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A Unified Approach to String Scattering Amplitudes
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Abstract. 1) Physics. In the calculation of g-loop string tachyon amplitudes
with n scattering points the distinguished Polyakov measure dπgn on the
moduli space Mg%n of Riemann surfaces of genus g with n punctures arises. We
give an interpretatiton of this measure as the modulus squared of a
holomorphic section μgn (the Mumford form) of a certain holomorphic line
bundle, i.e., we prove an analog of the Belavin-Knizhnik theorem dπgin = \μgn\

2

in the amplitudic case. We give an expression for this measure through the
determinants of the Laplace operators over ghosts and over multivalued fields
with monodromy prescribed by momenta at the scattering points. We show also
that the form μgn (ftΞ̂ O) for the partition function and n-point amplitudes can
be obtained from a unified over all n, universal Mumford form.

2) Mathematics. The following new concepts from the theory of complex
algebraic curves are investigated: divisors with complex coefficients, complex
powers of holomorphic line bundles, determinants of Laplace operators over
multivalued functions, etc. The corresponding generalizations of the determi-
nant line bundles, the Weil-Deligne pairings, the Quillen and the Arakelov-
Deligne metrics are constructed. A suggested by string amplitude considera-
tions analog of the Mumford theorem on holomorphic triviality of the bundle
λ2®K13 o v e r the moduli space is given. This analog asserts the existence of a

/ 13

canonical flat metric on a certain line bundle λ2®λί

13[

Θ(DV)} I (see the main body of the text). There exist two differences: the

latter bundle is not holomorphically trivial but has a canonical flat metric, and,
being defined on the Teichmύller space Ύg%w this bundle can be pulled down
only on an infinite-sheeted covering of the moduli space Jig^n. The universal
isometries and the relative curvatures from the second part of the paper may be
interesting, too.

* Address after July 1990: Department of Mathematics, University of California, Davis,
CA 95616, USA
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Introduction

1. The String Partition Function

Let X be a closed Riemann surface (more precisely, a compact complex algebraic
curve) of genus g, y be a metric on X, which is considered as a Hermitian structure
on the tangent bundle of X. We suppose g ^ 2 throughout the paper in order to
keep a certain unity of exposition and to pay no attention to pieces of subtlety of
the small genus cases, as well as we suppose the ground field to be (C, although in
some moments we could take an arbitrary algebraically closed field. But,
undoubtedly, small genus needs to be considered separately.
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Let also MQ be the moduli space of conformal classes of metrics on X. There is a
one-to-one correspondence between conformal classes of metrics and complex
structures on X. Then such a metric γ lies in the conformal class determined by the
complex structure, i.e. γ is Kahler.

In the critical dimension d = 26 the functional integral which gives the partition
function of the Polyakov bosonic string can be reduced to a finite-dimensional one
via the Faddeev-Popov trick. The g-loop contribution Zg to the partition function
is therefore the following integral:

Zβ= J dπg.
Jig

The integrand dπg is called the Polyakov measure. It can be expressed in terms of an
arbitrary basis {φί9..., φg) in the space Γ(X, Ω) of holomorphic differentials on X
and an arbitrary basis {Wu..., W3g^3} in the space Γ(X,Ω®2) of holomorphic
quadratic differentials:

d7lg=_iA <A-A

i
det(φ,, φ,)13 ^det(φb φ, ) | ^

det'Ar

Here the brackets (,) denote the L2-scalar product of the sections of Hermitian
line bundles Ω and Ω®2 {Ω is the complex cotangent bundle of X and Ω®2 is its
tensor square) with the metrics γ ~1 and γ~2,Δί and Δ 2 are the Laplace operators
(A = d*d) acting on smooth sections of Ω and Ω®2, det' means the regularized
determinant. The two latter factors in our expression for dπg can be interpreted as
powers of the norms in the sense of the Quillen metrics of the sections φ1 A ... Λ φg

and Wι A ... Λ W3g-3 of the determinant line bundles

and

over the moduli space. [The fibres of these bundles over the point of Mg

corresponding to a complex curve X are the maximal exterior powers of the spaces
Γ(X, Ω) and Γ(X, Ω®2), correspondingly.] By definition, the Quillen norms squared
are

I IΦiΛ...Λφ f|β= ^ , (1)

> S ^ 2 . .2,

The Belavin-Knizhnik theorem permits us to get rid of these, non-holomorphic
factors in the expression for dπg. In fact, the Mumford theorem asserts that the
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bundle λ2®λϊ13 * is holomorphically trivial, i.e. there exists an isomorphism /:
λ2®λγ 13^L+&Jίg> defined up to a constant factor, ΘMg being the trivial line bundle
over the moduli space (moreover, according to the Beilinson-Manin theorem [1]
there exists a canonical trivialization /). The Belavin-Knizhnik theorem [2] says
that one can choose / so that it will be an isometry, provided the left-hand side
with the tensor product of the Quillen metrics and the right-hand side with the
trivial metric. Then taking μg=W1 A ... Λ W3g-3<8>(φ1 Λ ... Aφg)~13, so that
f(μg) = l, one has ||μJ|Q = l and

dπg = μgAβg,

where μg A μg is understood as the first factor in the expression for dπg above. The
form μg is called the Mumford form.

2. The String Amplitudes

Suppose additionally that an ordered set m of distinct punctures Qί9..., Qn and an
isotopical class of a disk B in X\m, such that mcBcX, are given. For each point Qt

there fixed a vector p£ in the space-time (C13, where the standard Hermitian metric
is fixed. Each vector pf is interpreted as momentum vector. These vectors satisfy
the conditions:

n

1 Σ Pi = 0 (the momentum-conservation law),
ί = l

2. the Hermitian square (pf, Pj) equals 1 for every i (the mass of tachyon equals

Then the tachyon scattering amplitude is the integral

i> . . . , P J = ί dπβtΛ

M

where Ji9tn is the moduli space of punctured Riemann surfaces and

\ Π G(QuQtf*»>\ (3)
j=ί

G = exp(g), — g/π is the Green function of the scalar Laplace operator A=d*d,
g(z,z)= lim (g(z\z)~ log ||z' — z ||), || || being the distance on X in the metric y.

z'' —*z

Theorem. dπg> n = μg,nfB

A fig,«, B> where μ9t Kt B is a local holomorphic section of a flat
( \ l1 3

Hermitian line bundle λ2®λ1

 13(x) ® (Θ(DV\Θ(DV)} over the moduli space
\v=l /

n

MgnB of the data (X, Qu ..., Qn, B). Here Dv = £ p\ Qt is a complex divisor with
the momentum components as coefficients. ι ~x

The proof of the theorem will be given in 2.3. The definition of a complex
divisor and the construction of the line bundle (Θ(DV), &(DV)} are contained in
Sect. 1. The section μg^B is defined to have the norm 1, so it is locally unique
modulo a constant factor exp(iφ), φelR..

1 Powers of line bundles mean tensor powers throughout the text
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The space J(g,n,B *s a quotient-space of the Teichmuller space Tg „ by a
subgroup of the modular group (see 2.1), but μg,n,B

Afig,n,B *s modular-invariant
and so can be pulled down on Jt9in.

3. What Is (Θ(DV\Θ(DV)}?

Now we give some commentary on the notions appearing in the formulation of
Theorem 2.

If a usual divisor is a formal sum £ np ' P o v e r a finite number of points P
PeX

with integral multiplicities nP, then a complex divisor on X may have complex
coefficients at the points Qb but has integral degree. To every complex divisor D
there corresponds a usual holomorphic line bundle Θ(D) over X, which is defined
to have a multivalued section iD with asymptotics znp at P (i.e. ordpl^ = nP\ single-
valued outside the disk B. Θ(D) is a usual holomorphic line bundle because its
glueing functions one can choose to be single-valued (see 1.5).

Consider a meromorphic multivalued function /, single-valued outside B.
(Multivalued here means having constant multiplicators, see 1.2.) To such a
function / one can attach the divisor ΣordpfP which is called principal The
corresponding group of classes of complex divisors modulo principal is isomor-
phic to the group of classes of ordinary (integral) divisors (see Sect. 1).

Beginning from two holomorphic line bundles Θ(D) and Θ{D') over X one can
construct a canonical one-dimensional complex vector space <0(D), Θ(D')y, which
generates a holomorphic line bundle over the moduli space under variation of
parameters. If D' were equal to ΣP (i.e. all the non-zero coefficients were equal to 1),
then (Θ(D),Θ(D')}: = detΘ{D)\D, would be merely the maximal exterior power
(determinant) of the vector space Θ(D)\D,. The definition in the case of an arbitrary
D' is more complicated, but does not differ from the case of integral divisors, see 1.7.
If degD = deg/)' = 0 and the line bundles Θ{D\ Θ(D') are provided with Hermitian
metrics, then there is a canonical Hermitian metric on <J9(D\ 0(£')>. If the former
metrics are flat then the latter is flat, too, and it does not depend on metrics on Θ(D\
Θ(D'). In this case the metrics on Θ(D\ &(D') can be expressed via the Green
function of the scalar Laplace operator, see 1.9.

4. The Determinants of Laplace Operators over Multivalued Functions

One can define Quillen metric on an arbitrary determinant line bundle
detRΓ(X, &{D)). If D is a complex divisor, then the one-dimensional complex
vector space detRΓ(X, Θ(D)) is defined as the alternated tensor product
detH°(J!f,fl?(Z)))®(detH1(JSΓ,Φ(i))))"1 of the determinants of the cohomology
groups of the bundle Θ(D). If, additionally, Θ(D) is metrized then the Quillen metric
on detRΓ(X, Θ(D)) is defined in 1.12 similar to (1) and (2), using the determinant of
the Laplace operator acting on the smooth sections of Θ(D). For D = ΣnP P
complex, these sections can be considered as smooth multivalued functions / on X
admitting prescribed singularities and having a prescribed branching at the points
of suppD: f(z,z)-znp must be smooth and single-valued at P, z being a
holomorphic coordinate at P.
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Proposition. There exists a canonical isometry

1 3
2 /Ok 21

v = l J ~ 2 1

13 \"1

® detRΓ(X,0(Dv))®detRΓ(X,0(-Dv)) , (4)
. = i /

all the terms provided with the metrics introduced above.

In the case of integral divisors the proposition is a sequence of one result of
Deligne [3], connecting (Θ(D\ Θ(D')} with detRΓ(Z, Θ(D)) and detRΓ(X, Θ{D')).
This result has a straightforward generalization to the case of complex divisors
(10).

Thus, the generalized Mumford form μg^B *s a holomorphic section of
norm 1 of the flat Hermitian bundle (4) over JtgnB.

