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Abstract. A variety of problems in quantum physics and classical statistical
mechanics, in particular the quantization of topological solitons and the
statistical mechanics of defects in ordered media, are described. These
problems can be studied within a semi-classical approximation, or with the
help of low-temperature expansions, respectively. The calculation of the
leading term in such expansions gives rise to variational problems for sections
of vector bundles characterized by certain topological constraints. Examples of
such problems are the quantization of kinks in the two-dimensional λφ4-
theory and the analysis of Bloch walls in a Landau-Ginzburg model of a three-
dimensional anisotropic ferromagnet. We state a general existence result for
variational problems of this kind and develop regularity and decay estimates
for solutions of the Landau-Ginzburg model describing Bloch walls with
prescribed boundaries. For certain boundary configurations stability results
are established. The relation between the minimizers of the Landau-Ginzburg
model in a certain strong-coupling limit and minimal surfaces is pursued in
some detail. An open question is whether, asymptotically, the stability of the
limit (minimal) surface will imply the stability of the minimizers of the Landau-
Ginzburg model.

Contents

1. Background from Quantum Field Theory and Statistical Mechanics 431
2. General Existence Results 444
3. Regularity Results for the Landau-Ginzburg Model 447
4. Connections with Minimal Surface Theory 453
5. Uniqueness and Stability of Minimizers 458

1. Background from Quantum Field Theory and Statistical Mechanics

The variational problems studied in this paper arise in the analysis of configura-
tions of topological defects in ordered media, [1]. As a first example, we consider
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a quantum field theory with topological solitons: The leading contributions in a
semiclassical expansion of Euclidean Green functions of soliton fields can be
analyzed in terms of classical field configurations with topological defects
minimizing an action functional on a space of sections of some vector bundle. A
second class of examples concerns ordered media in equilibrium statistical
mechanics at low temperatures: The geometry of interfaces in ferromagnets can be
understood, to leading order in a low temperature expansion, by minimizing some
Landau-Ginzburg energy functional constrained by suitably chosen boundary
conditions. A problem dual (in the sense of Kramers- Wannier duality [2]) to the
one just described is the analysis of Wilson loop expectations in strongly coupled
pure gauge theories in the confinement phase [3]. The chromo-electric flux sheets
bounded by Wilson loops take the place of Bloch walls in ferromagnets. The
Wilson loops correspond to certain topological constraints imposed on field
configurations dual to gauge fields, and the geometry of flux sheets is obtained, to
leading order in a strong coupling expansion, by minimizing some action
functional in the presence of those topological constraints, i.e. by solving a
variational problem on a space of sections of some vector bundle.

It may be clear from these remarks that there is an intimate relation between
the problems studied in this paper and problems concerning minimal-length
geodesies and minimal surfaces; see Sect. 4. Before we begin with our mathemat-
ical analysis of variational problems, we wish to discuss the physical problems
briefly described above (which have partly motivated this work) in some more
detail. Our presentation is heuristic, although there are plenty of mathematically
rigorous results in the literature.

Example i. (Topological solitons in two space-time-dimensional quantum field
models.) We consider a field theory in two space-time dimensions with kink
(solitary wave) solutions, such as the A</4-theory. The field equation of the λφ\-
theory is

R, (1.1)

where Π = δf

2 — d% and φ : R2 ->R. (We write x for the spatial variable even though
in this model x is just a 1 -dimensional "vector.") This equation is equivalent to
Hamiltonian equations of motion derived from the Hamilton functional

-oo2|_ 2 J

where π(x) = (3tφ) (x, r=0) is the momentum variable canonically conjugate to φ(x)
= φ(x, f = 0). In classical field theory, the Poisson brackets between φ and π are
given by

(φ(x), φ(y)} = {π(x), π(y)} = 0, (π(x), φ(y)} = <5(x - y). (1.3)

Assuming that the constants λ and ξ in (1.1) and (1.2) are positive, one shows quite
easily that the space of finite-energy solutions, i.e., solutions on which H is finite,
decomposes into four disjoint components, Γ+, Γ_, Γs, and 7J, where

= jφ(x, ί): lim φ(x, ί) = ± ]/£, for all tl, (1.4)
|χ|-»oo \
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and

Γs = ί φ(x, ί) : lim φ(x, t)= - lim φ(x, ί) = ] £ for all ί ,

(1.5)

Γs = f φ(x, ί) : lim φ(\, t)= - lim φ(x, ί) = - |/ξ, for all tl .

The minimizing configurations for the Hamilton functional H restricted to Γ+ are

(p±(x)=±l/|, π±(x)Ξ=0,

with

and the minimizers for H restricted to Γs, Γ^ respectively are

φs(x) = 1/ί tanh x - a = - φs(x) ,

(1.6)
π s x = π s x = ,

where a is an arbitrary constant. The energy of the minimizers is given by

(1.7)

The solutions φs and <ps are static (or standing) kink solutions. Travelling kinks are
obtained by applying Lorentz transformations to φs and φs. All this is well-known
classical field theory.

Next, we wish to consider the quantum theory associated with the field
equation (1.1). Quantization consists in replacing Poisson brackets by commu-
tators, multiplied by ( — i). Thus one requires

[Φ(x),^(y)] = [π(x),π(y)]=0, [π(x),φ(y)] = -z<5(x-y). (1.8)

Note that, formally, π(x)= —i(d/dφ(x)); the functional derivative with respect to
φ(x).

The problem is to find a representation of these commutation relations on
some separable Hubert space 2/f , with the property that a renormalized version of
Eq. (1.1) holds in the sense of an equation for operator- valued tempered
distributions on 3C, with φ(x,ί) given by eitHφ(x)e~itH, where H is the Hamilton
operator of the quantum theory (Heisenberg picture). This problem has been
solved between 1968 and 1976; see [4] for a summary of results and references to
the original literature. The upshot of the work that has gone into this problem is
that, for λ sufficiently small and ξ = 0(\/λ\ there are four inequivalent representa-
tions of (1.8) on Hubert spaces 3?+, Jf_, 3?s, and 3^ with the following properties:
The spaces J f + and 3tf- are vacuum sectors of the theory, in the sense that they
contain unit vectors Ω+, Ω_, respectively, which are ground states for the
renormalized Hamilton operator

. (1.9)
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(In (1.9) the double colons indicate standard Wick ordering [4], and ε is a constant
chosen such that H is a positive operator with inf spec//| #> ± = 0.) The ground state
vectors Ω+ and Ω_ satisfy

HΩ+=HΩ.=Q (1.10)

and are called vacua. There exist dense domains 3t± C3tf± such that, for every
unit vector ψ±e@±, one has that <ψ±,φ(x,£)φ±> is a continuous function of x
and ί, with

lim <φ±,φ(x,ί)φ±>=±l/C, (1.11)
|x|->oo

where ζ = ξ + 0(1) is a positive constant. These results are proven in [5]. In [6] the
spaces J^s and J^ have been constructed, and it is shown that

inf specfί,^, inf spec#, ŝ = 0(l/λ) , (1.12)

and that there are dense domains &SCJ>^S and @SC3^ such that, for every unit
vector ψs e 3)& <φs, φ(x, ί)φs> is continuous in x and f , with

lim <φ s,(Kx,φps>=±lC, (1.13)
χ->±oo

while, for every φs e 3)#

lim <φs,φ(x,ί)φs>=+l/ζ. (1.14)
»±oo

As one might expect on the basis of Ehrenfest's theorem in quantum mechanics, the
expectation values (ψ±,φ(x,t)ψ±y are close to classical solutions in Γ±, for λ
small, while <tps, φ(x, ί)φs> and <ιps, φ(x, ί)φs> are close to solutions in Γ^Γy,
respectively, for λ small. See [7] for a discussion of the classical limit of quantum
field theory.

The results sketched here are proven by making use of the Euclidean approach
to quantum field theory [8]. The Euclidean approach is based on an analytic
continuation of expectation values of products of field operators in the time
variables from the real to the imaginary axis. This procedure is well known from
non-relativistic Schrόdinger quantum mechanics with a Hamiltonian of the form
H = — A + V, where A is the Laplacian and V is a potential (multiplication
operator). Then e~tH can be expressed in terms of Wiener integrals, with the help of
the Feynman-Kac formula. By the remark following (1.8) and (1.9), the Hamil-
tonian of the λφ*-moάQ\ is of the form H=—A + V9 where, formally, A is a
Laplacian in infinitely many variables and F= V(φ) is a multiplication operator. It
is therefore tempting to consider expectation values of the following type: Let
x . = (χ.5 £.) e R2, for i = 1 , . . . , n, with t ί < t2 < . . . < tn. We define the Euclidean Green
functions by

G«\xi,...,xn) = (Ω±9φ(xl)e-(t*-^Hφ(x^^^^

(1.15)

where < , > denotes the scalar product on ^f±. By making use of a Feynman-Kac
formula for the operators e~(tJ+ί~tj)H which have norm <*1, since H^O and
tj+ί — tj^O, one can show [4, 8] that the distributions G($(xΐ9 ...,xπ) are given as
moments of some probability measure, dμ±(φ\ on Schwartz distribution space
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^r'eaiOR2)- In order to be more precise, we define the Euclidean action of the theory,

(L16)

where φ(x) is a random field over Euclidean space-time R2, with values in (a
subspace of) ί '̂eal(R

2), and the double colons now indicate Euclidean Wick- (also
called Ito-) ordering.

