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Bound on the lonization Energy of Large Atoms
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Abstract. We present a simple argument which gives a bound on the ionization

energy of large atoms that implies the bound on the excess charge of Fefferman

and Seco [2].

1. Introduction

A system consisting of a nucleus of charge Z and N electrons is described by the

Schrδdinger operator

-t—
N

acting on the antisymmetric space J4?F = Λ (L2(R3)® C2). Here we have assumed
i = l

for simplicity that the nucleus is infinitely heavy. We call such a system an atom.

The ground state energy of the atom is

//jV,z (2)

and the ionization energy is defined as

, Z) = E(N - 1, Z) - E(N, Z). (3)

This is the energy which binds the atom together. It is well known that there is a

critical number of electrons NC(Z) such that

/(JVC,Z)>0 and /(ΛΓ,Z) = 0 if N>NC
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(see [11, 12, 15, 16]). Using a variational estimate one can derive the lower bound
NC(Z) ^ Z ([20]). It was shown in [8] and [17] (for large Z) that NC(Z) < 2Z + 1.
Define the excess charge as

QC(Z) = NC(Z)-Z. (4)

For N ̂  Nc the operator HN z has a ground state
We define the radius R(N9 Z) of the atom by

f pNiZdx = Λ Γ - l , (5)
\x\£R(N,Z)

where pNtZ is the one-electron density

<r=l,2

xt are the space variables and σt the spin variables, j φc, σ) = £ J dx. (Throughout
<r

most of the paper explicit mention of the spin variables will be omitted.) Outside
R(N, Z) there is an average of one electron.

It is expected that as Z -> oo

βc(Z),/(Z,Z),K(Z,Z) = 0(l). (6)

In Thomas-Fermi theory it has been known for some time that as Z -» oo the atomic
structure shows a universal behavior, which is to say that the quantities in (6)
actually converge to non-zero values as Z-> oo (see [7]). In the present paper we
will indeed compare with TF theory. In the Thomas-Fermi- von Weizsacker theory
universality was recently proved in [18].

It follows from [8, 17] that

and K(Z,Z)^ CZ'1/3. (7)

In [9] it was proved that βc(Z) = o(Z). This has recently been improved in [2] (an
announcement was made in [3]) to βc(Z) ̂  CZ1 ~α with α = 9/56.

Our main result is

Theorem 1. For Z g N ̂  Nc and with α = 9/56,

/(N,Z) ̂  dZ'4/3*1-"* - C2(N - Z)Z(1/3)(1-α). (8)

We get as an immediate consequence

Corollary 2.

Qc(Z)^CZl-\

and for ΛΓ^Z,

As a very easy consequence of the proof of Theorem 1 we also find (see Lemma 7)

Theorem 3. For N ̂  Z,
α). (9)
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We prove Theorem 1 by first proving a general estimate on I(N, Z) which for
an arbitrary radius R bounds / in terms of quantities we call the screening charge
at radius K, the excess charge at radius R, and the 2-point correlation outside R.
This general bound is given in Sect. 2. In Sect. 4 we estimate the above quantities.

Our method emphasizes the importance of controlling the 2-point correlation
function

(we will often omit the subscripts JV,Z). In fact the key step is to estimate the
truncated correlation function

where p = pN^z, this is done in Sect. 3 Lemma 5.
Now we explain the origin of the number α in (8). Define the effective particle

(or quasiparticle in physicists' terminology) Hamiltonian

acting on 3fΈ. Here φ is the smeared Thomas-Fermi potential

Z 1

with a CQ cut-off function φ introduced in (12) below, where pΎF is the
Thomas-Fermi density for a neutral atom with nuclear charge Z (see [7] for a
review of Thomas-Fermi theory), and

τF \χ-y\ '

It is a fundamental result of Lieb and Simon ([10], see also [7] and [19] for
a proof) that there exists 0 < b such that for N ̂  Z — const,

HNO

Z ^ E(N, Z) - CZ7/3 ~b (10)

for some constant C. Finding the optimal ft is a hard problem requiring an
understanding of the ground state structure. Presently the best known result is
b ̂  3/8 ([4, 13, 14] the previous result in [7], was b ̂  1/30). This estimate involves
the proof of the Scott conjecture. It is believed that the optimal value for b is 2/3.
Our arguments hold as long as b ̂  2/3.

