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Abstract. The hidden quantum group symmetry in the quantum Sine-Gordon
model is found. This symmetry provides the possibility to restrict the operator
algebra of the model to subalgebras. It is shown that these subalgebras are
massive deformations of minimal conformal field theories.
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Introduction

The goal of the present paper is to describe an interesting property of certain
integrable models: Invariance with respect to the action of quantum groups. This
invariance is essentially the quantum effect and provides the possibility to restrict
the operator algebra of the models to subalgebras. Most importantly ultraviolet
asymptotics of Green functions in the restricted subalgebras are described by
conformal field theories [1] different from the one associated to the model itself.

In this paper we concentrate on the case of quantum Sine-Gordon (SG) model
[2]. The model is described by the Lagrangian

& = ί ( i(^φ) 2 + ™2 cos y/yφ)dx.

We use the renormalized coupling constant ξ = (πy)/(8π — y). The spectrum of the
models contains solitons and (for ξ < π) their bound states—breathers [3,4]. From
the viewpoint of papers [5-7], SG is the perturbation of the conformal field theory
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(CFT) with c = 1 (massless free bosons) by the operator with scaling dimensions
(Δ,Δ) = (yβπ,yβπ). The other integrable quantum models are discussed in the
conclusion.

We show that the S-matrix of the model commutes with the actions TR and
TL of quantum groups SL(2)q and SL(2)q (q = exp (2π2ί/ξ)). This on-shell symmetry
can be spread to off-shell objects. Namely, we show that there are two subalgebras
of the local operator algebra of SG (A^y, A*™) which are invariant with respect to
TR, TL. It is known [8] that the SG model is equivalent to the massless
two-component Thirring model. The coupling constant of SG describes the
anisotropy in the Thirring model. The case γ = 8π corresponds to isotrophical
interaction. Our quantum group symmetry describes the degeneracy of the
spectrum in these models, and it becomes the ordinary St7(2)-symmetry at γ = 8π.

Then we consider rational values of ξ/π. Due to special proerties of SL(2)q for
qr = 1, it is possible to reduce the space of states preserving the locality of invariant
operators. Following [9], the reduced model is denoted by RSG(£/π). We show
using this fact that SG Green functions of invariant operators coincide with RSG
Green functions. We study the physical interpretation of RSG(£/π). The S-matrices
in these models are of RSOS type [10-12]. These S-matrices are unitary only for
the following values of coupling constants:

- = ̂ , p = 2,...,k = 0,..., = - ^ , fc = 0,....
π pk + 1 π 3/c + 2

Only for ζ = πp in addition to the unitarity of S-matrices, the algebra of local
operators appears to be closed with respect to the operation of Hermitian
conjugation. In other cases there are two conjugated algebras of local operators
which are not mutually local. We call this situation *-violated, it was discussed in
[9]for{ = 2π/(2π+l).

Finally we present arguments in favor of the conclusion that the model
RSG(p1/(p2-p1)) coincide with the perturbations of Mpι/P2 CFT [1] by the
operator φlf3 [5]. As it has been mentioned, the Green functions in RSG coin-
cide with those of invariant operators in SG. This fact implies that the short
distance behavior of certain SG Green functions is described by Mpι/P2. In usual
(c = 1) scaling limits these Green functions disappear because the scaling dimensions
in MPί/P2 are less than the corresponding scaling dimensions for c = 1. The case
ξ = πp corresponds to the minimal unitary [13] CFT Mp/P+1.

0. Quantum Group SL(2)q

Here we remember the definition of quantum group SL(2)q and give some important
facts about this algebra. This is the deformation of the algebra of functions over
SL(2) [14-16]. It can be defined as an associative algebra with generators
gε

ε,9 ε5 s' = ± 1 . Let g = ((g*e>)) be a matrix of generators and q some formal parameter.
Relations in the algebra SL(2)q can be written in the so-called R-matrix form:
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Here gι,g2>R(q) are matrices acting in
matrix of generators and

= g® 1, g2

 =

/

R(q) =

q112 0 0 0

0 1 4 1 / 2 - 4 " 1 / 2 0

0 0 1 0

0 0 0 o
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\g is the

(0.1)