5. The Universal Mumford Form

The measures dπg and dπg>n for the partition function and the amplitudes are
obtained from a single measure via the following construction, see 4.6. Let J(X) be
the Jacobian of the curve X, J the total space of the bundle with fibre J(X) over a
point X e Mφ J

m the same with fibre Jm{X\ and J' with fibre J\X\ the dual Abelian
variety to J(X). Consider the holomorphic line bundle 2$: = (id x Φ)*(^) over
J x J, where 2P is the Poincare bundle (see 3.1) over J xJ\Φ: J^J* is the natural
principal polarization (see 3.1). Take the restriction ^ of 28 to J relative to the
diagonal embedding

Δ : Jc> J xj.

Finally, consider the line bundle # K | 1 3 over J 1 3 . In 4.6 a canonical flat metric on
this bundle is defined. We assert that as a universal Mumford form for the partition
function and the amplitudes one can take a covariantly constant holomorphic
section μυ of norm 1 of the bundle λ2®λϊ13®^13. That means that the measures
dπg and dπg „ are the modulus squared of the pull-back of the universal Mumford
form relative to the morphism

which is identical on the base Jίg and acts in the fibre Xn\Δ (see 2.1 concerning the
diagonal Δ) over a curve XeJίg due to the formula

φ:(Xn\Δ, class of a disk B)-+J13{X),

v = l

n

where Dv= £ p] Q(. One can show (4.6) that there exists a canonical isometry
ί=l

13 \ - l

\Θ(DV)}) =φ*(A 2 ®A 1 - 1 3 ®^ 1 3 ),
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and that

Therefore,

At the same time,

if φ(g; φ):X°-+Jί3(X) is the constant map into (0, ...,0)e J13(X).
Using (4) we show in 4.6 that the universal Mumford form can be constructed

as a holomorphic section of the Hermitian holomorphic line bundle

over the space J 1 3 , and besides, of the bundle

/ί2 (gUΓ *3 ® 0(<9)26 (x)detRΓ(κ )

over a finite-sheeted covering of J 1 3 , where Wg-^X) is the image of X9~ι in
Jg _ ̂ X) = {the variety of classes of divisors on X of degree g — 1} under the natural
map X9'1 -*Jg- ι(X) {Wg-\ being a divisor on Jg_ γ\ E is a fixed holomorphic line
bundle of degree g — 1 on X, TE: J^>Jg-1 means the translation by E, i: J-+J is the
antipod (inversion morphism), Θ C J is the zero-set of the Riemann theta-function,
K G Jg _! is the Riemann constant (determined by the equality Θ = T* Wg _ x) as well
as the line bundle of degree g — 1 on X whose class equals the Riemann constant,
together with an isomorphism κ®κ = Ω. All the named line bundles are
Hermitian: the metrics on Θ{Wg_ J, Θ(Θ\ E and K are constructed using the notion
of admissible metric (in other words, with the help of the Green functions of
Laplacians) due to Arakelov and Faltings - see 3.4 and 4.4.

In conclusion, we need to emphasize that all the results of Sect. 3 are simple
consequences of classical results which were known by Arakelov and Faltings. We
also use in essence Moret-Bailly's paper [4].

6. Perspectives

In order to have a more physical sense, this paper should be completed with its
super version. Having the consistent theory of SUSY-curves (= superconformal
manifolds = super Riemann surfaces), see Baranov-Schwarz [5], Friedan [6],
Beilinson-Manin [1] and also [7], Deligne [8] and Rosly et al. [9], this work seems
to be not so hard. Divisors on SUSY-curves are sums of points in some sense, as for
ordinary curves (this was proposed by Manin and stated in [9, 8]). The technique
of super Quillen metrics is an item of [9], the Weil-Deligne pairings < , > are trivial
in the super case [7-9], but one should use a purely super pairing [ , ] (see [9]) to
prove more fine facts.

The problem of the generalization to the case of not only tachyon amplitudes
remains open. This may be useful in the proof of the factorization property on the
level of Mumford forms: that is, for example, an equality of type μg = μg^ γ μg,,t u

when our curve, approaching the boundary of the moduli space Jίφ splits into two
curves of genus g' and g" (I am indebted to G. Moore for this remark).
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It seems interesting to rewrite our results from the moduli space to the
universal Grassmannian manifold, especially the results concerning the universal
Mumford form. This must be compatible with the factorization property.

7. Notes

1. Another way of mathematical understanding of the amplitudic integrand is
presented in the work of Baranov and Schwarz [5]. The term dπgtjdπg is
interpreted by them as a measure on the product of 13 spaces of differentials of the
third kind on X: the vth space consists of differentials with poles only at Qί9..., Qn

and with residues pj at Qt. Our picture seems to be the exp J of their one in a sense.

2. The complex powers of holomorphic line bundles in two-dimensional con-
formal field theory appear also in Beilinson and Schechtman's paper [10]. In that
approach a line bundle if is replaced by its Atiyah algebra A#9 that is the sheaf of
first order differential operators on Jδ? with highest symbol id^d/dz. There
takes place the exact sequence 0-xίW JS?->i4^->7i->Ό. The diagram

where c is the operator of multiplication by c e C and Tx is the tangent sheaf of X,
as usual, can be completed to commutative with a sheaf A^c interpreted as the
Atiyah algebra of the (non-existing) bundle JS?c, if to the power c. The Atiyah
algebra keeps incomplete information about its bundle, because an isomorphism
Ag-^+AΘ implies the existence of a canonical flat Hermitian connection on Jίf, but
it does not yield the triviality of 5£. It is remarkable that using Atiyah algebras one
can apply local arguments in the Riemann-Roch type theorems.

1. Calculus of Complex Divisors on Riemann Surface

/. Complex Divisors

Let X be a complex compact curve of genus g, with a fixed ordered set
xn = {Qi,...,Qn} of n distinct points on X and a closed disk B such that xnCB. A
complex divisor is a formal sum

D= Σ nP P,
PeX

where

[ZforPeX\m,

|C for Pern,

degί):= Σ nPe%,
PeX

and only a finite number of nP + 0. The corresponding group of complex divisors
denote by Div(X,m,£).
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2. Multivalued Meromorphίc Functions

Let p: X\m->X\m be the universal covering with the complex structure, pulled up
from the base. Denote by H the kernel of the natural epimorphism π
-^π^X) determined by the embedding X\mc+X:

We shall call a holomorphic function φ on X\m (more correctly, a section of the
sheaf p*(9χ\ϊ$ a multivalued holomorphic function on X, if

1. φ is π
2. For every σeH,φσ = fσ φ, where φσ(x): = φ(σx) and fσ is a constant (fσ is called

3. The branches of φ, as branches of a multivalued analytic function on X, have
only removable singularities in m, that is, for any Qt e m and any sequence {αm} in
X\m, such that p(am)-+Qi when m->oo, there exists a limit lim φ(αm) depending
only on Qt:

φ(Qi):= lim φ(αj
m->oo

Denote by 0' the sheaf of holomorphic multivalued functions on X. The
corresponding sheaf of fields of fractions is denoted by Jί\ Sections of the sheaf JΓ
we shall call multivalued meromorphic functions on X. The following simple lemma
describes the local behaviour of such functions.

Lemma. Let z be a holomorphic coordinate on X near Q^xxxCX. Then

1. if φeΘ\ then either

φ(z) = zA Y OL:Zj, where 0<Re,4<l,

or

00

φ(z)= X (Xjzj,

2. if φeJf\ then

φ(z) = zA- Σ OLJZJ

9 where 0^Reτ4<l. Π

Note. One must remember that these expansions have also a monodromy at the
other points Qt.

Definition. The number A + n0 is called the order ordQ.φ of the multivalued
meromorphic function φ at the singular point Qt.

Let φ e Γ(X, J(') be a globally defined multivalued meromorphic function on
X. Then £ ordP φ = 0, because dlog φ is a differential of the third kind on X and

PeX

the sum of its residues vanishes.

Definition. We call principal a divisor of the type
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Then define the group Cl(X,m,B) of classes of complex divisors as the quotient-
group of the group Div(X,m,JS) by the sub-group of principal divisors.

3. Complex Cartier Divisors

Complex Cartier divisors are the elements of the group
CaDiw(X9rn9B): = Ή0(X9(Jίf)*/(Θr)*). A complex Cartier divisor is called prin-
cipal, if it belongs to the image of H°(X, {M'ψ) under the natural homomorphism

Proposition. The group Div(X,m,J3) is naturally isomorphic to the group
CaDiv(X, m, B\ the principal divisors corresponding to the principal ones.

Proof is analogic to the classical one. •

4. The Jacobian and the Abel Map

Proposition. The group Cl(X,m,B) is isomorphic to the group C1(X) of classes of
ordinary (integral) divisors on X.

Proof. It is sufficient to prove that every complex divisor D is equivalent to an
integral divisor.

Consider the Abel map to the Jacobian J(X) of X,

φ: Divpf, m, B)-+ J(X): = <L9/Λ,

Pi Pi \

V !<»i,> ;Σ"r f ωJmo<U,
P i P )

where {ω1,...,ωg} is a basis of the space of holomorphic differentials (i.e.,
differentials of the first kind), P e dB is a base point, coinciding with no Pi9 and the
integration path from P to Pf must be contained in B if P ^ m . A is the periods
lattice: it consists of the vectors (Jω l 5 ...Jω^), the integration in each one being
over a loop in X.

According to the Jacobi inversion theorem, the point φ(D) e J(X) is the image
φ(D') of an integral divisor D' of degree d. Then φ(D — D')eΛ and it remains to
show that D — Df is principal, that is, there exists a multivalued meromorphic
function / on X such that di\f = D — D'. Further the construction follows a
distinguished proof of the Abel theorem (see, e.g., Lang [11]): take a differential ω
of the third kind having only first order poles in supp(D — Df) with residues
resPω = ordP(Z) — £>'), P e l . Then, with the help of the bilinear relations between
differentials of the first and the third kind (the fundamental polygon of X must be
chosen so that it contains B\ one can change the periods of ω along the cycles in
X\B to be 2πγ— 1 (integer) by adding a linear combination of differentials of the
first kind. Now set / : = expjω. It is a multivalued meromorphic function on X
with required singularities. •

5. Complex Divisors and Invertible Sheaves

Recall that the group Div(X) of divisors with integral coefficients is isomorphic to
the group of invertible ^-sub-modules of the 0-module Jί over X (the latter group
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is nothing but the group of holomorphic line bundles provided with a mero-
morphic section). Similarly, the group Όiv(X, m, B) is isomorphic to the group of
invertible 0'-sub-modules of Jί' (= the group of holomorphic line bundles with
multivalued glueing functions and provided with a multivalued meromorphic
section): to every complex Cartier divisor determined by a set feΓ{Όr

 b(Jί')*\
such that fi/fjE^UinUp (Θ')*\ in a covering (J Ut = X, there corresponds the

#'-sub-module in Jt' generated by the elements f " 1 over each C/f. The emphasized
section of this sub-module is 1 e Jί'.