Formally, the measures dμ±(φ) are expressed by the Euclidean Gell-Mann-
Low formula [4, 8],

dμ±(φ)=^e-s^Dφ±ί (1.17)

where Dφ± is a formal Lebesgue measure on a subspace of 5 '̂eal(R
2) of

distributions with boundary conditions

<Kx)-*±]/ζ, as |x|-*oo, (1.18)

and Z is a (divergent) normalization factor, chosen such that

ί dμ±(φ) = l.
ί̂ eal(R2)

Formally, the Euclidean Green functions G^ are then given by

G<?(x1,...>xπ)= J Uφ(Xj)dμ±(φ). (1.19)
^real(R2) 7=1

In constructive field theory [4-9], one has succeeded in giving a mathematically
precise meaning to the formal expressions (1.17)-(1.19). In particular, a formula
like (1.19) has been proven as a rigorous theorem [5].

Note that the one-point Green function

corresponds to the minima φ(\)= ±J/£ of the classical Hamilton functional of

The Euclidean approach to constructing λφ^-iheoτy in the soliton representa-
tions, i.e., to constructing the Hubert spaces J^s and J^ and the dynamics on these
spaces, is more recent [10, 11]. The idea is to construct the Euclidean Green
functions, G(f\xl9...,xJ9 of a quantum field s(x, t) = eitHs(x)e~itH

9 the soliton field,
which has the following properties: s(x, £), smeared out with a testing function,
maps the dense domains 2±C2ff± to dense domains contained in ĉ ,̂ ,
respectively, and it maps the domains &sCJ^fs and ®5 C ̂  to dense domains in J4f+

and J^- respectively. The commutation relations between s and φ are given by

' * x<y

(a similar formula holds for s and π); see [6]. Defining s(f) : = JJ s(x, t)f(x, t) dx dt,
where / is a suitable testing function, one sees from (1.20), that the "soliton form
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factors" have the following behaviour:

lim <s(/)β+,φ(x,ί)s(/)Ω+>=- lim
χ->± oo χ-» ±00

(1.21)

i.e., <s(/)Ω±, φ(x, ήs(f)Ω±y is a function close to a solution of the classical field
equation (1.1) in the space /],/], respectively.

What has been accomplished in [11] is to find a mathematically precise
formula for the Euclidean Green functions,

GΪ\x1,...,xn) = (Ω+,s(x1)e-(t*-^Hs(x^^
(1.22)

of the soliton field s(x, t\ in terms of functional integrals. The formula found in [1 1]
is obtained as follows: We define

M_x = R2\{x1?...,xm}, (1.23)

where x = {xi, . . . , xm} is an m-tuple of distinct points in R2. Obviously, Mx is not
simply connected, and there exist, therefore, non-trivial, real line bundles, E, over
Mx with fibre R and structure group TL2. Such bundles can be characterized
completely by the holonomy of a flat connection:

With every xf we associate a number qi = 0, or 1 . If ω is a loop in Mx we denote
by n(ω, xt) the winding number of ω with respect to xt. We define the holonomy of a
flat connection along ω by

U(ω) = (-ί)^'lM. (1.24)

From now on, we set m = 2n, qt = 1, Vi. Let Vx be the co variant derivative acting on
sections of E. We define a co variant action

S,(Φ)= ί 5 :(^Φ)2:(x)+^(Φ(x)2-ζ)2: \d2x. (1.25)
MX ^ L

Let Z be as in (1.17), i.e.,

Z%L£

We define the Euclidean Green functions of the field s(x) by

(1.26)

Here Γ(E) is a space of section distributions of £, D£φ+ is a formal Lebesgue
measure on Γ(E) with boundary condition as in (1.18), and [( )]Γen. indicates a
multiplicative renormalization.

It has been shown in [11] how to give rigorous mathematical meaning to
(1.26): Let dμQ(φ) be the Gaussian measure with mean 0 and covariance

and dμx(φ) the Gaussian on Γ(E) with mean 0 and covariance
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where As is the co variant Laplacian acting on sections of E, with x = {xl9..., x2n}
and ίi = l, ι = l,.. .,2n. Let

with boundary condition φ(x)^> +]/ξ at oo. Then

G?"\xl9 ...,x2n) = ̂ fίe-v+MdμJίφ)9 (1.27)

where Z= j<rF+<^0(<£), and

/(_J+m2))r-nl/2 (128)

The subscript "ren." on the right of (1.28) indicates a multiplicative renormaliza-
tion, [11]. It is reasonably straightforward to make sense of (1.27) and (1.28), [11].

Physicists cannot stop at the point where they have rigorously interpreted their
objects of interest. They want to calculate them explicitly. Hence we set out to, at
least approximately, calculate (1.26). One standard scheme to accomplish this is
the semi-classical expansion.

We multiply S(φ) and S^(φ) by -, -fi = Planck's quantum of action, and try to

calculate (1.26) for small ϋ. By rescaling the field φ:φ-+γΐιφ, an expansion in

powers of J/fi turns out to be closely related to an expansion in powers of ]/λ (for

The term of order - I is classical: It is obtained by minimizing the actions S(φ)
W

and Sχ(φ). While this is trivial for S(φ\ it is not completely standard for S^(φ). This
variational problem and generalizations thereof form the subject matter of this
paper.

The term of order 1 (one-loop correction) is given by a quotient of
determinants:

Let $ be the minimizer of Sx(φ). Set φ = $ + \fa\p and expand S^(φ) to second
order in the "variation" ψ. Then

,

where Qφ is a non-negative quadratic form. Similarly, setting φ = ±]/ξ + \/ϊίψ, we
find

- 9

where Q = — A + m2, m2 = 2λξ. Hence the 0-order term is given by

det(βφV(-J+m2))r-en

1/2, (1.29)

where "ren." indicates a multiplicative renormalization. Terms of order (h"/2), n ̂  1,
can be computed in terms of Feynman diagrams:, [with propagators given by
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From these considerations we extract two important mathematical problems:

I. Establish existence, uniqueness and regularity of the minimizer, $, for S^(φ).
II. Analyse the spectral properties of Q$i in particular, establish that 0 φ σ(Qφ) and
calculate the determinant in (1.29).

The solution of problems I and II will reveal that, to order fi°,

as \xί—x2\-+oo9 where a and b are calculable from $. Our results in Sects. 2-5

imply that b= ̂  ξ}/Ίξ + 0(K).

Remark. The solution of analogous problems for the Green functions
G±}(XI, ...,*„) defined in (1.19) can be inferred from [5].

Example 2. [ί/(l)-Higgs model in three space-time dimensions.] We consider a
gauge field model with a Lagrange density, £*, given by

(1.30)

where A = (Aμ dxμ) is a t/(l)-connection (gauge field) on a complex line bundle over
three-dimensional Minkowski space, and φ (the Higgs field) denotes a section of
this bundle. The symbol "d" denotes an exterior derivative, and d — iA denotes the
co variant derivative. Finally, V(\φ\) (the Higgs potential) is a polynomial in \φ\
which is bounded from below; typically

(1.31)

The energy of a configuration (φ, A) at some fixed time t is given by

2x, (1.32)

where we have chosen the temporal gauge ^40(
χ> 0 = 0, (A0 is the component of A in

the time direction), E: = dtA, with A = (Al9 A2\ and B: = V Λ A, F: = (dl9 52); note
that, in two space dimensions, B is a scalar.

It is expected [12] that smooth field configurations (φ, A) of finite energy, i.e.,
with H(φ,A)<oo, and with a suitable gauge condition imposed on A, define
homotopy classes in π1(S1)=Z. The homotopy class of a configuration (φ, A) is
given by the winding number of the map

iS1-^1,
|x|=Λ

as R-+OO. It coincides with the gauge-invariant quantity
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, (1.33)

which is called the vorticity of A.
Thus the space of smooth field configurations (φ, A) of finite energy very likely

decomposes into infinitely many topologically distinct classes labelled by an
integer, their vorticity.

Static solutions of the classical Euler-Lagrange equations derived from (1.30)
with vorticity ± 1 have been exhibited in [12]. They are called vortex- and anti-
vortex solutions. For the solution with vorticity 1, B(x) > 0 has a maximum at some
point x0eR2, B(x) decreases exponentially fast in |x— x0|, and J B(x)d2x = 2π.

Moreover, |φ(x)| has a zero atx0, |φ(x)| approaches 1 exponentially fast in |x— x0|,
and argφ(x)~arctan(j; — y0/x — x0\ for |x — x0| large; (here x is the 1-coordinate
and y the 2-coordinate of x).

