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Abstract. We study the two field correlator of an Impenetrable Bose gas.
Lenard [1] proved that the equal time correlator can be represented as a
Fredholm minor. We generalize this representation to the time dependent
correlator.

1. Introduction

We discuss the Bose gas in one space plus one time dimensions. The Hamiltonian
[2] of the model is

L/2

H= J dx(dxψ
 + dxψ + cψ + ψ + ψψ-hψ + ψ). (1.1)

-L/2

Here ψ(x) and ψ + (x) are canonical Bose fields: [ψ(x),ψ + (y)] = δ(x — y)9 and L is
the volume. Only the case of an impenetrable boson is dealt with below, in this
case the coupling constant c = oo. The thermodynamics of the Bose gas was given
in [3]. The chemical potential h determines uniquely the density D. In [1] Lenard
gives a representation of the time independent correlator (ψ(x2)Ψ + (*ι)y as a

Fredholm minor; this representation was used to write a differential equation for
the correlator at zero temperature in [4]. The differential equation for the
finite- temperature correlator was constructed in [5]. We can treat the Fredholm
determinant obtained in this paper as a Gelfand-Levitan operator for some new
differential equation, which describes the time dependent field correlator of the
impenetrable Bose gas. The correlation function (Fredholm determinant) is the
τ-function of this new differential equation. We shall present this differential
equation in the next publication.

Eigenfunctions of the Hamiltonian (1.1) (at c = oo) were constructed in [2].

(1.3)
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Here

i Σ znλp (1.4)

ε — is the sign function, P is a permutation and λj are moments. Periodic boundary
conditions can be written in the form

*"•*' = (- I)"-1. (1.5)

The norm of the wave function is given by

= LN. (1.6)
Let us denote the set of {λ} in the ground state by {μ^ }. For convenience, we take
N even. At zero temperature

ΊTT / \r _ι_ 1 \
j=\,...,N. (1.7)

In the thermodynamic limit W-» oo, L-> oo (with the density D = JV/L fixed) the
set of {μj} fill the interval [ — #,#] (Fermi-sphere) with

The value q is called the fermi momentum. At finite temperature Γ>0 the
distribution of particles in momentum space is given by the function p(μj) [3]:

p(μ) = ̂ (l+^I-hvτΓ1. (1.8)

We shall calculate the time-temperature correlator. The plan of the paper is as
follows. In Sect. 2 the field form factor is represented as a matrix minor. In
Sect. 3 the time correlator is calculated at zero temperature. In Sect. 4 the time
temperature correlator is calculated. Appendix A contains calculations of singular
sums. Appendix B gives a comparison with the Lenard formulae.

2. Form Factor

Let us consider the field form factor:

F(x) = < ΨN+ι(W\Φ + (x)\ ΨN({μ})>. (2.1)

Here the set {λ} consists of N + 1 (odd) elements. So the equations for λ and μ
are different

eiLλ' = (-l)N=l; eiL^ = (-l)N~1 = -l (2.2)

and it follows that the λj will never coincide with any of the μk. The momenta λj
are equal to 2πj/L O'eZ),
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The form factor (2.1) can be expressed in terms of the functions χN defined by (1.3):

(2.4)

Apply integration by parts; due to (2.2) there is no contribution from the boundary
because λj — μk ^ 0. So we have for the form factor

ίx
j=l

~ Σ Σ (~
P,Q

N
Π (2-5)

Here Q is a permutation of {μ7 } (in number N) and P is a permutation of {λk}
(in number N + 1). Let us remind the reader that F(x) is antisymmetric in λj and
in μk separately. This allows us to prove the following formula