Note that in the result of [2] as well as in our result α = 36/7.

2. General Argument

Given δ, choose β1eC°°(R+) with 0 g 00 ̂  1, and θ^t) = 0 if f g 1 - δ, θ^t) = 1 if
ί^l.

For all R, let ΘR and /lΛ:R3h->IR3 be given by

and λR(x) = (l-θR(x)).
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We define (δ is fixed):

the excess charge at radius £,

Q(R) = $p(x)θR(x)dx,

the screening charge at radius R,

V(R) = z-
the normalized 2-point correlation outside R,

We will prove an upper bound to the ionization energy in terms of these quantities
by using a very simple trick which goes back to Benguria (see [7]) and was used
in [8] to prove Nc<2Z+l. The idea here is to use the trick on the outside problem
(|x|>R). The same method was used in [18]. Below, δ>0 is fixed and the
dependence on δ of quantities of interest and constants is not displayed.

Theorem 4. For all δ > 0 and R > 0,

where the error term is bounded by

X = Q(R)

Proof. From the IMS formula (see e.g. [1]) we find

Isolating the contribution of the ith electron in the ith term in the first sum on the
right-hand side, we obtain

ENtZ$p(x)\x\θR(x)dx £ Ea-^JpMlxlβΛ cVfc

+

Using I V(0R(*)1/2 |x|1/2)| ̂  cR-lθ(1-w(x) and$p(x)\x\θR(x)dx ^ RQ(R), we rewrite
this inequality as

-RIQ(R) Z -ZQ(R) + lp^(x,y)Γ-θR(x)dxdy - cQ(R(\ -
\x y\

In [8] the error term (the last term above) could be ignored by use of the uncertainty
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principle: J(Vw)2 ;>(l/4)jV/|x|2. Here the uncertainty principle can be used to
improve c, but this is not necessary.

The trick is now to symmetrize and use the triangle inequality

RIQ(R) g v(R)Q(R) - Jp<2>(x,y)Γ^-θR(x)θR(y)dxdy + cQ(R(l - δ))R~1

i^ ~ y\

ijρ(2)(x, y)τ^τ θR(x)θR(y)dxdy + cQ(R(\ -

g v(R)Q(R)-$K(R)Q(R) + cQ(R(\ - δ))R~*.

3. Estimates on the Density and Correlation Function

The idea of comparing the exact charge distribution with the Thomas-Fermi one
goes back to [10] with an effective estimate derived in [2]. We extend this idea
and, in particular, the method of [2] further to estimates of the 2-point correlation.
Choose φ1eC^(R3) radially symmetric, positive and with ^φ1 — 1. Let

φ(χ) = φz(χ) = Z2φ,(Z2'*x\ (12)

then Jφ = 1. With pTF the Thomas-Fermi density for a neutral atom with nuclear
charge Z, we define a function KN:IR3N-»R+ by

KN(xl9...,xN) = D[ £ φ( -xί)-pTF, £ φ('-Xi)-ρτ¥ , (13)

where

We derive the key inequality from [2], i.e., (15) below, which also plays an
essential role in our analysis. Main steps in this derivation go back to [6]. The
first step is to smear the point charges. Namely using Newton's screening Theorem,
one obtains

X \Xi-Xj\-^D(px,px)-cZ*>3, (14)
lίi<j^N

where

N

Px= Σ^(χ-χλ x = (*!,..., xN),
i = l

is the random variable for the smeared charge density and the last term in (14)
comes from the self-energy, D(φ, φ) of the smeared charges.

The next idea is that in the ground state px must look essentially as pTF. With
this in mind we write

Px) = ίP*(M~ 1 *PTF)^ + KN(x) - 2D(/>TF,pTF).

