant manner from the spaces 4, ,, ,. But this motivates the comparison of
D(V; ) with the higher order analogues of the %7, ,, i.e. with the spaces

75, %EQMS¢MthU SMHV<@}

equipped with the norms
1 1/q
=l (] ) a=5 )l )
0 y

If S leaves 4, invariant and is || - | ,-continuous on 4%, then these spaces correspond
to the Lipschitz spaces of S restricted to 4,,. If on the other hand S does not leave 4,
invariant these spaces could be quite sparse and this indicates that strong
smoothness properties of S would be necessary to prove that D(V;" )< 4., ,. This
is indeed the case. One has

sup [[dmal3 <d"|al3,..., -
0<mzsn

and hence %5, ,SD(4],) with no smoothness assumptions but the converse
inclusion is more delicate. If, for example, one has S, 8<%, and S is | -|,-con-
tinuous on %, then

t
|—S)al, <] ds|S;4al,
0
for all ae #,. Consequently

1/q
=+ (s, aal )

= L PR L PP

and it follows from Theorems 3.5 and 5.1 that

@l = ke, a(lalle,a+ [ 4all,q)
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if S also satisfies Conditions B, and S,. Thus Conditions B,, S;, and |- ;-con-
tinuity of S ensure that
B.0qa=D(V, )

and Conditions %, S,, and ||- |,-continuity of S give
B3.0q=DWV2)=D(V,,) .

These arguments can be generalized to conclude that if S satisfies Conditions B,
and S,,,, and S restricted to 4, is ||- |,-continuous, then

B0 a=DW")

m;a,q

for m=1,2,...,n. This is in particular the case if (%4, g, V) is the differential of a
continuous group representation because all the smoothness and continuity
conditions on § are satisfied for all .

6. Smoothness and Integrability

Finally we can use the foregoing analysis to analyze smoothness properties of the
heat semigroup and criteria for integrability of the representation of g. In particular
we improve some of the recent results on these topics [BGJR].

Theorem 6.1. Assume S satisfies Conditions B, and S, .
It follows that S satisfies Conditions B, and S, for alln=1.

Proof. First it follows from Proposition 3.1 that S satisfies B, and B;. But Condi-
tion B, implies that S is holomorphic, i.e. there is a ¢ >0 such that”AS,“ <ct™! for
all te {0, 1). This, however, implies that the restrictions of S to the Lipschitz spaces
B3 ., q < o, are also holomorphic. The restrictions are |+ ||$ -continuous because
g < o0, by the Lebesgue dominated convergence theorem, but in addition one has
the estimates

1 1/
|4S,aS,= | 45,0 +< ] d,u(s)(s““||AS,(I-Ss)all)") ‘

<Clalzq

for all 1€ {0, 1) and this is equivalent to holomorphy.
Second let 4, , denote the generator of S restricted to % ,. It follows from the
holomorphy property that
S, B2 ,=D(42,)

@,q—

for all n=1 and ¢>0. But if e (0, 1/2) then Theorem 5.1 gives the identification

D(Aa’:,q):'%Zn;a,q .
Therefore
St'%s C'%bl;u,q

o,q—
for all =1 and ¢>0.
Finally one has
Sip BB B

@, q
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for all >0 by Condition S, and hence
S BES,, Bo e S Bonsa,a S Ban -

a,qg —

Therefore S satisfies Condition S, for all n=1 and, by Proposition 3.1, it also
satisfies Condition B, for all n>1.

If Theorem 6.1 is combined with Theorem 2.1 and Corollary 2.6 of [BGJR] one
obtains an even more striking conclusion.

Corollary 6.2. Assume S satisfies Conditions B, and S,, then S, B< %R, for all t >0
and there exist k,{ >0 such that
sup | V(x;,)...V(x;)Sa| <kt n)|alt~?
1<iy,..., insd
for all te0,1>,ac B, and n=1, where x,,...,x, is a basis of g. In particular the
representation (8,9, V) has a dense set of analytic elements.

The primary interest of this last conclusion is that it can be used to give criteria
which ensure that (4, g, V) is integrable, i.e. there exists a group representation
(%, G, U) such that V'=dU. It is necessary for integrability that the V'(x) are weakly
conservative in the sense that there exists a basis x;,...,x, of g,6,me {0, 1>, and
w >0, such that
[T+eV(x))al| 2m(1 —lelw)||a|
forallae4,,alln=1,2,..., allee(—4§,0), and all i=1,...,d. Now combination
of the previous results with those of [BGJR] and [BBR] gives the following
integrability criteria.