Algebra SL(2)β is the Hopf algebra [14] with comultiplication
SL(2)q

The antipode S:SL(2)q->SL(2)q is defined as

It plays the role of inverse matrix to g:

id(g)α

ί/ί

For further information about SL(2)q see [14-17].
We will say that the algebra SL(2)q acts on the algebra A if it is defined by

homomorphism of algebras:

and the diagram

is commutative (more precisely this is coaction).
If A = End(F) we will say that SL(2)q acts on V. In the classical limit q^> 1

generators g\. become matrix elements of two-dimensional representation of SL(2).
In this limit the product

gε'"-gε" (0.2)

are matrix elements of nth tensorial power of two-dimensional representation. This
2M-dimensional representation is reducible and decomposes into the sum of its
irreducible components. In the quantum case this means that the matrix (0.2) has
block-diagonal structure (see [15,17] for more details).

We are interested now only by singlets vectors Eει'"εn and covectors E'ει...εn in
((C 2)®π:

A A SL(2)q ® A z = J SL(2)? ® SL(2)β

ε\-εn

Σ F , / Λ8'1 .
/ ^H-zβεv

ε\-ε'n
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Let us denote the space of singlets in (C2)®" as ((C2)®π) inv. For generic q(qn Φ 1
for any neN) this space is a span of vectors

λ_ y I 2 i I.1Π. i '2
n-2)— ZJ

kl—kn-2

where

ΓΛ i A]
Lm l ε m2j«

are ήf — 3;-symbols [17]:

2 .Z+Π ϋ+l+m)/4

Γ; i - ΐ l = -O

and

Dual vectors have the same form:

ϊ /ijpi i

L*--2 ε-

where {^ε} is a dual basis for {eε} in C2,(eε,eε') = ί|'. For generic q these
g — 37-symbols satisfy orthogonality relations:

j i / Ί Γ J i /'

and therefore vectors E'(li•••ln-2)are dual to E(lί- ln-2) under a standard scalar
product in (C2)®":
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Another situation we have when q is a root of unity. Let qr = 1, then some of
q — 37-symbols become infinity. To have the finite vectors E(lί9..., /n_ x) we should
renormalize q — 37-symbols. Put

/ IJj i
m ε m + εj \jn ε

These symbols are finite for any q. Therefore vectors are

^ ( / l - / n - 2 ) = Ϊ 2

\_m

α=l

~ n-2

α-1

also finite for any q, and

EVr ~ln-2)E(l'r "ΐn-i) = Π
α = l

It follows from these formulas that vectors Ei^ /„ _ 2 ) has nonzero scalar products
with E'(l1"Ίn_2) only if the sequences (lx •••/„_2) are restricted: Zf^r/2 —1. So,
from the subspace of SL(2)4 invariant vectors in (C2)®2 we can extract subspace
of "good" vectors E(l1~Ίn-2) with restricted sequences (/x •••Zπ_2). Other vectors
in this subspace have a zero scalar square.

Therefore we have the decomposition of the space of one-dimensional sub-
representations in (C2)®" on "bad" and "good" subspaces. The last one is formed
by vectors E(lι~Ίn-2) with restricted sequences. The first one is formed by vectors
having zero norm. A more precise description of "bad" subspace is given in [26].

Suppose α is an operator, acting in (C 2)Θ n.
Let us suppose that if 0 ^ Zf ̂  r/2 — 1 then

« £(/1 ί.-2)= Σ ^::i":2w1...i'n_2)

bad(/i ..li_2)

and

« £(/l "Ίn-l) = Σ ftt'VVl -1-2)
bad(/i . ί,_2)

otherwise is the action of α on the basis in the space of one-dimensional
subrepresentations of SL(2)q in (C2)®". From orthogonality "good" and "bad"
subspaces follows and because "bad" vectors has zero norm we have:

0ίί^r/2-l

The important fact is that matrices

α f =l(g) (8)Λ(M+1)(8) ® l

in (C2)i®v

π acts as (0.2) (0.3). This can be proven by direct calculations.
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1. SL(2)q Invariance of Sine-Gordon Models

Let us return to the SG model. It has already been mentioned that the spectrum
of SG contains solitons possessing an internal degree of freedom (soliton-
antisoliton) and (for ξ > π) their bound states—breathers. For the sake of simplicity
let us consider the case ξ > π when there are no breathers. Afterwards breathers
can be easily taken into account because they are scalar with respect to the action
of the quantum group described below.