One may wonder what becomes of these classical solutions (or, more generally,
of the different homotopy classes of finite-energy configurations of classical field
theory) in quantum theory? The answer is similar to the one we have outlined
above for the kinks of Iφ^ theory. One attempts to construct a local quantum field,
tf(x, ί), (the vortex field), such that the expectation values

where v : = v(f)Ω9 v(f) = JJ u(x, ί) /(x, f) d2x at, f is a suitable testing function, and
Ω is the vacuum vector of the quantum theory, resemble the solutions of vorticity 1
of the classical Euler-Lagrange equations which we have described above.

Again, it turns out that the most efficient method to construct the vortex field
v(x,t) and the entire quantum theory is to use Euclidean methods [13]. One
attempts to construct the Euclidean Green functions of the field ι;(x, t) and of its
adjoint v+(x9 1). The Euclidean action of the ί/(l)-Higgs model is given by

(1.34)

In (1.34), φ is a complex-valued random field on Euclidean space-time R3 (the
Euclidean Higgs field), and A is a random connection (the Euclidean gauge field);
the double colons indicate Wick- (or Ito-) ordering, and "c.t." stands for a "φ-mass
counterterm" and for a constant counterterm (with coefficients that diverge, as a
smoothing cutoff is removed). The counterterms in the definition of S(φ, A) turn
out to be necessary to make the theory mathematically well defined [14].

We now sketch the construction of the Euclidean Green functions of the vortex
fields u(x, ί) and u+(x, t\ following [13]. We replace Euclidean space-time R3 by

Mί: = R3\{x1?...,xn}, (1.35)

with x = {xι, ...,*„} a set of n distinct points in R3. C7(l)-bundles over some
manifold M are classified by the second cohomology group 7/2(M,Z). For

H2(MX, Z) = ZeZe ... eZ (n summands) . (1 .36)
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The n integers, m l s . . . , mπ, labelling an element of H2(M^ Έ) can be interpreted as
magnetic charges of n magnetic (Dirac) monopoles located at the points x l 5 . . . , xn

ofKA
Let A0 be a connection on a [/(l)-bundle over M^ with magnetic charges

m1,...9mn, i.e.,

^I$dAo= Σ Ή,,
/π I i:xίeInt(Σ)

where Σ is any closed surface in R3 enclosing some of the points x l5 . . . , xn in its
interior, Int(Σ). Every other connection on such a l/(l)-bundle is of the form

where A is a globally defined 1-form. One can choose A0 = Ah

0 to be harmonic on
My Hence its field strength, Fj, is given by

i»dJ-1δX |, (1.37)

(It is convenient to choose A0 to be harmonic at least in small neighbourhoods of
the points xl9 ...,xn.)

We now define a modified Euclidean action

Sm,s(Φ,A)= J ί * :(
MX (/ e

(1.38)
where VA+AO is the covariant derivative on the associated complex line bundle.
Suppose now that x = (x1? . . . , xn) = (yl9 . . . , yk, z1? . . . , zk), myj = 1, w2j. = - 1. Then the
Green functions of v(y\ v+(z) are given by

Qίy v z z )= (e~ -'- 'DADώ (1 39)!>•••> k |̂ z J^

See [13] for a more precise definition of the right-hand side of (1.39).
It is of interest to attempt to evaluate (1.39) within a semi-classical expansion.

The leading term of order - is again obtained by minimizing Smtχ(φ,A). This

variational problem is not well posed, for two reasons:

(a) Gauge-in variance; (\dΆ\2 is not coercive).
(b) Sm^(φ,A) is ill-defined (divergent).

n

Difficulty (b) is resolved as follows. We assume that £ m^ — 0, (neutrality). Let

Ω be a ball containing x1?..., xn, and Ωΐ = {x: dist(x, Ω)^ 1}. We choose A0 such
that F0 is harmonic in Ω and vanishes outside Ωj. With this choice of A0,

1
—~fF0(x)d3x diverges near x l 5...,xw. The divergence is universal and can be
2ez .
removed by replacing —-̂ 'J Fl(x) d3x by
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where Fh

0 is given by (1.37). That (1.40) is the right choice is well known from
classical electromagnetism. With these choices the action functional is well defined
on a space of Sobolev sections φ and connections Ά of the bundle characterized by
m and x.

Difficulty (a) is removed as follows. If VA eL2(R3) then we can choose a gauge
such that δA = 0. Hence we replace (dA)2 by (VA)2 in the definition of Sm r

Moreover, we require that
d3x = Q, (1.41)

for some compact set K, e.g. K = Ωl9 or K = Ω{\Ω.
From our discussion it follows that we should replace Smt ^(φ9 A) by a functional

) given by

2-(VA)2 (x) + 2(AδF0) (x) + -1 VAoφ - iAφ\2 (x) +
(1.42)

We have used here that J dAF0d
3x= J AδF0d

3x+ boundary terms. The

boundary terms turn out to vanish. The following mathematical problems arise:

III. The first step in setting up a semi-classical expansion is to minimize

for fixed m,x, under the conditions that Y w7 = 0 and f Ad3x = Q and to prove
J = l K

regularity and other properties of the minimizer.
IV. The second step is to control the spectrum of the fluctuation operator (the 2nd

variation of SWjJ around the minimizer.

This problem is not only of interest in quantum field theory, but also in the
study of Abrikosov vortices in Type II superconductors [15].

The techniques developed in Sect. 2, 3, and 5 of this paper can be used to study
problems III and IV. Since we are aiming at a rather detailed understanding of the
properties of minimizers which requires a considerable amount of work, our
results will appear in a separate article with U. Studer.

Next, we describe some problems in the statistical physics of thermal
equilibrium which lead to variational problems on vector bundles. As mentioned
at the beginning, the problems we propose to study are connected with the
energetics of topological defects in ordered media [1] and their statistical
properties at very low temperature. An example of such a problem is the following
one.

Example 3. (Landau-Ginzburg theory of Bloch walls.) Consider a highly ani-
sotropic ferromagnet with order parameter (spin field) φ(x)eR in three dimen-
sions. We make a standard Landau-Ginzburg ansatz for the energy of a
configuration φ:

E(φ)= j ( F < p ) 2 ( x ) + ( x ) 2 - l ) 2 3 x . (1.43)
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We propose to study the shape of Block walls separating regions of different
magnetization, φ, from each other. The simplest way to do that is to choose some
smooth, closed (possibly knotted) curves, «Sf =(J5fl5 ...,JS^) and to require that
they be the boundary curves of a system of Bloch walls. This is done as follows.
We define

M^=R3\jSf (1.44)

and study real line bundles over M ̂  with structure group Z2 These bundles are
uniquely characterized by numbers ql9 ...,qk, with <& = (), or 1, for all i. If ω is a
loop in M # one requires the holonomy condition

ύ, (1.45)

where n(ω, ̂ t) is the winding number of ω with JS? t. There is a flat connection over
M^> with holonomy given by (1.45). The idea is now to minimize E(φ\ given in
(1.43), on a space of sections of a bundle over M# whose holonomy is given by
(1 .45), with qί = . . . = qk = 1 . It is easy to see that any section of such a bundle must
vanish on a "surface" bounded by J27. The surface where the minimizer, φ0, of E(φ)
vanishes gives a description of the geometry of a Bloch wall bounded by 5f at low
temperatures. One of our goals is to understand the relation between this problem
and standard minimal surface theory. Corrections to the classical theory, valid at
zero temperature, are provided by the low temperature expansion which is
analogous to the semi-classical expansion in Examples 1 and 2.

Remark. Conventionally, one follows a different approach. One confines the
system to a bounded region A (a ball or cube) and requires that £?CdΛ. One then
chooses boundary conditions, φ(x) = ± 1, in the connected regions ofdΛ\& which
force Bloch walls through the system in A that are bounded by Jδf . Our approach is
somewhat different, but gives an equivalent description of the geometry of Bloch
walls when the diameter of the curves Jέf ί5 i = 1, . . . , fc, becomes large. Our approach
is of interest in connection with Ising spin glasses and with 2£2-gauge theory which
is dual to the theory of Ising ferromagnets, in the sense of Kramers- Wannier
duality.

There are further interesting problems closely related to the one just discussed.
As an example, consider an n-states "Potts model," with n^3. It describes an
ordered medium with an order parameter φ(x) e C which preferably takes a value
close to an nth root of unity. The Landau-Ginzburg ansatz for the energy of a
configuration φ is

I2 + V(φ(x)}\ d*x , (1.46)

where V is a potential which is invariant under

2πil

φ*-+e n φ, (1.47)

for / = !, ...,n — 1, and has deep minima at

φ = e~τ-, / = 0,l,...,n-l. (1.48)
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To study Bloch walls in the Potts model we choose curves 5£ =(^ι, ..., « f̂c), set
M^=R3\JS? and impose holonomy conditions

2πi k

l/(ω) = *--'Wj), (1.49)

where each lj = 1 , . . . , n — 1 , for j — 1 , . . . , fc. We must minimize E(φ) over a space of
sections, φ, with prescribed holonomy (1.49).

