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Abstract. In this paper we construct a family {Ty}, 0<y<^, of exact
endomorphisms of [0,1] such that the invariant measure <mΊ of Tγ is equivalent
to Lebesgue measure but has fractal correlation exponent v = 2y. This shows
that an almost complete dichotomy can exist between the information
dimension and the correlation exponent in observable dynamical systems.

1. Introduction

In the study of dynamical systems possessing an observable attractor A and
ergodic occupation measure m two basic notions of dimension have developed.
One is that of the fractal dimension of the attractor itself viewed as a geometrical
object in space. The second is a measure-dependent notion which incorporates the
actual dynamics of the system by taking into account the relative frequency with
which a typical orbit visits different regions of the attractor. However even if we
confine ourselves to one of these basic approaches the definition of dimension is
not unique (see Farmer, Ott, and Yorke [3] and Hentschel and Procaccia [6])
although the various possible definitions may coincide in special cases. The fractal
dimension D of the attractor A may be taken to be the Hausdorff dimension of A or
perhaps the capacity of A. Among measure-dependent notions the information
dimension σ and the correlation exponent v (sometimes also called correlation
dimension) have been widely discussed. Grassberger and Procaccia [4] intro-
duced the correlation exponent as a measure-dependent gauge of dimension
possessing the attractive feature of being easy to compute numerically from time
series data. It was recognized immediately (Grassberger and Procaccia [4,5] and
Hentschel and Procaccia [6]) that for a large class of fractal attractors the general
inequalities v < σ < D hold with simultaneous equality v = σ = D occurring if and
only if the distribution is uniform across the attractor. However, in the estimation
of dimension of a dynamical system from time series data, it appears to be a
commonly held view that v and σ are generally close although not identical, and
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that observance of a small fractal correlation exponent is evidence of a small fractal
information dimension and perhaps a strange attractor. (Related to this view is the
idea that in systems governed by truly stochastic processes we should observe
failure of the correlation exponents to converge during successive embeddings in
higher-dimensional space. Hence observation of a finite value for v is interpreted as
evidence of low-dimensional chaos. Osborne and Provenzale [11] have discussed
a counterexample to this supposition.)

In this paper we construct a simple piecewise monotonic transformation Ty

(with parameter y,O<y<%) on the unit interval having the properties:

Ty has an invariant distribution my which is equivalent to Lebesgue (. .,
measure and is also exact (hence mixing and ergodic). * ' '

my has correlation exponent v = 2y. (1.2)

The significance of (1.1) is twofold. From ergodicity and the equivalence of my

to Lebesgue measure we see that m,y is obtained as the limiting occupation measure
under repeated iterations of Ty for almost all initial conditions in [0,1]. (In fact in
computer simulations the density of m,y appears clearly within a few thousand
iterations.) Hence this is behavior which is actually observable rather than atypical
conduct confined to sets of Lebesgue measure zero. Secondly the equivalence of *ny

to Lebesgue measure implies that the attractor of the system is [0,1] and that the
information dimension of <my equals 1. Coupled with (1.2) this produces the result

v = 2y<σ = D = l. Since y can be chosen as close to zero as desired this shows that
an almost complete dichotomy can exist between the correlation exponent and the
information dimension in observable dynamical systems. This behavior is a
consequence of the correlation exponent being more sensitive than the informa-
tion dimension to nonuniformity in the distribution of points over the attractor.
(In [2] Cutler has established an inequality between the correlation exponent and
mean information dimension which holds under very general conditions.)

Precise definitions of all quantities are given in the next section.

2. Definitions, the Transformation 7y, and Statement of Theorem

Let m be a probability measure on the Borel sets of a compact subset K of KΛ The
associated spatial correlation integral C(r) is defined to be

C(r)= \\lAr(x,y)*n(dx)*n{dy) [where Ar = {(x,y)\ \\x-y\\ <r}]

= E(m(B(X, r))) the mean or expected mass
in a random ball of radius r. (2.1)

The correlation exponent v is defined to be

^ , (2.2)
r->o logr

provided the limit in (2.2) exists. There are various ways of defining the information
dimension σ. These definitions coincide when m is ergodic with respect to a
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sufficiently smooth transformation, so we will choose the simplest of these
equivalent expressions

σ = inf {dim(B) | miβ) = 1}, (2.3)

where dim(2?) is the Hausdorff dimension of B. It is clear that σ = l for any
probability measure M O Π R which is absolutely continuous with respect to
Lebesgue measure.