Really, the group of invertible ^'-sub-modules in M' is isomorphic to the group
of invertible (^-sub-modules in Jί' (= the group of ordinary holomorphic line
bundles provided with a multivalued meromorphic section). Indeed, take the
complex divisor D — γ^nFP corresponding to a given ^'-module and let us
construct canonically an 0-module Θ{D) corresponding to D. Choose a covering of
X, for example, a covering consisting of two maps Uί: = {a ^-neighbourhood of B
for a small δ > 0}, U2 - = X\B, and take a multivalued meromorphic function fγ on
U1 such that oτάPfί=nP for PeU\ and a multivalued meromorphic function f2

on U2 such that ordF/2 = nP for PeU2 and /2

yi = exp(2π]/—1 nQt) -/2, ί = 1,..., n,
where y£ is a loop in 5 containing the single point Qt. Then /i//2 is a single-valued
non-zero holomorphic function on UίnU2, i.e. fιlf2eΓ(Uιr\U2,0*\ and it
determines an 0-sub-module Θ(D) in *#' having /2//i as glueing function. Thus,
Θ(D) is the sheaf of sections of an ordinary holomorphic line bundle which we
denote by Θ{D\ too.

The meromorphic section of Θ(D) determined by fγ and f2 is multivalued and it
is denoted by i D . The 0-sub-module Θ(D) in Jί' has also single-valued
meromorphic sections: these are i D {the multivalued meromorphic functions
fe Γ(X, Jί') such that fn = exp(- 2π]/^Λ nQι) /, i = 1,..., n). Such a section has
divisor D 1 =div/ + D which is integral and equivalent to D. Hence, Θ(D) is
isomorphic to the 0-sub-module Θ(DX) in Jί. Let us summarize these conclusions
in the

Proposition. 1. Div(X, m, B) ĉ  {the group of invertible Θ'-sub-modules in Jί'} ^ {the
group of invertible &-sub-modules in Jί'}.

2. For DeDiv(X,m,2?) the corresponding invertible Θ-sub-module Θ(D) in Jί'
admits a single-valued meromorphic section and, equivalently, is isomorphic to an
G-sub-module Θ{D^) in Jl, D1 being integral, Dx ~D.

3. The group of isomorphism classes of line bundles Θ(D), DeDiv(X,m,B), is
isomorphic to the group PicX of isomorphism classes of ordinary holomorphic line
bundles and, consequently, to the group C1(X). •

6. Green Functions of Complex Divisors

Let ωί9..., ωg be an orthonormal basis of the space of differentials of the first kind
with the scalar product

ω
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Fix the (l,l)-fbrm

on X. It is called the canonical Kάhler form of X. A Green function of a complex

divisor

PeX

is a complex C°°-differentiable function gD(z) on X \ s u p p D , satisfying the condition

ddgD(z) = 2 π / ^ T ( d e g D • η - δD(z))

on the level of currents, where δD(z) is the delta-function of the divisor D, defined by

the equality $f(z)δD(z) = Σnpf(p) I n other words, gD{z) satisfies:

]/ on X\suppD,

2. gD(z) = nP log \z\ + α(z) in a neighbourhood (7 of each point P, z being a

holomorphic coordinate in U, α being smooth.

Note, lί D — z' is a point z' eX and one normalizes gD(z) by the requirement
ί gi)(z)f7 = 0, then — g(z,z')/π: = —gD(z)/π is the distinguished Green function of
x 1 _ _
the scalar Laplace operator A: A(f)-η= — ddf (or A = d*d). In the relative

2 ] / l]
case (see Sect. 4) the normalization gD(a) = 0 for a fixed α e X is more useful.

Theorem. For any complex divisor on X there exists a Green function. It is unique up

to a constant.

Proof. If D = Σnt Pt is given then set gD(z): = Σnt g(z, P,). •

7. Admissible Metrics on Holomorphic Line Bundles

Let D be a complex divisor, Θ(D) the corresponding holomorphic line bundle over

X. Then we call admissible every Hermitian metric || || on &(D) such that its Chern

form c^ΘiD)) is proport ional to η (really, it implies c^Θφ)) = degD η). Recall that

the Chern form is, by definition, the (l,l)-form

where s is a regular local single-valued holomorphic section of Θ(D).

If Θ(D) is Hermitian it is desirable to know the norm of a multivalued

meromorphic section m of Θ(D). The norm may be constructed in a usual way: if

m = f-s,f being a multivalued meromorphic function and s being a single-valued

meromorphic section, then

Thus, || ra|| is a real multivaled function on X.
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But one can define also single-valued "norms" of multivalued sections. Let us
normalize GD(z) using one of normalizations mentioned in Point 6. Then define the
norm of the canonical multivalued meromorphic section i D at a point z e X by the
formula:

)= Π GPl(zγ>'2 • GPt(zf'l2= Π GP((z)R*»S

where D = ΣniPb D = ΣnίPi. The norm Hl^lKz) one can regard as the norm of the
Weil-Deligne pairing < i D , i z > , see Point 9.

This construction will not be in use in this paper.

8. The Weil-Deligne Pairing

Let j£?l5 JS?2 be two holomorphic line bundles. Define a complex vector space
a s Λe space of linear combinations of expressions of the type

where /JL and l2 are single-valued (i.e., having integral divisors) meromorphic
sections of S£ γ and S£2 with non-intersecting divisors, factorized modulo the
relations

where / and g are single-valued meromorphic functions such that

/(div/ 2):= Π / ( P ) o r d p ' 2 φ 0 , oo in the first formula and g ί d i v / J ^ fl g(P)O Γ d p l 1

PeX PeX

Φ 0, oo in the second one. Correctness of the definition is provided by the Weil
reciprocity law (cf. [12]):

/(divg) = g(div/).

One can easily see that the space <JSfl9 J^ 2 ) i s a one-dimensional complex vector
space. We will call it the Weil-Deligne pairing of 3?γ and j£?2

9. T/zβ Λrakelov-Deligne Metric

The metric mentioned in the head is a metric on the one-dimensional vector space
<<£?!, JS?2> a n d ^ is determined canonically by Hermitian metrics on «Sf1? J5?2 We
define this metric by setting the norm of a non-zero element </l5 /2> (/i, /2 being
meromorphic single-valued sections of f̂1? <̂ f2 with non-intersecting divisors) to
be equal to

l l< ί^>l | ^ ( ^ f ) l | | Z | | l ( | | Z | | ( d i Z ) ) V (5)

where logdl/J (divί2)):= X ordPί2.logHΪJKP), as in Point 8.
PeX

Note. In the particular case, when the metrics on £f1 and JS?2

 a r e admissible and are
normed by the condition of vanishing the integral in (5) (and the same, substituting
/x for /2), one obtains the oo-component of the Arakelov intersection number < , > of
two integral divisors div^ and div/2:



192 A. A. Voronov

10. The Arakelov Intersection Number for Complex Divisors

Let 5£γ, <£2 be two Hermitian holomorphic line bundles of degree 0. For any two
their multivalued sections lί9l2 with non-intersecting divisors we shall define here a
real number

which coincides for single-valued lx and l2 and for flat metrics on S£γ and J£?2 with
the Arakelov intersection number <div/1? div/2> defined in the previous point.

The definition is
/ (6)

where div/2 means the divisor with coefficients complex conjugate to div/2,

and GD(z): = expgJD(z), gD(z) being a Green function of the divisor D (see

Point 6). The result does not depend on the choice of Green function, because
?

ί = Σni = 0. The symbol ||< , >|| is symmetric:

this can be viewed from the formula

(7)

where div/ 2= £n}P}. In fact, G d i v I l(z)= Π Gn

P\(z) and GP{Q) = GQ{P\ so (7) is

equivalent to (6). These arguments imply also the formula

KhA2>\\ = Y\GPi{PT^n^\ (8)
Uj

If ll912, m are such sections of holomorphic line bundles J^ l 9 JS?2> ^ that the
expression below is well-defined then

II</χ<8)/2,m>|| = ||</±,m>|| - | |</2,m>||.

There are some properties being especial for complex divisors: if suppD l 5 suppD2

Cm, then
ll<l«zΛ>IIHKV>*i>2>IΓ for αeR,

and

Thereby, the symbol || < , > || is Hermitian. More precisely, it is the modulus of
the exponent of a Hermitian form on the vector space of complex divisors of degree
0 with support in m. This Hermitian form is easy to write down (cf. (8)):

11. Cohomology and Its Determinant

Since <S? = Θ(D) for any complex divisor is merely an invertible sheaf (or
holomorphic line bundle), one can define its cohomology H°(X, if), H^X, ££) in
one of standard ways. We recall the definition of the Dolbeault cohomology.
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Consider the operator d: ΩOfO(^)-^Ω0' \S£\ where Ω°'q(^) is the space of smooth
(0,g)-forms on X with coefficients in jSf(^ = 0,1). Then, by definition, H°(X,JSP):
= Kετd, HX(X, <£): = Coker d. These are finite-dimensional vector spaces, because
X is compact. H°(X, <£) is evidently the space of holomorphic single-valued
sections of ££. There are two fundamental formulas:

H\X, JSP) = H°(X, Ω® &*)*

(the Serve duality) and

χ(Sg): = dimH°(X, JS?) - dimH^X, £g) = degJ^ + 1 - g (9)

(the Riemann-Roch theorem).
The determinant of cohomology is the one-dimensional vector space

detRΓCS?): = detH°(X, Jέf)® detH^X, JSP)"1, where det V:=ΛdimV(V) is the maxi-
mal exterior power and L~1: = L*. The determinant of cohomology is closely
connected with the Weil-Deligne pairing: there take place the canonical
isomorphisms

~ x (g)detRΓ(fl?)

(10)

and

(see Deligne [3]), where all powers are tensor ones. The latter formula has a formal
(but not random) resemblance with the Riemann-Roch formula for complex
surfaces and at the same time, contains the classical Riemann-Roch theorem for
complex curves (9): if one fixes a complex number cφO and considers the
isomorphism c : j£?-»i? (multiplication by c) then via the functoriality property of
detRΓ( ) and < , > the left-hand side of (11) will be multiplied by c2χ(*> and the
right-hand side will be multiplied by c

2άe^-dcgΩ j ^ Q isomorphism (11) is
functorial, too, hence one has

which is nothing but (9).