Now, every section φ of the bundle specified by (1.49) determines branched
"surfaces" defined as the set of those x where argφ(x) is in the middle between the
arguments of two nth roots of unity. These surfaces are bounded by & and give a
description of the geometry of Bloch walls bounded by & .

Example 4. (Point defects in a three-dimensional Heisenberg ferromagnet.)
Consider a three-dimensional ferromagnet with order parameter φeR3 and

energy functional

. (1.50)

It is assumed that V has a deep minimum on |φ| = l, e.g.

Now, we remove n points x = {xl9 ...,*„} from R3, set MJC=R3\x, and assign
integers ml9 ...,mn to x l 5 ...,xn. Let Σp be any closed surface in R3 enclosing the
points xp(1), ...,Xp(ί), l^n. We require that the degree (2nd homotopy class) of the
map

φ(χ)
:ΣP-+S2 (1.51)

be given by

Σ m (=W (\ S?ϊmpϋ)e*L> vi.JAJ

for every Σp with the properties specified above.
The problem is to minimize E(φ) subject to the constraints (1.51), (1.52). This

problem is related, mathematically, to the [/(l)-Higgs problem described earlier.
Other variants of this problem concern systems in finite regions, Λ, with
topologically non-trivial boundary conditions on dΛ. For example, one may
restrict the order parameter φ of the model considered above to a ball, KR, of
radius R, centered at 0, and minimize E(φ\ defined in (1.50), under the condition
that

φ(x)

\φ(x)\
:S2-

xedKR

has a prescribed degree n. One would like to estimate the number and approximate
positions of zeros of φ(x) in KR. A very similar problem has been studied in
[16,17]. A related problem in four dimensions is encountered in the analysis of
Skyrmions in an SU(2) non-linear sίgwα-model or in a "linear" version of this
theory.
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2. General Existence Results

Examples 1 and 3 of Sect. 1 suggest to consider the following model problem:
Let M be an n-dimensional Riemannian manifold countable at infinite - for

example, R3\JSf, where 3? is compact - with non-trivial, countable fundamental
group πx(M). Consider a vector bundle E over M with fibre F^JR.k or Cfc and
structure group GcSO(k) or SU(k) acting on F, and a flat connection on E. The
holonomy operators of the flat connection on E define a representation <
with values in G as follows: With each loop ω C M representing an element of π t(
we can associate a holonomy operator gωeG, and gω only depends on the
homotopy class [ωJeπ^M) of ω.

Denote by M the universal cover of M. Then sections of E can be viewed as
mappings φ:M->F, satisfying the condition

φ o [ω] = g[ω]φ, for all [ω] e πt(M), (2.1)

where we think of πt(M) as acting through covering transformations on M.
For ΩcM, l^p<oo, we define

Lp(Ω;F) =

where | | is the norm induced by the scalar product < , > on F, and J ... denotes
~ Ω ~

integration with respect to the volume form on M. We say that φeZ?oc(M;F) if
φ e LP(Ω; F), for all Ω compactly contained in M(Ω € M). Also let V denote ordinary
(componentwise) differentiation of functions <p:M->F. Then for any function
φ e L\OC(M;F) we can define the distributional derivative Vφ by restricting to local
coordinate charts Ω. The action of Vφ on smooth functions with support in Ω
is interpreted as usual via integration by parts. Analogously, we can define Vkφ

d | fc |

= -r-fc τ-j£ φ for any multi-index k = ( fe l 5 . . . , fcn), \k\ = k^ + ... + kn eN0. In this
oxi ... uxn

n

way we obtain the Sobolev spaces

Hm>p(Ω; F) = {φeLP(Ω; F); Vkφ eLP(Ω; F), 0^ |Jk| ̂ m}

with norm

Note that H°>P = LP. Moreover, we write H^P(M\F}= f) Hm>p(Ω;F\ as before.
ΩβM

The big advantage of working in Sobolev spaces rather than in spaces of
continuously differentiable functions is that Sobolev-spaces are complete with
respect to integral norms related to the action integrals of the problems we are
considering - which is not the case for spaces of classically differentiable functions.
Computations, however, can almost always be performed as if we were working
with smooth functions, due to the fact that (for smooth domains Ω) smooth
functions are dense in Hm' P(Ω\ for all m E N0,1 ̂  p < oo, see Adams [18]. Moreover,
we have the Rellich compactness theorem and the Sobolev embedding theorem at
our disposal:
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Theorem. Let ΩcM be smooth and bounded, w^l, l^p<oo, mp<n. Then

Hm>p(Ω) c+ U(Ω) continuously for any ge 1, HP \. The embedding
\_ n-mpj

Hm'p(Ω) c» Lq(Ω) is compact for any q< - . // mp>n, moreover, we have
n — mp

Hm>p(Ω) c> Cfe' "(ί̂ ), where fceN0, 0<α<lαw/0<α^m-/c--^l . (Confer e.g.
Adams [18].) p

The number p* = - >p is called the Sobolev exponent for the embedding

of #π'p. Actually, we have
\\φ\\LP^C\\φ\\Hm,P,

with a constant C independent of Ω, and the remaining embedding estimates are
derived from Holder's inequality.

Of special importance in the following will be the spaces Hl'2(Ω; F) which are
separable Hubert spaces with scalar product

inducing the norm || || #1,2. In particular, we will be concerned with the special set
of functions in H^(M; F) obeying the holonomy condition (2.1) and having finite
energy.

For this, given a real-valued, G-invariant "potential" V: F-»R, φ e H^2(Mi F),
and Ω€M let

be the energy of φ on Ω. Observe that E is G-invariant in the sense that

E(gφ;Ω) = E(φ;Ω), for all geG

and any φe/fj^M F), ΩcM. Thus, if φ satisfies (2.1), it makes sense to define

E(φ)=
M

as the total energy of φ. [Note that we may regard M as a fundamental domain in
M, with respect to the action of the - in general infinite - group πt(M).]

The existence of a minimizer of E satisfying (2.1) in a weak sense can be
established under very general hypotheses concerning the potential V.

Theorem 2.1. Suppose V: F-»R is continuous, non-negative and coercive in the sense
that

(1°) V(φ)^C~1\φ\2-C, for some constant C>0 and all φeF.

Also suppose that there exists a C[-function φ0 : M->F satisfying (2.1) and such
that E(φ0)<co. Then there exists a function φeH^2(M',F) satisfying (2.1) almost
everywhere and minimizing E in this class.

Proof. Let (Ωk) be a sequence of compact domains Ωk CM exhausting M and let
jf = ̂ (1'2) be the space

', F); φ satisfies (2.1)} (2.2)
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endowed with the Frechet-space topology inherited from the countable family of
semi-norms || HH^^Ω^F^ keN. Note that the set of smooth functions satisfying
(2.1) lies dense in tf. Let (φt) be a minimizing sequence for E in 2tf, that is

inf E(φ) as /->oo. We may assume that E(φl)^E(φ0)<ao, uniformly in

ίeN.
By (Γ) and since the energy density e(φ) = |Pφ|2 + F(φ)^0, for any set Ωk we

have

J
Ωk Ωk

uniformly in /eN. That is, (φz) is bounded in Hίy2(Ωk;F) for any fe. Extracting a
diagonal subsequence, if necessary, we may assume that φ^ψ weakly in
fί1'2(Ωk;F) on any Ωk and pointwise almost everywhere on M. Letting π^M) act,
since πx(M) is countable, we obtain the same conclusion for M. Thus, in particular,
for any [ω] eπ^M) relation (2.1) is satisfied almost everywhere. Moreover, since
any compact ΩcM is covered by finitely many images of compact regions Ω0CM
under covering transformations [ωx], . . . , [ωm] e π^M), the weak limit
φeHj^M F); that is, φeJ^f. Finally, by weak lower semi-continuity of the
L2-norm, we have

J |F3>|2</x^liminf J
Ωk /-»oo Ωk

while by Fatou's lemma, since V is non-negative, we obtain

j V(φ) dx ̂  lim inf J V(φt) dx,
Ωk I-»oo Ωk

for all k. That is,

E(<p; Ωk) ̂  lim infEί^^; Ωfc) ̂  lim infEίφ^ = inf E(φ),

for any k. Upon letting fc-»oo we see that φ minimizes E in Jf, as desired. Π

The minimizer φ may be referred to as a (generalized) ground state of the
theory described by the energy E.

