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Abstract. We give an alternative geometrical proof of asymptotic complete-
ness for an arbitrary number of quantum particles interacting through short-
range pair potentials. It relies on an estimate showing that the intercluster
motion concentrates asymptotically on classical trajectories.
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1. Introduction

The first task of quantum scattering theory is to give a classification of the possible
large time behaviours of Schrédinger orbits e~ *Hy. In this paper we study this
problem for an arbitrary number of particles interacting via short range
interactions. In the intuitive picture of the scattering process, this system is well
described at large times by a number of bound clusters which do not feel each
other. This statement is called asymptotic completeness. For N =2, 3 it was proved
by several authors (see [2, Sect. 5.7] for a review), and in particular using geometric
ideas by Enss [6-8]. For arbitrary N the proof is due to Sigal and Soffer [22].

Our main intermediate result is a propagation estimate showing that
asymptotically 2p, ~ x,/t on that part of configuration space, which corresponds to
a given cluster decomposition a. Here we have used the notation of [22] which is
reviewed at the end of this section. Such a property in fact is typical for the clusters
of a moving freely. This result is not new, since it was derived earlier in [23] (with
the only modification that the partition of unity used there is in phase space).
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Somewhat similar results relying on a spectral rather than on a geometrical break-
up were derived in [9]. New, however, is our approach for proving this property,
where a boosted Hamiltonian

Kit)=(p—Vo(x,1)*+V

is the main propagation observable. Boosted Hamiltonians have been used in
[1, 3] to establish exponential bounds on bound state wave functions of N-body
systems. The difference here is that the function ¢ is no longer imaginary, but real.
This is related to the analogous change of the phase of the wave function, when
passing from an energetically forbidden to an energetically allowed region. The
propagation estimate we mentioned is based neither on channel expansions, nor
on local decay, nor on the Mourre estimate. Yet, the latter becomes crucial when
proving asymptotic completeness.

The hypothesis on the pair potentials V;; as real multiplication operators on
LA(X%)) are grouped according to their different role in the theory.

Decay Assumption.
- IF(yl>R) V{y) (p* +1)""[| SconstR ™", (1.1)

IF(y1>R) VV;{y) (p* +1)" || S constR ™' ¥4 12)
for R>R,, and some Ry, p:=min(u,, u,)>0.

Short-Range Assumption.

U >1. (1.3)
Compactness Assumption.
Vip*+ 1)L @+ 1)y - V() (p*+1)"" are compact. (1.4)
The Hamiltonian of the N-particle system is
H=p*+V:=p*+ (.Z,») ViAx®) 1.5

on [*(X), where X is the N-body configuration space with center of mass motion
removed.
We now define the wave operators
Q,:=s5— tlir+n ¢tHe~itHapa (1.6)
for all cluster decompositions a with #(a)=2. Here P*=1® P* with respect to
L[*(X)=I*X,)®L?*(X") is the bound state projection for H States in the range of
Q, are asymptotic to bound non-interacting clusters of a.

Theorem 1.1. Assume the pair potentials V;; are infinitesimally small with respect to
p? on [2(X%)), and satisfy (1.1)~(1.3). Then the wave operators (1.6) exist, their ranges
are closed, mutually orthogonal, and satisfy

@ RanQ,CRan(1—-P).
#@)22
These facts are rather well known [15, 12, 14, 19, 20]. Nevertheless we include a
proof, because the ones we are aware of make assumptions on the potentials in
terms of LP-spaces. Our aim, however, is to prove
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Theorem 1.2. The quantum N-body system (1.5) satisfying (1.1)-(1.4) is asymp-
totically complete, i.e.
@ RanQ,=Ran(1—P). 1.7
#@)22

The proof we present is self-contained, except for the Mourre estimate [16, 17,
10, 2]. By the same techniques some related results can be proved:

— Inclusion of 3- (or more) body potentials.

— Inclusion of permutation symmetry [21].

— Propagation theorem [22, 5] for a time-dependent propagation set.

— Asymptotic clustering for Coulomb-type potentials [23].

We now introduce a number of notions and notations pertaining to N-body
systems. The physical space is R”, v 1. The configuration space of N mass points
m;>0 in the center of mass (CM-) frame is the real vector space

X:= {x=(x1,...,xN)

N
x'eR’, ¥ mixi=0}
i=1
equipped with the metric
N . .
x-y:=2% mx'y,
i=1

where x’ - y'is the scalar product on R*. We will also use the notation x?=x - x and
|x|=(x - x)/2. The Hilbert space of the quantum mechanical N-body system is
I?(X), where the volume element of X is defined by the metric.

Clusters are nonempty subsets CC{1, ..., N}. The subspace

XC:={xeX|x'=0 if i¢C}

represents the configuration space ofthe cluster C in its own CM-frame. Evidently
X4 L Xif C;nC,=0. A cluster decompositiona=(Cj, ..., C 4 ) is a partition of
{1,..., N} into clusters. We thereby set # (a) to be the number of clusters Cea. We
define )

X= @ X’= {xeX Y mx'=0 for Cea}. (1.8)

Cela] ie

The meaning of this notation [17] is that variables within boxes are kept fixed, i.c.
that the sums are ranging over the /gthe/r\ variables only. We also write (ij) for the
cluster decomposition (ij)=(1)...(J)...(j) ... (N)(ij), where " indicates omission.
Then X% is the configuration space for the relative coordinate ofthe pair i, j. The
orthogonal complement of X* is

X,:={xeX|x'=x' if i,je C for some Cea}.

We denote the orthogonal projection onto X* X, by 14,1, respectively, and set the
shorter notations x*:=1°, x,:=1,x. The splitting X=X,®X* induces the
factorization

L(X)=LA(X )®L*X"), (1.9)

whereas (1.8) induces

[3(X%)= C@% IX(X©). (1.10)
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The cluster decompositions are partially ordered by aCb, expressing that each
cluster of a is a subset of a cluster of b. By aub we mean the smallest cluster ¢ with
acCc, bCc, whose existence and uniqueness is readily verified. The relation aCb
implies 1,21, (in the sense of orthogonal projections and hence of quadratic
forms), as well as x®,=x,?=:x5.

The operators describing the particle velocities are the components of
2p=(2/i)V, where V is the (contravariant) gradient. The operator

H =@+ 3 V),
Gic @
on I*(X") then describes the internal motion of a system of non-interacting
clusters. With respect to the factorization (1.10) it has the structure

H'= ¥ 1®...H’® ... ®1, (1.11)
Ce[a]
where HC is the Hamiltonian of the cluster C in its own CM-frame. By P* we denote
the bound state projection of H® In particular, the Hamiltonian (1.5) is
H=H"M and P:= P"M is its bound state projection.
The free intercluster motion of the non-interacting clusters is included in the
description when considering

H,:=(p,)*®1+1® H* (1.12)
on (1.9). Alternatively, it can be written as H,=H —I,, where

I a = Z I/;J'(x(ij))
(ij) ¢ [a
are the intercluster interactions. Under the assumptions used in this paper the
Hamiltonians above are selfadjoint on the domain D((p®)?), respectively D(p?) of
the kinetic energy.
We use the notation F(x e A) for the (sharp) characteristic function of 4C X.