For describing the space of states of a SG model, it is convenient to use
Zamolodchikov-Faddeev operators Zε(β\Zf(β) (β is rapidity, ε= ±1). These
operators satisfy the following commutation relations:

Σ \ \ β i ) , (1.0)

zn(βt)z*(β2) = Σ z%{β2)sr\{β2 - β1)zΉβ1) + a j j ^ - β2),
ε\ε2

where S(β) is the scattering matrix of solitons [4], which can be presented as an
operator acting in C 2 ® C 2 :

S12(β)= S°iβ)

π

sinfcβshί -—
oo \ 9

•ij , \/ dk , (1.1)
o , , nk ξk/cchy shy

where σ^σ* are Pauli matrices acting nontrivially in ith space {σ\=(σa®I\
σ5(/®σα)). In what follows we shall use the notations of this kind and indices
notations. We hope it will not give rise to any misunderstanding.

The operator Zε(β) annihilates the vaccum |0> while the operator Zf (β) creates
one-soliton excitation. The space of states contains the vectors

IAr 0i>ei βi = Z?n(j?π) Z*(/?1)|O> (1.2)

and their linear combinations. The full set of'in" states consists of the vector (1.2)
with βn> ••• >βl9 the full set of "out" states consists of the vectors (1.2) with
βn </}„_!<•••< βlm In the same manner we define the covectors

Now we define the action of quantum groups G = SL(2)q and G = SL(2)ξ

(q = Qxp2π2i/ξ) in the space of states. To put into agreement the definition of
quantum group and the exact form of SG S-matrix we understand the square root
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q1/2 in (0.1) as - exp(π2i/£). In the n-solitons sector these actions of G and G(TR, TL)
as slightly modified tensor powers:

(1.3)

Now it is necessary to make sure in self-consistency of these definitions. Really,
we can permute the particles βhβi+ί and then apply TR(TL) or first apply TR(TL)
and then permute the particles βh βi+ί. The result should be the same which means
that the following identity should hold:

s12(βi βi)giG2 = g2θiS12(βi - β2\
 ( L 4 )

where

S Z i + σlβ2)S12(βi ~ β2)

(5 and S are divided by So because this multiplier can be omitted in (1.4).) The
validity of the Eqs. (1.4) is a consequence of the following representations for
§,§:

S12(j8) = —

S12(β) =
Ish^(β-πi)

These representations can be easily obtained from (1.1).
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From the physical point of view the fact of self-consistency of the definitions
(1.3) means that TR and TL commute with the S-matrix, i.e., they really define some
symmetry of the theory. The problem of consistency of this symmetry with the
local description will be discussed below. Now we would like to notice one
important property of TR and TL: they are conjugated via the operation of charge
conjugation

CTR{g)C-ι = TL{σ'gσ'\ (1.5)

The charge conjugation is defined in SG as follows:

CZ*{β)C-'=Ztε(β\ C|0> = |0>.

The action (1.3) of quantum groups SL(2)qiSL(2)q is equivalent to the following
action of these quantum groups on the algebra (1.0):

= Σ z*

*L(Zε(β)) = Σ Z°'(β) <χ) g\. exp ( - ^ β(ε - ε'

*R(Zε(β)) = Σ Zε'(β) ® g\. exp (^ β(ε -

For ξ -*> oo the parameter q -> 1 and both G and G turn into the classical group
SL(2). The model SG in this limit becomes an 5ί/(2)-invariant Thirring model [8].
The actions TL and TR turn into the usual action of an isotopic group.

There is nothing especially surprising in the construction described above.
Really, the very definition of quantum groups appeared from the study of
trigonometrical solutions of Yang-Baxter equations. SG 5-matrix is just one of
these solutions. The invariance of the S-matrix model SL(2)q is a rather evident
fact. The main problem is to understand the transformation properties of local
operators under the actions TR9 TL. One of the possible situations is that the local
operator appears to be a sum of nonlocal operators which transform according
to different irreducible representations of G (G). In that case one has to conclude
that on-shell symmetry is occasional and does not correspond to any off-shell
symmetry. Fortunately, it is not the case in the situation under consideration.
There are local operators which transform under irreducible representations of
G, G. In this paper we shall show in particular that there are operators invariant
under TR(TL). These operators create two subalgebras of the full operator algebra
of the theory Λ£v and Λ£v:

TR(g)0(x) = 0(x)TR(g) if OeA™

TL(g)0(x) = 0(x)TL(g) if OeA™

Equation (1.5) implies that
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The natural way of describing local operators in massive theory is fixing their
matrix elements in the space of states. In the integrable case these matrix elements
satisfy the system of Eqs. [18-19] which allows exact calculation in many
significant cases.