The last two relations lead to the representation
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Combining this with (10), we arrive at the desired operator estimate

. (15)

As with (10) this estimate is proven only for N with Z — const ̂  N.
Our main estimate is

LemmaS. Given ^eC^(R3)mth0^θ^lsuppθc:{\χ\^R} and\V^Θ\<clR~1

and χeC°°(R3 x R3) with 0 ̂  χ and χx — χ(x, ) compactly supported. Then for all
N with Z^N^ NC(Z\

^ C sup II V,χJL2(R3}{(Z<7'3-fc> + ZR- l ) $p(x)θ(x)dx + ZJT2}1'2

X

•{$p(x)θ(x)dx}112 + CZ^\\Vyχ\\L«$p(x)θ(x)dx, (16)

where p and p(2) are the ground state density and correlation function. C depends
only on C0 and φ^.

Remark. The reason for the rather peculiar cutoff in (16) will be clear in
Lemma 8 below.

Proof. Define the particle number random variables N^.JR1^' 1 ->R+ and ΛfJFelR+
by

N

Nx(x2,...9xN)= X χx*φ(Xi) and NΎ

X

F = $ ρΎ¥(y)χx(y)dy. (17)
i = 2

Then

\SlP(2}(χ,y) - Pτ*(y)p(χmχ)x(χ,y)dχdy\
) - χx(y)\θ(χ)dxdy

(18)

where we have used Cauchy-Schwarz inequality.
Since

N

2, . . , XN) - NΎ

X

F = J X φ(y - x,.) - pTF(>;) χ(x, y)dy,

we get again from Cauchy-Schwarz

φ(y-Xi)-pτF(y) (ξ)
i = 2

\ξ\'2dξ

K^^x,,...^,), (19)

where * denotes Fourier transform. From (15) we find using IMS,
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^ EHJfp(x)θ(x)dx

N

^Σ
ί = l

Z

*i}M

Thus

Putting together (18), (19) and (20) gives (16).

A simplification of the above proof gives

Lemma 6. With the notation of Sect. 2,

4. Estimates on (?, v and AT

Estimate on Q. Using that = Z2p(fF

=1\Z1/3x\ and

313

(20)

(21)

gives

Furthermore = Z. Thus

= N - $ ρτF(x)λR(x)dx - J (p(x) - pTF(x)μR(x)ί/x

= ΛΓ - Z + f pTF(x)θκ(x)dx - J (p(x) - pΎF(x))λR(x)dx.

Choose

From

and from Lemma 6 we then find

x ̂  C2R~\

(22)

(23)

(24)

Choosing y appropriately (y ̂ (1/2)(C1/C)2/7 we have proved

Lemma 7. With α = 3ί>/7 and for R = γZ(1/3)(1 ~α) with y sufficiently small,

0 < cZ1 ~α g Q(R) - (ΛΓ - Z) g CZ1 ~α. (25)
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From the lower bound in (25) we get the result in Theorem 3 with α = 36/7.

Estimate on v.

Lemma 8. For α and R as in Lemma y,

v(R)^CZ1-Λ. (26)

Proof. In (16) we choose θ(x) = ΘR(X) and

*(*>>0 = j^^ΛR(1-2*)0>)

For (x, y)esuppχ and xesupp0Λ we have |x — y\ > δR. It is then easy to see that
for xesupp0R we have

and

Taking this into account and remembering that R = γZ <1/3)(1 °°, we obtain from
(16),

V2'̂ )- ( _

1 ~α + β(R)1/2Z(2/3'α/6) + Q(K)Z(2/3~a/3))

1-" -h β(R)1/2Z(2/3~α/6)),

where we have used that b g 2/3 implies α ̂  2/7. From ^κ ̂  A(1 _2<5)κ and Lemma 7
we can now conclude

Since | x — y \ ~ l is the harmonic potential, λR(1 _ 2δ) and pTF are spherically symmetric
and λR(l_2δ) is supported disjointly from ΘR we obtain

v(R) ^ Z - ίpTF(y)^(1 . 2δ}(y)dy
Recalling (22) we get

- CZ1 'α ̂  CZ1 ~α.