2. The Partition of Unity and the Vector Field

In this section we will construct a partition of unity as characteristic functions of a
partition of the N-body configuration space X. Like for other partitions of unity
indexed by cluster decompositions, each member has a support designed to “kill”
intercluster interactions, but in addition the normal to its boundary is at any point
orthogonal to the motion within those clusters, which are compatible with this
point. Related to this is the construction of a vector field, whose derivative (as a
matrix) has suitable positivity properties.
The seminorm ((x%)2 +(x%)?)'/? is a norm on X*“?, hence

10q - (x““%)% < (x%)? +(xb)? 2.1)
for all a, b and x*“® 40, provided g >0 is small enough. We also require 5g <1 and
set

a__{q#(‘"'l if a%(1)...N
7= it a=(1)...(N),
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and q¢:= q“— q". The separate definition if a=(1) ... (N) is not essential, but it eases
the notation due to gfy,. v =¢° in imitation of x{;, ,=x" We will frequently
use (2.1) in the form of

Lemma 2.1. Assume that a¢b and b a, and let cCa, cCh. If (x*°)? =(1/2)q%"? and
(x8)*£24°, then

(xd)*>2¢; . 22)
Proof. Notice that if #(f)> #(g), then q-q?=¢’. Moreover, like in set theory,
aCbh<>aub=>, hence under our assumptions aub)b and aub;)a. By (2.1)

(x¢)*>10q-(1/2)(¢"**—q%)—24" 2 59 - ¢"** — ¢~ 2¢"
=29-4""+3(q-4""—q)22¢" 224"~ 1),
— —

0

where we used 5¢ <1 in the second step. []

For the rest of this section we will use this lemma in the weaker version with
factors 1/2 and 2 dropped.

We can now define our partition of unity {J,},, which is not smooth and which
is indexed by all cluster decompositions of {1,..., N}, including the trivial one

(1...N):
Jox): =[ [1 F((X£)2>qaf)][ I1 F((XZ)ZéqZ)]- (23)
2@ 9¢ [

Related ideas in the construction of the partition of unity were used in [22].

v

Lemma 2.2.
YJ(x)=1. (2.4)
Proof. We define
Z,={xeX|(x})*>q}, Vf2a,(x))* <q; YgCa},
and prove (2.4) by showing

(a) For each xe X there is at least one a with xe Z,,
(b) For each xe X there is at most one a with xe X,

X(3)2) X123
2(3)2) 2(1)(23)
211213
: Z(123)
_—
X(12)(3)
a2z={0)]__Z(2)(3)

Fig. 1. The configuration space X for N =3, with subspaces X, and subsets X,
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Proof of (a). Let xeX be given. Choose a maximal a such that (x%)%—g°
<(x")?— ¢ for all cluster decompositions b (i.e. an a such that no a’ 2 a enjoys this
property). We claim x € Z,. Indeed, for f 2a, (x})* —q} =(x')* — ¢’ —((x)*—q%)>0
by the maximality of a. Similarly, (x3)*— g4 <0 for gGa.

Proof of (b). Leta+b. We have to show X,n X, =0. We distinguish betweeni)aCb
or bCa, and ii) ad¢b and b{a.

i) It is enough to consider aCh. xe X, implies (x2)?>¢2, and x € X, implies
(x)?< ¢t Hence £,nZ,=0.

ii) Here aub 2 a. Thus for x € X, we have (x**)? 2 (x4%)* > ¢5*® and (x*)* < ¢".
This proves (x?)?> ¢° by (2.2), which implies x¢ X,. [

Another property we will use is
Lemma 2.3. For xeX, and (ij)¢a
(x0)2 > gD =gN=2, (2.5)

Proof. Since au(ij) 2 a, we see that (x** )2 > (xi )2 > gav @D, as well as (x)* < g
If a ¢ (if), we get (2.5) from (2.2); otherwise a=(1) ... (N) and (2.5) is included in the
definition of Z,. [J

We now define the basic vector field on X:
W(x):= Y J(x)x,. (2.6)
One of the reasons for our choice of th;l partition of unity lies in
Theorem 2.4. As a distribution, the derivative W,(x) is symmetric and satisfies

W) 2 L Jo(x) 1, 2.7

Proof. In the following we consider products of distributions. It is not difficult to
see that they are always well defined, since their singular supports are manifolds
which intersect transversally. Evidently

W)=Y X, @V ] (x)+ X J(x)1,,

since (x,), =1,. We thus have to show that the first term on the right-hand side is
positive semidefinite. Applying the product rule to (2.3), we obtain

vJ a= Z Jaab + Z Jaab s
b2 (@ bg [a
where

Jaow= [ 1 F(x)? éq{)][ IT F((xg? éqg)] VF(xe) 2 42) 23)
A2

for b2 a, and similarly for b C a (for the sake of interpretation, J 5, is a term related
to the boundary between X, and X,). It will be enough to show

Xq®Jaop + Xp @ J 50, 20 (2.9
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for all a,b with b2 a, since then
;xa® VJx)= 2 X®J aop+ Z Xa®J aop
b%a X,®J 405+ Z Xp®Jp0a 20,
where we interchanged the names of the variables in the second step. We now prove

(2.9) by performing some replacements in (2.8), so to make J,,, comparable with

Jbt?a'
For g Cb with g¢ a, g b a we have either i) aug=>b or ii) aug +b. In case i)
we have

F(x)?Zq")VF(x)* 2 q) = F(x))* £qp) F(x)* £q) VF(x2)* 2 qh), (1)
while in case ii) we have
F(x*? £q°) F(x3"? 2 q3") VF((x})* 2 45
=F(x})* S q) F(x)? = q°) F(x5")?> 2 459 VF((x})* 2 43).- (11i)
In fact in both cases we have on the support of the left-hand side (x%)* = ¢&, as well as
(x*V9)? = (x8v9)% > g9 and (x*)2Zq°%, hence (x")2 >q° by (2.2). Since (x2)*+(x%)?
=(x%)? =(xb)> +(x)?, we obtain (x”)2 S@¢+q —q¢ =4
For gCa
F((x)? £q) VF(x)* 2 ) =F((x})* <)) VF(x2)* 2 43), 2
since for (x5)? =g, (x3)> < q5 iff (x})*> <¢¥, due to (x])? =(xb)* + (x2)*.
For fQa with f¢b, f Db
F(x)? Zq)) F(x5*)> 245V ) VE(x2)* 2 40)
=F((x;* 2 ;") VF(x)* 2 43), ©)
since for x in the support of the right-hand side (x2V/)? = g%/ > gbv7, (xb)2 =gt < ¢,
and hence (xJ)2=q/ by (2.2).
For f2b
F((x])*2q)) VF(x})*2q0) = F(x{)* 2 g)) VF(x})* =2 43). @)
since for (x})* =g}, (x§)* 2 qJ iff (x{)*Z qf, due to (x])>=(x{)* +(x})*.
Finally, for b2 f 2a
F(x)?Zg)) VF(x))* 2q)=F(x})> S qp) VF((x})* 2 40, )
since for (x3)? =g5, (x{)*= g4 iff (x})> <4}, due to (x2)? =(x})* +(x{)*.
Performing successively the replacements (1) up to (5) in (2.8), we get

Jaon= [ 1 F(<f)’z q{)}[ IT F((xp? éff})} VF(x)* 2 4q)-
s E yi %

This is, up to a reversal of the inequality in the argument of V'F, equal to J,,,
Disregarding the common nonnegative factors, we obtain for the left-hand side of
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(2.9)
X, ®@VF((x5)* 2 ¢+ x, @V F((x})* £40) =20((x})* = g5) - (X, ® x§ — x, ® )
=20((xD)*=q5) - x®x; =0,
since x,—x,=x"—x*=x5. [

We conclude this section by proving some further properties of the vector
field W(x).