12. The Quillen Metrics

Similar to the Weil-Deligne pairing, the determinant of the cohomology
detRΓ(JSf) is endowed with a canonical metric provided that 5£ and Ω are
Hermitian. By definition, the element of detRΓ(j£?) has the form

where {ll9..., lm} is a basis of H°(X, JSP) (hence, lx A ... Λ lm is a basis of det H°(X, JS?))
and {/;,..., /;} is a basis of H 1 ^ , JSP) (hence, l\ A ... Λ ΐn is a basis of detH^X, JS?)
and (/; Λ ... Λ iχι is a basis of (detH^X, JS?))""1). We define the Quillen metric \\\\\Q

of the element 1 so that
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where the scalar product (li9 /,) is the L2-scalar product in the space of harmonic
sections of S£ and (ΐb /}) is the L2-scalar product in the space of harmonic (0,1)-
forms with coefficients in <£. Besides that, det'zl^ is the regularized determinant of
the Laplace operator acting on smooth (single-valued) sections of j£?:

where ζ(s) is the analytical continuation of Σλfs (the sum over all non-zero
eigenvalues of Δg for s>0). This metric behaves smoothly under a variation of
parameters. That would not be true if one did not include the term det'Λ^.

The remarkable fact noticed by Deligne [3] is that the canonical isomorphisms
(10) and (11) permit to connect the Quillen and the Arakelov-Deligne metrics.

Theorem (Deligne [3]). Suppose Hermitian metrics on holomorphic line bundles J£u

S£2, J2? and on the complex cotangent bundle Ω are given. Then the canonical
isomorphisms

d e t R Γ ^ ® JS?2)® detRΓ(jSf J "* ® detRΓ(Jί?2)"1 ®detRΓ(0) = < i f u JSP2>

and

detRΓ(if)2® detRΓ(0)"2 = <JS?® Ω*,

are isometries, the left-hand side provided with the tensor product of the Quillen
metrics and the right-hand side with the Arakelov-Deligne metrics. Π

We will call the first isometry the Deligne formula and the second one the
Deligne-Riemann-Roch theorem.

Note. The machinery of the determinants of cohomology and the Weil-Deligne
pairings is especially powerful in the relative case, when one deals with families of
complex curves and of holomorphic line bundles over them. This will be an item of
the next sections. Here we need to emphasize that for any smooth projective
morphism π:X^S of smooth complex algebraic varieties with a fibre being a
connected complex curve one can define the fibrewise generalizations of
detRΓίdetRπ^) and of the Deligne isomorphisms (10), (11) and Theorem 12,
where one must only substitute detRΓ for

2. The Generalized Mumford Form on the Moduli Space

/. The Teichmuller and the Moduli Spaces of Punctured Surfaces

Let Tgn be the Teichmuller space of type (g,n), where g ^ 2 is the genus of a
Riemann surface X and n is the number of punctures. Denote by Diff+(g, ή) the
group of orientation-preserving diffeomorphisms X-+X mapping each puncture
to itself, and by Diff°(g, n) its normal sub-group consisting of diffeomorphisms
isotopic to id. The mapping class group Map^ „ = Diff+ (g, n)/Diff°(g, n) acts on Tg n

by change of marking and the orbit space

is called the moduli space.



A Unified Approach to String Scattering Amplitudes 195

Consider a Riemann surface X of genus g with an ordered set m of n punctures
and an isotopical class of a disk BcX containing all the punctures. Let us show
that Tgn parametrizes such objects (X,m,B). In fact, Tgn parametrizes surfaces
marked by generators α l 9 ...,α f f, βί9...9βg, yί9 ...,yπ of π^XYm) satisfying the
conditions:

(αi? OLJ) = (ft, βj) = (α4, yj) = (i?i5 y,) = (y i9 ^) = 0,

9

Π l*»t

Here (,) is the geometric intersection number, [ , ] is the commutator.
Let X-> TgtΛ be the universal family of Riemann surfaces and let Xv t e Ίgn, be a

single surface from this family. A curve on Xt representing the product yl9..., yn is
the boundary of a disk B on Xt containing all the punctures, and the isotopical
class of B in X f\

m *s uniquely determined by marking. So TQtn is a parameter space
for(X,m,β).

We define the moduli space of triples (X, m, B) as the quotient space

where G is the sub-group of Mapg „ preserving the isotopical class of the disk B
inX.

In order to describe G we represent Maρ^M as the extension

where A is the union of n — 1 diagonals {(x1,x1,x3,x4, ...,xΠ)},
{(*!, *2,x2,x4,..., xM)},...,{(x1,x2, x3,...,xn_ !,*„_!)} in Xn, and the homomorph-
ism /: Map^ Π-^Map^ 0 is induced by considering a diffeomorphism of a surface
with punctures as a diffeomorphism of the same one without them. The kernel
Ker/ of/ consists of classes of those elements of Diff+(g, ή) which are isotopic to id
in Diff+(g,0). Every isotopy from diffeomorphism in Ker/ to id acting on
punctures gives a loop in Xn\A, the space of ordered sets of n distinct points in X.
Thereby, this correspondence gives an isomorphism Ker/^^π1(Xw\zl).

The sub-group G in Map^Π is mapped on Map f f 0 surjectively. Indeed, one can
choose in a given class in M a p g 0 a diffeomorphism acting identically in the disk
BcX. The class in Maρ g n of this diffeomorphism lies evidently in G.

The sequence of immersions

yields the exact sequence of group homomorphisms

The group Gnπ^X^A) contains the image of π^B^A), because the latter is
formed by the diffeomorphisms of X whose isotopy to id never takes any puncture
out of the disk B. π^Xf acts on the loops y^π^XXm) by adjunction:

'",gnyngn1) for (gι,...,gn)eπ1(X)n,

and so the product γ l 5..., yn is preserved as a cycle iff gί = g2 = . . . = gn.



196 A. A. Voronov

Now we can summarize our discussion in the

Proposition. The exact sequences of natural group homomorphisms

may be rewritten for the sub-group G in Map^ n preserving the isotopical class of a
disk B(mCBcX)as follows:

Corollary. There exists α natural projection

with a fibre isomorphic to (Hn\A)l%x(X\ where H is the upper half plane,
X = H/πί(X), A is the diagonal in Hn defined analogically to the diagonal in Xn and
%ι{X) acts on Hn\A diagonally. •

The spaces Tgn and ^ , Π , β have natural complex structures and dim 7̂  n

2. The Mumford Form: Amplitudic Case

Now assume π:X->S to be an algebraic family of Riemann surfaces with an
ordered set of n punctures Ql9..., Qn and an isotopical class of a disk B containing
the punctures. An interesting physical situation arises when S coincides with
^g,n,B - the moduli space of such objects (see Point 1). Further, assume that at
every puncture Qt there is given a (constant) momentum vector p ^ C 1 3 . There
hold the following equations:

n

l Σ Pi = 0 ("the momentum-conservation law"),
£ = 1

2. (Pf, Pj) = 1 for every i, where (,) is the standard Hermitian metric in (C13 ("the
mass of tachyon equals ]/—1"). Consider the following list of Hermitian
holomorphic line bundles on X:

the bundle Ω: = Ωχ/S of holomorphic Abelian differentials along the fibre of π
with an arbitrary Hermitian metric (i.e., a Kahler metric on Riemann surface),

the bundle Ω®2 of holomorphic quadratic differentials along the fibres of π with
tensor square metric,

thirteen bundles Θ(DV), v = l,...,13, over X corresponding to the complex
divisors Dv= £ pj Qb with arbitrary flat Hermitian metrics (note that the divisors

i

Qι are homotopic to each other because one can transform Q( into Qj inside B, and
so every Θ(DV) is topologically trivial).

Consider the following Hermitian holomorphic line bundles over the base S of
the family:

the determinant bundles detRπ^β), detRπJβ®2) (their fibres over a point
seS are detRΓ(Zs,Ω) and det!RΓ(X5,Ω®2), correspondingly), with the Quillen
metrics,

the Weil-Deligne bundles (Θ(DV),Θ(DV)), v = l,...,13, with the Arakelov-
Deligne metrics.
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Proposition. The tensor product metric on the holomorphic line bundle

T T ^ Y (1 2)

over Jίg^B is flat. Hence this bundle locally admits a holomorphic covariantly
constant section μg^B of norm 1 which is unique up to a factor exp(iφ), ~~

Definition. Such a section μg,n,B we call the Mumford form in the case of
amplitudes.

Note. It is sufficient to require Θ(DV) to be relatively flat (see 4.1). Indeed, the metric
on (Θ(Dvl Θ(DV)} does not depend on a pulled up from S factor of metric on Θ(DV).
But flat and relatively flat metrics on Θ(DV) differ by such a factor, only (cf.
Lemma 4.3).

Proof Each of the Hermitian bundles

(13)

and

> (14)

is flat; the first, additionally, is trivial according to the Mumford theorem, i.e., there
exists an isomorphism

—Φs (15)
detRπJΩ)®13

The machinery of the Quillen and the Arakelov-Deligne metrics (see Deligne [3])
can be roughly reformulated as the rule:

if two line bundles arising (as d e t R π ^ or (J£,Jt}) over the base S from
Hermitian line bundles over a family π:X->S are canonically isomorphic via the
Grothendieck-Riemann-Roch type arguments, then such arguments are appli-
cable to the curvatures of these bundles, provided that the metrics are constructed
in a certain canonical way (such as the Arakelov-Deligne and the Quillen metrics).

In the case of the bundle (13) the trivialization (15) can be chosen so that it will
be an isometry provided that the metric on Θs is trivial: | |1 | | = 1, and flat,
consequently.

The curvature form of the Arakelov-Deligne metric on <j£f, Jί^y is given by the
formula [3]:

C l « j ? , ^ r » = j CΛJSOΛ^MO (16)
x/s

(integration over fibres of π:X^>S). Since we choose a flat metric on Θ(DV), the
metric on (14) is also flat. •

Corollary. The holomorphic line bundle

®
v = l
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is canonically isometric to the bundle

(Ω®2\

3. From the Mumford Form to the Polyakov Measure

The modulus squared of the Mumford form μgtΛfB gives a measure on the moduli
space J(g,n,B after a procedure similar to the Belavin-Knizhnik one. This measure
is modular invariant and so it can be pulled down to the moduli space MQ%W giving
the Polyakov measure (3). We now describe this procedure.

