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Abstract. We quantize non-abelian Chern-Simons gauge theory in three
dimensions in the presence of Wilson lines. We determine the theory
dynamically in terms of the geometry of loops and show that it is exactly
soluble. Remarkably the quantum loop equations are linear for S3 and they
possess a class of solutions, among which is a non-critical Fermi string theory.
Using these solutions we determine various important identities relevant to
knot theory discovered recently by E. Witten, in particular, we show that the
loop equation yields precisely the full exact skein relation of knot theory. As a
byproduct we show that the partition function of an unknotted Wilson loop on
S3 is nothing but the character of SU(2) in which the rotations are SU(N)-
valued fractional angles. Furthermore, we generalize our solutions to the
case where the manifold M3 is oriented, closed, and non-simply con-
nected with H1(M3) = Q (a homology 3-sphere).

1. Introduction

It has been long conjectured that closed strings play the role of elementary
excitations in the confining phase of a gauge theory [1, 2]. This has led to various
attempts to formulate Q.C.D. as a chiral theory in loop space [3,4]. The strong
similarity between the field equations of chiral fields in d = 2 space-time
dimensions and the Yang-Mills field equations in loop space suggest that there
exists an exact solution to the gluon dynamics. In fact, it has been suggested that in
the N=oo limit, Q.C.D. is equivalent to a Fermionic string theory [5].
Unfortunately this scheme did not go very far due to various problems in the
renormalization theory of fields on loop space. Nevertheless, the idea itself is very
attractive and has potential applications in other types of non-abelian gauge
theories. In this paper, we will formulate the Chern-Simons (CS) non-abelian
gauge theory in three space-time dimensions in terms of quantum geometry of
loops. We will show that the theory is exactly soluble in loop space, and is
equivalent to a Fermionic string theory. Our approach will be an alternative new
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proof of the recent assertion that the CS theory in d = 3 is an exactly soluble theory
[6]. In fact, Witten has given a general mechanism for classifying knots on
arbitrary 3-d manifolds and how to calculate them from a surgery presentation.
The basic element in his construction is the quantum field theory of the CS theory.
His method is based on canonical quantization, while ours will be based on the
quantum loop representation of the CS theory. The solutions we will obtain shows
that the partition function satisfies certain factorization identities which are
nothing but the Witten's identities discovered in connection with knot theory [6].
The full technical presentation of this paper will be published elsewhere [7].

Our starting point is not to consider Yang-Mills action in d = 3, but rather the
topological Chern-Simons three forms

Ic.s = n/4π J lτ(AΛdA + 2βAΛAΛA), (1.1)
M3

where the trace denotes an invariant bilinear form on the lie algebra G which acts
as a symmetry group of (1.1). The action (1.1) is invariant under the infinitesimal
gauge transformations:

], (1.2)

but not under the finite gauge transformations:

^ (1.3)

this is because the gauge group J (which is the set of maps from M3-»G) has
disconnected components, and they are classified by π0( J) ~ π3(G) ~ Z for compact
simple groups G and M3 = S3. For an arbitrary 3-d manifold the π(M, G) can be
calculated to be the integers up to a finite piece which is the fundamental
homotopy group of M. Under the actions of (1.3), Eq. (1.1) transforms as
/c. s + const m. This implies that we can make expι7c.s invariant under global
transformations by choosing n to be an integer; neZ. In fact, this is the
quantization condition on the Planck's constant which appears as the parameter
in the quantum theory of (1.1) [16]:

JF(Af 3, 0) = J DA exp ilc . s . (1 .4)

In addition to Ic.s we need another type of gauge invariant observable, and these
are the Wilson lines which are non-local in the gauge connections A:

Φ(C,Λ): = t r Λ PexpfΛ, (1.5)
c

where the trace has been taken over the irreducible representation R of G; P is the
path ordering along the closed path C, and A is the gauge one-form on M3. Φ(C, R)
is actually the trace of an element Ψ(C) of the holonomy group. The basic
properties of Ψ(C) are:

i) Reparametrization invariance: Where s->/(s) is an arbitrary reparametri-
zation transformation.

ii) Under the action of gauge groups (1.3), Ψ(C) transforms as:

where Cxy is the open path between two points x and y.
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iii) Under infinitesimal variations of the path, we have

δΨ(C) = c p/p v(χ(s))eχp$A\xv(s)δxμ(s)ds; μ=l,2,3. (1.6)
o V c )

These properties, imply that Φ(C, R) is reparametrization and gauge invariant, and
moreover a path independent quantity. The last property follows from the fact that
for a Yang-Mills Chern-Simons theory the field equation is

F = Q. (1.7)

However, the independency of the path is only true for an unknotted loop on a
simply connected manifold and for d = 3 this is S3. For non-simply connected 3-d
manifolds the path dependence of Φ(C, R) is classified by the homomorphism h
from π1(M)-*G, where π^M) is the fundamental homotopy group of M3. On the
other hand, if the loop is knotted, even on S3, Eq. (1.6) will break down and this is
to do with the existence of extra topological information associated with the
embedding of C in M3 (cf. Sect. 4 for details). Therefore, Φ(C, R) looks to be a very
good candidate for a quantum observable in the theory, and hence we would be
interested to study the topological quantum field theory associated with Φ(C,K):

n

this ansatz has been studied recently by E. Witten, who showed that it can be used
to classify all knot polynomials on S3 and in general on M. In this paper we will
calculate (1.8) starting from quantum loop geometry; and show how to obtain
explicit solutions for:

on loop space. In particular, we will determine Win terms of the partition function
of a Fermionic string theory, and prove that the corresponding expression satisfies
certain factorization knot identities recently discovered in [6]. Furthermore, we
will show that the linear loop equation yields the full exact skein relation of knot
theory, in which the renormalized partition function plays the role of the knot
polynomial.