Consider some local operator O(x). We call formfactors the following matrix
elements of 0:

The matrix elements of general type can be expressed in terms of formfactors:
ε £»<αi αm|O(0)|^ )?1>εk..,1 = /(αra - α 1 | ^ tt.4+ , (1.6)

where

/(«--on\βi-A)eT 4 = Σ ^ ' W i A.«. + *ι,• »«i + *Λ,...*:....ί.

* " (1.7)

c = σ1, dots in (1.6) mean the term containing ^-functions which are not very
essential here.

We want to find Γκ-invariant operators. Their matrix elements should satisfy
the equations:

Σ 4 4 e χ p ( - 5 Σ M ε ; - β ^

= Σ i#1 εkαl•••αJO(0)|iSm...iS1>4^.v^£.•.

Equations (1.6), (1.7) together with the identities

^ σ 3 V {σ1,σ3}=0, gs(g) = s(g)g =

imply that the sufficient condition of TR invariance is the following identity for
formfactors:

Σ /(̂ •••/Uw;̂
ε\εf

n \ * /

In other notations this identity can be written as

- ^ Σ ^ ^ (1.8)

here f(βt ~'βH)1...H means covector from ((C2)®Λ.
In the papers [20] the formfactors were obtained for the operators φ, Tμv,

exp(±iy/yφ),exp(±iy/γφ/2). We shall show that the operators exp{iy/yφ),

exp (iy/γφ/2) and modified energy-momentum tensor

T -T A-i2~sl2^-F F d d ω
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whose trace is equal to [9]:

(1.9)

(M is soliton mass) are Tn-invariant.

Consider for example the operator exp(i^/γφ/2). In the paper [20] the
formfactors are shown to be

Λ - 1 In n-\

<j -oo -oo i = l 7 = 1 i<j

/ 2π 2π
•Fl exp—α^ exp—αn_!

2% 2π

where

φ(α) = Cj exp

2% n 2π n

e x p — ^ exp—β2

V 2 2

(π „ „ ,\
expI — Σβjσj h

-dk

fcsh—-shπfe .

ξk πk
fcsh—-shπfcch —

c9cί9c2 are certain constants, J means a special regularization of the integral [20].
The most essential for our goal object is the function F. Let us discuss its
property.

The function F(aι -an-1\b1- b2n)1...2n is tensor-valued rational function of
all its variables. It is a homogeneous function of all its variables of total
degree ((n— l)(n — 2)/2) —n. F(a1'~an-I\bι> b2n) is an antisymmetrical function
of al"-an-l9 its symmetry property with respect to bί'"b2n are given by the
relation:

where

b2R12(q)-b1(R2ί(q)) - 1

The function ^ α j -• α l ,_ 1 |b 1 •• i>2Λ)i...I1 has no other singularities but simple poles
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at the points b} = btq for j > i. Its residues at these poles are

res F(a1--an-1\b1--'b2n)1...n

bi=bjj>i

= nΣ(-l)kF(aι --άk---an.ι\b1---br--br--b2χ..{..)...2n

(xJsingϋ Π (ak + qll2bp)-q2(n-1) Π i^

biq1'2) Π ^

•Sj-^bj^bd-'-St+abi+iM (1.11)

where singly is singlet vector in the tensor product of/h and spaces:

Being antisymmetrical with respect to ax an _ x the function F(aγ an _ ί \ b1 ί>2n)
must contain the multiplier Y\ (αt — α,), hence its nontrivial part has total degree

(-n). That is why the function is defined completely by the requirement that it
has no singularities but the poles bj = btq and the residues are given by (1.11). So,
the Eq. (1.11) provides complete recurrent procedure for the calculation of
F. An exact formula for the function F can be written [15] but it is not important
here.

The requirement of TR invariant of exp (iy/γ φ/2) (1.8) is satisfied if F satisfies
the equation

"β2n)l..2n, (U2)

which means that the vector F lies in the SL(2)q spin O subspaces of (<C2)®2n. Look
at Eq. (1.11). Having in mind that

singly, = [g\g\ - q^glg^ύngλ^ = singly

one makes sure that the functions

satisfy the same system of recurrent relations as the functions F(β1'-β2n). The
initial conditions are the same because

Hence the Eq. (1.12) holds for all n by induction.