Lemma 2.5.
W(x) D=0 for (x)?<q""2, (2.10)
l[x—Wx)ll, <o, (2.11)
(x—W(x)) x| < 0. (2.12)

Here | - ||, for vector fields is the norm on L*(X, X).

Proof. Let (x*)2 <q"~? and (ij)¢ . We then have x¢ X, =suppJ, by (2.5), and
hence

W= T T 0%,

a>| (ij)

Thus (2.10) follows from x{ =0 for a>(ij). We compute
x—W(x)= 3 J(x) (x—x5)= ¥ J (x)x*,
where we used (2.4), and

(= W) x= T J)x" x= T J(x) (x)*.

Thus (2.11), (2.12) follow from (x*)*<g¢” on X,=suppJ,. []

3. Smearing Them Out

We will need the partition of unity and the vector field to be smooth. This will be
obtained by taking convolutions with a smooth ¢. We list the required properties
of the mollifier:

peCP(X), »=0,
foddx=1,  [xp(x)dx=0, (3.1)
suppeC{xeX||x|<e}, ¢>0.

We will refer to o as the sharpness. The fact that the smeared quantities will have a
slightly larger support than the original ones motivates the following definition:
for a set ACX we define

A°={xe X|dist(x, 4) < o}
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We now define smooth partitions of unity, j, and j,

Jai=J,x 0, (3.2
. Ja
Jo'= T, (3.3)
(ZRY"
b

[see (2.3) for the definition of J,], and state

Lemma 3.1. Z,, J. are smooth with bounded derivatives, and

Yia=1, (34

Yia=1. 3.5)
Furthermore, for yesuppj,=suppj,, and (ij)¢a
. N-2

y?z3q 2, (3.6)

provided the sharpness o >0 is small enough.

Proof. Zj:= (Z J a) *p=1*p=1Dby(2.4);(3.5) follows from (3.3) and from the fact
that the denominator there never vanishes by (3.4).
N-2
We impose 6 <(1/2)g 2 . For yesuppj,C 2 there is an xe X, with |y —x| < 0.
Hence

N-2 N-2

[y = | x| — |y — x| > qT_ o=1q 2
by (2.5). [

The next two lemmas will be needed in the proof of two further important
properties of our partitions of unity.

Lemma 3.2. Given k,>1 and provided the sharpness ¢ >0 is small enough,
N3k =g (3.7)
Jor b¢a and k=k,. (By this we mean that ¢ depends on k, but not on b,a,k.)
Proof. By taking o> 0 small enough, we can impose
kol(q2)'? —0)>(g7)"* +0
for all aCb; and
(@) +o <)/ 2",

ub)1/2

1
(€2 *—o> ‘—/-5(‘13

for all b#(1)...(N) and all a with aubQa.
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From b ¢ ait follows b#(1) ... (N). We distinguish between i) a Cb, and ii) a ¢ b.
i) xeZj- k™! = |kxg| <(gD)"* +0;
xeZ;=|xg|2(q)'*~0o
= kx| 2 k((g})!/* — 0)>(g})'* + 0.
Hence 2N (ZZ -k~ Y)=.
ii) In this case we also have a+(1)...(N). Let xe 2. Since aub2a,

1
x|z x5 2 (g5 ) 2 —o 2 —2(QZ“")” 2,

and |x| <(¢°)"2 + 0 <]/2(¢)"2. Together with (2.2) this proves
lex?| > x| >1/2(¢")' > ()" +0,
thus x¢ 27-k~ 1 O
Lemma 3.3. Given k>1 and provided the sharpness ¢ >0 is small enough,
Jux)= [,ﬂ F((x])? >qa’)][m [T Fxp)? éqf;)], (3.8)
2 coglal

for bCa and xe(Z5-k™1)y.
Proof. By taking >0 small enough we can impose

K@) +0) +o<(g)"

for all g Cb. We may assume b+ (1) ... (N), since otherwise (3.8) coincides with (2.3).
For gCa with b{g, bDg we have either i) bug=a or ii) bugCa. For
xe(2¢-k™1)° we have in case i)

F((x"Y £¢°) F((x)* < q) = F(x*}* £¢°), (11)
while in case ii)

F(x") 2qY) F((x5.0)” £ q50) F(x5)* £ 45) = F(x*)* £¢°) F((x500)* £ o) -
(1ii)
Assume the contrary, i.e. that there is an xe(Z3 -k~ )" in the support of the right-
hand side of (1i) or of (1ii), such that (x4)*>> 4 In case i) this is equivalent to
(x2v9)% > qb9, but also in case ii) we have (x279)* =(x2)> — (x5, ,)* > 45 — b s = 45"%,
which in both cases implies (x?9)? = (x“9)* > gb-7.

On the other hand (xf)? = (x*)* — (x)* < ¢* — g5 = ¢°, and hence (x")* > ¢* by (2.2).
This contradicts x (2§ - k= 1)°, since for ye 27 - k™! we have [y*| <k~ *((¢®)'? +0),
and thus [x*|<k™Y(¢)*+ o)+ =(g")"%

For gCa with gCb and for xe(Z3- k1),

F((x§)* < q5) F((xg)* < qp)=F(x)* < q5). @

Infact,for ye X5 - k™! we have |y5| <k ~'((¢})!/* +0), hence x| <k~ '((¢))'/* +0)+ 0
<(g})"/?. If we restrict x further to the support of the right-hand side of (2), we get
(g = (x5 +(xg)* < g5 + a5 = 5.
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Performing successively the replacements (1) and (2) in (2.3) we arrive at
(3.8. O

Lemma 3.4. Given ko>1 and provided the sharpness ¢ >0 is small enough,

Jd»)Jjsky)=0 for b¢a, (39
J0)=iy) T Jsky), (3.10)
bc [a]
Vi) ="5y) ¥ Jsky)*, (3.11)
bc[a] .
Vid0)=Yjy) T Jjslky)? (3.12)
bc [a]

for k=k,.
Proof. Equations(3.10),(3.11),(3.12) would hold by (3.4), (3.5), if the sums extended
to all b. We have to show that (3.9) (and similar terms) vanish for b¢a:
SUPPJg, Supp Vg, suppVjo C 27,
suppjy(k -), suppjy(k-)CZg - k™.

But Z¢n(Z5 -k H=Z by 3.7). O
Lemma 3.5. Given k> 1 and provided the sharpness ¢ >0 is small enough,

Joky) VT0) =iky) Valal0) (3.13)

Joky) Vidy)=js(ky) Vejaly) (3.14)
for bCa.
Proof. For yesuppjy(k-)CZ5-k~! we have

J)=[Jy—2) 9(z)dz,

where y—ze(ZZ- k1) for z in the support of the integrand. Then Vj(y) = V,j.(»),
since on (29 - k)7 (which is the closure of its interior) J (x) is a function of x, alone
by (3.8). We now prove (3.14). Let c¢Db. Since suppj,C 2?7, we have j(y)=0 for
yeZ¢ -k~ by (3.7). Thus .