The proof of Theorem 2.1 may be extended to more general energy functionals
defined in terms of integrals of energy densities

where F ̂  0 is measurable in x, continuous in φ, convex in Vφ, coercive in the sense
that

with p>l, q^ί, and is π1(M)- as well as G-in variant in the sense that

f([ω] x, gφ, gVφ) = F(x, φ, Vφ)

for all [ωJeπ^M), geG, φeJf, and almost every xeM; see Giaquinta [19],
Morrey [20].
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3. Regularity Results for the Landau-Ginzburg Model

As a special case of the preceding discussion, consider the Z2-bundle over M# of
Example 3. We look for functions φeHl^(M^) that minimize the energy (1.43)
subject to the holonomy constraint

φ(lωlx) = (-l)n^φ(x) (3.1)

almost everywhere, for all [ω] e π^M^). As indicated in Sect. 1 we would also like
to study the effect of scaling with a factor ε. To do this, it will be convenient to look

at

dx

instead of (1.43).
Moreover, we look at general potentials V sharing the qualitative properties of

2 — I)2; Λat is, we make the following assumptions:

(VI) F:R->IR is of class C°°, non-negative and even, that is, V(φ) = V(-φ);
(V2) V(φ) = 0 if and only if |φ| = 1
(V3) Π<P)>0,forM£l;
(V4) V'(φ) - V"(φ) φ< 0, for φ > 0.

Given JSf , we may choose a region Ω cR3 containing S£ and smooth surfaces #
spanning JSf , contained in Ω. Let φ0 be a harmonic function in Ω\# satisfying the
boundary conditions

φ0 = \ on dΩ, φ0 = Q on <g ,

and let φ0 = l outside Ω. Extend φ0 to the universal cover M# of M# by using (3.1).
Then φ0eH^(M^); moreover, for any ε>0 we have

Eε(φ0)<co.

Finally, φ0 satisfies (3.1) by construction. By Theorem 2.1, therefore, Eε admits a
minimizer φε e H^(M^>) satisfying (3.1), for any ε > 0. Our goal in this section will
be to establish the following regularity properties for φε. The proof invokes only
standard tools in elliptic regularity theory.

Theorem 3.1. Suppose V satisfies (V1)-(V3). Let ε>0. Then any minimizer
(M^) of Eε, satisfying (3.1), has the properties:

l in M&.
2. φεeC ' (Mg>), and for any δ>0 and any multi-index fc, there exists a constant
C = C(δ,k)such that

if

dist(x,j&?) = inf '{\x-y\i

3. Finally, |φβ(x)|->l exponentially as |x|-*oo in the sense that, for any multi-index
k, with constants C = C(k, ε), c> 0, there holds

as x
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Proof. (1°) Given a minimizer φε of Eε we construct a comparison function φε by
lettίng t, if φ.^1

Note that φεeH^(M^) and satisfies (3.1). Moreover, Pφε(x) = 0 almost every-
where on the sets {x; φε(x) = ± 1}. In particular, Vφε =0 on the set where φε φ <pε,
and it follows that

J |Fφ.|2dx+ J

But V(φ) is positive for |φ|>l and hence |φε|^l almost everywhere.
Now choose a smooth function φ e C^(M^) whose support is contained in a

simply connected compact region of M# and extend φ to M ̂  by (3.1). Then for
δ e R the map φε + δφ is an admissible comparison function. Moreover, since φε is
bounded, Fe C°°, and since φ has compact support, the map δ ι-> Eε(φε + <5φ) is of
class C°°. By minimality of φε, then

^EJiφΛ + δφ)lΛ=0 = ε J ^φ^φydx+^ J Γ(^φdx = 0.
αd M^ 2ε M^

Thus, upon integrating by parts in the first term and since φ is essentially arbitrary,
we infer that φε weakly solves the Euler-Lagrange equations

-sΔφε+^V'(φε) = 0 in M^, (3.2)

associated with Eε.
Since \φe\ ̂  1 uniformly, and since Fe C°°, it follows that |F'(φε)| ̂  C uniformly

with an absolute constant C= max|F'(φ)| independent of ε and φε.

Linear elliptic regularity theory then yields that φε e H^*(M<?} for all p < oo (see
for instance Gilbarg-Trudinger [21, Theorem 9.13]), whence by the Sobolev
embedding theorem also φε E C1>a(M ̂ ) for all α < 1. Thus F'(φε) e C1)Λ, and hence
φε e C3'α for any α < 1. By iteration it follows that φε e C°°, as claimed. Finally, as a
consequence of the strong maximum principle, φε cannot achieve the values + 1 or
— 1 in M .̂ [Observe that φε = 1 or φε = — 1 on M y is impossible by the holonomy
condition (3.1).]

(2°) Scale
0β(*) = <Pa(β*)

Note that φ = φε satisfies the equation

0 (3.3)



Variational Problems on Vector Bundles 449

in a domain £f#, the universal cover of M^ = R3\J^, where & = &ε=<g/ε.
Moreover, \φ\ ̂  1 and hence from (3.3) and the local elliptic regularity theory (see
for instance Gilbarg-Trudinger [21; Theorem 9.11]) we immediately obtain
uniform local estimates | Vkφε(x)\ ^ C(fc, δ\ if dist(x, &) ̂  δ, for any derivative of φε,
that scale appropriately with ε.

(3°) Exponential Decay

From (2°) it follows that - away from <£ - \ Vφε\ is uniformly bounded for fixed ε > 0.
Let Ω be a fixed region containing j£? as above. Then \Vφε\^C0 uniformly

outside Ω; in particular, if \φε(x)\ ^1—2(5 for some x φ Ω, δ > 0, then \φε(y)\ ^ 1 — δ
for all j; e Bδc- ι(x), and it follows that V(φε(y)) ^ c> 0 for all such y with a constant
c~c>2>0. But £ε(φε)<oo; thus |φε(x)|-»l uniformly as |x|->oo.

By (V3) there exist constants c0>Q,δ0>0 such that V"(φ)^c0>0 for 1 j£|φ|
^ 1 — δ0. Choose d0 such that |φβ(x)| ̂  1 — δ0 for |x| ^dβ. Differentiating (3.2) and
multiplying by VφE, then we obtain that

for

Since the fundamental solution to the operator ( — A+c0ε~2) decays like

exp ( — ̂ — ̂  — I and since we already know that \Vφε\ is uniformly bounded away

from JSf , this proves that | Pφε| decays exponentially at a rate proportional to 1/ε as
|x| ->> oo. Exponential decay of higher derivatives is obtained in a similar way. Π

Remark. The above argument shows that, in particular, for a system <£ of curves
that can be decomposed into sub-systems J£?(1), ..., J£?(n) separated by a distance

the ground state energy for the system 3? decomposes into the ground state
energies for the components $£ 0) with error

n

inf E#(φ)- £ inf E#(J}(φ)

decaying exponentially at a rate proportional to d^/ε. Indeed, let φ, φ(ΐ\ ..., φ(n}

denote, respectively, minimizers of E^E^(i),...,E^(n), and let τ(0),τ(1), ...,τ(/ί)

denote a smooth partition of unity such that 0^τα)^ 1, τu\x) = 1 if dist(x,

g- , τϋ)(x) = 0, if dist(x,J^ω)^-. Then the functions tpω = (l -

extended equivariantly to M&w, are admissible comparison functions for E^(J) and

Σ E^υ )̂ ) ̂  E^(φ) + C exp( - cd^/e) ,
7=1

by exponential decay of φ.
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n

Similarly, choosing φ = τ(0)+ £ τj\φ(j)\ on R3\^, yields a comparison
function for E# such that J=1

E#(Ψ)^ Σ E<rU)(φU}) + Cexp(-cd<r/ε).
7=1

Behaviour of φε near 5f.

We summarize our results in the following

Theorem 3.2. Let φε be a minimizer of Eε in H\£(M#) satisfying (3.1) almost
everywhere. Then

φε(x)^>0 uniformly as dist(x, JS?)-»0

moreover, for any multi-indices k and I we have

- ι/2 -
for derivatives in directions normal and tangent to J5f, uniformly in x e M % such that

c

dist(x, Jέ?)gΞ -, with constants C = C(/c, /).

Proof. Given x0 e 3? — JS?/ε, let U be a tubular neighbourhood of 3? near x0 and let
T:U-+C be parallel coordinates based on 3? mapping Ω diffeomorphically onto
the cylinder C = B x ]-!,![, where 8 = 8^0 R2), such that T(xβ) = 0 and T(ΩnJ^)
= {0} x ] - 1, 1 [. Denote S = T~ *. Also let (z0, ί) denote points in B x ] - 1, 1 [.
Observe that S, T->id smoothly, if ε-»0. Hence all estimates depending on bounds
for derivatives of S or T will be uniform in ε gl. Identify R2^C and let (z, t)
= (zί + iz29 1) denote points in C. We then obtain a coordinate chart for the double
cover Ω of U by letting C = (B\{0}) x ] - 1 , 1 [ and P : C 9 (z, t) M> S(z2, ί) e M ,̂ with
local inverse β = P-1. Let

φ = φfi = φ ε op

be the representation of φε(x) = φε(εx) in this standard coordinate chart. Observe
that the holonomy condition (3.1) translates into the condition

φ(-z,t)=-φ(z,t) (3.4)
for φ.