Thus we prove TR in variance of exp (iy/γ φ/2). Formfactors of the operators

exp (iy/γ φ), Tμv are given by the formulas similar to that for exp (iy/γφ/2). The

only difference is that additional multipliers e x p ( ± ( £ a t — 1/2£/?,-)) appear under
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the integral. Evidently this difference does not affect the fact of TR invariance
because it is based only on the Eq. (1.12) for the function F.

We have proved ΓR-invariance of the operators Tμv, exp(iy/γφ), exp(iy/γφ/2).
If the operator O(x) is TR-invariant then the operator COfyC'1 is TL-invariant
due to (1.5). That is why the operators exp ( — (iy/yφ/2)), exp (i^/yφ), TJv are
TL-invariant, this fact can be proven directly using the formulas for their
formfactors. It can be shown also that the operators exp (—(iy/γφ/2)), exp (— i-Jyφ\
T*v possess extremely bad properties with respect to TR.\ they can be presented
as infinite sum of nonlocal parts transforming under a different irreducible
representation of SL{2)q.

Evidently the algebra A™ is closed. Certainly it should contain besides the
operators mentioned above the following ones: exp (iky/γφ/2) for arbitrary integer
k ^ . We do not know formulas for the formfactors of these operators but it is not
a great problem to get them. Besides, the algebra A™ contains together with the
operator O(x) the operators [/s,O(x)], [J_s,O(x)], where IS,I-S are the local
conservation laws of SG of spin s (s = 1 (mod 2)). Formfactors of these operators
are expressed in terms of formfactors of O as follows:

Is this list of operators complete? It would be very interesting to answer this
question, but we cannot do it at the present time.

2. Reductions of Sine-Gordon for Rational ξ/π

Consider a Green function of several TR invariant operators:

Evidently it contains as intermediate states only the following combinations of
pure SG states (for convenience we introduce Jt = j):

Σ \βn -βl}en-nEC"-'εi(ln-l -ll)exp(^-γξΣejβj) = \βnln-lβn-l-hβl>

(2.1)

Σ ^ , en(Ί / B -l)exp(^Σ ε Λ Ϊ ' ε"<βl-βn\ = <βlll-ln-lβn\ (22)

The vectors E, E were defined in Sect. 0.
It has been said in Sect. 0 that the properties of £, E defined essentially on the

nature of q. If (π/ξ) is a rational number then one has

If ξ = (r/rjπ which means that qr = 1 then the states with intermediate spins greater
than (r — 2)/2 appear to be "orthogonal" to themselves:
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where

C\ if

0 if a>-

Let us denote by Pr(Pr) the operator which projects the space of states of SG (dual
space) onto the subspace spanned on the vectors (2.1) ((2.2)) with lx ^(r —2)/2.
The above reasonings imply that for ξ = πir/rj the following identity holds for
the Green functions of TR invariant operators:

\ l l 1 / " B\ H// — \^^ 1 \ 1/ * * ̂ Ŵ\ n) /' \ /

where

The identity (2.3) means that the operators 0{(x) are local and mutually local.
However, they are not mutually local with those SG operators which are not
Tu-invariant. Thus we deal with certain restrictions of SG theory which is a
consequence of special properties of SL(2)q for <f = 1.

The next important problem is the possibility of physical interpretation of
reduced models (we denote them by RSG(r/rx) following [9]). The space of states
of the reduced model is Hr = PrH (H is the space of states of SG). It is not clear
how to introduce in Hr the structure of Hubert space. The structure induced from
SG is not suitable because the space conjugated to Hr does not coincide with H'r.
Notice that in all the reasonings concerned with locality [18,19] the Hubert
structure is not involved. In fact the space spanned on the vectors

and that spanned on

are used as dual linear spaces. The Hubert structure of SG space of states which
require that

is from this point of view, an external condition needed for the correct physical
interpretation. SG Hubert structure ensures for example the relations:

Pμ = Pi, T , = Γμv, (exp (ιγ φjj* = exp ( - i γ<

etc.
In the reduced model we introduce another Hubert structure. Namely, we

require that

\βrln-iβn-l-hβl>*=<βlh-ln-Jr\- (2.4)
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The symbol • in this formula has another meaning than in SG. After the new
Hubert structure is introduced we have evidently H'r = H*. The operators O(x)
acting in Hr are local and their Green functions coincide with SG ones. It is not
clear, however, that the reduced model with the Hubert structure (2.9) allows
interpretation in terms of particles. Let us discuss the problem in more detail.