We define the transformation Ty: [0,1 ]-•[(), 1] for each 0<y<% by

Note that Ty maps each of (0, %) and Q-, 1) onto (0,1) in a mono tonic fashion and,
while expanding on (0, i), is contracting on a subinterval having \ as its lefthand
endpoint. The result is that under iteration points are repeatedly pushed close to 0
and then repelled away and across the unit interval. The parameter γ governs the
degree of contraction and hence also the proportion of time interates spend near 0.
Various authors (see for example Hofbauer and Keller [7], Collet and Eckmann
[1], Nowicki [10]) have investigated conditions under which maps of the interval
will admit an ergodic invariant measure which is absolutely continuous with
respect to Lebesgue measure. In this paper we rely on results of Misiurewicz [9]
concerning piecewise monotone mappings as well as specific properties of Ty to
show the existence of a measure my satisfying both (1.1) and (1.2). The calculations
performed to determine bounds on the attracting density f(x) [in order to
establish (1.2)] simultaneously reveal the existence of at least one invariant
measure m,y which is equivalent to Lebesgue measure. The existence theorem of
Misiurewicz then assures us that my is exact and hence unique. Recall that an
^-preserving mapping T of [0,1] onto itself is called an exact endomorphism if the
tail σ-algebra <?= f) T~M(93) (where 33 is the σ-algebra of Borel sets) consists

entirely of trivial events. That is, m(A) = 0 or 1 for every A e Sf. It is well known that
exact endomorphisms are mixing.

Remark. It can be shown (see the argument in the proof of Lemma 3.7) that the
measure m with density function g(x) = yxγ~1 has correlation exponent v = 2y. In
constructing Ty the aim was to produce an attracting density f(x) similar in
behavior to g{x). Of course g(x) is noteworthy in itself since a sequence of
independent and identically-distributed observations from this distribution
provides an example of a completely random process on [0,1] with fractal
correlation exponent.

The conditions and results presented in Misiurewicz [9] are intended to cover
a fairly general class of mappings and hence are more complicated than necessary
for our simple map Ty. Therefore we state a simplified special case of Theorems 6.2
and 6.3 of Misiurewicz [9] which will be directly applicable to Ty.

Theorem 2.1 (Misiurewicz). Let T:[0, l]->[0,1] be a mapping for which there
exists a point c, 0 < c < 1, such that T is continuous and strictly monotone over each of
the components [0,c) and (c, 1]. Suppose further that Γ({0, l})g{0,1}, and both
lim T(x)e {0,1} and lim T(x)e {0,1}. Let T also satisfy the following conditions:
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(a) T belongs to the class C3 on each of (0,c) and (c, 1).
(b) DT(x) + O for any xe(O, ί)\{c}9 where DT denotes the derivative of T.
(c) ST(x)<0 for all xe(O,l)\{c}, where ST denotes the Schwarzian derivative

3 ( 2 Y
DT{x) 2\DT(x)J '

This condition is equivalent to specifying that —=== is convex on each of (0, c)

and(c,ί). Vî Wΐ
(d) If x + c is a periodic point of period d then \DT\x)\ > 1.
(e) There exist positive real constants α0, ω0, αc -, ωc -, and u0 > 0, uc - > 0 such that,
for some δ>0, aox

Uo<\DT{x)\^ωox
u° for xe(0,δ) and ac-\x-c\Uc ^|DT(x)|

^ωc-\x — c\Uc~ for xe(c — δ,c). Similarly there exist positive real α l 5 ω1 ? αc+, ωc+,
and u1>0, uc+ >0 such that, for some δ>0, αx|x — l\Ui^IDTWl^ω^x — l\Ul for

— δ, 1) and occ+\x — c\Uc+ ^\DT(x)\^ωc+\x — c\Uc+ for xe(c,

Then there exists a unique probability measure m which is both T-invariant and
absolutely continuous with respect to Lebesgue measure. Furthermore the system
([0,1], T9m) is exact. •

The results concerning the behavior of Ty which we will establish are stated in
the following theorem, λ always denotes Lebesgue measure on [0,1].

Theorem 2.2. Let Tγ be defined as in (2.4). Then

(a) there exists a probability measure my on the Borel sets of [0,1] which is invariant
with respect to Ty (i.e. my = myT~ι) and is equivalent to λ. Furthermore the density
function f(x) of my satisfies Cx7'1 <f{x)<Kxy~ι for finite positive constants C
and K (which depend on y).