Note that, for any variation vector \p with compact support in C and satisfying
(3.4), and setting ψ = ψ°Q, φ is an admissible variation of φ with support in
U = P(C). Hence, after substitution of variables, from (3.3) we obtain

0= π <p$,yψy+-v\
ύl 2

|det(DP)| dz A . (3.5)

By the chain rule

° 0, ?(ψ ° β)> ° P = trace(Z)φ(Dρ o p) (ΰφ(D(2 » P))1)

= trace(Dφ[(ί>P)'ί)P] ~ 1 Dψ')

with a smooth, symmetric coefficient matrix A = \jJ)PJDP'] ~ί
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Note that in our coordinates

/ i

A =

4|z|

0

2 0

1

\ 0 0 a2

with a smooth function α(z, ί), tending to 1 uniformly as ε-»0. Moreover,

Hence from (3.5) we obtain that, with Fz= ( ̂ — ,̂ — 1, etc.,
Vdz! dz2/

J { Vzφ Vzy + |z|2ί>(z2, ί) 3fφ d,v + |z|2φ2, ί) V'(φ)ψ} dzdt = 0 (3.6)

for all ψ 6 C °̂(C) satisfying (3.4), with smooth coefficients b = 4α, c = 4α~ 1 > 0. Note
that V is odd, whence by (3.4) the integrand is invariant under rotation z ι-» — z.
Choose an arbitrary function φ with compact support in a half-cylinder and
extend φ(— z,f) = — v(z,ί) to the remaining half.

Then we obtain relation (3.6) for all such ψ. Thus φ weakly solves the equation

-Δzφ-dt(\z\2bdtφ) + \z\2cV'(φ)=Q in C. (3.7)

Observe that, although fe>0, the presence of the factor |z|2 in the second term
makes this equation degenerate in ί-direction. However, as we shall see in
Lemma 3.3 below, we nevertheless obtain uniform local bounds for all derivatives
of φ = φε o P in C. Hence the assertion of Theorem 3.2 follows from the chain
rule. Π

Lemma 3.3. Suppose φεL2(C) with \φ\^ί and

weakly solves (3.7) with holonomy constraint (3.4). Then φeC°°(C), φ(z, t)-*Q as
|z|->Ό, uniformly in t, and, for any multi-index k, and any ίeN we have

\Vt

lφ(z,t)\^C(D\z\,

uniformly in |z|^

Proof. First observe that φ weakly solves (3.7) on the solid cylinder C. Indeed, let
φeC*(C) be an arbitrary testing function. Since OeB has capacity 0 we may
choose a sequence τk = τk(z) e C™(B) of cut-off functions 0 ̂  τk ̂  1 vanishing near 0
and such that τk-»l in ff 1 ' 2 as fc^ oo on the support of φ. Let J...= J. . . .
Multiplying (3.7) with ψτk and integrating by parts we obtain c

ί {\y,φV$ + \z\2b dtφ dtψ + \z\2cV'(φ)$] τk + VzφVzτkγ} dzdt = 0.

But since Vzφ 6 12, ψ e L°°, while Pzτk->0 in L2 as k^ oo, the last integral vanishes as
we let k-> oo. On the other hand, upon letting k-> oo in the first integral, we arrive at
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for all ψeC?(C). That is, φ weakly solves (3.7) in C.
We next derive integral a-priori bounds for Vzφ and its derivatives. These can

be obtained iteratively by testing (3.7) with V2mφτ2, m = 1, 2, . . . , where τ e C?(C) is
a smooth cut-off function, and integrating by parts. In order to bring out the
essential ideas we simplify the computations by suppressing all terms involving
derivatives of the cut-off function τ or the coefficients of the equation (which in any
event only contribute lower order terms that can be estimated nicely at each step of
the iteration in terms of quantities estimated in a previous step).

Moreover, to simplify the writing even more we only consider the case b = c = 1 .
Thus, our equation reads

-Azφ-\z\2Atφ + \z\2V'(φ) = Q. (3.8)

Suppose the induction hypothesis \V\Vzφ)\ + |z| \V\Vtφ)\eIllQC(C) holds true for all
\k\^m— 1. By our initial assumption about φ this condition is in particular
satisfied for m = l. Moreover, multiplying (3.7) by φτ2 and using the fact that
\Φ\ ̂  1> we obtain the a-priori bound

^^τ2Λ-\z\2\Vtφ\2τ2)dzdt^Cl(\ + \Vτ\2)dzdt,

for any τeC£>(C), τ^O.
Suppose |Fw(P;φ)| + |z| \Vm(Vtφ)\eL2. Then upon testing (3.8) with V2mφτ2 and

integrating by parts we obtain that

™^ (3.9)

Note that the first and second terms on the right only arise if we evaluate
contributions to |Pm(Pzφ)|2 coming from operators VzV^~k (fc>0); that is,
involving also z-derivatives. Hence after a change of order of differentiation these
terms can be bounded

(3.10)

Here, we have also used the binomial inequality 2\ab\ = 2 εa ί - 1 ̂  ε2a2 + -̂ -, for
\ε/ ε

any ε>0, α,fceR. Now the first of these terms can be absorbed on the left of (3.9)
while the second term of (3.10) and the last term in (3.9) are bounded by induction
assumption.

To remove the assumption |Fm(Fzφ)|eL2 we must replace differentials by
difference quotients. See for instance Giaquinta [19]. Hence \Fm(7zφ)\eL2

oc(C) for
all meN, with a-priori bounds on any region Ωξ C depending only on m and Ω.
Therefore, by the Sobolev embedding theorem, F^φeC00, with uniform local
bounds
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for any multi-index k and |z|, \t\^%. But now, in particular, (3.4) implies that
φ(0,ί)=0 for all |ί|<l and, moreover, that

<p(z,ί)->0 as z-»0, uniformly in t .

Thus, Vt

lφ(Q,t) = Q for all |ί|<l and all /eN, and by the mean value theorem

for all |z| ̂  i with C = C(l). Π

4. Connections with Minimal Surface Theory

For small ε > 0, the functional Eε may be regarded as a singular perturbation of the

"pure" potential term — j V(φ)dx with the preferred rest states φ=+!9φ=— 1.
A»o

0

The additional term ~l\Vφ\2dx is related to the "smoothness" and "size" of the

"interface" between regions where φ & ± 1. In particular, as ε->0, minimizers of Eε

will arrange themselves in a pattern where the area of this interface becomes
minimal for the prescribed boundary condition or constraint. In this way, minimal
or constant mean curvature hypersurfaces, arising e.g. as boundaries between
different phases of two-phase fluids, can be understood; see for instance Modica
[22]. His work draws from earlier ideas of Modica-Mortola [23] and of De Giorgi
on "Γ-convergence" and minimal surfaces, and from work by Gurtin [24] on the
"gradient theory" of phase transitions. Related results were obtained by Kohn-
Sternberg [25]. See also Anzellotti-Baldo-Visintin [26], Baldo [27], Luckhaus-
Modica [28], and the references in the above papers. For our problem, we observe
a similar relation between minimizers of Eε for small ε > 0 and minimal surfaces
spanning Γ. In fact, for knotted curves J?, our results seem to imply a new proof
for the existence of embedded minimal surface spanning <£, first established by
Hardt-Simon [34]. Consider minimizers φε of £ε, satisfying the holonomy
constraint (3.1). We would like to study the behaviour of φε as ε->0.

For ΩclR" denote BV(Ω) the space of //-functions w:O->R with bounded
variation

Ω (Ωi=l

see e.g. Giusti [29]. Following Modica [22], we let

and define a functional

E0(φ)= J \D(W(φ))\.
M#

Note that for smooth φ the functional E0 and Eε are related by

E0(φ)= I ]/VM\rφ\dx^ f Γε|Fφ|2+ -V(φ)]dx = Eε(φ), (4.1)
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for any ε>0. In particular,

ME0^E0(φε)^Eε(φε) = mίEε (4.2)

for any ε>0, where we take the infϊmum with respect to φ e Hfc^M <?) satisfying
the holonomy constraint. Since |φε|^l we have \W(φ^\^C; moreover, we will
show that

f \DW(φε)\ = E0(φε)^Eε(φε)^ C< ao , (4.3)
M#

uniformly in ε>0; see Theorem 4.2 below. Hence the family (W(φε))ε>0 is
uniformly locally bounded in BV and therefore relatively compact, locally, in L1

(see Giusti [29, Theorem 1.19]). Since W'^oQin any interval [-1 +δ, 1 -<5],
<5>0, it follows that also (φε)ε>0 is relatively compact in L1, locally. Any L1 limit
point ψQ will satisfy the relation F(φ0) = 0, that is, IφoHl almost everywhere.
Moreover, the holonomy constraint (3.1) will be preserved. Hence, on Λ5^, the
function φ0 must be discontinuous across some surface F0 = supp(Dφ0). By lower
semi-continuity of E0 with respect to local //-convergence (see Giusti [29]) we also
have that

EO(ΨO)= ί \DW(φ0)\=(] ]/V(ρ)dρ} f \Dφ0\=( } ]/V(ώ do] - area(F0)
Me? \0 J Uy \-l /

^ lim inf E0(φε) ̂  lim inf Eε(φε) , (4.4)
ε->0 ε->0

and hence by Theorem 4.2 below that F0 is a minimal surface spanning JSf , see for
instance Giusti [29, p. 5f.]. (The above argument is modelled on a similar
reasoning by Modica [22].)