Theorem 6.3. Let (%, g, V) be a representation of the Lie algebra g for which the V are
weakly conservative and let A be the Laplacian associated with some basis x,..., x,
of g. Then the following conditions are equivalent,

1. a) 4 has an extension which generates a strongly continuous semigroup S,
b) S, B=B,(V), t>0 ,
¢) there is a ¢>0 such that

sup [Vl scla]i

for all ae B and te{0, 1),

2. a) A has an extension A which generates a strongly continuous holomorphic
semigroup,

b) D(A")S B, (V) for some n=2,

c) D(ﬁ)ggal(V) and there is a ¢’ >0 such that

sup [V(x)al el da+c's ]
1<isd

for all ae D(A) and e (0,1,
3. (4,9, V) is integrable.

Proof. The equivalence of Conditions 1 and 3 follows from Theorem 2.8 and
Remark 2.9 of [BGJR] together with Theorem 6.1 above once one remarks that
Condition 1b implies that the generator of S is the closure 4 of 4.



242 D. W. Robinson

Next Condition 1 implies S satisfies Condition B, by Proposition 3.1 and hence
S is holomorphic. Moreover Condition 1 implies the estimates of Corollary 6.2 and
by Laplace transformation one concludes that D(A™) = %, (V), where m =n/2 41 if
nisevenandm=(n+1)/2if nis odd. Then the estimate of Condition 2c follows from
that of Condition 1c by Laplace transformation as in Lemma 2.2 of [BGJR]. Thus
2=1.

We conclude with a few remarks about the integrability criteria of Theorem 6.3.

First, if the representation (4,g, V) is integrable then A is closable and its
closure A generates a continuous semigroup S, and hence integrability implies that
4 is the unique generator extension of A.

Second, if Conditions 1a and 1b are satisfied then the generator of S is again 4,
because | ) S,8<D(4) by Condition 1b. Similarly if Conditions 2a and 2b are

t>0

valid then 4 =4. This follows because | ) S,8<D(4")<%B,(V)<D(4), where the
t>0
first inclusion results from holomorphy of S and the second from Condition 2b.

Third, Condition 1a does not necessarily imply Conditions 1b and 1c¢ nor does
Condition 2a imply Conditions 2b and 2c. For example, if 4=C,(0, ), the
continuous functions over <0, o0 vanishing at 0 and oo, and if ¢ =d/dx, with D(5)
the absolutely continuous functions f €% such that f’'e %, then —§2 is closed
(see [BBR, Example 3.3]) but it is not a generator. Nevertheless it has many
extensions which generate holomorphic semigroups, e.g. the operator 4 with D(4)
the absolutely continuous f € 4 with absolutely continuous derivative f ' such that
f" € Cy(0, 00). This operator generates the holomorphic semigroup S with action

(Stf)(x)=:f Ay (p,(x—9)— D+ I ) .

where p,(x)=(4nt) 2 exp { —x?/4t} but D(6*)=D(A) £ D(5).
Fourth, if the V(x;) are conservative, i.e. if

|a+evxalz d

for all ae %,,i=1,...,d, and ¢e {—4,8), where § >0, then 4 is dissipative (see
[Rob2, Lemma 3.3]) and hence closable. If the closure 4 of A generates a holo-
morphic semigroup S then it is conceivable that Conditions 2b and 2c follow
automatically for A. In particular this is the situation of d=1. In this special case
there is a unique closed operator ¥, 4= —¥?, and

|val|<é]v2al +227|a]

for all ae D(V?) and &> 0 by Lemma 2.3 of [Rob2]. It follows that A=A= — V2,
and hence one has ~
D(4™)=%,,(V) . (6.1)

But one cannot expect (6.1) to be valid if d> 1. For example, this identification is
false [Orn] for the Lie algebra obtained by differentiating the group G = R“acting as
translations on the Banach space L, (IR?) whenever d> 1. Nevertheless since this
example comes from a group representation, each Laplacian 4 is closable, 4
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generates a holomorphic semigroup,

By, (VYSD(A™) S B,,_ (V)
for each n>1, and there is a ¢ >0 such that

[V(x)al <é ] +ce™|a]

for all aeD(A),i=1,...,d, and £e(0,1). The last statements follow from the
estimates of [BGJR].

Finally we remark that stronger results are to be expected if 4 is a C*-algebra
and the V(x;) are *-derivations. For example, it has then been established [BBR,
BrJ]that the V(x;) are conservative if, and only if, the Laplacian A4 is dissipative and
it is feasible that the representation is integrable if, and only if, A generates a
holomorphic contraction semigroup. One possible approach to this problem is to
prove the validity of Conditions 2b and 2c of Theorem 6.3 for A.
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