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Abstract. Existence of maximal and "almost maximal" hypersurfaces in
asymptotically flat space-times is established under boundary conditions
weaker than those considered previously. We show in particular that every
vacuum evolution of asymptotically flat data for the Einstein equations can be
foliated by slices maximal outside a spatially compact set and that every (strictly)
stationary asymptotically flat space-time can be foliated by maximal hyper-
surfaces. Amongst other uniqueness results, we show that maximal hypersurfaces
can be used to "partially fix" an asymptotic Poincare group.

1. Introduction

The significant role played by maximal hypersurfaces in general relativity is well
known and hardly needs to be discussed (cf. e.g. [An,CBY,COM]). A few years
ago one of us [Bal] established existence of such hypersurfaces under some interior
regularity conditions together with some rather strong asymptotic conditions on
the metric. In [Bal] it was assumed that the metric tends to the flat metric as
r ~1 and the trace of the extrinsic curvature of the t = const slices falls off at least
as r~3. In a recent analysis of solutions of the Einstein equations in which one can
make global Lorentz transformations (the boost theorem) [COM] it was shown
that for any α > 0 there exists many regular solutions to the vacuum field equations
for which the metric only falls off to the flat metric as r~α and the extrinsic curvature
as r"1""00. For such solutions, we cannot a priori expect the trace of the extrinsic
curvature K to fall off faster than r"1"". In this paper we show that in some
situations even with such a slow fall-off the existence of maximal slices can be
established, provided α > 1/2. It may be of some interest to note that this decay
condition covers, roughly speaking, all cases in which the mass has been shown
to be finite and well defined ([Ba3,Ch2,OM]).

It has been recently observed [Br, Wi] that there exists a topological obstruction
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to the existence of maximal slices in Lorentzian manifolds. In some situations it
may be useful to consider "almost maximal" slices, i.e. slices on which the trace of
the extrinsic curvature has compact support—this is the best one can hope to get
in "bad" topological situations1. Our main result—Theorem 3.5—is as follows:
there always exists an evolution of asymptotically flat Cauchy data for the vacuum
Einstein equations which contains a foliation by "almost maximal" slices. Under
stronger asymptotic conditions, a similar result was shown in the thesis of one of
the authors. An idea similar to the one we use has also been considered by Ashtekar
[As]. In Sect. 4 we show existence of maximal slices under weaker conditions than
previously considered in [Bal]. It must be recognized that our result is not as
good as one would wish: we still have to impose a restriction on the rate of decay
of the metric together with a condition on the time-variation of the trace of the
extrinsic curvature K to prove our assertion. However, it is not clear whether our
decay conditions can be weakened further. We also show the existence of maximal
slicings of strictly stationary asymptotically flat space-times. In Sect. 5 some results
concerning the uniqueness of asymptotically flat maximal foliations are established,
assuming the time-like convergence condition. An interesting result for physical
applications is Theorem 5.5, in which we show that maximal slicings can be used
to kill the "supertranslations in time."

2. Preliminaries

Let us first fix notations—the signature is (—h + H—), greek indices run from 0
to n— 1, where n is the dimension of the spacetime (we shall assume n ^ 4
throughout to avoid a physically irrelevant discussion of the asymptotic behaviour
of solutions of the Laplace equation in space dimension equal to two), latin indices
run from 1 to n — 1, | | denotes the absolute value if the entry is a number, while

|x| = (Σ(xμ)2)112 when x is a vector. B(x,r),S(x,r), and £(x,r) = Rm - B(x,r) denote
an open coordinate ball, a sphere, and the interior of the complement of a ball
respectively (in dimension m) with centre x and radius r. We shall write B(r\ etc.
whenever x = 0; if ambiguities are likely to occur we shall write J*(r) to denote a
space-time ball &(r)= {xμ:\x\<r} to distinguish it from the space ball J5(r) =
{x l:r(x)<r}, where

r(x) = (Σ(xi)2Y'2.

The letters x,y,... have been used to denote both spatial and full space-time
coordinate points. In places where the usage is not easily inferred from the context,
the alternative notation (x1), (xμ) for spatial, respectively space-time, points has been
preferred.

For /le(0,1), jSeR, /ceNu{0}, and Ω a domain in U1'"'1 we define

sup

1 It is worth noting that such "bad topology" is necessarily hidden behind an apparent horizon [SY, Ba4]
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where ̂  stands for space and time derivatives while D stands for spatial derivatives
only, with σ(x) = (1 + r(x)2)1/2. We shall also write

ΔQ = Σ(d/dxi)2

9

(in particular || V/ 1| is non-negative irrespective of whether V/ is time-like or space-
like). The letters ί, x°, etc., will always denote functions whose level sets are complete
Riemannian manifolds (with or without boundary). The following proposition
will be used throughout:

Proposition 2.1 ([Me]). For every peC™β(Ω\ Ω= R"-B(R\n^3, R^l fcel\lu{0},
>le(0, 1), j8e(l,2], there exists a solution of the equation

with the following properties'.