2. Quantum Loop Geometry

Our strategy is to obtain the quantum field equation satisfied by W(C) in loop
space and then look for solutions for this equation. From Eqs. (1.9) and (1.6) it
follows that

—— W(M39 C, R) = xv(s) (tτR P (Fμv(x(s)) exp $ A\
OXμ(S) \ \ c )

(2.1)

therefore, classically the field equation is

z
C9R) = Q9 (2.2)
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however, we would like to calculate (1.2) quantum mechanically, and this is the
crucial step in this program. To do that we consider

(Ψ(C)y: = \DA expi/c.β Pexp §A. (2.3)
c

Equation (2.3) is not gauge invariant since ψ(C) is not. However, we can make a
dummy change of variable A-^A + δA in (2.3) and use

δψ(Q = 7 ds ( P exp J Aμdxμ} δA(x(s)) - (p exp 7 AμdxA, (2.4)
0 \ 0 / \ x J

to obtain the following identity:

=0.

(2.5)

For SU(N)

The dummy change of variable is equivalent to the statement that:

is a total divergence. The first term in (2.5) comes from varying the expi/c.s in (2.3)
and the second term follows from the variation of the Wilson loop term φ(C) using
(2.4). The quantum fluctuation of <F tp(C)> in the presence of the holonomy factor
<φ(C)> can now be calculated by requiring the cancellation of the two terms in (2.5)
we finally obtain the following identity:

x)>=— f Bμveδ(x(s)-y)\W\Cxy,Cyx)-^W(C^df,
" Cxx (. IV J

(2.6)

inserting this into Eq. (2.1) we deduce the quantum loop equations satisfied by
W(C\ namely:

(2.7)

where Cxx is the closed contour C with the marked point x, and W2(Ct, C2) is
defined to be:

^"(C1,R1,...,Cn,K) = <Φ(C1, /?!)... Φ(Cn, /?„)>. (2.8)

If the loop C is smooth i.e. x(s)ή=y i.e. does not have a self intersection at the point
x(s), then the right-hand side of (2.7) vanishes because of the ^-functions, otherwise
the point y splits the loop into two closed loops, C1 and C2 (cf. Fig. 1). For later
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purposes we will rewrite Eq. (2.7) in terms of area variations

(2.9)

_
δσμ ' 2 δσρσ

(where δσμv is the area enclosed by the small deformations δC) which is related to
δ

the path variation by:
oxμ(s)

After rescaling W(C,R)-* — W(C,R) we have:

C1, C2)- W(Q} , (2.10)

where
m: = n + C2(G)/2; k = mN . (2.11)

In (2.10) we have replaced the integer n by fe. This requirement has been explained
fully in [6]. Briefly, it comes about upon examining the weak coupling limit of (1.4)
in which the integer n in (1.1) is very large. This corresponds to very small value of h
the Planck's constant. Consequently, the functional (1.4) is dominated by the
classical part of the action. Hence we evaluate (1.4) as sum of contributions coming
from the stationary points which are the solutions of the classical equation of
motion (1.7). To proceed one expands the gauge field A around the classical
backgrounds A(i\ A = A(i) + B, of (1.7), then gauge-fix the action by introducing a
pair of anticommuting ghosts c and c*. It is straightforward to evaluate (1.4) and
find:

W(M, 0) = exp m/μ(<)

where Kv is the kinetic operator of the gauge field J3, and K2 is that of the ghost
fields. Further evaluation of the determinants yields the final answer [6, 17]:

T(0 ,

which indicates clearly that quantum corrections to (1.1) shifts the integer n to
n + c2(G)/2 where c2(G) is the value of the Casimir operator of the group G in the
adjoint representation. Therefore, in (2.7) we replace n by rc + c2(G)/2, and after
rescaling W by (1/JV) W we obtain (2.10). Note that for SU(N), C2(G) = 2N. From
(2.7) we deduce the following important property of W(C, R) which is also true for
ordinary Yang-Mills gauge theories:

(2.12)

which states that W is reparametrization invariant.
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Equations (2.7)-(2.12) are the basic fundamental quantum equations of the
quantized Chern-Simons theory in d = 3 written in loop space. We would like to
find solutions of these equations, however, before we go further on, we would like
to comment on (2.10) in connection with the Q.C.D. loop equations in d = 4 (or
d = 3). In addition to the property (2.12) the Eqs. (2.7) and (2.10) are first order
variational equations while for Q.C.D. we have second order variational equations
in the form δ2/δx2W(C)1. Unfortunately δ2/δx2(s) is not well defined and possibly
singular [3, 4] and this makes the reconstructions of W(C) in Q.C.D. problematic.
Luckily enough we do not have this specific problem for Chern-Simons theory,
thanks to the F = 0 field equation. This will enable us to find exact solutions of
(2.7)-(2.10)-(2.12) for any value of N. Furthermore, in the quantum CS theory the
partition function W satisfies a factorization identity for an unknotted and
unlinked loops i.e.:

W2(M3, C19 R, C2, R2) = W(M3, C19 Λ J - W(M39 C2, R2) . (A)

This factorization identity is exact and it is a characteristic feature of topological
quantum field theory. This is in contrast to the situation in Q.C.D. where (A) is only
valid in the large N limit. One can prove (A) in the following way: We consider the
right-hand side (A) and expand perturbatively the expressions (1.5) and (1.9) as
presented in (3.1) which is a well defined and acceptable expansion. We will obtain
the left-hand side of (A) together with all the contributions corresponding to the
Wick's contractions of various orders of the gauge fields coming from W(C^} and
W(C2) Since the theory we are considering is topological, i.e. there is no local
dynamics, therefore it follows that there is not a local propagator for the A gauge
field. This implies that all the Wick's contractions are zero and hence we are left
with the property (A). This identity will play a fundamental role in linearizing the
loop equation (2.10) as we will see shortly.