Jaly)
( ) jc(y)2>” 2
¢> [B]

Jd»)=

and (3.14) then follows from (3.13), which also holds for a replaced by ¢Db. [J
We now turn to the smoothing of the vector field W. We define
wi=Wxo (3.15)
[see (2.6) for the definition of W1].

Lemma 3.6. Given ko> 1 and provided the sharpness >0 is small enough,

Jay) wky)a=jay)kya (3.16)
Sor k= k.



84 G. M. Graf

Proof. We first prove

Wiky),=ky, (3.17)
for ye 229 and k= k,. By definition W(ky)= Y J,(ky)ky,, but for b¢ a, suppJ(k-)
CZy-k~'cXE°-k~ ! is disjoint from X2° by (b3.7), hence

Wiky)= ¥ Jyky)ky,
bc [a]

and (3.17) holds because y, ,=y,for bCaand J,(ky)=0for b ¢ a. We can now prove
(3.16): for yesuppj,C2Z?

wky)= [W(ky—z) p(z)dz= [ W(k(y—zk™ ")) p(2) dz,
where y—zk™ 1€ X2*"" C 327 for z in the support of the integrand. Therefore
wiky),= [ (k(y—zk™ ")), @(z) dz=ky,,
by 3.17), 3.1). O
Finally, we carry over to w the properties of W derived in Sect. 2.

Lemma 3.7. For sufficiently small sharpness >0, w has bounded derivatives (of
degree 21), w, is symmetric, and
N-2

WOYD=0 for NS g7 . (3.18)
wo() 2 ;jl(y)la, (3.19)
[w(y)—ylle <00, (3.20)

W) —w, )yl <co. (3.21)

N-2
Proof. We impose o<(1/2)q * .
W) = [W(y—2) p(z)dz,
N-2 N-2

where |(y—2z)*|<(1/2)qg 2 +0o<q ? for zin the support of the integrand. Thus
(3.18) follows from (2.10).

w, =W, * ¢ is symmetric since W, is, and (3.19) follows from (2.7) by ¢ =0.

We have y* ¢ =y by (3.1); [W(y) = ylloo= (W —y)* ¢l o < |W—yll, < o0 fol-
lows from (2.11).

From w=Wx*@=(W—y)*¢p+y we see that w has bounded derivatives,
because y has, and by (2.11).

By explicit computation, (y—W)-y)*o=((y—W)*9¢)-y—(y—W)*(ye).
This proves
=W *0)-y]u=(—W) ) * 0, +(y—W)*(yp), e L*(X,X) (3.22)

by (2.11), (2.12). Using again y * ¢ =y, we get for any tangent vector X

=W *0) y],(X)=((ry—w) ) (X)=(—w)- X +y-1—-w, () (X)
=[y-w+1-w, ] X,
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where we used that w,(y) is symmetric. By (3.20), (3.22) we conclude

[A=w()ylo<co and W) —w,(W)ylleo = W)= ylle+ 11 —w (Y]
<o0. [

4. Propagation Estimates

The purpose of this section is to show that, roughly speaking, the intercluster
motion concentrates asymptotically on classical trajectories. Throughout this
section we will assume that the pair interactions ¥;(y) on I*(X®) are infinitesi-
mally small with respect to p? and satisfy (1.1) and (1.2). The Hamiltonian H is
of course (1.5), and the basic propagation observable is

K(t):=(p—v(x, )*+ V(x), 4.1

where the vector field v(x, t) will be specified later as a mild modification of x/2t.
The starting point of our propagation estimates are the Heisenberg equation of
motion. We thus define

9
D-:=i[H, - ]+ —. .
i[H,- ]+ o 4.2)
A straightforward computation leads to

1 v

+4v-(v*v+ 3 (3—t> +4WV-v)+20v-VV, 4.3)

where v, is the x-derivative of v, and v}, its transpose. Since K(t) is not bounded one
can either derive propagation estimates holding on a time invariant dense set only,
or introduce some cutoffs, thus replacing K(t) by a bounded operator. We will
follow the latter alternative and borrow the maximal velocity bound of [23]:

Theorem 4.1. Let QCIR be bounded and measurable, and 1>0 large enough. Then
[ IFAZIx/t|<22)e ™ Eq(H)y| 2% Sconst|p[? (4.4)
1

for all p e [*(X), where Eqo(H) is the spectral projection for H associated with Q and
the constant depends on Q, A.
Proof. We take he C*(R) with ' 20, (1)/?* e C?(R), and
Kiy)=z1 for 1=5y<4, 4.5)
supph'C{yeR|3<y<9}. (4.6)
For the propagation observable @ = — h((x/At)*) we compute

d
75 Wo EaPEqw)=(w, Eo(DP)Egy)), 4.7)

2/ x)\? 2 X x
D R — /__ I__. R ’
e t(it) h m(h FrLaR uh>’
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where y,=e™ "By, Eq=Ey(H) and h'=h((x/At)?). We have (x/At)*h’' =(1/2)h’ by
(4.6), and

X x
Enh'ﬂ ‘pEq= En(h/)m ﬂ(h')l/z 3 J
—Eg(h)”zx(H) (h)”2 ‘pEqg+0(t™)

= Eql)' y(H)p- 7 (W) 2 Eq+ 0™,

where we took yeCX(R) with y(x)=1 for xeQ, and we used [(F)'/?, x(H)]
=0(t™'), which is proved at the very end of this section. This shows

Eg(h' P h') Eq 2| (H)p| -3Eoh Eq+0(: ™),
since |x/At| <3 for x e supph'((- /At)%), and thus
EoDP)E, = — : <1 - llx(H)pH) Egh'Eq+0(t™%) 2 . 5; Eal'Eq+0(” %)
provided >0 is large enough. By integrating (4.7) we conclude
T (0 B Eqip)5; S250p (0 Ea®Eqp)] +const [y Sconst .

and (4.4) then follows by (4.5). [

In the sequel f, g will denote two fixed functions with f,ge CP(X),0= f,g <1,
f(x)=0 for |x|=2, f(x)=1 for |x|<1, suppgC{xeX|1<|x|<2}, and g=1 on

suppV f.
We also define the vector field v in (4.1) by

_ X
v(x, t) =t 6W <Et—1:3) ,
with 6 >0, which will be adjusted later [see (3.15) for the definition of w].

Proviso. From now on the clause “provided the sharpness ¢ >0 is small enough”
will be omitted in the propositions, although it is assumed whenever quantities
depending on ¢ are involved.

Theorem 4.2. Let 6 >0 be small enough QCIR bounded and measurable, and >0
large enough. Then

{ W f(p—0) (v, +03) (p—) fw)) dt Sconst |y (4.8)

for all = Ey(H)y, where p,=e "y and f = f(x/At).
Proof.

%(wn TKfw) =, D(fKf)p)=(w, [f(DK)f +(Df)KSf + fK(Df)]w,). (4.9)
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We first show that the terms in (4.9) arising from

2 X x i x
o7=700(3) (7~ 3) - @ ()
are integrable in time. Since gVf =V f and since K(¢) is a local operator, we have

fK(Df)=gfK(Df)g, where g=g(x/At). Then, setting E,= E,(H),

Eof K(Df)Eq=EogfK(Df)g(H +i)"" Eq(H +1)
=EogfK(Df)(H+1)""gEo(H+i)+Eog fK(Df)(H+i)'[H,g]E,
—
=0(1) =0~ =0@""
=(H—i)Eqog(H—i)"'fK(Df)(H+i)" ' gE,(H+i)+0(t?), 4.10)
=0(1) =0(t™")
where the O(1) estimates will be proved below. This proves

© ®© . . dt
{ [(p,, Eof K(Df) Eqy,)| dt < const { IgEq(H + t)w,I!ZT +const ||y ||?