1. Ifl<β< 2, uεCk

2

+_2βλ(Ω) and

| |u | | c r_2,Λ^C(/c^,ftn)| |p| | cM. (2.1)

2. Ifβ = 2,(l+\nrΓlu€ Ck
0
+2 λ(Ω)and

(2.2)

Lemma 2.2. Let gμv - ημve^(Ω\ a>Q,m^2and let K0 ̂
m_\ ̂ (Ω) n C^\ _ y(Ω)

be the trace of the extrinsic curvature of the (space-like) slices t = constant, γ ̂  α.
Letτ = t + u, uεC™±^λ(Ω)nCl'*y(Ω), dtu = 0, be such that Vτ is time-like, and define
Ωf = {(τ9x

i):(τ-u9x
i)eΩ}. We have

I I Vτ || K(t, x) = (\\ Vt || X0)(τ -u,x)-ΔQu + κ9

where K is the trace of the extrinsic curvature of the τ = constant slices.

Proof. We have

K = -Vμ(V»τ/ 1| Vτ || ) = - || Vτ |Γ 1 V + τ;,v = - II Vτ \\~l(A + B + C),

VμtVvt~

Straightforward, but somewhat tedious, computation shows the desired result.
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Lemma 2.3. Let 0<α^y<l, let
C2e(R, C 1 Λ 1 ~ y + C2^0, Cl sufficiently large or let Ω^ΩQ = {(t,x), r^R,
| ί |^C 1r 1- y + ε + C2}, C l 5 ε>0, C2e(R, C.R1'^8 + C2 ^0. Let gμv, K0 and K be
as in Lemma 2.2. Then there exists new coordinates (τ,x)eΩf such that

1. βΊ3β'0 = {(τ,x),r^Λ, |τ| ^ C\rl~y + C'2} for some C'̂ O, Cf

ίR
1~y + C'2 =

C1R
1~γ + C2 or C'iR

1-γ + C2 = CiR
1-γ+ε + C2;

2. The pulled-back metric g'μv satisfies

3. || Vτ || K*WL\ l'α
Λ2(β')n C°_f _α_y(β');

4. C"l5 C2 cwd f/ίe appropriate norms ofg'μv and \\ Vτ || K depend only upon α, y, || # — f? ||,

xeβ

5. //α > 1/2 and if there exist constants C3,ε' ̂  0 swcn ίnaί

(0,x)|^C3/ -2-£', (2.3)

then for (τ,x)eΩ'0
C3r-2-£", (2.4)

ε" = min(ε,2a— 1) for some C'3^0. The constants C'3,C'1,C'2 — C2, \\g'μv — »/μv | |,
| | | |Vτ | |K| | depend only on «,y,n,m,λ, sup || VtΓ^x), \\gμv-ημv\\, I I I I Vt | |K 0 | | ,

xeΩ

R.C^.C^ and ε; m particular, they are independent ofC2.

Proof. By Proposition 2.1 there exists a solution ύ<ΞC™^λ(E(R})πC\^y(E(R)) of
the equation

Let 0K(x) = φ(r(x)/R), with some function φ satisfying 0 ̂  0 ̂  1, </>(s) = 1 for s > 1,
= 0 for s<l/2, φ€C°°(K). Let C= sup wr^1. If βiDβ0 = (r ̂  R, |t | ̂

{r ^ R, 1 1| ̂  Ci r1 " y + ε -f C2} let C\ = C^ C2 = C^R6 - 1) + C2. A simple calcula-
tion shows that we can choose R0 ^ max(l,Λ) such that

(a) the level surfaces of τ = ί -f φRoύ are space-like;
(b) s u p | | V τ Γ 1 g 2 s u p | | V ί | r 1 ;
(c) for all r ̂  R and τ ̂  Qr1 ~y + C2 both (τ - u, x) and (τ, x) belong to ί20.

The new coordinates (t',xf) are defined by ί' = τ, x'1 = x\ Proposition 2.1 gives

|| ύ \\cΓ_^ g C I I ( I I Vt U K0)(0, x) llc,7 1 ,Λ(£(R)),

which implies uniform estimates for gf^v — ημv in ̂ '̂ (β'), therefore, in particular,
uniform estimates for X in ̂ 7 l'α

A 2(β') Let φ0(t, x) = (\\ Vt \\ K0)(t, x) and φ(τ, x) =
( || Vτ || X)(τ, x). Lemma 2.2 gives

φ(τ, x) = φ0(τ - M, x) - 00(0, x) + κ

- sii, x) ds + Φ0(τ, x) - </>0(0, x) + K. (2.5)
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The uniform bounds on ύ and on \\dφQ/dt\\co,λ_if imply a bound on

d/ds [φ0(t — su, x)] ds

99

and therefore a bound on

For \τ\^C'1r
1~y + C'2we have

dt
(2.6)

the Holder continuity of space-derivatives is established via a similar manipulation.
If (2.3) holds (2.4) follows directly from (2.5).