Proof of Theorem 2 from Introduction. Assume that a section α of the bundle (12) is
constructed (locally on moduli) beginning from local bases {/}, {ωl9...9ωg}9

{Wί9..., W3g^3) and {<sv, ίv>} in the spaces of holomorphic sections of the bundles
OX9 Ω, Ω®2 and <0(DV), Θ(DV)), correspondingly, where sv and f are (single-valued)
meromorphic sections of Θ(DV) with non-intersecting divisors. That means that

α =

/ 1 3 K Λ . . . Λ < 1 3 ® ( ® <sv,ίv>
v = 1

Then we set

WίΛWίΛW2ΛW2Λ...ΛW3g_3ΛW3g_3

( ) )

n
Π (IK«v,ίv>ll2ll<^V>ll2)Π \4

l i l

2Π
v = l

Here sv = uv 1DV, ίv = vv l^v, wv and vv being multivalued meromorphic functions,
iDv is the canonical multivalued meromorphic section of the bundle Θ(DV\ tQi is
the canonical single-valued holomorphic section of Θ(Qi), zi is a holomorphic
coordinate near Qf, vanishing at Qt. The expression

Π (II<«V,OII 2II<UMHV>II 2) Π N 2 = Π (N v(divθl2b vΦ v)l2) Π N 2 ,
v = l i = l v = l i = l

(18)

each factor being itself equal to 0 or oo, is entirely well-defined as it has removable
singularities as a function of the points Qί9..., Qn and the points of the support of
divίv. The term (18) is expressed in terms of the Green functions of principal
divisors, because wv and vv are not sections of line bundles, but merely functions.

Let us give a heuristic motivation of the definition (17). This motivation will
have an exact sense in the case of integral momenta: p]eΈ for all i, v. For v fixed
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(and omitted for simplicity) consider the following sequence of canonical
isomorphisms:

, 0(D)> =

Restoring the index v anew and multiplying over v = 1,..., 13, we get ®

0(DV)> = (g) <0(βf), 0(β,)>®(Pί'P^ <g> <0(&), 0(βf)>. According to the adjunction

formula, the bundle <Ω(β),0(β)> = <Ω,0(β)><g><0(β), 0(β)> is canonically
trivialized by the residue map and so <0(β),0(β)> = <β,0(β)>"1. Thereby,

),Θ(DV)}= ® {&(Qi),&(Qj))mi"-Pj) <g> <Ω, ίP(β i )>- 1 . (19)
v iΦj i

From this point of view, in order to get the formula (17) we have factorized the
section ® <sv,ίv> of the bundle ® (Θ(DV), Θ(DV)) via the isomorphism (19):

(g) <sv,£v> = x®)/, and then put ® <sv,ίv>Λ ® <s v,£ v>:= \\x\\2-y Ay, where ||x||
V V V

is the norm of x in the sense of "non-constant" part of the metric, the part
depending on the choice of a section. Precisely, that means that we take the part

13 n

v = 1 i=ί

of the Arakelov-Deligne norm

Π (ll<wv,OII ll<^HOv>||) Π N Π | |<i Q i ? l Q j .>l l R e ( P i '^
v = l ΐ = l i,j=ί

of the section ® <5V, ίv> (Note, that in the Belavin-Knizhnik procedure we
V

analogically take the "non-constant" part

1 _ 1

l/P-det^ω,),,|2 .J,)/^ Λ| / | 2 det f X——ωiAωj)
\x/s 2 /

of the Quillen norm (here: squared)

det(ωi9 ωjϊΊfl2' J v—r— γdzdz
x/S 2-

of the section f~1 (ω1Λ...Λωg)~1.)
Returning to the Mumford form, note that α/||α|| =μ^π βxexp(iφ), φeR,

because \\μgtn,B\\ = ί by definition. Hence αΛα/||α||2 = μg,n,B
A fiβ,n.B
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In order to clarify the connection between the Mumford form and the
Polyakov measure we now calculate ||α||. One can easily state that

" n I | 2 6 TΊΓ 11/r.v * v \ | | 2H/ ω1Λ...ΛωJ2 6 ΠII<sVv>ll2 det'Λ2

det(ω,ω i) (/,/); » ( | | < u V ; i

3 1

v = l

1

The scalar products are taken in the sense of L2-metrics over the spaces of
harmonic functions, 1-differentials or quadratic differentials. The scalar products
(ω,ω, ) can be rewritten as K)/^-ϊ/2)ωiΛώj and (/,/) as | / | 2 J(/^ϊ/2)ydzdz.
Recall that here as in (18) some terms may equal 0 or oo, but all the expression is
well-defined.

Therefore /, r~r \3g-3
( ) ^ A Wί A ... Λ % _ 3

x Π

The sole moment which remains to clarify is the equality

Π 7 ̂ Ξλ d z . Λ dz- Π G ( β Q )2Re(pj,pJ)

= f Π H ? d^ Λ dzV|Zί|
2) π II < % n δ j > II2 R e ( P i > P j )

In fact,

G(β i>βi)=ll<lβ<,lQj>ll for i+j
and

2,):= lim (G(β' l,β i)/| |β;-β l | |)=||<lβ <,lβ l>||/(]/^|z i |),

where | |β — β f | | is the distance between β f and β in the metric y on X.
Thus, comparing the expression got for μ A μ with (3), we see that

dπg,n = μg,n,BΛμg,ntB (20)

over J^g^β It is well-known that dπffΠ is modular-invariant so μg,njB

 Λ A?,*,* c a n

be pulled down to Jlg^n. And finally, the dependence on the choice of μgtntB

vanishes, because the factor exp(iφ) vanishes in (20). •
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3. The Universal Mumford Form

1. The Poincarέ Line Bundle

Let J be the Jacobian of X, J* = Pic0J = (the group of isomorphism classes of
holomorphic line bundles on J which are topologically trivial) be the dual Abelian
variety of J, and Φ: J^^+J* be the canonical principal polarization. (If J = V/A,
where V is a complex vector space (V=Ή°(X, Ω)*) and A is a complete lattice in V
(A = Hι(X, Έ)\ then J' = V*/A*, where P* is the space of antilinear functionals on
V and Λ* = Homz(τl, Z). The isomorphism Φ: J-^+J* is induced by the intersection
form A ®A -+Z.) The product J x J* is endowed with the Poincarέ line bundle which
we denote by SP. This bundle is uniquely determined by two conditions:

1. for xe J1 the line bundle induced by 3P over J x {x} is in the class x,
2. for eeJ, the unit in the group J, the line bundle induced by <P over {e} x J1 is
holomorphically trivialized.

The line bundle J* over JxJ is defined as the pull-back of 9 under the
morphism id x Φ: J x J^J x J f:

The bundles & and ^ have unique Hermitian metrics satisfying the
requirements:

1. their curvatures equal zero,
2. they are compatible with the corresponding trivializations - & at {e} x {e1} and
3$ at {e} x {e}, eι being the class of the trivial line bundle over J.

Such metrics exist, because J* and 9 are topologically trivial.
The reason to use these bundles in our context is the existence of a connection

between <^f,^> and &.
Let m ̂  0 be an integer,

cl0(D) be the class in J of the line bundle O(D) on X and

be the 4̂Z)β/ map

n

Similarly, for such another integer n ̂  0 and p' = (p'1?..., pj,) e Zπ, £ pj = 0, we have
i = l

the line bundle Θ(D') on X, /)' = £?&•> (x'l9...,x'JeXn, and the Abel map
φ(p'):Xn-+J.

Taking <Φ(D),Φ(D')> according to Sect. 1 and letting (x1? ...,xm, x i , . . , x ; ) e Γ
x X" running we get a line bundle on Xm x Z". Considering Θ(D) as a line bundle
over X x Xm endow it with a Hermitian metric which becomes flat for every
(x l 5...,xj being fixed. Then we do the same for Θ(D') and consequently
(Θ(D), Θ(D')y has a Hermitian metric - the Arakelov-Deligne one. It does not
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depend on the choice of metrics on Θ(D) and Θ{D'). This results from the following
proposition which is in essence due to Moret-Bailly [4].

Proposition. There exists a canonical isometry

(Θ(D), Θ(D')} = (φ(p) x φ(p'))*(^ x) (21)

for φ(p) x φ(p'): Xm x Xπ-> J x J.

e. In order to generalize this fact to the case of a complex divisor D we must
consider a family Ym of m distinct points xl9.,., xm e X, lying in a disk 5 C X which
may be transformed isotopically when xu ...,xm vary. Then the Abel map
φ(p): Ym-+J for pe<Cm, £p f = 0, is well-defined (as well as φ(p'): Y"->J, p ' e C ,
£ ^ = 0) and (21) is an isometry. The proof below remains valid without principal
corrections.

Proof. Consider a universal line bundle Uo on X x J. This is a Hermitian bundle
with the property:

for δ e J the line bundle induced by Uo over X x {5} is flat and lies in the class δ.
This bundle is defined modulo tensorization by a Hermitian holomorphic line

bundle pulled back from J.
Using the isomorphicity of Θ(D) and (id x φ(p))* Uo over each fiber of the

projection π: X x Xm-»Xm we have an isomorphism

Θ{D)-^(id x φ(p))*(l/0)®π%Λf), (22)

where ^ is a line bundle over Zm . The curvature of 0(D) being restricted to a fibre
of π equals zero and so we can choose a Hermitian metric on Jί such that (22) is an
isometry. Having produced these constructions for the case of p', D\ φ(pr): Xn-+J,
etc. we come to an isometry

U0, Uo}.

It is a canonical isometry (i. e. it does not depend on the isometry (22), on the bundle
Jί and on the metrics on Uo and Jί) because deg Uo = 0 over X by construction.

We are through if we use the following

Lemma. There exists a canonical isometry

In particular, for the classes dJ?, cl JίeJ of line bundles S£>Jt on X we have a
canonical isometry of the fibres

The proof of the Lemma would require introducing some new notions, so we refer
the reader to the paper of Moret-Bailly [4, 2.9.4, 4.14.1]. •

2. The Divisor Wg_1

Denote by Wg^ί the image of the Abel map
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(Under the notation of the previous point it would be better to write φ = φ(ί,..., 1)
— g —1 units in brackets.) Wg-ί is the zero-set of a section of the line bundle
(detRπ^C/^.i)"1, where Ug-1 is a universal line bundle over X xJg_ί defined
similarly to Uo in Point 1 modulo tensorization by a line bundle over Jg_uπ:X
xJg-^Jg-i being the second projection. The matter is that π^Ug-1

=R 1 π 5 ( : ί7 5 _ 1 =0 over N = Jg_1\Wg-ί and so over N the bundle
" Λ = ΘN has the unit section which can be continued to a unique/g_^ g

section of (detlRπ^l^-!)"1 with support g

In other words, one has a canonical isomorphism
ίP(W;_1) = (detRπ ί l ίt7 ί7_1)-1, (23)

where &{Wg_ x) is the line bundle assigned to the divisor Wg_ x in Jg_ v (For a more
detailed exposition of this construction see, for example, the paper of Moret-Bailly
W O

3. Theta-Function and Theta-Divisor

There exists another natural divisor Θ on J - it is the zero-set of the Riemann
theta-function. This divisor Θ is called the theta-divisor. Let us recall some basic
facts on theta.