The most important operator in RSG(r/r1) is the energy-momentum tensor

μv x μv*

The operator

coincides with the restriction of SG energy-momentum into Hr, i.e., its eigenvalues
are:

<βih ~βn\P»= Σ M ( ^ + (-i)^o<M•••&,!.

Thus energy-momentum operator is selfadjoint in new Hubert structure and energy
is positive.

Consider the S-matrix which is the restriction of SG on Hr. Multiparticle
scattering can be reduced to two-particles processes. Two-particles amplitudes are
defined by:

Σl Λ - i i M A + Λ + i ) ^ ^
Ik

These amplitudes can be expressed in terms of g-analogos of 6—j symbols [11]
and coincide with critical RSOS heights [10-12]. Without going into details we
present explicit formulas for the amplitudes:

£_

(

sh |//s in (j 2l\ sin ^

(2.5)
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the square root in the last line is understood as

. π22/ . π2(2/ + 2)V' 2 / ( . π22l . %\21Λ
s i n — - s m 1 = /sgnl s i n - — s i n —

(\ . π22l . π2(2/ + 2) \ 1 / 2

( s i n — s i n I , - l = i.

Other matrix elements of 5-matrix are equal to zero. From the definition of the
S-matrix as restricted SG one it follows that

Σ\^^U-β) = Kv2 (2-6)

i.e., the matrix S( — β) is inverse to S{β). The Eq. (2.6) can be also checked by
straight calculations using (2.5).

The RSOS structure of S-matrix in the restricted SG model was discussed also
in [24].

Our goal is to check the unitary of the S-matrix. To this end we have obviously
to compare S*(β) and S( — β). Evidently, everything depends on the square roots in
(2.5). Simple reasonings show that in general we have the following property of
S-matrix:

AS* AS = SAS*A = /, (2.7)

where A is the operator defined by the formula

The symbol ε ^ •••/„-!) coincides with that introduced in Sect. 0.
Certain reasonings based on the exact formulas for the formfactors show also

that

(2.8)

where φ = exp (iy/γφ/2).
Let us discuss these results. First, let ξ > π. In this case A = I only if ξ = π

which means that q = exp (2πί/r). For these values of ξ we obtain self-consistent
physical theories with unitary 5-matrices and selfadjoint operators Jμv, ψ. We would
like to notice here the two simplest cases: ξ = 2π, ξ = 3π. For ζ = 2π the limitation
li ̂  0 means that H2 = 0. For SG theory (2.3) it means that for ξ = 2π all the
Green functions of the TΛ-invariant operators are equal to zero. For ξ = 3π the
internal degrees of freedom appear to be frozen: k^h hence for lι"Ίn-ι we
have only one possibility hl2h'" — i^Λ'"- That is why the model RSG(3) can
be interpreted as a theory with one scalar particle. Correspondingly the 5-matrix
is equal to - 1 . So, RSG(3) can be identified with scaling Ising model, the operator
φ corresponding to the disorder parameter. Going back to SG we realize that for
ξ = 3π the Green functions of Γκ-invariant operators coincide with those in the
scaling Ising model.
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There is one more case with unitary S-matrix for ξ > π: ξ = (3π/2), q=exp (4πi/3).
In this case the internal degrees of freedom are frozen: /t ^ i The operator A acts
as follows:

A\β2Λβ2n-i0-βίy=(~mβ2ny2n-l0-βι}. (2.9)

This operator cannot manifest itself on-shell because of the pure elastic character
of scattering, on the S-matrix is unitary:

SS* = I.

But the operator A is essential off-shell where the states with a different number
of particles are mixed: the operators &"μv and ψ are not selfadjoining and cannot be
made selfadjoint since they are not mutually local with their adjoints. In this case
we have to algebras of local operators si and J / * which are mutually local. This
situation was discussed in [9]; we call it *-violated. The internal degrees of freedom
in the model are frozen; that is why the spectrum can be interpreted as containing
one scalar particle. Corresponding S-matrix is

This is the simplest factorizable S-matrix. The sign " - " occurring in the crossing
relation for this S-matrix reflects the *-violation of the theory.