Remarks.

1. If α = y = 1, Lemma 2.3 holds with the following modifications:

a) Cίr
1~γ should be replaced by Cl ln(l + r).

b) Ci =
c) (
d) (

-sup[(l
f (Ω'\

2. If α > 1/2, (2.5) shows that (2.3) holds with a constant C3 depending also on
C2. We are unable to use Theorem 5.3 of [Bal] to infer the existence of an entire
maximal slice without some further hypotheses because C3 increases as we try to
increase C2. This is the only place where C2 enters our estimates.

3. Slices Maximal Outside a Compact Set

Theorem 3.1. Let gμv - η^eV^Ω), 0 < α < 1, m ̂  2, Ω z> Ω0 = {r ^ R, \ t \ ̂
C1r

1~α + C2}, C 1R 1~α + C2^0, Ci ^0. If C± is large enough then there exists a
space-like slice Σ^Ω given by Σ= {(ί,x), ί = u(x)} and a positive constant

*o( II ̂  - ημv I SUP II Vί I I " \ α, A, C19 C2) swc/z f Aflf

VxrKx)^^, KΣ(x) = 0, (3.1)

wfc^re KΣ is the trace of the extrinsic curvature of Σ, and weC^1"1 (Σ0)for some
A'>0, where Σ0 = {(t,x)efl,ί = 0}.

Proo/. Iterating Lemma 2.3 /c = [α~x] times, where [α"1] stands for the largest
integer smaller than α"1, we obtain a coordinate system (ί',x') in which \K'\ ̂
Cr~2~ε (Kf is the trace of the extrinsic curvature of the t' = constant slices),
ε = (k + l)α - 1 > O2 and which covers a set Ω' z> Ω'0 = {r(x) ^ R, \t'\ <. C\rε> + C2},

2 If (k + l)α = 1 reduce α to α/2 in the /cth iteration, and iterate once more
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β' = 1 - fcα > 0, with gf

μv - ημve
(fnL^'(Ωf). There exists C', Rf large enough such that

the functions ω + = ±C'r~ε form space-like barriers for the maximal hypersurface
equation for r ̂  R'. A standard method and Bartnik's C1 estimates (cf. [Bal, Ba2])
imply the existence of a solution to the problem

M-»0 as r->oo;
the trace of the extrinsic curvature of the space-like surface t' = ύ(x') vanishes.

Let </>eC°°([0, oo]) satisfy φ(s) = 0 for s ̂  1/2, ψ(s) = 1 for s ̂  1, 0 ̂  </> ̂  1. Σ is
defined by the equation t' = </>[(r(x'))/4#']w(x')

A method similar to that used to prove Theorem 3.1 can be used to prove
Theorem 3.2:

Theorem 3.2. Let gμv-ημve%™'ϊ(Ω\ m^
C1>0, C2€R, Cι\n(\ + #) + C2 ̂ 0. // Cl is large enough, the conclusion of
Theorem 3.1 holds with (1 + ln(l + r)ΓlueC5+ί λ'(Σ0).

Proposition 3.3. Let the hypotheses of Theorem 3.1 hold and let the metric satisfy
the time-like convergence condition (Rμvn

μnv ^ 0/or every time-like vector nμ). There
exists a neighborhood Ω^^ΩQ of the almost maximal slice Σ together with a foliation
ofΩi by space-like hypersurfaces Στ9τe(-ClR

ί~~v - C 2,C 1fl 1~ y + C2), τ(x) = φc)
for r(x) ̂  Rifor some Λ l 9 ΣQ = Σ, such that (3.1) holds for each Στ. There also exist
coordinates x"μ in Ω, such that x"° = τ and gμv - ημ^e^λ'(Ωl)for some λ' > 0.