3 a. Renormalization and Regularization of the Quantum Loop Equation. We
would like to tackle the divergences that might arise in our solutions to (2.7), and
whether we can extract the divergences of W. To this extent let us expand W(C, R)
to first order in perturbation:

W(C9R)=fί
1 (3.1)

inserting (3.1) into (2.7) and keeping W ~ 1 in the left-hand side of (2.7) to first order
approximation we obtain:

dμΓρσ(x, x') - dρΓμσ(x, x') = -̂  εμρσδ(x - x') + dσφμe , (3.2)

where φμρ = — φρμ is an arbitrary tensor. Equation (3.2) can be solved for Γρσ(x, x')
and we have:

Γ ίxx')-2πίί ' g (*"(*) -*"(s'))| - g y ί33)Γρff(x,x)-— - ε μ ρ f f s _ χ s / | 3 +dlβVa], (3.3)

1 This is because the classical field equation of ordinary Yang-Mills theory is FμF
μv = 0 unlike the

Chern-Simons theory which has F = 0



Quantum Geometry of Loops 335

with V being arbitrary, and m is given by Eq. (2.11). Consistency with (3.2) requires

-lc Rε (3'4)

Denote by W(2) the second term in (3.1) we obtain:

W™(C, R) = ̂ ~ C2(R)χ(C, C) = β (C), (3.5 a)
Jy m

χ(Cl5 C2)= — f I εμeff |*_^|3 dxρdxσ. (3.5b)

Where c2(,R) is the casimir value of the fundamental representation R of the group
G. If G! =(= C2 then χ(C1? C2) is the celebrated Gauss linking number which is an
invariant in knot theory. Unfortunately, the integral (3.5b) contains the situation
where C1 = C2 = C and then χ is ill-defined and needs a proper regularization. The
most appropriate one which respects general covariance is the manifold-splitting
regularization scheme [8, 6]. Briefly this amounts to thickening the knot C to a
ribbon; thur turning a space-time curve into a space-time ribbon whose edges are
the initial curve C and a separate curve Cε, away an infinitesimal distance ε<^l
from C. Now we can apply safely Gauss's formula for χ(C, Cε). Then we extract for
ε<^ 1 an independent topological invariant; namely the linking of the two edges of
the ribbon. This invariant will be the self-linking number of C itself. The curve Cε is
parametrized by (x(s), n) where n(s) is the unit normal vector to the curve C, x(s).
We take x(s) = x(s) + εn(s). Inserting this into χ(C,Cε), and extracting the ε
independent term and then take the limit ε-»0, one obtains:

1 L~"'" "') = *xdn/ds, (3.6)

where V(s) is the Dirac potential on a sphere e2 = l with e1 = 3x/δs; e2 = n;
e3 = 6^2 being the Serret-Frenet moving frame, and L is the length of the loop C.
Therefore,

N - m 2 ε2

where "reg" stands for regularized. A far more interesting piece of calculation,
which we are not going to present in this paper, is to do the fourth order in
perturbation (g4 in the Yang-Mills coupling constant).

From a very tedious exercise we have found that the divergent part of W at the
fourth order takes the form:

C ^ ' Λ ^ 2

W(4\C,R)= \——C2(R}-~χ(C,C}\ + finite terms. (3.7b)
[N m ε J asε->0

This remarkable result strongly suggests that all the divergent terms of W(C) can
all be summed up in the form:

W(M39 C, R) = Φ(C, KWen(M3, C, R), (3.8)
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Fig. 1 x ( S ) = y

Fig. 2 W ( S 3 , C 2

Fig. 3

where

•jftfC.C). (3.9)

We recognize Φ as the torsion of the curve C; and it was introduced recently by
Polyakov [9] within the context of abelian Chern-Simons theory applications to
high temperature superconductivity. WREN(C) stands for the renormalized, finite
value of the partition function in which the coupling constant is being re-
normalized. Let us remark that Eq. (3.9) is an extension of Polyakov's result to the
non-abelian theory in the sense that m = n + C2(G)/2 contains the value of the
Casimic operator of the group G. The answer (3.7), (3.9) depends on the choice of
framing of the knot C. For example, if we allow C to twist say θ units around C then
the solutions (3.7H3.9) are shifted by a phase factor exp 2ni'θ-h [6], where h is
the conformal weight of a primary field living in 1 + 1 dimensions (which is the
surface S that comes out in the solution of W[C,R~\). Therefore, it is left to
determine WREN[C,^] The result (3.8) was of utmost importance in proving that
the loop equation (2.10), in its linear version (3.11) yields precisely the skein
relation of knot theory [18].