(b) The system ([0,1], Ty, *κy) is exact. Hence Ty is mixing and for each Borel set B

we have lim λT~n(B) = my(B\ and for λ-almost all xe[0,1] the sequence of
«->oo

1 "
empirical measures - £ δτj(x) converges weakly to mr (δτj(x) denotes the point mass
atT\x).) n j = 1

(c) my has correlation exponent v = 2y. •

3. Proof of Theorem 2.2

The proof proceeds by a sequence of lemmas. We use the following notation:
mn = λTy~

n and fn(x) is the density function of mn. y

Note that the two solutions of x = Ty(z) are given by z = — and z = —-—. Hence

the densities of mn and &ιn + 1 are related by the recursion formula (or Perron-
Frobenius operator):

\fe)^(lψ) (3-D
Lemma 3.1. For each n>\ fnisa strictly decreasing function and
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Proof. This follows by induction on n. Note fo(x) = 1 is nonincreasing. Now if/„ is
strictly positive and nonincreasing then relation (3.1) shows that fn+ί is strictly

/ x l + x y

positive and strictly decreasing I since the functions - , —-—, and x*" 1 are

respectively increasing, increasing, and strictly decreasing I. This proves the first

part of the lemma. The second part now follows from the inequalities

^ J J fn{x)dx<\. D

Lemma 3.2. Let K= -^—. Then sup fn(x)<Kxy~1.

Proof. It is straightforward to show that K > 1, and hence 1 = /0(x) < Kxy~*. Now
proceed by induction. Assume the lemma holds for /„. By this assumption,
Lemma 3.1, and relation (3.1) we obtain

= Kxy~γ since K= — +y. D

Lemma 3.3. There exist constants C>0 and k>\ (depending on γ) such that

n>k

Proof. We first show there exist k > 1 and a > 0 such that fn(x) > a for all n > k.
2-J 2-J _ K _.

From Lemma3.2 we have J fn(x)dx^ J Kxγ xdx= — 2 jγ for all n. Hence
o o y

2* K _ \
there exists k>\ such that sup j fn(x)dx^—2~kγ< -, and therefore

1 j n>l 0 7 2 χ

inf j fn(x)dx> -. But from Lemma3.1 we also have J fn(x)dx
n>ί 2~k 2 2~k

Sfn(2~k){l-2-k)^fn{2~k) for each n, which shows that inf fn(2~k)> -. Now
«>o 2

1 /x\
from relation (3.1) and nonnegativity we see that fn(x)> xΛ-i I y ) a n ( l hence,

inductively, for all n>k we conclude /π(l)>2~ f c/w- f c(2~ f c)^2~ f c2"1 = 2" ( f c + 1 ) . Since

fn is decreasing this shows inf ^(x) > α, where a = 2 ~(fe + i \ Now using relation (3.1)
«>fe

with n>kwQ obtain / „ + ^ x ) > ^ xv~ 1/M — - — ) > ~i~ xy~ί. Therefore the lemma
ay 2 \ 2 J 2

is proved with C = —-. •
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1 "
Lemma 3.4. Let *nn= - Σ mr Then {*&„}„ has a weakly convergent subsequence.

nj=i

The limit my of this subsequence is equivalent to Lebesgue measure and has density
function f such that Cxγ"* < f(x) < Kxy"ί. Moreover my is invariant with respect to
T

Proof As is well known the existence of a weakly convergent subsequence with
limit my follows from the compactness of [0,1]. The in variance of my is also
immediate provided the set of discontinuities 2 of Ty has ^-measure 0. Since
@ = {j} this will certainly be true if my is equivalent to Lebesgue measure. Thus it
remains only to prove this last assertion with the stated bounds on the density /
But from Lemma 3.3 we see that, for all sufficiently large n, me < <mn < mu, where me

and mu are the measures with densities f/χ) = CxΎ~1 and fJx) = Kxy~~1 respec-
tively. It follows that for each Borel set B,

<mf{B)< liminf <mn(B)< limsup mn(B)^*nu(B).
/ι-*oo n-κχ>

Hence we must have m£<my<mM and the lemma follows. •

Lemmas 3.1-3.4 prove (a) of Theorem 2.2. We need the following lemma to

show (b) of Theorem 2.2. Let 2= (J Ty-\ϋ).
n = 0

Lemma 3.5. // xe(0,1)\3T, then limsupDTy

n(x)= oo.
Λ-^OO

n-1

Proof By the chain rule DTy

n(x)= f] DTy(Tj(x)). Now if 0 < w < ^ , we have
7 = 0 L

DTy(u) = 2 while if \<u<\ we have DTy(u)= -(2u-iy \ Write (i,l) = /uJ,

(\ 1+2"Λ / H - 2 " v \ 1
where / = ( - , — - — I and J= (—-—, 1 I. Then ueJ implies DTy(u)> - >2.