Proof. The proof is a straightforward generalization of the methods of [CB] as
in Sect. 5 of [Ba2], we shall present it here for completeness. Consider the
mapping

where Kt is the mean extrinsic curvature of the slices t + u = const, and CI** =
{ueC!:g:w|S(Λo) = 0}. Kt is a differentiable mapping from X x Y to Z in a
neighborhood of (0, 0) with derivative DYKt given by (cf. e.g. [Ba2] Sect. 5),

DγK(δu) = -Δ(vδu) + (M|2 -h Ric(N,N))vδu,

where Δ is the induced Laplacian on the hypersurface t + u = const, | A \ is the
length of the extrinsic curvature tensor, v is the "tilt function," v = — < N, T>, and
N, T are unit normals to the t + u and t slices, respectively. It follows from (e.g.
[CSCB]) that DYK is an isomorphism, and the implicit function theorem implies
the existence of a differentiable mapping ( — ε0, ε0)3ί -> ut eCί'g such that Kt(t, ut) = 0.
Let τ(ί, x) = t -h u. Differentiability of t\-+ut as a mapping from X to Y in appropriate
topologies implies that (du/dt)-+Q as r-»oo, therefore δτ/dί satisfies the equation

with (dτ/dt)vt ^ 1 on S(R0), and (dτ/dt)vt -> 1 as r -> oo. The Hopf maximum principle
[GT, Theorem 3.5] yields (dτ/dt)vt ^ C > 0 for some constant C, therefore (δτ/δί) > 0
and the slices t -h ut = const, form a foliation. The possibility of extending the slicing
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from ( — ε,ε) to the claimed range of τ follows from the barriers of the proof of
Theorem 3.1 and the a priori estimates of [Bal].

Proposition 3.4. Let the hypotheses of Theorem 3.2 hold and let the metric satisfy the
time-like convergence condition. There exists a neighborhood Ω± c Ω0 of the slice Σ
together with a foliation ofΩ± by space-like hyper surf aces Στ, t€( — Cΐln(l + R) — C2,
C 1 ln( l+r) + C2),τ(x) = ψc) for r(x)^Rl9 for some Rί9 Σ0 = Σ such that (3.1)
holds for each Στ. There also exist coordinates x"μ in Ω such that x"° = τ and
(1 +ln(l +r))-1(^v-^μv)6^f (ΩJfor some λ'>0.

Remark. It is clear from the proofs of Proposition 3.3 and 3.4 that given any
interval [ — T, T] there exists an almost maximal foliation by asymptotically flat
hypersurfaces asymptotic to the slices t = const, for ίe[- T, T]. The size R0 of the
set on which K ^ 0 may in general depend upon T.

In the following theorem the notation of [COM] will be used.

Theorem 3.5. Let (Σ9gij9K
ij) be an (s,δ)9 seN, δ > -3/2 asymptotically flat initial

data set for the vacuum Einstein equations, i.e.

1. Σ is a connected complete Riemannian three-dimensional manifold of the form
I

Σ = Σ ιni (J Σi9 Σ ιnl — compact manifold with boundary, Σ t « R3 — B(Ri).

2. gεHs(Σint), KeHs^^int) and in local coordinates gij-δij€HSfδ(U3-B(Rί)\
K ίJ'e/fs_ l5<5+ X(1R3 - B(Rt)) in each asymptotic end Σ^

If s ̂  5, there exists an evolution (M, γμv) of(Σ,g,K) satisfying the vacuum Einstein
equations and an open subset Ω of M foliated by almost maximal (s— 1/2, δ)
asymptotically flat slices Στ,Στ diffeomorphic to Σ.

Remarks.
1. The asymptotic conditions of Theorem 3.5 will be satisfied if, for example
gtj - <50 eC5_α, α > δ + 3/2, K''eC4_α_ , .
2. The metric induced on the almost maximal slices will be Cl'£, α = δ + 1 > 0 (cf.
the sharp embedding theorems of [Ba3]).
3. We believe that the almost maximal slices will be (s, δ) asymptotically flat.

Proof. A straightforward extension of the boost theorem [COM] shows that in
each asymptotic end there exists an evolution of the data (g,K) in a set Ωi9

Ωt=> {r^ Rh\t\ gε t (l +r)}. The standard short time existence theorem [CBY]
shows the existence of an evolution of the Cauchy data in a set (-ε0,ε0) x Σint.
Let ε = min ε f. Proposition 3.3 implies the existence of the required foliation Στ,

O^i^I
τe(-ε,ε). By construction the slices Στ will be graphs over Σ of Hs+ltδ^1 functions,
which together with restriction theorems (cf. e.g. [COM]) yields (s— 1/2, (5)
asymptotic flatness of the Στ foliation.