(2.6)
α = 0

Differentiating the rows one by one, the right-hand side can be represented in the
form of N + 1 terms. The first is det(l/(λj — μk)) all other terms can be obtained
from this determinant by the interchange λm<-+λN+ί which changes the sign. The
left-hand side of (2.6) can be represented in a similar form if we group the terms
in the following way. First set λpN + ί = λN+1: the sum of all such terms is equal to
det (\/(λj — μk))9 then set λpN + 1 = λm and collect all the terms. In this way it is clear
that formula (2.6) is correct. Another important property is that the right-hand

μj)"1 by means ofside of (2.6) can be obtained from the product J"] (λj

antisymmetrisation with respect to {λj}; explicitly we have

l+-)det,
λj-μk λ

α Ί

N+1-μk] α = 0 {A}

N

;=i
(2.7)

The final result is

C ( N N + i
F(x) = (2i)N exp{ ixl Σ μj- Σ λJ

I \ j = ι j=ι + - (2.8)

Mik = -
μk λN+ι μk

It is interesting to note that det M is a linear function of α. This follows from the
fact that for the ground state

Σ
7 = 1

The Quantum Bose field depends on time ί in the canonical way:

(2.9)

(2.10)

So the time dependent form factor is equal to
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= exp -iht + it
N+l N

j = l

N N+l

Σμj- Σ
j = l ;=1

(2.11)

3. Time Correlator

Let us decompose the correlator over a complete set of states:

{λ}
N N+ί

iί21( y μ}- y λ]2.\\ ^ t~J L-i J
V;=ι j=ι

N N+l

Σ/-.Σ

i

2N

+

— μk

1 β

— μk λN + 1 — μk

(3.1)

Here we use Eq. (2.11), and x12 = X j — x2, ί21 = ί2 - ίj. Each of the determinants
here are antisymmetric in {λj}. Taking into account (2.7), let us replace the second

N

determinant by Y\ l/(λj — μ^ );
7=1

C N N
ht21 + it21 Σ μj+ixu Σ ̂

._( _

LL

[ ^iί! 2λj + ΪX2 1 Ay git ! 2Aj + ίX2 1 λfgίί 1 2^ + 1 + ix2 1 ̂  + 1 Ί

-- α -
(^j ~ μύ(λj ~ Hj) (^ - μ)(λN + ι-μύ Jα = 0

(3.2)

Now replace summation with respect to the sets {λj} by independent summation
of each individual A,;

{λj} λι
Σ (3 3)

Each of λj run through all the values (2.3) (2π/L)j/L independently. Notice that
λj enter only row number j in the determinant (3.2) j = 1, . . . , N. So we have
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N N

£ μj+ixi2 Σ /f/

— α-
»,-!>,

.1 Σ *"f"""'-l1
L λ (λ — μ ) I

(3.4)

Now let us calculate the sum with respect to the individual λj. In Appendix A it
is shown that in the thermodynamic limit we have:

I e

ltλj~ixλj

L ίT A,-£i, =
dλe itλ2~ixλ

Introduce the notation

E(λ\t,x)=
λ-μ '

then it is shown in Appendix A that, in thermodynamic limit:

4 p i ~lx* j ~ J~r f
T—I *-• l ί/ iΓ — ivu. *''»' V

One should also remember that

— Yeltλj'ίxλJ = — f eitλ2~ixλdλ.
Ί i 2π J

X-/ X . Z»/t — OO

We introduce also another notation:

G(ί,x)= f e'^-'^dμ.

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Using all these summation formulae we may write the determinant formula (3.4)
for the correlation function in the form

det,v I δik + exp [ΐί2μ? — ix2μi - iti μ* + i^iμk
\

\ -77 'ΛE(μj\tl2,Xi2)-E(μk\tl2>xl2))
\_πL\μj — μk)

α_ Ίλ
Lπ2 ^ 12,^12 /ί* 12,*12 Jj (3.10)
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Calculation of the thermodynamic limit of this result is straightforward. The final
result for the zero temperature correlator is

Λ \
(3.11)

= o

Here V0 is an integral operator, acting on the interval [ — q, q]. The kernel of this
operator V0(λ,μ) is equal to

_
- — u) 2

(3.12)

This is our final answer for time correlator at zero temperature.
Now let us consider the equal time case: t± = t2.