Sconst || Eq(H +i)y||* +const ||| > < const |y >
by (4.4). We estimate

X
WZ—tlT&—

by (3.20), proving fv, fv?, (Vf)-v=0(1),

s X 1 1 x
v (x, t)=t"°w, T ztl—_,;:ZW* 215 )

Since w has bounded derivatives, we get K=H—2p-v+0v?>+0(t"'); by fp-v
=p-fo+0(t~ ') we then see (H—i)~ ! fK =0(1), as announced. Next we show that
the terms on the right-hand side of (4.3), up to the first one, lead to integrable
contributions to (4.9),

ov X X x
— 51+ (18— (1+8) AT B

% ot w<2t1_5> (1—9)t W, <2t1'5>2t1""
=—t" O, 1)y +IWH) =WVl = /201 - 65

10v 1
040+ 5 2 = 367w, () 090) =)= O0) — W (1))l 20~

lo(x, ) =t~°

<t™?¢ (const +

X
> <constt™’+ l—‘

X
2179 2t

3
AV -v)= <2t11_,,> t LAV - W)]ly=xy2e1 -5

By (3.20), (3.21) we thus obtain
=0(t~®~29), Finally,

=0(t™"*?), and [|A(V - )|l

29

U U+

1o
2 ot

@)
v-PV=0 . POV (x D) =10 <—2?—_7> F(|x"| 2 constt! ~%) - PV (x®)
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by (3.18). fEo=((p"")*+1)~' B, where B= f((p*")* + 1) Eo+ [(p*”)%, f1Eq=0(1).
Thus

Eofo-VV;fEq=Eq fo" F(Ix®| z constt! ~%) - P V,(x*") (p*")* +1)"' B
=t~ (1~ +u2)

by (1.2). The claimed integrability thus holds, provided min(1+96, 3—26,
(1 —06)(1+ uy))>1. Integrating (4.9) we then obtain

2] 0 f(0—0) 04+ ) (p—0) ) de S 250l Eq K S Ep)l+ const
< const|jp]?,

since sup,»; [ Eqf(x/At) K(t) f(x/At)Eq|l <0, and v,=(1/2)(v,+05)=0 by
319). O

Theorem 4.3. Let QCIR be bounded and measurable, A>0 large enough, and v>0.
Then

{ <wt,f1a(l’ 2t) Jafw,) d <const [|y]? 4.11)

for all py=E(H)y, where p,=e "2y, f= f(x/At) and j,=j(x/vt).
Proof. [See (3.3) for the definition of j,],

(o= 2 ) ar=1(o-2) 2(r-3) /- e Aaiaf. 412

We claim that for large ¢
(X \Xa _. (X
Ja <U_t>5 =Ja <Ut>v(x, t)as (413)
1,
P 1,520,. 4.14)
In fact

ol =) 0%, o= = ) oW U—tai Y ) RO X )2e
Ja\ 4t Ha=Ja\ 3 2 ot =Ja vt 2t1-9 =Ja 2t°

where we took ko>1 and used (3.16), since vt°/2 >k, for large t. By (3.19),

1 X 1~ X
N e e I
Thus
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where we used successively v, 20, (3.9), 1,21, for bCa, and (3.10). Using (4.12),
(4.13), and (4.14) we obtain
1. x\, , 1 2 3
S\ p=52) Jof = 3 fP—0)2L—~ ) f+0(?)
Sf(p—v)20,(p—0) f+0(t™7).
Thus (4.11) follows from (4.8). [

As a first illustration of the importance of the boundaries of the partition of
unity, we improve (4.11).

Theorem 4.4. Let QCIR be bounded and measurable, >0 large enough, and v>0.
Then

4 . x| . dt
§ | ¥o fia|lp— 5| Jafw: | — Sconst|yp]? (4.15)
1 2t t

for all p=Eq(H)p, where y,=e™™p, f=[(x/10), ju=idx/ot), and |p— =

-[6-5)]"

Proof. Since certain commutators of are not well behaved, due to the

a

x
P™
singularity of [/E at s=0, we resort to the regularization of [23],

X 2
Aa(t):=<p—5;> +t7%¢ (4.16)

a

for f>0. We compute
D(fjuAajaf)=FDGaAa%) [ +(Df)jeAd*jaf + fiaa%iDSf),  (4.17)
and again we first prove that the terms arising from Df are integrable:
[ia4a"%1dD f)= £jasjdDf)8* =8 fioAa"*jAD f)g + [ fiaAa’jdDS ), £18,
where g=g(x/At), with
Eﬂ[fjaA:/Zja(Df)’ g] gEQ = Eija[A;/zﬁ g]ja(Df)gEQ . (41 8)
— —
=0(™")

The estimate of [41/2, g] is deferred after the conclusion of this proof [see (4.24)].
The result is (for 0<f<1)

IEqfid 42’ g1l = I[4a"%, g1jafEal SOt~ "P)|| ju fEq
+0(t ™) 1427%a fEqll
N ——
o)
=0~ 1). (4.19)
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Hence (4.18) is O(t~ 2~ #) and

[, EofjalajdDf)Eqw,)| dt < const ]

can be shown by following the pattern (4.10). We now turn to the first term on the
right-hand side of (4.17),

D(j,45"%j) =D AZ") ju+ (Dja) A% +jaAs*(Di0), (4.20)
and we are going to prove the integrability of the contributions arising from
Dj,=(2/vt) (Vj,) (x/vt) - (p—x/2t) = if(vt)* (4], (x/vt):

2
(DidfEa= sy 3 (A (p— %) SEq+0(7%)
bc

2 o x) . -2
= Ebcz@]b(VbJa) . (P— Z)b]beQ-'_ o™ %),

where we took 0 < v, <v, j, =j,(x/vot), and used (3.12), (3.14) with k=v/v,. We thus
obtain

I(Wta EﬂfjaA: /Z(Dja) fEQV’t)l

const ] X\ .
= " > ”/13/2 WS Equ,| "(P“ 2_t> JsSEqw,
bc [a] b

since A2/%j,fEq=0(1). The term in this sum is a product of two functions in
I*([1, 0),dt/t) by (4.11), (4.16), showing that

+0(t™?) |pl?,

{ Wy Eq fjadd'*(Dj,) fEqw,) dt < const||yp]?.

We are now left with the first term on the right-hand side of (4.20):
DAY?=D, AY?* +i[l,, AL*], 4.21)

where D, is defined by (4.2) with H replaced by H,. The contribution arising from

the last term in (4.21), Eq, fj,[1,, AL/*1j,fEq, is integrable in time (for 28 < u) by a

computation deferred after the end of this proof [see (4.34)]. The first term on the

right-hand side of (4.21) can be computed using e"#«D, A}/?)e s
/2

d . . Ra: ! '
= ﬁ(e"H“A,f/ 2¢~itHa) and e*Hafl/2¢ ™ tHa = <~“— +t72%} . The result is

41*
1 x \?
D AYV2=__ g712 _ t~ 28
a‘~a t a l:(p 2t>a +B ]
- %Aj/2+(1— e~ +2m 7102, (4.22)

where the contribution arising from the last term is integrable due to || 4, /2| < .
Collecting (4.17), (4.20), (4.21), (4.22), and knowing that all contributions,
except the one arising from the first term on the right-hand side of (4.22), are
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integrable in time for 0 < f <min(u/2, 1), we obtain

® , , dt , ,
{ (o fiada%iaf w) - =2 sup lWe Eo fjada%ja fEq,)| +const [y ?