4. Maximal Slices

Theorem 4.1. Let V be an n-dimensional Lorentzian manifold, n ̂  4, such that
V = Vintv Fext, where Kext is a finite sum of sets Vi9 each covered by a single coordinate
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patch Vi ID {xμ:r ̂  Ri9\x°\ g <$\rl ~α + «?}, 0 g α < 1, «?,«?, Rf6R + , rα~ 1 is under-
stood as Inr if α = 1. Suppose that in V t we have

Σ\gμv - ημv\r" + Σ\gμv,σ\r"+1 + Σ\gμv,pσ\r«+2 + Σ\gμv,pστ\r«+3 ^ cl9

α>l/2, c,€U+ (4.1)

and let gμveC3(Vini). Let t be a smooth function on V, which coincides with x° in
each of the ends Vi9 with Vί time-like, and suppose that

|| Rice ||Co +|| log fl||ct + \\VT\\c^Cl9 (4.2)

where a~2 = — ̂ vί,μί,v, T = — aVt, and the Ck norm || ||ck is taken with respect to
the positive definite metric gμv + 2TμTv (cf. [Bal] for details). Suppose that there
exist ε, Cl > 0 such that

Vί, V(t,x)€7£, K I I V ί l l K X ί . x ί - I I V ί l l X K O . x ί l ^ C i Γ - 2 - 8 , (4.3)

w/i^rβ X is ί/ie trace o/ the extrinsic curvature of the slices x° = constant. Assume
the "bounded interior geometry" condition:

V/?eK i n t such that r(q) = Rί9pφl(q)9

we have

\t(p)-t(q)\^C2 (4.4)

(I(q) is the set of points causally related to q) and let

Vτ = {peVint:\t(p)\ ^ T} be compact for T = max(«?φ ~α + «?) 4- C2. (4.5)

constants Cl and C2 depending only upon Λ ί,c1,C1,C2,α Λ«ί/ « such
that if^\ ^ C1,^? ̂  C2, ίfien there exists in V a complete space-like hypersurface
with vanishing mean extrinsic curvature. In the (x,ί) coordinates Σ =graphΓow =
{(x,u):xeΣo}9 where ΣQ = {qeV:t(q) = 0}, with u satisfying the following estimates
in each of the asymptotic regions'.

C9 if α < l ,

-r)), for α = l ,

with a constant C depending only upon Rί,^,(^?,c1,C1,C2,α and n.

Proof. Applying Lemma 2.4 once, as in Theorem 3.1, one obtains a coordinate system
x'", covering in each end at least the set Ω, = {r(x'1) ̂  Rh | ί'| g min (<e\R\ ~α -f
in which

ε' = min (2α — 1, ε) with a #? independent constant C (cf. Lemma 2.4 point 5), where
Kf is the trace of the extrinsic curvature of the slices x'° = constant. The barrier
functions of Proposition 5.1 of [Bal] can be replaced by the functions w' = ± Cr~ε',
for sufficiently large C. The height estimate of Theorem 5.3 of [Bal] is then obtained
using the trial function defined by



Maximal Surfaces in Asymptotically Flat Space-Times 103

"CΛm+lΓ1-',

C9,

y(0) = 0. The remaining arguments of [Bal] go through without modifications.
We will call the topology of a three-manifold Σ generic if there exists no metric

on Σ with non-negative scalar curvature (cf. [Wi] and references therein).

Corollary 4.2. Let (M, g) be a globally hyperbolic space-time, M = U x Σ, and
suppose that Σ has generic topology. If the Einstein tensor satisfies the weak energy
condition (GμvX

μXv ^ 0/or all time-like Xμ) there exists no time-function on M such
that the hypotheses of Theorem 4.1 hold.

Remark. This corollary can be thought of as some sort of a singularity theorem.
The results of Schoen and Yau [SY] and the Penrose singularity theorem [HE]
imply that Cauchy data for the Einstein equations on a generic manifold Σ must
develop a singularity either to the future or to the past if the time-like convergence
condition holds3. The hypotheses of Corollary 4.2 have a clearer physical
interpretation since we require only the weak energy condition. It would be
extremely useful to replace the conditions of Theorem 4.1 by some conditions with
a more transparent geometrical meaning. It has been suggested [Ba4, 5] that a
suitable geometric condition is the absence of "hidden infinities."

In the remainder of this paper, Σ,Στ,Σ, denote complete Riemannian three-
N

dimensional Cm+ ljλ manifolds of the form Σ = Σίni (J Σi9 Σ ιnt — a compact manifold
i = l

with boundary, Σt = (R3 — B(Rf), and the Σ^s are glued to Σ mt along the boundaries.
The metric is always assumed to be Cm>λ.

A Cm + 1 > λ space-time (M,0) with, locally, a Cm'A metric will be called strictly
stationary and asymptotically flat if

1. M w R x Σ9 where the embedded leaves Σt = {t} x Σ are complete, connected
Riemannian submanifolds of M;
2. The vector d/dt is a (strictly) time-like Killing vector;
3. In local coordinates (ί, xl)eU x (R3 - £(#t)), gμv - ημveC^(R3 - £(#,)), m ̂  2,
α>0.