The relations between minimizers of Eε and minimal surfaces, however, seem to
go much deeper than what we observed above. Let us first recall how the
differential properties of minimal surfaces, represented by minimizers φ0 of EΦ are
derived. Let τ : M^-^TM^ be a C2-vector field vanishing in a neighbourhood of
j?, and invariant under covering transformations in the sense that

τ([ω] x) = τ(x), V[ω] e π,(M^ xeM<?, (4.5)

where we identify the tangent spaces TXM# and T[ω]xM<?. Here it will suffice to
study vector fields τ supported on a simply connected bounded region Ω C M^ that
we extend equivariantly to M ,̂ using (4.5). In local coordinates we may regard τ as
a map in C2(Ω;R3).

We use τ to define a variation of the independent variables Tδ = (id + δτ):Mg>
-+M&, invariant under π^M^). Note that for |δ| <^ 1 the map Tδ is a diffeomorph-
ism of M # onto itself. Given a minimizer φ0 of E0, we compute

By the chain rule (see Giusti [29, Lemma 10.1] for a rigorous derivation)

E0(φ0oTδ~
l)= J \((DW(φ0))oTδ~

i)'(DTδ~
l)\

My

= ί \DW(Ψo) RDTf ') o TJ ||det(DTa)|.
MX
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Now

so that (Giusti [29; (10.5)])

VW(φ )
where v is a smooth extension of the normal "v = , V' to the minimal
surface supp(Dφ0). It follows that

J

for all τeC 2 having compact support in a simply connected region ΩcM#. Let
ψ e Q°(Ω). For τ = vφ we then obtain

<v, Dτv> = v Pip, divτ = trace(Dv)φ + v V\p ,

and hence that

J trace(Dv)|Z)^(φ0)|φ(ix = 0 (4.6)

for all tp6C^°(Ω). Note that
trace(Dv) = 2H

is twice the mean curvature of the surface represented by φ0. Since ψ is arbitrary,
from (4.6) we thus obtain the well-known fact that the mean curvature of a minimal
surface vanishes.

The minimizers φε of Ee enjoy a similar property. First observe the following
result, again due to Modica [30].

Theorem 4.1. Suppose n<8, FeC2, 7^0, V(φ) = Q if and only if M = l. Let
u 6 C3(RΛ) wϊί/ι — 1 < u < 1 satisfy (3.2) - for ε = 1 - and be locally minimal in the
sense that

)^E(u) for all φeC0°°(RM).

Then after a rotation of coordinates

for some solution ΰ of (3.2).

Actually, in the one-dimensional case, upon testing Eq. (3.2)

d2 1

with - — M, we obtain that

— V(ΰ) = const .

Moreover, if ΰ is locally minimal, this constant must vanish. Hence, possibly after a
reflection xi ι-» — xί9 we have

dxl
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and

Thus

f \ΰ'\2dt = ] V(u)dt=W(\}-W(-\) =
— 1

We let un(x) = φεn(εnx + xn) for sequences εn \ 0, (xn) converging to a point on
supp(D<p0)\Jέ? such that \un(0)\ ^ C < 1. Then, by Theorem 3.1, (wj is equi-bounded
and equi-continuous in C1, hence converges in C1 to a solution u e C°°(R3) of (3.2)
for ε = 1 with H — 1 <u< 1. Moreover, since φεn is minimal, so is uw, for all n, and

hence u. Theorem 4.1 now implies that | Vu\ = ]/V(u) φ 0 and hence that | Vun(x)\ Φ 0
in BRεn(xn) for any R > 0, if n is sufficiently large. Hence we may define a smooth

Vφ
vector field vε =

 c , normal to the "approximate minimal surfaces" (pε = const.

For τ = τε = ψvε, where ψeC™(Ω) on a simply connected sub-domain
again let Tδ = (id + δτ) and consider Eε(φε° T^1). By the chain rule, as above we
obtain

0 = — Eε(φε o Ti *) = J (- ε trace((DφβτfDφά + eε(φε) divτ) dx,

where

With our choice of τ = ψvε we may simplify this expression as follows. Note that

divτ = trace(Dvε)t/; + vε V\p, tracQ^Dφβτ^Dφ^ = \Vφε\
2vε V\p.

Hence if we write

for the mean curvature of the level surfaces φε = const, we obtain the equation

J 2Hεeε(φε)ιp dx= f (̂  | P>ε|
2 - ±- V(φε)] vε - V i p d x , (4.7)

M# My \^ ^£ /

analogous to (4.6).
Finally, we may choose a function ψ on the surface φε = 0 and extend ψ by

solving the ordinary differential equation vε Pι/> = 0; that is, extend ψ = const

along the trajectories 1 1-» Φ(x, t) of the flow given by — Φ = vε o Φ. Then the right-
ot

hand side in (4.7) vanishes, and we obtain that in the mean along the trajectories of
Φ - with weight factor eε(φε) - the mean curvature of the surfaces φε = const
vanishes. The same conclusion applies pointwise - on every leaf φε = const - where

0, (4.8)

as in the one-dimensional case.
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We may also use the 1-dimensional solution ΰ of (3.2) to construct comparison
functions ψε for £ε, yielding bounds for the ground state energy in terms of
geometric data of the boundary 3?. This will also complete the proof of (4.3).

Theorem 4.2. Let F0 be a least area minimal surface spanning &, C0

i /

= J yV(φ)dφ. There exists a constant C>0 such that

inf JEe(φ) ̂  C0 area(F0) + Cε length(JSf) + 0(s2).
φ

Theorem 4.2 is related to results by Almgren-Browder-Lieb [17] and Brezis-
Coron-Lieb [16].

Proof. Given ε0>ε>0, for xeR3\J5? let

.f

*U-s:ι,,) if •.*«*'.><*.
1, else,

and extend φε equivariantly to M#. Then, since |F(dist(x,F0))| = l almost
everywhere, we have

mϊEε(φ)^Eε(φε)=^χ^jF ^ (\ΰ'\2+ V(ΰ))dx + R(ε)

with error R(ε) decaying exponentially fast as ε->0. Recall that |u'|2 = V(ΰ). Let v be
a unit normal vector field on F0. Decompose

where

Ω1 = {x = z + ίv(z); z e F0, \t\ ̂  ε0} .

By a change of variables Φ(z, ί) = z + ίv(z),

Eε(φε; Oχ) = - J 7 (δ I —^^ ^ 1 ) Λc = J f 7(fi(0) |det(DΦ(z, εί))| dz Λ.
£Ωι \ \ β // _ £ o f o

ε

Now

z,s))| = l-ί-s#(z) + s:

with jFί and K denoting the mean curvature and the Gauss curvature of F0,
respectively. Since fί = 0, K^O, it follows that

On Ω2 we may introduce coordinates based on an orthogonal frame (eί9e29e3)
moving along JSf, with el tangent to £?. Let s denote arc-length on JSf,
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parametrized by 7, and

x = 7(5) + ae2(s) + be3(s) = Ψ(s, a, b) .

Then

'31 0 0

DΨ(s,a,b)= be'32 1 0

0 1

where e'2 = (e'2 ι>e'22,e'2 3) denote the components of e'2=—e2 in the frame
(el9e2,e3),etc. That is, ds

where
ρ = ]/α2 + b2 = dist(Ψ(s, a, b\

and

is the curvature of 5f. Let κr = supsκ;(s). In these coordinates now

/ / \ \

x=?ΠHs(?))|det(D«P)|ρdβ<fa

ε0/ε

^ επ J J V(ΰ(t)) (1+ είφ ώ ds ̂  Cxε length(JSP) + C2ε
2κ length(JSf). D

The functions φε constructed above, hopefully, give a good approximation to the
actual minimizers φε. A precise result in this regard, however, remains to be found.

5. Uniqueness and Stability of Minimizers

The results in this section seem to be related to results by Bronsard-Kohn [31],
Carr-Pego [32] on the "dynamical" behavior of minimizers of our functional £ε,
however, under different boundary conditions. See also Alikakos-Bates-Fusco
[33] for related results in the context of the Cahn-Hilliard equation.