<const |p||2. (4.23)

+t7f. O

a

This is equivalent to (4.15) by Ip— % s4M2< Ip— %

The estimates (4.11) and (4.15) can be summarized by replacing in
_x
P~

X
P~ 5,

(4.15) by

with 1 <¢<2. This can be extended to 0 <& < 2 by considering the

propagation observable fj,4%%j, f, and by using the techniques and the results
obtained so far. However, we will not use this extension.
We now fill the technical gaps left open in the previous proof.

Lemma 4.5. i) Let he C®(X) with bounded derivatives. Then, as t— oo,
L4 2, hx/] @l SO~ ~P 47207 P) g+ 0~ | 4,0 ol , (4.24)
and for 0<a<1/2,

A% h(x/0)]=0(t™" ~P). (4.25)
ii) Let [A¢), B(t)] be bounded for fixed t. Then
L4462, BT < O*) ILAL0), BTNl - (4.26)
iii)
[4.0", p(H,+1) " ]=00""7P). (4.27)

Proof. We drop the subscript a and use

A%p=C | dw o N+ 4)" Ay
(4]
for peD(A) and 0<a<1/2, where C~'= [ dxx*"'(x+1)" .. Then
1]
[4% B]=C [ dwa* [+ 4)~4, B]
0

=C [ dwo* ‘olo+4)" [4,B](@+4)", (4.28)
0
since (w+A4) "' 4A=1—w(w+ A)~!. Notice that

:j:dcow"" Haow+ )" (w+ )Y

<1 <min(w !, t?f)

=

Oty =

doo* 't + [doo* 2=0(?), (4.29)
1
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which proves (4.26). Setting B=h(x/t) in (4.28), and using

X i

, 2

(the subindex a is dropped on the right-hand side too), we obtain

const ®

IL4% kol = Idww" Haolw+A)"H 147w+ 4)" o]

COI]St

[doo™ Holw+) i+ ell,  (4.30)

where we used

(p— %) 1p“ < | AY?yp||. The last term is O(t ~ ~2P) by (4.29), while

for the first one we use | AV} w+A4)" | < |(w+A4)~ V2| <8, as well as
1412w+ A) T Ao S (@0 + )~V L] S0™ 2| L)

for any ¢<1/2. This leads to the estimate

1A% Kl < S22

[jdww“ el + j"dww“ 112 —(lﬂ’ll/ls(/)”]

+0(t™* "M |lg] .

If = 1/2 the second integral is finite for e =1/2;if a < 1/2 it is finite even for e=0. In
the latter case we can use the symmetric expression for i[ 4, h], which leaves us
without the O(t =21 ~#) term. We are now left with iii), and we first show

(4%, p]=[4""%,p]=00@"""7). (4.31)

2
This follows from i[A,pa]=i|:(p— %) ,p,,:| = 1(17— 2%) by setting B=p, in

(4.28), which is then estimated like the first term on the right-hand side of (4.30), i.e.
by (4.31). Thus

[AY*, p(H,+0)” =AY, p] (H,+) ™' +p[AY*, (H,+1) "' ]=0("""P)
by (4.31) and because of
plAY4, (H,+1)" = —p(H,+1) "' [AY4, H ] (H,+1) 7"
= —p(H,+i) "' [4"*, p* ] (H,+) ™"
= —p(H,+i)" ' [4"%, p] p(H,+1) ™" —p(H,+i) ™" p[A"*, p)(H, +1) ™"
=0t~ "M, O
Lemma 4.6.
TLL@*+ 1) t=001"", 4.32)
LWL +1) " =00 "), (4.33)
where j,=J.(x/vt), v>0.
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Proof. For (ij)¢ a we have
JVifxP) (P +1)7
= F(x*| Z const?) V(x) (™) + 1) (0P + ) (P> +1) "' =0 ™)
by (3.6), (1.1). The proof of (4.33) is similar. []
Lemma 4.7.
O+ 1) fille A1 jo f(P* + 1) =00~ T472P), (4.34)
Proof. (See Theorem 4.4 for notation.) By
(P> + 1) flalafafP* + 1)1 42 1= 0 + 1) flallo A2 jaf (P +1) 71

+P*+ 1) o 41 Ljaf (0 + 1)
+@E*+ 1) fiellia f0* + 1)1, 42771, (4.35)

we have to show that the left-hand side as well as the last two terms on the right-
hand side are O(t = *#~2%), We compute

(" + )7 fip A=+ D)7 [fjo 41+ [0 + 171 A1 fas

X

) .
il fjo Ad=— ;(P— 5) VS G/ - /0)— thAa(f( A+ /0),
1
i[(p2+1)-1,A.,]=;<p2+1)-1(< —%)-pa+p,,-<p—§;))(p2+1)-l,
proving [(p?>+1)" ! fj,, A4,]=0(t"'). Moreover
O+ 07 fidll, Adja f(P*+ 1)1
= _(p2+ 1)_1fja <<p_ %) ) VIa+ VIa : <p_ %))]uf(pz + 1)‘ ! =O(t—(1+ﬂ2)),
by (4.33). Using also (4.32), it follows from (4.35) with 41/ replaced by A, that
[P+ 1) fid o f*+1) 71 4,]=00" ).
Hence, applying (4.26) to (4.35), we obtain (4.34). [

We conclude this section by some commutator estimates, the last of them has
already been used in the proof of Theorem 4.1:

Lemma 4.8. Let ye C¥(R) or y(x)=(x+1i)"*, and he C*(X) with bounded deriva-

tives. Then ~ - e
Jax(H)—x(H)ja=00""), (4.36)
Jax(H)—x(Hp) ja=0(t™"), (4.37)
hy(H)— y(H)h=0(t""), (4.38)

where y' =min(u,, 1), j,=7J.(x/vt), and h=h(x/t).
Proof. We only prove (4.36).
JdH )™ —(H+0) 7 fo=(H,+ )™ (Hofy—JH)H+) ™ =0(™")
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by (,H—H,j)(H+i) =T, p1+].L)(H+i)"=0(t""), due to (4.32). For
1€ CY(R) we set y,(x)=yx(x)(x+i)e CP(R), and compute

(a1 (H)~ 3 (Ho)Jo) (H+1) ™

— j' drxl(r)e era(eera _"H—Z,)(H"Fi)_l

=(—1i) 5 dr(r) I dse’™He(j,H — H,j,) (H+i)"te™™"
—© 0

=0(t™").
Then

Tt H) = (H) . = Gt (H) — 2 (H)T) (H+1) !
+ L H) GH+ ) = H,+) 7 T)=0¢"). O

5. Existence of Deift-Simon Wave Operators

We now focus on short range potentials, i.c. we assume in addition to the
hypothesis of the preceding section, that (1.1) holds with u, > 1. In this section we
will establish the existence of the Deift-Simon wave operators for velocity v>0,
defined as

W,:=s—lim e*Haj, (f—) e H (5.1

t—>+ vt

where a is any cluster decomposition [see (3.2) for the definition of j,]. We caution
the reader that this result alone does not imply asymptotic completeness, since
(unlike in [4,22])a is running over all cluster decompositions, including the
trivial one (1 ... N). We start by proving that the convergence above occurs when
suitable cutoffs are added.