Estimate on K

Lemma 9. For R as in Lemma 7,

K(R)^CQ(R) with C>0. (27)

Proo/. This can be done without the use of Lemma 5. Indeed notice that the
N

inequality <F2> - <jF>2 ̂  0 used on F = £ /(xf) implies
i = l

J P(2)(χ, y)f(x)f(y)dxdy ^ (f p(χ)/(χ)dχ)2 - f p(χ)f(χ)2dχ.

Hence since dx ̂  1,
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and the result follows from Lemma 7.

Proof of Theorem L Inserting the bounds from Lemmas 7-9 into the inequality
of Theorem 4 gives the result of Theorem 1.

Acknowledgements, We are grateful to C. Fefferman and E. Lieb for helpful and stimulating discussions.

References

1. Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrόdinger Operators. Berlin, Heidelberg,
New York: Springer 1987

2. FeίΓerman, C. L., Seco, L.A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128,109-130
(1990)

3. Fefferman, C. L., Seco, L. A.: An upper bound for the number of electrons in a large ion. Proc. Natl.
Acad. Sci. USA 86, 3464-3465 (1989)

4. Webster Hughes: An Atomic Energy Lower Bound that Gives Scott's Correction. PhD thesis,
5. Latter, R.: Atomic energy levels for the Thomas-Fermi and Thomas-Fermi-Dirac potential. Phys.

Rev. 99, 510-599 (1955)
6. Lieb, E. H.: A lower bound for Coulomb energies. Phys. Lett. 70A, 444-446 (1979)
7. Lieb, E. H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53,

603-604 (1981)
8. Lieb, E. H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29,

3018-3028 (1984)
9. Lieb, E. H., Sigal, I. M., Simon, B. Thirring, W.: Asymptotic neutrality of large-Z ions. Commun.

Math. Phys. 116, 635-644 (1988)
10. Lieb, E. H., Simon, B.: The Thomas-Fermi theory of atoms, molecules, and solids. Adv. Math. 23,

22-116(1977)
11. Ruskai, M. B.: Absence of discrete spectrum in highly negative ions. Commun. Math. Phys. 82,

457-469 (1982)
12. Ruskai, M. B.: Absence of discrete spectrum in highly negative ions, II. Commun. Math. Phys. 85,

325-327 (1982)
13. Siedentop, H., Weikard, R.: On the leading energy correction of the statistical model of the atom:

Interacting case. Commun. Math. Phys. 112, 471-490 (1987)
14. Siedentop, H., Weikard, R.: On the leading correction of the Thomas-Fermi model: Lower

bound - with an appendix by Mϋller, A. M. K., Invent. Math. 97, 159-193 (1989)
15. Sigal, I. M.: In: Proceeding of the VI International Congress on Mathematical Physics, W. Berlin,

1981
16. Sigal, I. M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative

ions. Commun. Math. Phys. 85, 309-324 (1982)
17. Sigal, I. M.: How many electrons can a nucleus bind? Ann. Phys. 157, 307-320 (1984)
18. Solovej, J. P.: Universality in the Thomas-Fermi-von Weizsacker Theory of Atoms and Molecules.

PhD thesis, Princeton, Department of Mathematics, June 1989
19. Thirring, W. E.: A lower bound with the best possible constant for Coulomb hamiltonians. Commun.

Math. Phys. 79, 1-7 (1981)
20. Zhislin, G.: Discussion of the spectrum of Schrόdinger operator for system of many particles. Tr.

Mosk. Mat. Obs. 9, 81-128 (1960)

Communicated by B. Simon

Received October 30, 1989; in revised form January 23, 1990

Note added in proof. It has recently been shown (Fefferman, C. L., Seco, L. A.: The Ground State
Energy of a Large Atom (To appear) that we can take the parameter b equal to the optimal value f.
This allows us to take α = |.