Proposition 4.3. Let (M&RxΣ,g) be a strictly stationary asymptotically flat
space-time. There exists a foliation of M by asymptotically flat maximal hyper-
surfaces ΣτίτeU,Στ diffeomorphic to Σ.

Proof. Rather than proving that Bartnik's interior condition (4.4) holds, we shall
show directly that any space-like hypersurface S c R x Σ such that dS c (R x 3Σ mi

must be uniformly bounded in time; this is the key condition for Theorem 4.1 to
hold. Let (ί,p)eSint = Sn Fint, Fint = R x Σ[ni. By time-likeness of d/dt the hyper-
surface Sint is a graph over Σ{ni:S mt = {(u(p),p):u(p)eίί9peΣ mi}. By compactness

This is a consequence of the fact [SY] [Ba4] that every Cauchy surface in M will have trapped surfaces
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a) there exists a minimizing geodesic Γ a Σ ίni for the metric induced by yμv on
Σίai, from p to dΣint,
b) sup gμvX

μXv = — α<0, for some constant α, where X is the Killing vector
peΓint

δ/δί.
c) sup I j8| = b < oo, for some constant b, where β is the shift vector (j8f = 00/).

P€Γ1BI

Let s be any parameter on Γ:Γ = {p(s)€Vint,sε[s0,s1~]}. By space-likeness of
S, the curve (ί(s),p(s)) = (w(p(s)),p(s)) is space-like, so that in local coordinates we
have,

where we have used 2yz ^ εy2 4- (l/ε)z2. Setting ε = α/2 we get

dt Γ 9 / ^2\ηι/2

ds

Integrating along the curve (ί(s),p(s)) we obtain

Γ2/ 2h2M1/2

cίs^ - ί l+— ) J
L α v « /J

where D = sup

ds

< oo. In a similar fashion we can estimate the ί-difference
' n lof any two points of Sn<5Fint, giving an α priori uniform bound for the ί-difference

\t1 —t2\ for any two points ( t l 9 p ί ) , (t2,P2)ESini. This and Theorem 4.1 imply the
existence of a maximal slice ΣQ c M if α > .̂ If α > ̂  stationarity allows us to iterate
Lemma 2.9, as in the proof of Theorem 3.1. The slicing Στ is given by Στ = φτ(Σ0\
where φτ is the one-parameter group of diffeomorphisms generated by X = d/dt.

Corollary 4.4. There exists no globally hyperbolic strictly stationary asymptotically
flat solution of the Einstein equations with sources satisfying the weak energy condition
and a Cauchy surface having generic topology.

5. Uniqueness

Throughout this section ΩθtRjT denotes a "boost type" domain:

We shall write flJ(ΛfΓ and flJtΛiΓ to denote boost-type domains in different
coordinate systems x and y if confusion is likely to occur. In this section we shall
only consider maximal slices which are asymptotically flat in a strong sense
(cf. Definition 5.1). By doing this we leave aside the interesting question, are all
maximal hypersurfaces (say Cauchy surfaces of an asymptotically flat global
space-time) asymptotically flat? We adopt the pragmatic point of view that only
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the asymptotically flat maximal slices are relevant for physical application
(e.g., see [An]).

N

Definition 5.1. A space-like hypersurface Σ — Σϊnt (J Σ( of M will be called strongly
ί = l

asymptotically flat if there exist neighborhoods Ot of the ends Σ{ each covered by
a single coordinate system (f, x'Jeβj = Ω9ιtRιtTι = (xμ:r ̂  Rh |x°| <* ^r(x) + Tj such
that

Let us recall the following:

Proposition 5.2 [Chi], Let Σ be a strongly asymptotically flat hypersurface in
M, let OciM be covered by a single coordinate system yμeΩ^Ω^RT, with
gμv - ημve

(&1!LΛ(Ω), m ̂  1, 0 < α ̂  1. Suppose ΣcΩ$tRtT, let xμ be the coordinates
of Definition 5.1. There exists a Lorentz transformation Λ^(Σ}eO(\,n — 1) such that

y» = Λζxv + ζ''(X)9 ζ"eVΪ-i(Ωx

9,R.τ) tf «<1,

(l+ln(l + r)ΓlζμeVZ+l(Ωϊ.RtT) if «=!•

Remark. If the vacuum Einstein equations are satisfied and we do not artificially
restrict the size of M, a hypersurface which is asymptotically flat in the sense of
Theorem 3.5, is strongly asymptotically flat (cf. the proof of Theorem 3.5).

Proposition 5.3. Let Σ9Σ be ίwo maximal strongly asymptotically flat hyper surfaces
and let Σ,Σ c ί2θ,κ>Γ as in Proposition 5.2. If Λ*(Σ) = Λ*(Σ\ then

if α < l ,
L , i f α = l .