Lemma 5.1. Let v>0, Q, Q' CR bounded and measurable,’and 1>0 large enough.
Then
s—lim e™<E,(H,)fj.fE(H)e ™ (5.2)

t= + o0

exists, where f = f(x/At), and j,=J,(x/vt).

Proof. We set Eo=Eq(H), Eq =Eq(H,) and we denote by W,(t) the operator
whose limit is taken in (5.2). Since we are going to use Cook’s method, we compute
aw, P ~ 0 - -
i =eE, [I(Hafjaf~f1afH)+ 5(@)] Ege™ "
=e"MEqD(f],f)Eqe” ™ —ie""Eq f], f1,Eqe™ ", (53)

where the last term is integrable in norm by (4.32) (this is the only place where we
use u; >1). We now turn to the first term on the right-hand side of (5.3)

D(fjof)=f(D]) f +(Df)]uf + f74DS), (54
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and consider the contributions arising from Df:

Eq fj{Df)Ea=EqgfjADf)gEq

=EqogfjDf)(H+i)"" g(H+i)Eq+0(t~?),
—_——————
=0(t™Y)

with g=g(x/At) as given in the foregoing section. Then

const

(@, Eq f7{Df)Equ)| < IgEq-¢l ligH +i)Egqull+ 0™ lloll Il .

Hence, as t,,t,— + o0,

’2 : ~ :
J e, e"MeEq f]{Df)Eqe” ") dt

t2

© ] dt 112 1/2
éconst[{ IgEqe™ "Hegl|? t] [I lg(H +i)Ege ™"y ? ] +o(1) [l [wl

=const|g] - o(f)+o(1) o] Iyl =o(1) [l (-5

by (4.4), which applies to H, as well. Equation (5.5) holds for fixed y uniformly in
@ e I*(X). We are now left with the first term on the right-hand side of (5.4).

f(D]a)f_ _f(V]a) (p 2t>f+0(t 2)

— Z N(ARE (p——) f+oi™?)

vt be
X\ . -
vy z f]b( Ja) ( 5‘) .]bf+0(t 2):
Locm t/y
where we took 0 <v, <v, j, =j,(x/vot), and used (3.11), (3.13) with k =v/v,. We write
V7 (p— %) = 4,0 B() 4, (56)
b

[see (4.16) for the definition of A,(t)] with

B(t) = Ay(t) ™1 (V) A1)/ - A) (p— %) 4071 =0(),

=0(1)
since A,(t) ™ V4 (V],) Ay(t)* = V], + A, ()~ V* Ot~ ~P)=0(1), where we used (4.25)
(with a=1/4 and B<2/3), and 4,(t)~*/*=O(t*/?). This implies
(@, Eqf(Dj) fEqv)

const _
Y 1450 4o fEq ol [ 450) 1, fEqul +0(t ™) o]l vl
bc [a]

from where we obtain as t,t,— + o0

[ o, eHeEq f(DJ,) fEge™ "Hy)ldt=0(1) | o]
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by (4.23), with the uniformity of (5.5). We conclude that for given e LA(X)

~

(XA A chp‘%w) dt=olt) I,

as t;,t,— + o0, so we see that W(t)y is Cauchy as t—+o0. []
Now the task is to remove the cutoffs from (5.2). We use a result of [13, 18]:
Lemma 5.2. If ye D(p)nD(x), then e~ "Hy e D(p)nD(x), and
lxe™*Hy|| <const(1 +[t) (Ipwll + [ xwl + pl]). (5.7)

Proof. By the relative boundedness of H and p? with respect to each other, we
estimate sup ||p2e~*Hyp| <const(||p*yp| + |lyl|) for p € D(p?), and by interpolation,
teR

p| <const(|lpy| + lvl) (5.8)

sup || pe ™"
teR

for yeD(p). We regularize x by u®(x)=x/(1+ex?). We have v, > 1, 4u°>0 as
¢~0, where u, is the derivative of u. Let ¢,pe D(p?). Integrating
dle™ "o, ute™ "My)/dt =(e~"Ho, Quip—idu’)e” "Hyp) we get
t .
uee—itHw — e—itHusw + I dTe—i(t—t)H(zuip _ iAus)e—un ,
0
since by the continuity of the integrand, the integral can be carried inside the scalar

product. This then extends to e D(p) by (5.8). Furthermore, the integrand is
uniformly bounded in ¢ and 7. If in addition y € D(x), we obtain as ¢ 0

t
xe—itHw=e—itwa+2 j‘ d,ce—i(t—t)Hpe~itHw
0
by dominated convergence and by the closedness of x. From this (5.7) readily
follows. [
Theorem 5.3. For any v>0, the limits (5.1) exist for all cluster decompositions a.

Proof. We set W,(t)=e"*#4] (x/vt)e™ "M It is enough to show that W,(t)y is Cauchy
as t— + oo for p e D(p)nD(x). Given £>0,

sup 11— f(x/At)*)e™ "yl < sup IF(x/t] 2 A)e ™ |
_ < supa ™ (x/)e "]
écc;nstl"‘(llpwll+l|xwll+llwll)§8 (5.9)
for 1>0 large enough. We also take a bounded measurable QCR with
(1 -Eo(H)p| <e. (5.10)

Finally, we take a bounded measurable &' >Q and a ye CF(R) with y(x)=1 for
xeQ, and y(x)=0 for x¢ . Then, setting E, = Eq(H,), Eo=E(H)

|EqWit)w—EqW,(t)vl
< | EgesHe], f2e~ 5y — Egeshef, e Mhyp| + 2sup (1 — f2)e M|
21
< ||e"HeEq f].f Eqe™ "y — e HeEq f], fEge™ " Hy|| +2](1 — Eg)w| +2¢
Se+2e+2e=5¢
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for t,,t, large, by (5.9), (5.10), (5.2). Now (5.1) follows from this and from

I(1— Eq) Wit2)w —(1—Eg) Wity
S (1= x(Hp) W(t2) Eqp — (1 — x(H,)) Wi(ty) Equll +2[l(1 — Eg)y |
<e+2=3¢
for large t,,t,. This follows from (5.10) and from
(1= x(H,) Wit) Eg=""(Jx(H)— (Ho)])e " Eq—5550,
where we used (1 —y(H))E,=0 and (4.36). O

Proof of Theorem 1.1. In the foregoing proofs in this section the roles of H and H,
are interchangeable. This implies the existence of

s—lim ¢j, <i> ¢~ itHa (5.11)
t—+ o vt

for any v> 0. Next we notice that the finite linear combinations of eigenstates of H*

are dense in RanP*. It is therefore enough to prove (1.6) assuming that P? is the

orthogonal projection on such an eigenstate: H*P*= EP®. Moreover it suffices to

prove the existence of the so modified limit on states in the dense set D= () D,,

v>0
D,=Ran [] F(2p]lZuv(g})'"*+0)).
2@
We then remark

F(Ix]/t| Su((gf)'? + 0))e™ =" F(2pf| 2 v((gf)"* + 0)) 5 0,
F(xg/dzu(g))"* — ) >0

ast— + oo for f 2 a, g Ca, where the first limit is an immediate consequence of [19],
Theorem IX.31. For pe D,, v>0 this leads to

e~itHaPaw
=[ I1 F(Ix.{/vtlé(qf)”2+a)][ I1 F(IxZ/vtIé(qf,)”z—0)]e’i'”°P“w+0(1)
s210E 9 @