Note that the construction in the proof of Theorem 4.2 shows that (even if we
disregard the obvious symmetry φ-+ — φ) minimizers to Eε need not be unique, in
general. In fact, it may happen that Jδf spans several geometrically distinct least
area surfaces, possibly of different topological types. This is clear in the
2-dimensional case, where the notions "curve" and "surface" have to be
appropriately replaced by the notions "point" and "curve:" Take a configuration
consisting of the vertices of a square, for example. But non-uniqueness also occurs
in higher dimensions. As an example, consider the curve & consisting of two plane,
co-axial circles of the same radius. In this case, depending on the distance d of the
circles from another, besides the obvious locally area-minimizing surface that
consists of a pair of discs spanning 5f, there may also be a relatively minimal
doubly connected surface, a catenoid, spanning <£?. Moreover, for small d, the
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catenoid will be absolutely area minimizing among surfaces spanning <£, while for
large d the surface consisting of a pair of discs will be. Thus (everything depends
smoothly on d) for a certain intermediate value of d there will be two geometrically
(even topologically) distinct least area surfaces spanning & . Hence, also Eε may
admit many relative minima for small ε > 0.

It therefore seems reasonable to limit our investigation of uniqueness and
stability questions to a class of boundary curves 3? that span a unique minimal
surface. One particular such class is the class of plane curves. (In two dimensions,
we consider singular points on a line; also in this case, the stability result below
does not seem to be known.)

For such curves, lying in the plane y = 0, say, one may expect minimizers φε of
Eε to enjoy the reflexion symmetry φε(x, — y) = φε(x,y), where we denote
x = (x1,x2X and x = (x,y) the coordinates in R3. (For simplicity we fix ε = l and
omit the index ε from now on.)

Theorem 5.1. Suppose 3? lies in the plane y = 0. Then there exists a minimizer
of E satisfying the holonomy constraint (3.1) and such that φ(x,y)

l on M ̂ , and φ is non-decreasing in \y\.

Proof. Let φ be a minimizer of E satisfying (3.1). We symmetrize φ over the
fundamental domain M^ by letting φ* be the unique function such that φ* is even
and non-decreasing in \y\ and satisfies

for all x, where | ... | denotes 1 -dimensional Lebesgue measure. (That is, 1 — φ* is
the Steiner symmetrized function 1 — |φ|.) It is well known that

J \Vφ*\2dx£ I |Pφ|2rfx, J V(φ*)dx= J V(φ)dx.
M cf M j£> M g> M <g

Hence if we extend φ* to M^ by using (3.1), identify points on the zero set of φ*
and suitably delete double points, we obtain a minimizer of E, satisfying (3.1) and
possessing the required symmetry properties. Π

Let

tf = tf (0) = {ψ e L2

loc(M<?); ψ satisfies (3.1), Ψ{Mjf e L2(M<?)}

with scalar product (ψ, ρ) = J ψρ dx. By (3.1) the reflexion symmetry y ι-» — y of
M^ ~

M# for a plane curve <$? C{y = 0} induces a symmetry σ of M#, splitting
^ = ̂ "^®^~ where σ^± = ±id. For a minimizer φ e H\^(M^) of E satisfying
(3.1) let

denote the fluctuation operator associated with φ, given by the second variation of
E

= J
My

= d2E(φ)(ψ,Q).
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Lemma 5.2. Suppose φ is a minimizer of E in H\£(M&\ satisfying (3.1), and let
C2=F"(1)>0. Then the spectrum of A = A(φ) below C2 consists of pure point
spectrum, only. In particular, if

_ . f \ψ>"ψ) c— 1111 — — <^ \^

then λ0 is attained at a smooth function
Moreover, if JS?c{y = 0}, φ°σ = φ, then the eigenspace of A for any point

eigenvalue λ is spanned by eigenvectors ψEJ^±.

Proof. By exponential decay of (1 — \φ\)9 Theorem 3.1 .(3°), the operator A(φ) differs
from the operator A0 = ( — A + C2) by a compact perturbation. Since the assertion
of the lemma is true for A0, it thus remains true for A. Finally, φoσ = φ implies that
(Aιp)°σ = A(ψ°σ)foτ any ψE@(A). Hence, if Aψ = λψ, also ψ± = (\p±ιp°σ)e3F±

will satisfy this relation. Π

Our aim is to establish the following result.

Theorem 5.3. Suppose J5?c{y = 0} and let φ = φ°σ be a symmetric minimizer of
E,A = A(φ) the associated fluctuation operator. Then φ is a non-degenerate, strict
minimizer of E in the sense that

Note that φy=—φ satisfies

however, φy φ H^(M^). Observe that φy ̂  0 for y ̂  0, φy φ 0 on M#. Hence φy > 0
for y>0, on M&, by the maximum principle. A similar property holds for
eigenfunctions of A(φ) with eigenvalue λ0. Let

where ^f0

±

Lemma 5.4. Let ψ+ e «^^\{0} be eigenfunctions for λ0. Then ψ± φO for y >0 on
My.

Proof. Replace ψ± by t/)± given by \ψ±\ on R3n{j;>0} and by ±|φ±| on R3

n{j;<0}. Extend ψ± to M^ by using (3.1). Since ψ+ satisfied (3.1), ψ+
and there holds

Hence t/)± e J f0; in particular, ψ± satisfies

=λ0ψ±, (5.2)

and thus ψ ± e C°°(M^). Finally, by the maximum principle, applied to (5.2), ψ ± > 0
for j;>0 on M#, which implies the claim. Π
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Remark. Multiplying by a suitable constant, if necessary, we may assume that

φψ+^Q, φyψ-^0 on M^, (5.3)

for ψ+ e Jιf0

±\{0}, with equality at most for y = Q.

Proof of Theorem 5. 3. Suppose by contradiction that ^ = 0. Let
satisfying . t± =Q. (5.4)

(i) To see that Jff0

+ = {0} we argue by contradiction. Suppose ψ+ >0 in {y>0}.
Multiply (3.2) - for ε = 1 - by ψ + , (5.4) by φ and subtract. Upon integrating by parts
we obtain

0-

M&

= M J L(V'(φ)-V(φ)φ)ψ+ldx<0

by reflexion symmetry and assumption (V4), Sect. 3. This yields the desired
contradiction.

(ii) We show that also 3tf~ — 0. Again suppose ψ _ > 0 in {y > 0}. Multiply (5.1) by
φ_, (5.4) by φy and subtract. Integrating by parts over

M^ = M^n{jc; dist(x, &) ̂  ε}

we obtain the relation

0= J ( — Δφ\p_+Δ\p,φ )dx
MJ,

- f (dv\p.<py-dv(py\p-)do9 (5.5)
aMj,

where v denotes the unit normal on dM*? pointing towards ϊ£.
As in the proof of Theorem 3.2 we locally represent φ_ and φ in parallel

coordinates (z, f) based on «=£?, where z = z1 + iz2e(C=IR2, by mappings

solving equations of type (3.7).
By our regularity result Lemma 3.3, applied to these maps, for fixed t we have

expansions

Hence, introducing polar coordinates (ρ, θ) in a disc around S(0, ί) in a plane
orthogonal to =£? , we also have expansions
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Condition (5.3) now requires that for some constant μ = μ(ί)>0 we have α = μy,
β = μδ; that is

Inserting this relation into (5.5) yields

0= J μ\φy

which is positive for small ε > 0, giving the desired contradiction. Π

For general curves <£, our results are only fragmentary. Very likely, asymptotic
stability properties of minimizers of Eε for small ε can be inferred from a detailed
study of the second variation of Eε(φε) with respect to variations of the
independent variables, and relating this to the second variation of area of the
limiting minimal surface. A crude estimate to that effect can be obtained as follows:

Let ρeC™(M#) satisfy (3.1) and compute the second variation of £ = £x at
φ = φι in direction ψ = \Vφ\ρ. Note that ψeH^2(M^)7 and ψ also satisfies (3.1).
Moreover, a large class of such mappings ψ can be represented in this form. Now,

= ί (\V(\Vφ\Q)\2

On the other hand, differentiating (3.2) and multiplying by Vφq2, we obtain

Integrating and subtracting this expression from the previous one we have

Λ = J \.\Vψ\2WQ\2-(\V2φ\2-\V(\Vφ\)\2)Q2-\dκ.
My

V®
Now let v= — — Then

|Pv|2 =
V2φ V\Vφ\Vφ 2 \T72,n\2W2φ\2-W(\Vφ\}\2

\Vφ\2\Vφ\ \Vφ\2

whence

Λ= I \Vφ\2(\VQ\2-\Vv\2

Q

2}dx (5.4)
M#

equals the weighted mean of the second variations of area of the level surfaces
φ = const with weight |Pφ|2, see Giusti [29; (10.30), p. 120].

However, we regard this only as a first step towards the solution of the question
of stability of minimizers of Eε in general. In order to deduce stability of φε from
stability of a limiting minimal surface, represented by a map φ0,via (5.4), it seems
that deeper insights into the speed and nature of convergence φε-*φ0 are needed.

To conclude, we wish to remark that all methods developed in Sects. 2 through
5 can also be applied to solve problem I described in Sect. 1, where R3 is replaced
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by R2 and J*f by a set of points {x1?..., x2n}. In fact, problem I is somewhat simpler
than the three-dimensional problem studied here.
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