The expression (2.10) as it stands suffers from ultraviolet divergences due to the
presence of the ^-function. Therefore, (2.10) must be regularized by smearing the
(5-function. The regularized loop equation would hold for any arbitrary loop, and
there would be no distinction between intersecting and non-intersecting loops. An
appropriate method to work out the regularized version of the loop equations (2.7)
and (2.10) is to introduce the proper time T—\/A2 coordinate. The regularized
loop equation takes the following form (Fig. 5):

2πί ?w=y 1 τ

J
όσμ(s) m Cxx y<o)=*(s) 2 0

1, Cyxyxy)- W(y)W(Cyy) . (3.10a)
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Equation (3.10a) is obtained from the regularized measure

337

y(T)=y
U*x

b

y = J Dy exp- -
2 o

K{Taψ(Cxyyyx)Tbψ(Cyxyxy)} ,

and the use of Eqs. (2.1) and (2.5). In the limit where the proper time goes to zero we
reproduce Eqs. (2.7) and (2.10) as a consequence of the following relation:

γ(T) = y

f(x,y)δab: = f
2 o

-y). (3.10c)

It is this equation that we will examine for well defined solutions, supplemented by
the fact that W is reparametrization invariant (2.12). Notice that if the contour is
smooth the left-hand side of (2.7) is zero, and we get Eq. (2.2) whose solution is an
arbitrary function that is path independent. If the contour has self intersections
then the left-hand side of (2.7) survives. The partition function W satisfies a further
interesting property which can be deduced from a close inspection of Figs. 4 and 6,
taking into consideration the choice of framing of the loop C which we have
discussed earlier:

I dyf(x, y){W(Cxyyyx)W(Cyxyxy)- W(γ)W(Cyy)} = 0.
cxx

Fig. 4

to o
I

Fig. 5

Fig. 6
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Using this property, together with the identity (A) the regularized loop equation
(3.10a) takes the following final linear form for the oriented link diagrams in Figs. 4
and 6 which are identical except near a point where they have positive, negative,
and zero crossings [19]:

= — ( 1 - ̂  ) * dyμδσμ(x(s))f(x,y)W(γ)W(C). (3.11)

It is this version of the loop equation, together with the property (3.8) that yields
precisely the linear skein relation of knot theory [18] as we will briefly outline in
the next subsection.

The above equation indicates clearly that CS theory is an exactly soluble
theory. The linearity of (3.11), and the fact that it is a first order loop equation is a
unique feature of the topological gauge quantum field theory we are considering.
We recall that a similar situation occurs for the 3-d Ising model [10]. As a
justification of our claim, we will present a simple solution of (3.11) and (2.12). In
the next subsection we will give a more physically interesting solution which might
be of potential importance in the theory of knots. Consider the following vector
field:

*μ

: = KβX* σβσ = § *ρ(s)dxσ(s). (3.12a)
c

If the loop C is smooth, it is easy to show that

Ksσμ = 0, (3.12b)

where the Ks operator is defined in (2.12), i.e. σ is reparametrization invariant;
however, if the loop intersects itself say at the point x(sί) = x(s2) = x(s)9 Fig. 1. Then
(3.12) breaks down at the point of intersection which has been fixed a priori.
Therefore, to restore (3.12) we must subtract the contribution of σ at the point of
interaction. The correct subtraction is given by:

fj, = i<W f δ3(x(s)-x(s'))xQ(s)xσ(sf)dsdsf, (3.12c)
cxx

which is similar to σμ with the exception of the <5-function. The presence of the
<5-function is crucial in the following sense: if the loop C does not intersect itself at
the point x(s) then [3]:

δ(d\x(s)-x(s')) = 0 o ημ = 0. (3.13)

However, if C itself intersects s at x(sί) = x(s2) then ημ receives a non-zero
contribution from the neighbourhood of the self intersection point. To calculate
this contribution we need to determine the ^-function near the point of the
interaction. We can do that by taking the following ansatz of δ:

<"**-#*-ϋs-j^F^F5 (114)

and calculate it between two test functions. For d=3 we obtain [7]:

, (3.15)
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where a± is just a finite constant. Substituting (3.15) into (3.12) we obtain the
contribution of σμ at the point of interaction. Denote by:

Qfί = σμ-ημ (3.16)

then for C, smooth, self intersecting or knotting we have (Fig. 1):

K,Q" = 0 (3.17)

and hence

W(C) = λ J @gexp-(QμQμ)
1/2/d'. (3.18)

M3

is a solution of Eq. (2.12), where λ is an arbitrary constant and ̂ g is the measure of
the 3-metric on M3. With appropriate fixing of λ it is straightforward to show that
(3.18) satisfies (3.11). Next, we will present another appealing solution to
Eq. (3. 10 a) which would be of considerable importance to two-dimensional
(conformal) field theory models.

3 b. Fermi String Theory, and the Linear Knot Skein Relation. At first sight it would
be strange to think of any connection between CS theory in d=3 and Fermionic
strings, however, it seems that such a connection is indeed there at least between
Q.C.D. and strings [3-5]. The basic line of thought is to imagine that the Wilson
loop C is a line being created by a fermionic field at a reference point *0>

 an(3 then
closing this line by introducing an anti-fermionic field at x0. The trajectory of these
(anti)fermionic fields would be a surface S embedded in M, whose boundary is the
loop C. The crucial question is whether or not the surface S exists for an arbitrary
three-dimensional manifold M. The answer is certainly negative in general,
however, as we shall discuss in Sect. 4 there is a whole class of non-simply
connected 3-manifolds in which any loop C embedded in it can be thought of as the
boundary of a surface S in M3. In this section we will consider the case of S3 in
which S definitely exists and leave the generalization to Sect. 4. Therefore, our goal
is to show that there exists a quantum string theory defined on S that is equivalent
to the quantum CS theory.