[ X —itH
=j,| = e "Hap? 1
Ja (v t) e y+o(1)
as t— + oo, where we used e“"H“P_‘:=e‘i‘Ee‘i""a’zP“ and the commutation
relations arising from (1.9), as well as j,=1 on the set given by the characteristic
function above. The existence of (5.11) then implies that of (1.6), from which in turn
the remaining claims follow. []

6. Asymptotic Completeness

The whole analysis done up to now holds also at eigenvalue and at threshold
energies. Also compactness has never been used. This will no longer be so in this
section. We assume (1.1), (1.2), (1.4) and, as far as the proof of Theorem 1.2 is
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concerned, 4, >1. We recall that under these assumptions the Mourre estimate
holds [2]. We will use it to prove

Theorem 6.1. Let QCR be a compact set, which does not contain any eigenvalues or
thresholds. Then

W(1...N)EQ(H)=0, (6.1)
provided v>0 in the definition (5.1) of W, _y, is small enough.

Proof. We remark that u, >1 is not required for the existence of W, _,, as can be
seen from (5.3) by I; 5, =0. We now drop the subscript (1 ... N). By a covering
argument, it suffices to show that for any E € R, which is neither an eigenvalue nor
a threshold of H, there is an open interval 43 E such that

WE (H)=0 6.2)
for small enough v>0. For such an E€R the Mourre estimate reads
E,(H)i[H,A]E,(H)=0E,(H) (6.3)

for some 6>0 and some open interval 4,3 E. Here A=(p-x+x-p)/2. We take
A3E to be an open interval with 4C4,, and compute

d A~ > A\~ > Aﬂr ~A >
yr (wt, i ]Edlpt> =(wt, E, [J <D7>J +(D}571+17(Dﬁ] EM>, (6.4)

where p,=e "Htp, E,=E,H), and j= ](1 N)(x/vt) We want to prove that the
contributions arising from Dj are integrable in time. Remark that as t— + oo,

A~
SJE,==PIE,+ 0= 2] pE,+ 0™ =0(1),
since suppjC Xy, is bounded,

~A ~A
EAj?(DﬁEA =EAfj?(DﬂfEA
2 A
=EE4fj7(Vﬁ-<p—%)fEﬁO(t"Z)
- 25 B30 (-2 ) fE.+ 0
_ut§ aJi7is(Vi)-\ P %), Ea

2 . X _ 7
=—Y Esfjsp (— ®j VJ) ( ) WfE4+0(7%), (6.9
vt'p t 2t
where we inserted f = f(x/At) due to f =1 on supp (- /vt) for A> 0 large enough, we

applied the by now familiar trick (3.11), (3.13) with j, =jy(x/vot), 0 <v, <v, and we
used jAj, =j,Aj+ O(1). We further discuss the term in the sum (6.5). It is equal to

(H=D)E,fjy(Hy~) " p G ®TVJ’) - (p - %)bjbeA +0(7")
=(H—) E,fis(Hy—i) " pA0)"* O1) A4,0)"*jp S E,+ 01 ™)
=(H—1) E,fjp 4400 *(Hy — 1)~ O() 40" oS Es+ 06 ™),
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where p”=min(y’, 1 — f)>0. Here we used (4.37), (4.38), we applied (5.6) with ],
replaced by (x/t)®jVj, and finally we used (4.27). We then conclude by (4.23) that

L2

]

t

A
(% Ed~ (D.DEAWt)I dt =550

for given y e I*(X). Next we consider

- S T -
E,j (D%) JEs=—E4 (i[H, A]- ?)jEA’

and
Eji(H, A1JE 4= E ,jy(H)i[H, A] y(H)JE,+0(t ")
2 0F ,jy(H)*JE,+0(t ™)
=0E, J*E,+0(t™),

where we took ye CF(R) with x(x)=1 for xe 4, y(x)=0 for x¢ 4,, and we used
(4.38), (6.3). We also have

~A ~
E4j7jEA§constvEA]"2EA+0(t‘1),
where the constant is independent of v>0, since by the boundedness of suppj

=

~A ~ X~ -
<<p, EAJ?JEA(P) <<p, E,jp -?Jx(H)EM)' +0(t™Y) lol?

<v

~ X -
(fp, EAJpx(H)EJEA(p)l +0(t™ Hlel?
Sconsto||[fE 0> +0(t ™) o]|?. (6.6)
This implies

EJ(D -I;)fEAg %(0—-constv)Ej2EA +0(t™?),

where we take v >0 such that § —constv =: § > 0. Integrating (6.4) from ¢, to ¢, >,

we thus obtain
t

'rAe' 2 12 ~ 2dt
wt,EAJ?JEAw, 20 ,I IJE sp.l 7+0(1)

31
as t;,t,— + 0. Given ¢>0 we have ||JE ,| %= ||e*"je "HE qp||2 = | WE sp||* —¢
for t large enough by (5.1). This, together with (6.6) shows
t2 dt t
0(1)25! (] WEAPIIZ—E)T =4 WEAWHZ”E)IOgt—Z'
1 1

Taking t, =t, t,=t2, this proves |WE ,p||?<e, and hence (6.2). [J

We remark that one can easily prove (6.2) by using the minimal velocity bounds
of [23,24], which however require the additional hypothesis that
y-V(y-VV,)(p*+1)"! is bounded on LA(X).
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We are now ready for the

Proof of Theorem 1.2. The proof goes by induction, ie. we assume that
completeness holds for M bodies with M <N. Equation (1.7) trivially holds for
N =1, since both sides are {0}. So let N> 1. Given y € Ran(1 — P) and ¢ >0, we can
find a compact set QCIR which does not contain any eigenvalues or thresholds,
such that

I —Eo(H))p|l <e. (6.7

This follows from the fact that the set of eigenvalues and thresholds is countable
and closed, which is a consequence of the Mourre estimate. We then take a v>0
such that (6.1) holds. Thus

_; ~[ X —i
e "Eqp=Y], (v_t> e "HEgy

= ¥ e W Egp+o(l)

#@z2

e "eP'WEqp+ 3, e "(1—P)WEqp+o(1)

#@z22 #@22

ast— + oo by (3.4),(5.1),(6.1). We now apply the completeness result to H in (1.12),
(1.11), with the result

@ RanQ(H, H,)=Ran(1 — P9,
bg [a]
where Q(H,, H,)=s—lim e"#¢~"H>Pb Hence there are ;e L*(X) for bCa, such

t—+
that

(A—P)WEqp= Y QH,Hy)y;,
b [a]
which implies

e~ (1 — PYW,Egp= 3, e™“TPryi+o(1)
bg [a]
as t— + oo, and

Equ= Y QWEspw+ Y y QPyie RanQ°.
#(0)22 #(a)gz bg@ #(0)%2
Since the latter is a closed subspace, pe @ RanQ“ follows by (6.7). O
#(@)22
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