Let α < 1 and let xί,x§ be the coordinates of Definition 5.1 for Σ and Σ
respectively. A simple Lorentzian geometry exercise shows that Σ must be included
in /201

 R τ (cf. Corollary 3 in [Chi]) at least for sufficiently large r(x2). This
together with (5.1) implies that Σ is a graph over Σ given by the equation

for some R large enough. The calculation of Lemma 2.3 gives

0 = || Vx^ || Kχo = || Vx? || Kx?(u, x) - Δ0u + 0(r' 1 ~ 2α). (5.2)

The mean value theorem, together with Kxo(0, x) = 0, implies Kxo(u, x) = 0(r ~~ 1 ~ 2α),
therefore by (5.2)

so that u = O(l) if α > 1/2, or u = O(rl~2*} if α < 1/2. Iterating this a sufficient
number of times we obtain u = constant -f O(r~α), which is the desired result.
When α = 1 the result is established in a similar way.
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We will derive a uniqueness theorem for maximal foliations as a consequence
of a general estimate for maximal surfaces. This depends on some terminology and
results from [Ba2]: a hypersurface Σ a M will be called weakly space-like if it is
locally achronal and separating, i.e. for every peΣ there is a neighborhood peϋ
such that Σ n U is an embedded, achronal, C0'1 hypersurface which is closed in U
and separates U = I + (Σ n U)uΓ(Σ n U)u(Σ n U) (disjoint union). The boundary
of Σ is defined as

dΣ = closure (Σ) — Σ.

Let us note that the definition of a hypersurface insures Σ contains no boundary
points. Σ is locally maximal if Σ n U maximizes induced area measure, and regular
if it is locally the graph of a CΛ'α function, k ̂  2, with time-like normal vector. It
is shown in [Ba2] that if Σ is locally maximal, then Σ is regular, except perhaps
on a singular set

sing(iί) = {y(ί),0 < t < 1, where y:(0, 1)->Z is a null geodesic,
such that the "endpoints" y(0), y(l) are not in Σ}.

(More precisely, the sequences {y(t)}tι0, {yW}fTi» do not have accumulation
points in Σ.) In typical situations, sing(Z') will be empty, for trivial topological
reasons. Finally let us recall the definition of the Lorentzian distance functions
[HE]; for p, qeM, Σ c M, define

,, , θ, if
{P'q) sup {length (7): y:[0,l]-»M is future time-like, y(0) = p,y(l) =

qeΣ otherwise,
and

dΣ(p) = sup {d(p,q)9d(q,p)}.
qeΣ

A set S will be called spatially bounded with respect to a space-like hypersurface
Σ if there exists a compact subset G ̂  Σ such that

Theorem 5.4. Let (M,g) be a globally hyperbolic C3 Lorentzian manifold satisfying
the time-like convergence condition, let Σ be a regular locally maximal surface in
M. Suppose Σ is a locally maximal, \veakly space-like hypersurface with non-empty
boundary dΣ, such that Σ is spatially bounded with respect to Σ. Further suppose
there is a constant D such that

D for all pedΣ.

Then, either

(a) dΣ(p) ^D for all peΣ, or
(b) there is an incomplete, inextendible, length-maximizing, time-like geodesic in M,
and moreover, there exists no Cauchy surface containing Σ.

Remark. In case (b), there is an upper bound on the distance to the singularity,
depending only on the geometry of M in a neighborhood of G c Σ.
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Proof. Suppose (a) is not satisfied, let G^Σ be the compact set such that
(I(Σ)nΣ)a G. We may assume G has smooth boundary in Σ. Consider the
mapping K:U x Y->Z, where

r={iieC2 «(G), 111^ = 0}, *EEC°'*(G)

defined by

σeU,

where K(u) is the mean curvature function of graphG (u\ in, say, normal coordinates
in a neighborhood of Σ. The linearization of K at (0,0)eίR x Y is given by (cf. e.g.
[CB])

DYK(090)v = Lv = (Δ-\A\2- Ric(N9N))υ, veY= T(0>0)K

The time-like convergence condition implies that L is an isomorphism, therefore
by the implicit function theorem there is a δ0 > 0 such that for any δε(— <50,<50)
there exist functions M + , w _ e 7 such that K(u + )= ±δ, moreover dΣ(p)^ε(δ) for
all peS+ = graphG(w+), where ε((5)->0, as (5->0. Without loss of generality, we may
assume (a) fails to the future of Σ9 and restrict attention to S = S+. Since (a) fails,
defining

D1=sup^Γ(p),
peΣ

we have D < Dl ^ oo. Choose δ small enough that ε(<5) < min (\,(D1— D)/2). Direct
estimation using the Lorentzian triangle inequality shows that

\ds(p)-dΣ(p)\^ε for all pel.