Choose a marking (α1?..., otg, βx,..., βg) of our Riemann surface X. It is a set of
real closed cycles on X. A marking is supposed to be a symplectic basis in HX(X, Z),

Consider also a basis φu...,φg in H°(X,Ω\ normalized by the conditions
J ψj^δij. After that we can identify J with (E9/Λ, where A is the lattice generated

by the columns of the periods matrix

According to the Riemann relations, tτ = τ ("ί" means transposition) and Imτ>0.
In this way the Riemann theta-function is defined as the series

θ(z,τ)= £ expτri(ίm
meZ9

zeC 9, τeHg. One can easily show that for m,

θ(z + τm, τ) = θ(z, τ) exp πi( — ̂ τm — Ύ

Hence, for every τ the zero-set of θ(z9 τ) in <C9 is ^-invariant and can be pulled down
to a divisor

which is called the theta-divisor.
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Two divisors ΘcJ and Wg_ίcJg_ί according to the Riemann theorem
coincide up to a translation:

, (24)

where K, the Riemann constant, is such a point in Jg_ x that 2κ = dΩeJ2g-.2,
Tκ: J^Jg_ 1 is the translation by K. Θ and K depend on marking in the contrary to

wβ.v
It seems not to be surprising that the universal bundles £/,- over X x Jj for other

j are connected with Wg_ t and Θ in a way similar to (23). But the priority of the case
j = g — 1 is that detRπ^L/^.! does not depend on the choice of Ug-l9 because the
Euler characteristic of Ug-1 along the fibres of π vanishes.

To deal with other Uj one needs to understand how to fix Uj in suitable terms.
Here is a variant of the answer.
Definition. For a line bundle E over X x Jj of deg£ = m along the fibres of the
second projection π: X x Jj^Jj denote by Uj the universal line bundle character-
ized by two properties:

1. for δeJj the line bundle induced by Uj over X x {δ} is in the class δ,
2. the line bundle (JJj, E} over Jj is holomorphically trivialized (cf. the definition
of the Poincare line bundle in Point 1).

If E = Θ(α)2, α e X is a point, then we denote C/̂  by 17" and 2. is equivalent to the
condition
2''. the restriction of the line bundle 17" to {α} xJjCXxJj is holomorphically
trivialized.

As concerns the uniqueness of Uj, one can say the following. Two bundles Uj9

U'j with the property 1. differ by a tensor factor π*M, where M is a line bundle over
J,:

Then < 17}, £> = M ® d e g £ ® < 17,, £> = M®m® < 17,, £>, so 2. yields a trivialization of
M®m. Particularly 2'. yields a trivialization of M itself, so U] is unique.

Having introduced Uj, we are ready to formulate the following proposition
connecting determinant line bundles over Jj with the divisor Wg_v

Proposition (Moret-Bailly [4, 2.5]). Let E be α holomorphic line bundle over X of
deg E = g — 1 — j and Uj be a universal line bundle over X x Jj. Then there exist the
canonical isomorphisms of holomorphic line bundles over J:

2. {j g

If E = Θ((g — 1— j)-a) then we obtain canonical Moreί-BaiUy's isomorphism:
3.

Note. In all the formulas T£Θ(— Wg_x) can be replaced by T£_KΘ( — Θ) according
to (24).

2 To be more correct, we need to denote E=p*Θ(a\ where p x : X x J,—• Jj is the first projection, but
we omit p* if this yields no confusion
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Proof. All the isomorphisms mentioned above yield from the isomorphism (23) via
the Deligne-Riemann-Roch theorem (see Theorem 1.12 and Note after it).

At first, we note that

u g_x—i_E\u j)Qs)rL,

where T_E:Jg_γ^Jj is the translation by cl( — E)e Jj-g+i (in order to see it one
has to check up the universality property). Then the Deligne formula (10) gives

Here < Uf9 E} is trivial by definition, and detRπ* Ug _ x = &( - Wg _ t), so we have 1.
2. one gets from 1., applying the Deligne-Riemann-Roch theorem to

To obtain 3. "squared" one uses the adjunction formula (Θ(a)9Θ(a))
= (Ω, &(a)} ~1 = (Ω\a)~* and the isomorphism 2. The isomorphism 3. itself can be
constructed using (23) and (25) in a slightly different way (see Moret-Bailly
[4,2.5]). D

4. Principal Polarization and Admissible Metrics

By definition of the Jacobian J, the holomorphic 1-forms on X are the same as on
J:

If {ωί,...,ωg} is an orthonormal basis in this space for the Hermitian scalar
product

(ω, ω'): = *——— J ω Λ ώ',
2 x

then define the canonical form

on X and the principal polarization

Σ
on J. The form η (or ηj) is canonical in the sense that it does not depend on the
choice of basis {ω1? ...,cog} The form η3 is translation-invariant and the form η
obviously satisfies

Note. One can show that this definition of principal polarization is equivalent to
the definition given in Point 1, as a morphism ΦiJ-tJ*.

Definition. Let <£ be a holomorphic line bundle over Jp Jί over X and Jf over Xn.
Then

1. a metric on <£ is called admissible if its Chern form c^^f) is translation-
invariant (under the translations from J),



206 A. A. Voronov

2. <£ is called polarizing if its Chern class c1(&) = λ clηJ for some /leR (really,
λeΈ), Jj being identified with J by an arbitrary translation,
3. a metric on M is called admissible if its Chern form zx{Jl) = λ η for some λ e R
(really, A eZ),
4. a metric on Jί is called n-admissible, if its Chern form cί(J/r)= £ λi'pfη,

where p^Jf-^X, * = 1, ...,n, are the natural projections and ^ e R (really, Z).
Now, let us endow the bundles considered in the previous points with certain

canonical metrics. The first bundle will be Uf for a line bundle E over X provided
with an admissible metric: Uf has a unique Hermitian metric satisfying the
requirements (provided deg£Φ0):

1. it is admissible over X x {δ} for every δeJp

2. it is compatible with the trivialization 2. or 2'. in Definition 3.
The second will be the bundle 0 ( - W ^ ) over Jg_v There are two ways to

define a metric on this bundle:
a) to induce a metric on it via the canonical isomorphism (23):

b) to induce a metric on it via the translation (24):

Of course, we suppose the Quillen metric on detRπ^t/^-1 is given in the first
case, or the metric on T*KΘ( — Θ) defined below is given in the second case.

It would be useful to endow Θ{Θ) with such a metric, that its Chern form
cγ(Θ(Θ)) equals r\3. Therefore, Θ(Θ) with this metric would be polarizing and
admissible. To define a Hermitian metric on Θ(Θ) one needs to define the square
||θ | |2 of the section θ(z): o „„

\\θ{z)f = h{z) \θ{z)\\ (26)

where h(z) is a real positive C00-function with the transition law determined by the
requirement ||0(z + m + τn)|| = ||0(z)||. There exists a canonical choice of such a
metric h: let H = (Imτ)~\ then

Λ(zH(detflΓ1/2 exp((π/2) \z-z)H{z-z)) (27)

is a Gaussian type density along Imz. (The function log || θ(z) \\ on J is usually called
the Nέron function or the Green function of the divisor Θ) Calculate the Chern

)= -(i/2f(dz)Hdz=* -{i/ΊfφHφ,

where φ: = (φl9 ...,φg) is the vector of the differentials normalized via ^4-periods.
Let us change a basis: φ = Bω, B is the transition matrix, ω = (ω1? ...,ωg) is our
orthonormal basis. Then the Riemann relation gives (i/2)fφiΛφj = ίmτij. But

— δip hence BtB = ίmτ and one can continue:

)= -(ί/2YφHφ= -(i/2)tώtB(lmτ)-ίBω= -{iβ

The bundle Θ{-Θ) we metrize by ft"1. We set in the case b) that the bundle
Qί-Wg-ύ inherits this metric via the translation (24) to Θ{-Θ) (in particular,
Θ(— Wg-λ) is polarizing and the metric b) on it is admissible).
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Provide the bundle Ω with an arbitrary Hermitian metric. Recall that we
consider this metric as a Riemannian metric on X, compatible with the complex
structure.

Finally, provide the one-dimensional vector space Ω\a = (Ω,Θ(a)} with the
Arakelov-Deligne metric.

Then there holds the

Proposition (Faltings [13], Moret-Bailly [4,4.14]). a) Suppose that we have
endowed the bundles detRπ^l^. t and detlRπ l̂/^ with the Quillen metrics and the
other bundles with the metrics introduced above, the metric on 0(—W^.j) being
defined as in the case a) above, via the isomorphism

0. ^ ^ ! (
Then the isomorphisms

2. > f ;
from Proposition 3 are isometries. If the metric on Ω satisfies the condition that the
residue map <Ω(α),0(α)>->0j is an isometry, then
3. detRπ#UJ= T/0(- W;_1)®(O|Jto" /" 1 ) t o" / ) / 2,
where E = Θ({g—j—\)-a), is also an ίsometry.
b) // the metric onΘi—Wg-i) is defined as in the case b) above, via the translation to
Θ( — Θ), then the isomorphisms 0.-3. are isometries up to a constant factor (with the
same additional requirement for 3. as in a)).

Note. As in Proposition 2 one can replace &(— Wg_γ) by T*K(Θ( — Θ)).

Proof a) is a straightforward consequence of the isomorphism (25) and the
Deligne-Riemann-Roch (cf. Proof of Proposition 2).
b) The plan of the proof is to verify that the metrics on the left-hand side and the
right-hand side of the isomorphism 0. are admissible.

The metric on Θ( — Wg- x) is admissible by construction. We want to prove that
the Quillen metric on dQtΈ.π^Ug_1 is admissible, too. That means that
c^detRπ^t/^.i) is translation-invariant: for every line bundle E over X of
deg£ = 0

c1(detRπ#T/l/,.1)=c1(detRπ l | lt/,_1).