Consider now the range ξ < π. Here breathers appear. One can show that in
that case the operator A in (2.8) should be replaced by AC, where C is the breathers
C-conjugation operator which gives 1( —1) on even (odd) breathers states. For
ξ<π unitary S-matrices appear when ξ = π/(ίc+l), q = exp(2πί/2), and when
ξ = 3π/3k + 2, # = exp (4τα/3), the solitons states are frozen and in solitons
subspaces A is the same as in (2.9). All these models are *-violated because A is
changed to CA, and the operators 5~μv, φ necessary mix odd and even breathers
states. Certainly the soliton-breather and breather-breather S-matrices being
scalar ones coincide with those in SG theory.

It is interesting to list the models with scalar S-matrices. For ξ > π there are
two theories of the kind: ξ — 3π, ξ = 3π/2 considered above. For ξ < π there
are three series. The first one: ξ = 2π/(2n +1), q = — 1 [9] solitons disappear
completely, only breathers remain, and their S-matrices are known. The second
one: ξ = 3π/(3π + 1), q — exp(2πi/3), solitons are frozen and give one particle. The
S-matrix of these particles is

! / 3iπq\\

)j£ Π

Scattering of this particle on breathers is described by the usual soliton-breather
S-matrix, scattering of breathers is described by the usual breathers S-matrix. The
third one: ξ = 3π/(3n + 2), q = exp (4πι/3), everything is similar to the previous case,
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the 5-matrix of soliton-made particle is

Let us summarize the results of this section. If we consider the Green functions
of invariant operators for rational values of (ξ/π) the space of states automatically
appears to be reduced. For the reduced model self-consistent physical interpretation
is possible for

ξ ^ τ r 2,...,/c 0,l,...,ξ ^ / c 0,l,...
rk + 1 3/c + 2

only in these cases the S-matrices are unitary. The models RSG(r) are the only
models possessing the selfadjoint algebra of local operators. Other models

forfc>l,

are *-violated which means that their algebras of local operators are not closed
with respect to the Hermitian conjugation.

3. Ultraviolet limit of RSG

Let us discuss the ultraviolet behavior of the model RSG(2/21). Unfortunately we
cannot yet extract the precise information about the behavior of the Green functions
at short distances from the formfactors expansion. In the paper [9] it is shown that
the formfactors possess remarkable properties which allow to write down series
for scaling dimensions which is far more effective than the direct investigation of
short distance behavior of Green functions. However, the exact summation of these
series remains an open problem. Thus in discussing ultraviolet behavior we have
to rely on physical speculations.

The TR invariant energy-momentum tensor is modified energy-momentum
tensor

T =T -f/2"5/2^-ί

Corresponding central charge is

because the central charge of Tμ v is equal to 1 as well as the coefficient before the
<5-function in the commutator [φ,δ o φ] [15]. The formula holds in reduced theory
if ξ/π is rational because the Green functions of reduced theory coincide with those
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in SG. So, it is natural to suppose that the reduction of SG to RSGir/r^ is an
analog of Dotsenko-Fateev construction [21] for massless fields. In more adequate
terms in the context of the present paper, this construction is described in [22]
(as reduction of the space of states of the massless free boson field which leads to
the minimal models of CFT). Having in mind this analogy and the formula for
the central charge (3.1) we suppose that the ultraviolet limit of RSG^/rJ
is the minimal CFTMPί/P2{pί = r,p2 = rx + r)[l]. So we adopt the following
scheme:

our reduction

(
 P l

\P2-P1
ultra-
violet

Dotsenko-Fateev

reduction

Then the scaling dimensions of the operators Jμμ~ P'rexp(i^/yφ)Pn φ =

Pt

rexp(iy/γφ/2)Pr should be equal to

Pi

P2

L

h
VP2

/ P i

(P

(P

2 " P i ) '

P1P2

2 " P i ) 2

2p

_3p

1 - P 2

P2

i-2p2^ 1

4/>2 \j fy2 PχP2 4p2

i.e., in scaling limit these operators coincide with the operators <̂ >i,3,</>i,2,
respectively. It means that from the viewpoints of papers [5-7] RSG(p1/p2 — pγ)
is the perturbation of MPί/P2 via the operator φίt3. One can add other arguments
in favor of this conclusion: i) RSG (3) coincides with the scaling Ising model, ii) it
is possible to calculate scaling characteristics of the models studying their
low-temperature thermodynamics in the spirit of papers [23,25]. However,
mathematically complete reasonings involving the direct investigation of short
distance singularities of Green functions is missed yet.