Let S be the surface on M3 whose boundary is the loop C (we allow S to have
self-intersections), and has a given induced metric

&0fo τ) = ψ(σ> τ}n*β ' = Sax
μ(s)dβxμ(S)

in the conformal gauge, where σ and τ are the internal coordinates on the surface S.
The conformal factor Φ is reparametrization invariant; this follows from

, τ) = δ(σ - σ0)δ(τ - τ0)sμρσ^(s)vσ(s) , (3.19)

where tμv = εμvρvρ is given in terms of the surface area and it is a tangential
antisymmetric tensor to S:

v = tμv]/gd2σ. (3.20)

Equation (3.19) can be expressed in terms of δσμ [cf. Eq. (2.9)] as

=ιΛ5(σ-σ0)<5(τ-τ0). (3.21)
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let \p^(σ9τ)ι α = l,2; λ=±l be a bispinor on S (an elfin) which satisfies the
following boundary conditions (ί=l, ...,N):

^> (3.22a)

( I L (3.22b)

at the boundary of S. λσ3 describes the orientations of the loop C. The spinor φ is
0(3) invariant as a consequence of (3.22). Equation (3.22 b) describes the oriented
states in which the left-handed states will be occupied at the boundary. The
dynamics of ψ can be obtained from the action principle

Jφ = J d2σ e2*V\σ*e-«Vwλi + Mψ\ψλi - - d"ρdaρ , (3.23)

where ρ is an external field, σα are of the pauli matrices, and ωα (Fβ = δα + iσ3ωα) is
the spin connection. It has been shown that the quantum field theory of IΨ is ρ
independent, and the presence of 3αρδαρ in 7ψ is crucial for this to be true [5]. The
partition function of Iψ is given by:

+A_ (3.24)

and

A = -*

with the trace being taken over the boundary conditions σ 3 =±l, and the
irreducible representation of the gauge group G. It is straightforward to show
using the fact that Z is ρ independent and Eq. (3.19) that Z is reparametrization
invariant:

(3.26)

Consider Fig. 3 in which we have a loop Γ that has an opposite orientation to C.
This can be achieved by choosing the opposite boundary conditions to (3.22 a),
namely, we require ψR = ψR = Q, at Γ"1. Consequently, the string propagator Z
can be shown to satisfy a factorization relation. Let γxy (y'y1 = γyx) be an
infinitesimal wire that connects a point x to a point y = x + δx. An explicit
evaluation of (3.24) reveals that Z satisfies the following relations [5, 7]:

Z[C] = f D/],Z[C,, J^Zi;/],- x] exp- MΓ , (3.27)

where α is a constant parameter, and Γj( is a closed path of length / on the surface S.
Under the action of the area derivative (3.21) only the fermionic bilinear term in the
quantum theory of (3.23) contributes. This amounts to creating a fermion-
antifermion pair at the boundary of S that forms the ends of a closed path Γj( . This
path touches the boundary at a point x^s) and hence splits the surface S into two
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pieces Sin and Sout. Consequently, it follows from (3.27) and (3.21) that (Fig. 5):

6 Z\C\ = - ̂  J Dy^XW^exp-α/^ZCC^JZCC,^] (3.28)
<5σ"(s) L J 2

with lxy being the length of the wire γxy ίlxy = J d2σφil2}. The presence of the wires

γxy, and yyx is to make the loops Cxy and Cyx closed and continuous. Comparing
Eqs. (3.28) and (3.10a) together with the identity (A) leads to the immediate
conclusion that Z[C] is equivalent to W[C]. In fact, VΓ=Z expiα/c, the
exponential term has the effect of producing the linear term in the loop equation
(3. 10 a) due to the following variational equation:

(3.29)

where the invariant δ-function is

<5inv(*(s) -y) = φ-1δ(σ- σ0)δ(τ - τ0) (3.30a)

with x(s) being a point at the boundary.
It is of utmost importance to realize that Z[C] is the regularized solution for

W(C). Note that if we shrink the wires yxy to zero in (3.28) we obtain a δ-ΐuncύon.
Therefore, we propose the following regularized solution for the loop equation
(3.10a):

W(M3, C, R)/W(M3) = Φ(C, R) - Σ Z[S]/Z[S, Jff = 0] el"lc , (3.30b)
SeM3

dS = C

where φ is the path torsion (3.10). The constant α can be fixed by inserting (3.30a)
into (3.10a) and comparing coefficients:

4τr7 ~ 4τr
α=- — M//c=— . (3.30c)

m m

Equation (3.30c) provides the connection between the 2-d Fermionic string theory
and the CS theory (1 .9). Remarkably we find that the string mass M per unit length
is quantized in order of h. It is straightforward to prove the identity (A) explicitly
using the ansatz (3.30a). It is important to mention that knots are included in our
theory provided that the surface S is self-intersecting with possible singular points
(these are the endpoints of the lines of self-intersections). In this case our problem
reduces to the study of the behaviour and the properties of the Dirac operator
induced on S at the singular points {tk}. One particular approach which we favour
is to isolate the singular points by discs {Dk}9 \z\<sk centered at tk and evaluate
(3.25) on S — {Dk}. The theory (3.24) with singular self-intersecting surfaces can be
obtained as a limit of the theory on S — {Dk} when εfc->>0. We will present the details
elsewhere. However, for the prove to come next we will assume the limit exists and
proceed formally.

Let M! and M2 be two 3-dimensional manifolds and W(Ml9 LJ; W(M2, L2) be
their corresponding partition functions with L being the link of the loop (s)(C, R).
Suppose we want to form a new 3-dimensional manifold M = M1+M2. A
standard procedure would be to cut a ball from M1 and M2. Then we glue M1 and
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M2 along the boundaries of the two balls being removed (which are S2) after
identifying them. We obtain a new manifold M with a closed hole inside, which we
can eliminate by filling it with S3. From Eq. (3.30) it follows that:

W(M19L1)^W(M19L1) W(S2

9pi9...9pJ9

W(M29 L2)-> W(M29 L2) W(S2

9 $!,...,«„),

where Pί9...9Pm (respectively ql9...9 qM) are the cuts of L± (respectively L2) at the
boundary of S2. Under G transformation we identify the points {pί9 ...,pm} with
{<h> •> Qm} with no intersection, i.e. they are elements of the irreducible represen-
tation of G. In this way we obtain a new link L = L t+L2 on M = MX + M2

which has no component on S3. Using (3.31) Witten [6] showed that W satis-
fies the following factorization identity (γ is an unknotted loop on S3):