By universality of Ug-U

for a certain line bundle Jί over J. Choose an admissible metric on E. Then the
latter equality is an isometry for a certain metric on Jί. Hence

where v = π*cί(Jί) is a form pulled up from J. Apply the Deligne-Riemann-Roch
theorem to Ug-1 relative to the second projection π:X x J-+J:
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(a canonical isometry). Then according to the Deligne formula (15)

(integration is over X everywhere). Thus, 0. in the case b) is proved.
The isometries 1.-3. are constructed analogically to a). •

This Proposition and Lemma 1 suggest that there must be a connection
between the line bundle 3d over JxJ (see Point 1) and the line bundles Θ(— Wg-X)
and &( — Θ) over J - something similar to the Deligne formula (10):

Corollary (Moret-Bailly [4]). a) For a line bundle E over X there exist the canonical
isometries

2. @ =
where m:J x J-+J is the multiplication morphism, p%, p%\J x J-*J are the first and
the second projections, π.XxJ-^J (or X x J x J-> J x J) is the second projection.
All the bundles are Hermitian: the metric on ffl is defined in Point 1, the metrics on
Θ{Wg-γ) and Θ(Θ) are defined in Proposition 4, a) and the metrics on E and K are
admissible, K being a holomorphic line bundle over X whose class in Jg_ί coincides
with the Riemann constant.

b) // one defines the metrics on Θ(Wg- x) and Θ(Θ) as in Proposition 4, b), then
the canonical isomorphisms 1., 2. are isometries up to a constant factor.

Proof According to Lemma 1 there defined a canonical isometry

^ _ / n * r r £ n*ττE\-lt^ — \PχU0,p2U0}

By the Deligne formula this yields

But, obviously,

and so

C7g) ~ ι ®pj detRπ* Uξ®pξ detRπ* l/g

( - ^

by Proposition a), 1. (All the equalities are canonical isometries.) The rest of the
proof is evident. •

5.

Let us return to the situation of Point 1, where the line bundles Θ(D) and Θ(Df) over
XxXm and XxXn were considered. Recall that there was fixed a vector
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p = (pl9..., pm) eZm, £ Pi = 0, and there was defined the divisor D=£ p^ for every
(xl9...9xJeXm

9 the Abel map φ(p):Xm->J sending (x l 7...,xj into clΘ(D) (the
same for p', D\ etc.). For p complex one must use a family Y instead of Xm, as it was
mentioned in Note after Proposition 1. The symbol π will denote both of the
second projections I x I m - ^ I m , XxJ-*J, we hope that it gives rise to no
confusion.

Now one can easily reformulate Proposition 1 in terms of ΘiWg^^ or Θ(Θ)
instead of J*. But we are interested in the special case D'=—D. A simple
calculation leads us to the

Corollary, a) There take place the canonical ίsometries

), 0(D)> = ®2

2. <
w/iβrβ i.J^J is the inversion jh^—j and all the metrics are those of Proposition a),

b) With the metrics of Proposition b), the isomorphisms 1. and 2. are ίsometries
up to a constant factor. •

4. Remarks on Relative Case

From this very moment we consider a family of Riemann surfaces depending
algebraically on parameters taken from an arbitrary (algebraic) base S (the model
example will be the moduli space). To be more precise, instead of a single complex
algebraic curve we deal with a projective smooth morphism X->S of complex
algebraic varieties with smooth connected fibers of dimension 1.

The families which we have used earlier have J or Xn as a base, i.e. we examined
only a variation of a line bundle over a fixed X. Now we consider variation of
parameters where neither a bundle, nor X is fixed.

1. The Relative dd-Lemma

Let us outline some distinguishing features of the main constructions of the
previous sections in the relative case. The crucial point of the procedure of
endowing holomorphic line bundles over X with metrics is the 33-lemma, which
will appear below after some preliminaries. But first of all, due to Bismut, Gillet,
and Soule [14] define the relative Dolbeault complexes of an arbitrary holomorphic
family π:X-^S (more precisely, π is a smooth morphism of connected complex
manifolds with rc-dimensional connected complex manifold as a fiber). For seS,
p = 0,l,...,n, let ,

0->£f'°-^£f'1_^...£f'M->0

denote the Dolbeault complex of the fiber Xs:E^q is the vector space of smooth
(p, g)-forms on Xs. Then standard sheaf arguments permit to unite the complexes
£? f ' for all s e S in a complex

of infinite-dimensional vector bundles over S. A smooth section of the bundle Ep'q

is called a relative (/?, q)-form and the map d is called the relative differential d.
Analogically define the relative differential 3, and put d: = <? + d.



210 A. A. Voronov

For a Hermitian holomorphic line bundle JS? over the family π:X^S (that is
merely over X) define the relative Chern form clfX/s^eΓ(E1Λ): = Γ{S,E1Λ) as

3<Γlog||Z||, where / is a regular local holomorphic section of !£ (equiva-

lently way, c 1 > x / s i f is the image of the Chern form of S£ under the natural
projection from the space of (1, l)-forms on X to the space Γ(E1Λ) of relative (1,1)-
forms). If π is locally Hermitian (i.e., there is an open covering {U} of S such that for
any U a Hermitian metric gυ on π~ 1(U) is given) then Ep'q will be Hermitian. If π is
proper, then we define the adjoint Operators δ*, d*, and d* and the Laplacians
A-d\ = dd* + d*d, Ad: = dd*>+d*d and Λd: = dd* + d*d. If π is, moreover, locally
Kάhler (i.e., it is locally Hermitian with gυ Kahler for every U), then

Proposition. Let π:X^>Sbea proper smooth locally Kahler morphism of connected
complex manifolds with connected fibers. Suppose there are given a smooth relative
(1, lyform μ which is relatively closed (dμ = 0) and a holomorphic line bundle J£? over
X with

(it is an equality of relative Chern classes: it means that cίX/s^ — μ is d-exact).
Then locally on S there exists a Hermitian metric on if, such that

exactly.

Proof Let || || be an arbitrary Hermitian metric on if. Then its first Chern form is

^ 3 e Π o g | | s | | for a local regular holomorphic section s of if. In
2πJ

order to find a metric on 5£ such that c x * / s i f = μ one must multiply || || by
exp(σ(x)), where σ(x) is a smooth real function on X. The first Chern class will be

equal to ci XjS^ = j = ddσ + cly X/SJ£ = μ. Thus we need to find a real smooth
2πy — 1

function σ being a solution of the equation

The sole part which remains to be proved is the following:

Lemma (the relative dd-lemma). Let η be a smooth relative (p,q)-form which is
relatively d-exact and d~ and d-closed. Then locally on S there exists a smooth
relative (p —l,q —l)-/orm σ on X such that

ddσ = η.

If η is purely imaginary then σ may be chosen real.

Proof of Lemma. As well as its absolute prototype this lemma is based on the
Hodge decomposition. But the latter is a slightly more fine fact from the theory of
elliptic families.
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Let jtf* q be the space of complex harmonic (/?,#)-forms on a fibre π " 1 ^ ) :

(all operators are assumed acting on Ep'q). The space Jf/'9 is finite-dimensional

is the Hodge number of the fibre π 1(s). According to Deligne's theorem [15]
hp'q(s) is constant as a function of s. Thereby, locally on S, 0 is a discrete point of the
spectrum of Δ-d. In particular, one has (cf. Bismut-Gillet-Soule [14, Proof of
Theorem 3.14]):

1. there exists a finite-dimensional vector bundle 34?p'qCEP'q over S with fibre

2. there exists a projection 3>ίf:Ep'q->jFp'q and an operator (Green operator)

Gd:E
p>q-+Ep>q,

satisfying the conditions: G-e(Jf^)=O, dG-d=G-β, a*G-a=G-δθ* and there takes
place the orthogonal decomposition

(28)

for every section η of the bundle Ep 9.
Similar decompositions are defined for the operators d and d, their Green

operators will be denoted by Gd and Gd, correspondingly. Our fibration is Kahler,
so 2Gd = Gd = G-d and all the operators d, d*, 5, 3*, 3, δ* commute with our Green
operators.

Return to the proof of Lemma. Decompose η by (28) using dη = 0:

η = dd*G-dη.

For the operator d one has the decomposition

since d(d*G-dη)= -δ*G-ddη = 0 via dη = O. Finally,

η = $d(d*d*Glη),

and letting

σ=-d*δ*G$η,

one obtains ddσ = η.
Concerning the realness of σ, one can easily see that the construction of σ can

be rewritten only in terms of real forms and operators, if one starts from a real form
D

2. The Relative Poincarέ Line Bundle

As usual, in the relative case J = Pic°X/S: = Pic0 X/Pic°S is the relative Jacobian,
fibred canonically over S.J^S, with an ordinary Jacobian of curve as a fibre.
Analogically, J '^PicV/S. The set J\S) of S-points of Jι is in one-to-one
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correspondence with the group of isomorphism classes of topologically trivial
holomorphic line bundles over J modulo the classes of the bundles pulled up from
S. Then the relative Poίncarέ line bundle 0> is the unique bundle over J xJ* (all the
Cartesian products should be fibered products in relative case), satisfying the
conditions:

1. for xeJ\S) the line bundle induced by 9 over J x {x} belongs to the class x,
2. for eeJ(S), the unit section, the line bundle induced by 9 over [e] xJ* is
holomorphically trivialized.

P u t @: = (idxΦ)*0>,

where Φ.J-^J1 is the principal polarization (Φ is a morphism over S).
Hermitian metrics on M and 9 are defined (as in 3.1) to satisfy the

requirements:

1. their relative curvatures equal zero as relative forms over S,
2. they are compatible with the trivializations: 9 at {e} x {e1} and J* at {e} x {e}
(the latter points are now 5-points, i.e. the sections of the projections to 5), ex being
the class of Θ3 in Pic0 J/S.

Such a metric on each bundle (& or 3P) exists due to Proposition 1 and is unique
by obvious reasons.

Consider the Abel map

defined as in Sect. 3, but now X and J are the relative curve and the relative
Jacobian. The divisor D = £ ppĉ  is now a relative complex divisor. Provide the line
bundle Θ{D) with such a Hermitian metric that its relative curvature via the
projection X x Xm-*Xm equals zero. Having done the same for p', D\ ... (see 3.5),
we may consider the Deligne line bundle <0(D), &(D')} over Xm x X" with the
Arakelov-Deligne metric. Then there takes place the relative variant of
Proposition 3.1.

Proposition. There exists a canonical ίsometry

x

for φ(p) x φ(p'): Xm x Xn^J x J. Furthermore, the bundle <G(D), G(D')} is flat.

Note. For D and Df being complex one must replace Xm and Xn by Ym and Yn, as in
Note after Proposition 3.4.

Proof. The arguments of Proposition 3.4 reduce the problem to the

Lemma. 1) There exists a canonical isometry

where Uo is a universal line bundle onXxJ with relatively flat Hermitian metric.
2. 0& is flat.