We observe that DTy(u) is small only for we/. So suppose we/. Then there exists
l + 2 ~ j y

n>2 such that an<u<αw_i, where a~ — . Hence

Now Ty{u)< Ty(απ_1) = (2απ_1 - l)ί/γ < 2 - ( w " 1 ) , and so it follows that DTy(Ty

j(u)) = 2
for7 = 1, 2, ...,n — 1. Consequently we have

DTy

n(u)= "YI DTy(Ty

j{u))>y-ί2ί-n(ί-y)2n-1> - > 2 .
j=o y

From this it is clear that for any x e (0, ί)\& there exists a subsequence nk such that
lim DTy

nk(x) = oo. •

Lemma 3.6. T satisfies conditions (a)-(e) of Theorem 2.1.
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Proof Conditions (a), (b), (c) are trivial to verify. To see (e) note that DTy(x) = 2 on
(0,|), DTy(x) = oc(x-±)u on β,l), where u = y~1-\ and a = 2u + 1y~\ and
1 <DTy(x)<2y~ί for all x sufficiently close to 1. We now need only check (d). The
only fixed points x = 0 and x = 1 are clearly repelling. Therefore consider interior
points x for which Td(x) = x, and note that DTkd(x) = (DTd(x))k. Hence the sequence
DTkd{x), fc = l,2,... is bounded if DTy

d{x)<l. But from Lemma3.5, the chain rule,
and the fact that sup DTy(u) = 2y~1 <oo, we see that the sequence DTkd(x),

0<u< 1

k = 1,2,... cannot be bounded. Hence (d) holds. •

Thus Misiurewicz's conditions are verified and we conclude Ty is exact. The
remaining claims in (b) of Theorem 2.2 are a consequence of mixing (see for
example Proposition 8.3, p. 143, Mane [8].)

Lemma 3.7. Let -my be the distribution obtained in Theorem 2.2(a). Then there exist
C(r)

finite positive constants A and B (depending on y) such that A ^ lim inf -~^
r-*o r

< lim sup —^ < B. Consequently v = 2y.
r—•() r

Proof Since the density f(x) of <my satisfies the bounds Cxy~1<f(x)^Kxy~ι it
will be sufficient to consider the behavior of a measure <m with density

X

g(x) = Mxy~1 for some positive constant M. Define G(x)= J Mty~1dt = M*xy

( where M* = — 1 and note that we can write

V y J

C(r) = E(m(B(X, r))) = /.(r) + I2(r) + I3(r),

where

and

Now

for 0 < r < | . Hence we obtain

limr-2yI3(r)< lim

= V (G(x + r) - G(x - r))g(x)dx,

/3(r)= J (M*-G(x-r))g(x)dx.
l
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x
Now consider I^r). Making the substitution u= —, we can write

J )yxy~1dx =J {x + r)yxy~1dx = r2yMM* J
o o
J
o

1

which gives lim r~2yIι(r) = MM*Iu where It= J (1 +u)yuy~ιdu. This leaves I2{r).

This time make the substitution u = - to obtain

' y"I2{r) = MM* J {(x + r)y - (x - r)y)x
r

= r2yMM* f ((l+w)y-(l

Hence lim r-2yI2{r) = MM*I2, where J2 = J ((1 +w) γ-(l -u) v)ιΓ ( 1 + 2v)dw. (Noteit
r-*0 0

is easy to see that I2 is finite by applying the Mean Value Theorem to the function
xy evaluated at the endpoints 1— u and 1+u.) We conclude lim r~2yC(r)

= MM*{IX +12) for the measure m. From this we see that for the measure my the
conclusion of the lemma must hold with Λ = γ~1C2(I1 +J 2 ) and
B = γ-1K2(I1+I2). Π

This completes the proof of Theorem 2.2.

Concluding Remarks. This paper illustrates the need to exercise caution when
drawing conclusions about the dimension structure of a dynamical system based
on a single method of dimension analysis. It indicates that we need to have a clear
understanding of the differences between the various definitions of dimension (and
suggests also that perhaps the correlation exponent should not be regarded as a
dimension at all). While this example may appear somewhat artificial because of its
one-dimensional phase space and simple mechanism (which would be easily
identified by any observer of the system) it would not be difficult to embed maps
with similar properties into high-dimensional systems where any simple behavior
would be obscured by the general complexity of the dynamics. Estimates of the
correlation exponent from such a system would be considerably lower than the
actual information dimension of the system. (Indeed we have seen that v and σ can
be made as far apart as desired, up to the dimension of the phase space.) Real
insight into the behavior of a dynamical system would appear to be obtained by
studying jointly the three quantities v, σ, and D rather than any one in isolation.
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