Hence ds\Σ also does not attain its maximum on dΣ. Since (a) fails, there is a
sequence {pk}™ in Σ such that

peΣ

Suppose {pk} has an accumulation point peΣvdΣ. (Recall that p is an accumulation
point of the sequence {pfc}f if, for every (open) neighborhood ^9/7, and positive
integer TV, there is k ̂  N such that pke<%). By passing to a subsequence we may
assume pk-+peΣ since, by construction, pφdΣ. Since I(Σ)aD(G) = D(S), we see
that Σ is spatially bounded with respect to S, so there is a time-like geodesic γ
which realises ds(Σ)9 and γ has endpoint y(d) = p. Since p maximizes ds(-) on J£,P
cannot lie in a null geodesic in Σ and thus by the regularity of variational maximal
surfaces [Ba2], Σ is regular in a neighborhood of p. However, the second variation
inequality for time-like geodesies from S to Σ [HE], [BF] shows

0 £ J Ric (/, /)<fs + Ks(y(0)) - Kj; (p)

which is incompatible with the time-like convergence condition and hence {pfc}
cannot have an accumulation point in Σ u dΣ. The definition of dΣ then implies
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{pk} cannot accumulate in M either, and to complete our proof we have to show
existence of an inextendible incomplete geodesic in M. Let {qk} be a sequence in
S such that

and let γk be the time-like geodesic realizing d(qk,pk). Since Σ is spatially bounded,
we may assume {qk} has a limit point qeS, and then yk-+y, where y is the future
time-like geodesic normal to S through q. Since y is the limit of length-maximising
geodesies, it is itself length-maximizing amongst curves meeting S. In particular, the
Focussing Lemma [HE] implies y has length ^ l/δ < oo and y is inextendible in
M. Since γ does not meet Σ, and every point of y has some points of the
sequence {pk} c Σ in its future, we see that Σ cannot lie in any Cauchy surface of
M. q.e.d.

The following example illustrates case (b) of the theorem. Let

Σ = graph (u\ u: R3 - {0} -> R,

where w(x) is the radially symmetric solution of K(u) = 0 such that w(0) = 1 and
tφc)->0 as r(x)->αo [BS]. The submanifold £100 = ±n{(x,ί):r(x)^ 100} is
spatially bounded and close to Σ1 on dΣloo, and dr attains its supremum on
Γ100 at the "missing point" (0,l)eR3 f l. The time-like geodesic y:ί*-*(0,t)eR3fl,
0 ̂  t < 1, is inextendible in M.

Let {yf} denote a collection of coordinate systems, one in each of the asymptotic
four-ends of M, each covering at least some boost-type domain βJj jΛι>Γι with
(0μv ~ */μv)eC-α( βθ!,jii,:Γi) We shall say that a foliation Στ is included in a boost-type
domain of the coordinates {yf} if for every asymptotic three-end (Στ\ there exists
θi(τ), Ri(τ), Tfa) such that (Στ)t a ί2J;(τ)>Kf(τ) Tι(t). Using Theorem 5.4 we show:4

Theorem 5.5. Let (M, 0) be a C3 globally hyperbolic Lorentz manifold satisfying the
time-like convergence condition. Suppose Σ\^Σ^2 are strongly asymptotically flat
maximal foliations in M, let Σ J be a Cauchy surface in M, suppose that the foliations
Σ^,Σ^2 are included in a boost-type domain of some set of coordinates {y?}. If
Aμ

v(Σl

τι) = Aμ

v(Σ2

τ2\ where Aμ

v(Σa

τa\ a = 1, 2, are given by Proposition 5.2, then either

a) the foliations Σ\^Σ2

τ2 coincide, or
b) M is time-like geodesically incomplete and the slices Σ2

2 are not contained in any
Cauchy surface.

Proof. By Proposition 5.3, for every hypersurface Σ = Σ2

2 c Ωy

θ^RT there exists
c^eR such that Σ = Σ^ satisfies dΣ({peΣ,r(p)^> R})^>0 as R-*ao. Applying
Theorem 5.4 to Σn{peM:r(p)^ R} = ΣR and letting R-»oo shows that either

4 A uniqueness theorem without the hypothesis that the asymptotically flat coordinates on the maximal
slices can be extended to a boost type domain can be obtained using Proposition 3.1.4 of [Ch2] instead
of Proposition 5.2
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Σ^=Σc2 or Σ2

C2 is not contained in any Cauchy surface, and M is time-like
geodesically incomplete. Since this holds for any slice Σ*2c:Ωy

βtRtT9 the result
follows.

Theorem 5.5 shows that complete maximal Cauchy hypersurfaces can be used
to eliminate "time supertranslations." It should however be stressed that the
freedom of performing supertranslations on each individual maximal slice still
remains.
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