W(M1^M29Ll+L2)'W(S3

9γ)=W(Ml9L1)'W(M29L2). (3.32a)

We can prove (3.32) using the solution (3.30b) and the fact that Z does factorize on
two glued surfaces Sί and S2 (we have chosen the cut of M to pass through the
surface S):

Z(S1uS2)-Z(D)= ΣZ(Sl9Bά'Z(S29BJ9 (3.32b)

where D denotes the disc and Bt are fixed boundary conditions on the loop C", the
boundary of Sί and S2, respectively. Notice that S which is S^uS^ is cut along C.
The generalization of the identity (3.32) to non-simply connected 3-d manifolds cut
along an arbitrary compact Riemann surface will be presented in Sect. 4.

Finally, we would like to calculate W(1\S3,L). We will do that on the basis of
examining the linear loop equation (3.11) within the context of knot theory. We
will do a brief presentation of this very interesting connection. The full technical
details can be found in [18]. We go back to (3.11) we recognize that:

lim f δσ^(x(s))dyμf(x9y)W(y) = ί (3.33)
y^o cxx

is a dimensionless quantity, and therefore, we normalize W(y) such that the left-
hand side of (3.33) is one. Then the variational loop equation takes the simple form:

δW(C) = 2πi/m(l - \/N)W(C) . (3.34)

Consider the diagrams in Fig. 4 in which we have three knots, L+, L_, L0 [19],
with overcrossing, undercrossing, and zero crossing, respectively. The loop
equation (3.34) encodes the variation or deformation of the knot L+ to the knot
L_. Therefore, we deduce from (3.34) that:

(3.35a)

Using Eqs. (3.8) and (3.9) we can obtain the ratio of the renormalized partition
function ^REN(C) : = W(C):

(3.35b)
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III

Fig. 7

A similar result would hold for the diagrams K+ and K_ in Fig. 6. On the other
hand, from the factorization identity (A) and inspection of Fig. 4, it follows that:

W(L+) W(L_) = {ti{L0) W(C0)}2, (3.36)

where W(C0) is the partition function of an unknotted and unlinked loop C. The
second equality in (3.36) follows from the particular choice of framing of the loop
C, we adopted before. From (3.35b) and (3.36) we can solve uniquely for W(L+) and
W(L.}. We obtain:

W(L+) = Qxpπί/m(l-l/N + 2C2(R)/N) W(L0) W(C0), (3.37a)

W(L_) = exp - πi/m(l - 1/N + 2C2(R)/N) W(L0) W(C0) . (3.37b)

As an application we consider the group G = SU(N) in the fundamental
representation R, in which case c2(R) = l/2(N2 — l); then it is straightforward to
deduce from (3.37) and Fig. 6 that:

(3.38a)

/w, (3.38 b)

which together with (3.37) constitute the full exact generalized linear skein relation
of knot theory in which the renormalized partition function WREN of the CS theory
plays the role of the Laurent polynomial P(α, b) function. The parameters a and b
are integer numbers. In our case a = qN/2, and b = q1/2 — q~1/2. We would like to
mention that not all knot invariants satisfy a linear relation of the form (3.38), for
example diagrams of Reidemeister type II and III [19] (Fig. 7). Such knot
invariants must satisfy the non-linear regularized loop equation (3.10a). As an
application of the skein relation (3.38) we consider again Fig. 2 in which the loops
L l5 L2, L3 are unknotted and unlinked. Their corresponding renormalized
partition functions satisfy the skein relation (3.38). However, an inspection of the
diagrams of L0,L3 in Figs. 2 and 6 reveals that:
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for unknotted and unlinked loops. Therefore, Eq. (3.36) reads:

W(L,) = W(L,} W(L2}, (3.39)

but W(Lt) is equal to W(L2), and hence we deduce from (3.39) and the skein relation
(3.38) that:

W(LJ= W(LJ = (q"'2-q-'"2)/(qll2-q-112). (3.40)

This formula was first derived in [6] for the expectation value of the Wilson loop. It
is nothing but the Jones polynomial on S3 which is an invariant of knot theory.

Now we would like to derive (3.40) in terms of the characters of 5(7(2). This
would seem plausible since our manifold is S3. From the factorization property (A)
it is straightforward to find that:

W(S\ C) = {W2(S\ C2)}1/2 . (3.41)

On the other hand, consider Fig. 2. If we associate q with the first circle then we
must associate q~ 1 with the other one or visa-versa. An important property that
should be satisfied by W2(S3, C2) is its invariance under change of orientation of
the loops C2. In other words W2 should be invariant under the discrete
transformation q-^q'1. The means that W2 must be of the general form:

W2(S\C2) = χ(q)χ(q-ί). (3.42)

In particular, for S3, χ(q) is nothing but the character of S (7(2) in the N dimensional
representation of SU(N) as we will demonstrate shortly. Evaluating (3.42) gives

χ(q) = trqx= V« r = (l -«")/(* -«), (3 43a)
r = 0

i.e.