The conclusion that RSG(pJp2 - pt) is the perturbation of Mpι/P2 by the
operator φlf3 implies the following nice picture: for the SG theory two scaling
limits are possible which lead to the theories c = 1 and c = 1 — 6{p2 — Pι)2/PιP2.
Let us explain. Consider, for example, the operator ^ μ μ . This operator has scaling
dimension Δί3 = (2pi —ρ2)/P2> i e >

M is the mass of soliton.
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The formulas (2.3), (1.9) mean that

<0|^ μ μ (z,z)^ μ μ M^

where the left-hand side is RSG Green function, the right-hand side is SG Green
function. Hence,

<0|exp(ίV

/7φ(zz)exp(i77φ(0,0))|0>^p_0—yzϊj+ . (3.2)

At the same time one has the formula

^ ^ , (3-3)

where A = Pγjp2. The last formula from the fact that in ultraviolet limit SG leads
to c = 1 theory.

To get the scaling limit leading to c = 1 theory one has first to rescale the

operators exp{iy/yφ)9exp{-y/yφ),

v = m2Δ exp (iy/yφ), v* = m2Λexp(- iy/γφ)9

where m has the dimension of mass. Then one considers the limit p -> 0, m -• 0,
r = (M/m)ρ is finite in all the Green functions. In particular in this limit one gets
from (3.2), (3.3):

z,

m

because Δ13<Δ. These Green functions correspond to c = 1 theory. A part of the
information about the behavior of the Green functions at short distances is massive
theory (for example the formula (3.2)) is missed in this scaling limit.

The SL(2)q symmetry of SG allowss to extract from the operator algebra the
subalgebra of invariant operators which contain exp (iy/yφ) but does not contain
exp( — iy/γφ). For this subalgebra one can consider another scaling limit.

v = m2Λl3exp(iy/γφ)9

m -* 0, p -> 0, r = Mp/m is finite. In that limit we get

The resulting algebra of operators should coincide with that of the MPί/P2 model.
Thus the short distance behavior of different SG Green functions is described

by diferent CFT. Certainly there are Green functions for which both scaling limits
give no information, for example

{0\expi^γφ(zιzι)exp(iy/γφ(z2z2)exp(-iy/γφ(x3z3)\0y.
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For this Green function the first scaling limit gives zero, the second scaling limit

is not applicable because exp( — i^/yφ) is not T^-invariant.

4. Conclusion

We considered SL(2)q symmetry in the SG model. More precisely we used a
regularization in the region 4π g y ̂  8π such that the model becomes equivalent
to a massless two-component Thirring model with anisotropical interaction [8].
For these values of the coupling constant there is no unique ultraviolet regulariza-
tion. An example of a different regularization is given in [27]. It would be interesting
to understand the hidden quantum group symmetry in this case.

The Sine-Gordon model is a particular case of the so-called two-dimensional
Toda models. Each of these models is characterized by a massive parameter, m, a
massless parameter y and by some simple Lie algebra G. This model describes
n = rank of interacting scalar fields φa, a = 1,..., n with Lagrangian [28],

m2 «+i Γ / n \ Ί\

where {αj"=1 are the simple root of G,αw + 1 is the maximal negative root,
n

= ~ Σ
i l

i l

For negative y these models have hermitian Hamiltonian, massive excitations
and well-defined scattering theory. For positive y-s the Hamiltonian is not a
hermitian operator (except the case G = sl2 corresponding to the SG model). But
precisely this case seems to be most interesting from our point of view. In this case
it can be shown that the Hamiltonian of the model is invariant under the hidden
Gq (and G-). For rational y/π there is a restriction on the operator algebra similar
to the one described above for the SG model. This restriction becomes more
interesting for y = (8πp)/p + 1 (at least for G = AH9 Dn, £ 6 _ 8 . In this case one can
show that on the restricted operator algebra there is a new *-involution. The
restricted theories are unitary under this involution and we expect that they will
be massive integrable perturbations of conformal field theories with the following
central charges [29]:

P\P+ι)

1 2 1 3 =13,14,...,
P(P+1)/

p=18,19,...,

We hope to describe these models in more detail in a separate publication.
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