Proof of Lemma. 1) The part of the lemma which relates to the existence of a
canonical isomorphism is due to Moret-Bailly [4, 2.9.4]. The isometricity of this
isomorphism yields from the following simple general observations:
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if one has

- a canonical isomorphism (U0,U0) = ̂ ~ι over JxJ-^S,
- Hermitian metrics on both sides of this isomorphism,
- for 5 6 S fixed our isomorphism is an isometry,

then it is an isometry over S.
The first point is mentioned above, for the second one see before the

proposition, and the third one is provided by Lemma 3,1.
2. Taking into account the first part of the lemma, it is sufficient to prove the
lemma on flatness of <i?, Jt} (see the following point). D

3. Flatness of

Lemma. Let π:X-*S be a smooth proper map of complex manifolds of relative
dimension 1 with connected fibres. Let <£ and Jt be two relatively flat Hermitian
holomorphic line bundles. Then the bundle (J£,Jt} is flat.

Proof. If <£ and Jί were flat the assertion would be trivial due to Deligne's formula

c1«JS?,̂ r»= J C ^ Λ ^ M O .
x/s

In ouf situation, when Jί?, Jt are only relatively flat, let us cover S by open sets,
where «S? and Jί are topologically trivial. If we denote by S£γ and Jίγ the
restrictions of J£? and Jt to such a set U and endow S£x and Jtx with flat metrics,
then JS?® JS?f1 and Jί®Jί\ ι are Hermitian holomorphic line bundles pulled up
from U and we have a canonical isometry

because deg x / s ^ = d e g x / s ^ =0. Hence, <5P, Jί} is flat, too. •

4. Relative Principal Polarization and Relative Admissible Metrics

First of all, one can notice that all the definitions and constructions of 3.2-3.5 have
been chosen so that they are easily generalized to the relative case. Proposition 3.3
in the relative case is due to Moret-Bailly [4].

As an example, we generalize the notions of polarizing bundle and admissible
metric (Definition 3.4). To do this, let us give an equivalent, more convenient for
relative the case, definition of the canonical form and the principal polarization. If
{ωί9 ...,ωg} is an arbitrary local basis of the locally free sheaf π^Ωχ/s over S and

)J
is the inverse of the Gram matrix of the standard Hermitian product of the basis
elements, then

]/—1 ]/— 1
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is called the canonical form on X/S, being considered as a relative (1, l)-form on
X/S, and

ηJ = (\/Zϊ/2yωMώ = (]/^ϊ/2) £ ωiAmijώj

is called the principal polarization on J/S, being considered as a relative (1, l)-form
on J/S. The equivalence with the former definition is stated immediately after
changing the basis.

Using this definition one can easily see that η and r\j are smooth relative forms.
Now we call a metric on a holomorphic bundle i f over Jk^S relatively

admissible if its relative Chern form c 1 > J k / s i f is invariant under the translations
from J(S), and we call a bundle $£ relatively polarizing if its relative Chern class
cι,jk/s^ i s proportional to clηj with integral proportionality coefficient, where cl
means the class modulo relatively d-exact forms. The corresponding notions for
X^S and Xn-+S are defined analogically.

In order to deal with the Riemann theta-function let us specialize the base S of
the family: S will be the moduli space MQ in Siegel's realization which follows. The
set of complex (g x g)-matrices τ satisfying the Riemann relations: *τ = τ, I m τ > 0 ,
generate the Siegel upper half-space Hg. The points of Hg which are the period
matrices of Riemann surfaces form a closed analytic subvariety Ng in Hg. Each
Riemann surface with its complex structure and marking is reconstructed from τ
up to a unique isomorphism. The moduli space Jίg is the quotient-space
Ng/Sp(2g, Έ), Sp(2g, Έ) acting by changes of marking. The Riemann theta-function
θ(z,τ) depends really on two variables: ze(C9, τeHg.

After these preliminaries it seems more useful to leave the generalization of
Proposition 3.4, a), Corollary 3.4, a) and Corollary 3.5, a) to the reader as an
exercise.

5. A Problem

The metric (26), (27) is in fact a Hermitian metric h(z, τ) on the bundle Θ{Θ) over
J-+Ji'g, where Jt'g = Ng/Tγ 2 is a finite covering of the moduli space Mg, Γγ 2

C Sp(2g, Έ) is a modular subgroup consisting of matrices I I e Sp(2g, Έ) such
\C DJ

that the diagonals of matrices XAC and *BD are even, M'g parametrizes the pairs
(X, «£?), i f being a theta-characteristic, a holomorphic line bundle over X such that
i f ® i f is isomorphic to Ώ. To see that h(z,τ) is a metric, one must verify that
h(z, τ) \θ(z, τ)\2 is A- and Γ l t 2-invariant. In other words, h(z, τ) must have the same
transition law as |0(z,τ)Γ2. (Recall that under the transition τm + neA,

θ(z + τm + w, τ) = e x p π ] / ^ ϊ ( — m xτm — 2m V) θ{z, τ),

Λ Λ t. Λ 4 ^ π
and under the transition y = \ r n Je A,2>

0('(Cτ + D) ~1 • z, (Aτ + B) (Cτ + D) ~J)

= C det(Cτ + ί>)1 / 2 e x p π / M ('z(Cτ + Z))"x Cz) • θ{z, τ),
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where ζ is 8th root of unity, depending on γ - see Mumford [16].) One can easily
check the required transition law for h.

If, in order to prove the relative variant of Proposition 3.4, b), we start from a
relatively admissible metric onUg.1 then the arguments analogous to the proof of
Proposition 3.4, b) show that the Quillen metric on the bundle detRπ^L^. x over

is relatively admissible, as well as the metric on Θ(—Wg-1)= T*KΘ( — Θ) got from
h(z, τ) by translation. Thereby, the isomorphism

is an isometry up to multiplication by a function f(m) on M'g.
The problem is to make this function equal to 1.1 do not know how to do this,

but one must evidently do the following.
Consider the section Jίt

g^>Jg__1 of p, which takes each pair (X, J£?)e Jί'g to the
class clJS? e Jg_γ of its theta-characteristic if. If one could choose a metric on ££
such that

was an isometry then the function f(m) would be equal to 1.

6. The Universal Mumford Form: Construction

Suppose the data of 2.2 is given, that is, an algebraic family π: X-+S of Riemann
surfaces with an ordered set of n punctures Qί9..., Qn and an isotopy class of a disk
B containing all the punctures are considered. Besides that, there are fixed n
impulse vectors p1 ? ...,pne(C13 with some physically motivated conditions (see
2.2). Now the base S of the family will be the moduli space Jtg,n,B ( s e e 2.1), unless
the opposite is mentioned specially.

We want to observe all such families with all permissible values of n and pf on
an equal footing. According to Corollary 2.1, Jίg,n,B i s a fibration over the space
Jίg (which parametrizes complex structures on X) with a fibre (H^Ayπ^X) (which
parametrizes ordered sets of n punctures xl9 ...,xn belonging to a disk B in X, B
being fixed up to an isotopy of B in X\{xί9..., xn})9 where H is the upper half-plane.
Therefore, there is defined a morphism φ over Jίg\

\

where J 1 3 is the 13th power of the universal Jacobian over the moduli space Jig (its
fibre over the point of MQ corresponding to a complex structure on X is the 13th

power of the Jacobian J(X) of X). The morphism φ is defined as the Cartesian
product

φ: = φ(p 1)x...xφ(p 1 3),
<p(pv) being the Abel map
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Endow the bundle Ω with an arbitrary Hermitian metric, Ω®2 with the tensor
square metric, the bundle E, which is an arbitrary holomorphic line bundle over
the universal curve X-*Jlφ with an arbitrary relatively admissible Hermitian
metric and the corresponding determinant line bundles d e t R π ^ ) with the
Quillen metrics. Consider the line bundle 88 over J x J-+Jίg with the metric which
is relatively flat and compatible with the trivialization of & over the unit section [e]
x {e}: Jtg-+J x J. The Hermitian line bundle ^ over J define as the restriction of 0&

to the diagonal: OΆ — V>\
M — * © | d i a g ( j ) ,

diag: J^>J xJ.

If i f is a bundle over J 1 3 denote by if1 3 1 3 its exterior tensor power:
m \ = p*<£®p*<£®...p*z<£, where pt: Jί3-^J is the ιth natural projection.

The metric on Θ(Wg-1) = T*KΘ(Θ) we introduce letting the canonical isomor-

i < 2 3 >

to be an isometry for the Quillen metric on the determinant line bundle of Ug_ u

the latter being endowed with a relatively admissible metric.

Theorem-Definition, a) There exists a canonical isometry of two Hermitian
holomorphic line bundles over Jl2>^>Jίg:

M U : =
(detRπ^fl)®1 3

" (detRπ^Q)®1 3 ^

where ί:J->J is the inversion morphism. (By MU we have denoted one of these
bundles after their identification.)
b) The bundle MU is flat, so it locally admits a horizontal holomorphic section μv of
norm 1. This section is called the universal Mumford form. It is unique up to a factor
exp(iα), αelR.
c) For every set of impulses p 1 ? . . . , pΠ there exists a canonical isometry of Hermitian
holomorphic line bundles (see 2.2) over JίgnB

^ ), Θ(DV)}

Moreover,

μg,n,B=φ*(μu)
under this isometry.

Note. 1) If one replaces Jίg by its finite covering JΓq (see Point 5) then there is one
more canonical isometry

K having the metric such that κ®κ = Ω is an isometry.
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2) If S is an arbitrary base, as at the beginning of this point, then there is a natural

morphismS-*^ „ β and if φt denote the composition S^JίgnB—>J13 then one

can replace φ in c) by φv

Proof, a) trivially follows from the relative variant of Corollary 3.4, 1) and from

the isometry

v=30 lantidiag(J) ?

which yields from Lemma 3.1 in the relative case and from the isometry < J>?, Jt ~ * >

= <J5?, Jίy "1, antidiag: J-+J xJ mapping; into (j, —j). To prove the note, 1) one

needs to use Corollary 3.4, 2) and the Serre duality: detRπ^if ~1®κ)

= detRπJ|t(JS?®fc).

b) MU is flat because detR^(i2®2)®(detR^i2)®~1 3 is flat by the Belavin-

Knizhnik theorem (or by the Deligne-Riemann-Roch) and because & and, hence,

# is flat.

c) is a sequence of Proposition 2. •

Note. For n = 0 the vectors p 1,..., p 1 3 are vectors from the zero-dimensional space

and it is natural to postulate that D v=0, v = 1,..., 13. Then φ: Jtg-+J12> maps Jίg

into the unit section {e} x ... x {e} (13 times) oϊJl2>^Jίg. (The image of this section

one can identify with Jίg). But ί? is canonically trivial over {έ} x ... x {e} by

construction, so

<p = id :«/̂ ->«/#£

and

MU = detRπ^Ω® ̂ OίdetRπΩ)® " * 3

Therefore, the theorem in the case n = 0 states nothing but the existence of the

Polyakov measure in the partition function integral.
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