W2($\C2} = (\-q»}(\-q-»}l(\-q}(\-q-^, (3.43b)

from which we deduce that W(S3, C) is equal to + W(L^ in (3.40). In [6] Eq. (3.40)
was derived as a consequence of manifold surgery and the knowledge of the space
of conformal blocks of four point functions in S2. It is very interesting to note that
our method reveals the fact that the string partition function and hence (3.40) is
nothing but the character of SU(2) for an unknotted loop on S3:

(3.44)

with the following identifications:

= 2π/m. (3.45)

It is clear that the rotations are fractional SU(N)- valued angles which
correspond precisely to Crystal point groups. These groups are finite subgroups of
SU(2) that leave a n-gon invariant [1 3]. Now I would like to demonstrate why Eqs.
(3.43) and (3.44) are true. Since we are calculating the expectation value for an
unknotted loop on a simply connected manifold this means that we can deform the
loop to a point and therefore, we can effectively reduce our calculation to the
expectation value of the identity, which must depend only on the manifold S3 and
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the symmetry group SU(N). On the other hand, we know that the character of
5(7(2) can be expressed as a Feynman path integral over S3. Therefore, the
Feynman path integral of the SU(N) gauge Chern-Simons theory on 53 can be
partitioned by choosing the dimension of the center oΐSU(N) to be the same as the
dimension of the irreducible representation of SU(2). Hence we expand the
partition function of the identity in the center ofSU(N) with elements that fall into
the Irred. Reps, of 517(2), but 5U(N)-valued:

χ(q) = (iy = $@AexpίIcs = qN-v2 + qN-3f2+...+q-(N-V'2, (3.46)

where the angles θ = 2n/m appear as in (3.37) as a consequence of the identity (2.6),
and the expansion in (3.46) is implied in the solution (3.30a). We observe the left-
hand side of (3.46) as nothing but the character of 517(2) with rotations and the
dimension of the irred. reps, being given by (3.45).

4. Generalization

We would like to generalize our previous constructions to non-simply connected
3-d manifolds, though this is straightforward, it is nevertheless subtle and non-
trivial. The vacuum states that diagonalize the transition amplitudes W(C9 R) are
classified by the homotopy classes [M, G] of maps from M into the internal
symmetry group G. For non-simply connected manifolds M3 these homotopy
classes are given by the first and the third cohomology groups of M:

[M, G] = H\M, πx(G)) + tf 3(M, π3(G)) (4.1)

and therefore, we have two topological quantities of interest. One is the secondary
winding number n which is specified by the cohomology group H3(M, π3(G))~Z
(for simple non-abelian Lie groups G and orientable M). This is the integer n we
encountered in the previous sections. The other topological quantity is called the
primary winding number h and it is an element of H1(M, π^G)) [11]. In general,
g and n are independent except for the special case of G = 50(3) where they are
related; one being the cube of the other (n mod2 = g3) [11], We will discuss the im-
plications of H1 on the solution (3.31) later on.

The solutions of the field equation (1.7) are classified by principle flat G-bundles
over M and they are constructed by forming equivalence relations of the form
(z, U)~(ez9h~l(e)U) on MxG where e belongs to π^M), h is a homomorphism
from π^M) into G, and M is the universal covering space of M. The bundle MxhG
is non-trivial as an associated π1(M)-bundle (though it might be trivial as a
principle G-bundle), which means that there exist globally well defined flat
connections Ah that are classified by the HOM^M)-^) and they are patched
together non-trivially. Locally these connections take the form:

Ah(x)=U(x)dU(xΓ1. (4.2)

If πί(M) = 0 i.e. M is simply connected then MxG is a trivial bundle and an
acceptable globally well defined solution of (1.7) is

A = Q. (4.3)
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In this case the Wilson loop vanishes classically. Quantum mechanically it does
not, however, we perform our quantization in the classical background (4.3). On
the other hand, if π^MJΦO then we must quantize (1.8) around the non-vanishing
classical backgrounds Ah. The quantization of (1.8) yields the following effects: The
action being a 3-form will only react to Jϊ3(M,π3(G)) under the finite gauge
transformation (1.3) and hence as before the invariance of the EXPίIc, s will give the
previous quantization condition l/ft = neZ~ff3(M,π3(G)). On the other hand,
the Wilson loop being the exponent of a 1-form will only react to Hί(M, π^G)). In
fact, it is not difficult to show that

Φ(C,ΛΓ) = Φ(C,Λ), (4.4)

where gl/ = [17] is the set of all those gauge transformations that are related to (7.
The set of all {gv} constitute the abelian group H1. Evidently (4.4) indicates that Φ
is gauge invariant. However, this time we will have different Wilson loops that are
labelled by the elements of HOMfr^MHG) as:

Φ(C^Ah}^Φh(C^Ah). (4.5)

Consequently, the generating functional (1.9) is gauge invariant but classified
according to πx(M). In fact, there are h of them; Λ = dimHOM(π1(M)-^G) and we
label them by Wh(M, C, R). Our analysis in Sect. 2 can be repeated to work out the
loop equation of Wh. The only difference this time is that rather having one Eq. (2.7)
[or (2.10)] we have now h of them. Hence we will have h solutions. For h^h' the
solutions Wh and Wh, lead to two different quantum field theories. The next
question is how to calculate Zh for non-simply connected manifolds. The first
significant modification is that the spinors ψ*λ will now couple to the classical fields
Ah. In other words the co variant derivative in the Fermionic action must be
covariantized with respect to the gauge fields Ah. However, as soon as we turn on
the coupling of the gauge fields Ah to the spinors the partition function Z loses
gauge invariance under the large gauge transformation gM = [t/] of jHrl(M,π1(G)).
In fact, the gauge fields Ah get lifted up to another class of gauge fields (Ah)g which
are classified by the H1 as well as HOM(π1(M)->G). Of course, this situation does
not occur in the coupling to the Chern-Simons gauge theory. In other words H1

comes into the game only when there is coupling to spinors [11,12]. Consequently,
the Fermionic partition functions (Zh)g are H1 gauge dependent and they are
classified by the first cohomology group of M3, their expressions are given as in
(3.24) and (3.25), however, with the modification that the covariant derivative DQ is
covariantized with respect to the gauge fields (Ah)g. On physical grounds, however,
we will be interested in gauge invariant quantum field theory and therefore, we will
be concerned in constructing Zh that is gauge invariant. Such a situation has been
tackled before within the context of quantized spinor fields on non-simply
connected manifolds [12]. In fact, there are two good candidate solutions: the first
one is taking the sum over all (Zh)g:

SL (4.6)
geH'

where the weights χ(g) are some complex numbers that are appropriately chosen
and they label the different gauge invariant vacuum states that are associated with
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the Chern-Simons gauge field (Ah)g. In fact, they are the characters of the abelian
group #* dual to H1 and satisfy the following properties:

(4.7a)

(4.7b).

and using the fact that H1 is abelian (i.e. g2 = 1, ge//1) we deduce from (4.7 a, b)
that:

l . (4-7c)

Another candidate is to take the product of (Z :̂

Zft(M,L)= Π (Zh)β(M,L). (4.8)

In fact, Eqs. (4.6) and (4.8) can be combined into one single candidate:

Zh(M,L,g1,...,gs)= X χ(g)'(Zh)gg...(Zh)gg,
βeHf (4.9)

giΦg;, s = l ...dim//1, iφ;.

Equation (4.9) will be our solution for the quantum non-critical Fermionic string
theory for non-simply connected 3-d manifolds. Using Eqs. (4.7) we can prove
again the identities (A)-(B)-(C), however, the situation is now more delicate and the
identities have to be properly stated, in particular, the identity (B). This is because it
involves the gluing of two non-simply connected 3-d manifolds which have
different non-trivial homotopy classes associated with the fundamental homotopy
group. The question we are interested in is given π^M J and π1(M2) what can we
learn about π1(M1uM2) assuming that Mx and M2 have boundaries Σ± and Σ2

that have been identified and that these boundaries are compact Riemann surfaces
of genus g. This is a purely algebraic topology problem and the best answer one can
provide is contained in the following commutative diagram [14]:

I I (4.10)

πι(M2) -> πι(M 1uM2)

which indicates that when pulled back to π^Γ), the representation of π1(M1uM2)
is the same as a pair of representations of π1(M1) and πi(M2). This is the
Seifert-Van Kampen theorem. If the compact 2-manifold is simply connected
(S2) then π1(M1uM2) is the free product of the groups π1(M1) and n1(M2) with
respect to the homomorphisms /1:π1(M1)->π1(M) and /2:π1(M2)-^π1(M),
where M = M1uM2. Consequently, the identity (B) is stated as:

Wh4M^M2,L1+L2)'Wk(Σ,C)=Wh(MlίL1)'Wh,(M29L2)9 (4.11)

where [h"~] and [fe] are specified by (4.10). For a simply connected Σ, [fc] =0 and
[/ι"] = [/j] * \h'~\ [15]. Finally, we would like to know whether or not the solutions
for the Wh loop equations are the quantum non-critical Fermi string theories Zh

(4.9). The solution (3.31) as it stands breaks down because on a general non-simply
connected manifold it is not possible to find a surface S whose boundary is the loop
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C. For example, the three torus, here the loop which winds around T3 is not the
boundary of any surface S. However, there is a class of non-simply connected
manifolds in which the surface S exits and such that any loop C can be the
boundary of some surface S embedded in M3, these manifolds are known as the
homology 3-sρheres. These are precisely the kind of manifolds that Mathema-
ticians are interested in!. The reason is the following: the representations [ft]
defining Jfί1(M, G)c^HOM(π1(M)->G) contain in general reducible representa-
tions for a non-abelian gauge group G. For example, consider the case where
G = Sl/(2), the reducible representations [ftj = [C7] are classified by all those gauge
transformations U (1.3) for which

A% = Ah, (4.12)

where Av is given by (1.3). The connections Ah (4.12) are called reducible. Such
representations correspond to singular points in the moduli space H1(M, G) and
therefore, one would like to avoid them by imposing a restriction on H1 i.e.
working on a subspace of the moduli space in which all the representations [ft] are
irreducible. If G = SC7(2) these reducible representations correspond to elements of
JΪ1(M,S1). Hence the required restriction is to set #ι(M) to be equal to zero.
Manifolds with this property are known as homology 3-spheres. For G = SU(N),
or other non-abelian groups the situation is more complicated, in the sense of
identifying the reducible representations. This is a mathematically open problem.
Therefore, on homology 3-spheres the solution of the regularized loop equation is
again a non-critical Fermionic string theory:

Wh(M3,C,R) = Φh(C,R)'Z;\M3) Σ ZA(M3,S,KK/C, (4.13)
SeM3

dS = C

where Z is given in Eq. (4.9).

Conclusion

In this paper we presented a new approach for quantizing Chern-Simons gauge
theory in d = 3 based on the geometry of quantum loops. We showed that the
quantum loop equation is linear for unlinked loops on S3 and as a consequence we
proved that the theory is exactly soluble in loop space. The partition function of
the Wilson loop is reparametrization invariant. This, together with the linearity of
the loop equation allowed us to find explicit solutions among which is a non-
critical Fermi string theory. Consequently, we rederived some important knot
identities [6]. In particular, we obtained the value of the partition function for an
unknotted Wilson line on S3 as the characters of 5(7(2). Finally, we presented the
generalization of our constructions to 3-d non-simply connected manifolds which
are homology 3-sρheres. We showed that the solutions of the loop equations are
Fermionic string theories classified by the homotopy classes of π1(M) and
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