In this case (l/2π)G(0,x12) = δ(xl — x2); this gives commutators

l2)=-ίπe-i^2 for χ12>0.

Also, the kernel F0 is reduced to

0 ,
n (λ — μ) 2n

In Appendix B it is shown that Eqs. (3.13), (3.11) are equivalent to the zero
temperature version of the Lenard formula for equal time correlators.

4. Temperature Time Correlator

Now let us discuss the temperature correlator

''Γl. (4.D
We shall use Euclidean time, τ = it. Evolution in τ is given by

ι//(x,τ) = eHτψ(x,Q)e-Hτ.

Euclidean temperature correlators are defined in a similar way to (4.1)

tr(g"H/Γ)

The traces entering (4.1) and (4.2) can be represented as functional integrals [6],
which can be evaluated by the method of steepest descent in the thermodynamic
limit. Only states of thermodynamic equilibrium contribute. They are the set of
eigenfunctions of the Hamiltonian (an infinite number in the thermodynamic limit),
which were described completely by C. N. Yang and C. P. Yang [3]. All these
eigenfunctions correspond to the same distribution function in momentum space
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(1.8). It is interesting to mention that the mean value of φ(x2^
τ2)Ψ + (χι^τι

respect to one of these eigenfunctions is independent of the choice of eigenfunction
(if it belongs to the set of states of thermal equilibrium). This mean value is equal
to the correlator (4.2). This permits us to calculate the temperature correlator (4.2)
by means of formula (3.10)

K)|ββ0. (4.3)

Here V is integral operator acting on the real axis. The kernel V(λ, μ) being equal to

( l/2)τ 2 ι (λ 2 + μ2) -(i/2)x2ι(λ + μ)

/\ _ |_ eU
2-Λ)/Γ Λ _j_ β(M 2

π2(λ-μ) 2π3

where x12 = x1 —x 2; 0^τ 2 1 = τ2 — τ1 ;£ 1/T; τ 1 2 = — τ 2 1 . Also, we used the
notation

G(τ12,x12) = ldμe-™2-'*"'t, (4.5)

E(μ|τ1 2,x1 2)= i -*Le-™»-<*»\ (4.6)
A μ

This is the final result for the time temperature correlator in the Euclidean case.
It is represented as a Fredholm minor.

Now let us present a similar representation for the real time correlator (4.1).
It can be obtained from the above formulae by the replacement τ = it, or from the
zero temperature case (3.11) by replacement of V0 by V9 acting on the whole real
axis. The kernel V(λ, μ) is equal to

For V0(λ,μ) see (3.12)

/ I f)\
. (4.8)

Here G is given by (3.9). The equal time case is treated similarly to the zero
temperature case; now we need

μ) = _. (4.9)
y1 + έ?α

2-/,)/ry1+έ?o,2-/,)/r

Here F0(λ, μ) is given by (3.13). In Appendix B it is shown that the Fredholm minor
of (4.9) (as the formula for <^(x2)

ίA + (Jcι))τ) ^s equivalent to the Lenard formula.

Conclusion

We have represented the time-space dependent field correlator of an impenetrable
Bose gas as a Fredholm minor. The case of many field correlators will be considered
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by N. A. Slavnov in a forthcoming paper. In our next publication we shall
present differential equations driving these correlation functions. These will be
generalizations of Painleve equations to partial differential equations.

Appendix A

First let us study the behaviour in the thermodynamic limit of the following sums:

s>= Σ
j = 2πj/L Aj

Here j runs through all integer (positive and negative) and g(λ) is a smooth
decreasing function, for example g(λ) = exp(iίA2 — ixλ). (We shall use the standard
regularisation ί->ί + ίO.) We transform (A.I),

v 9(Aj)-g(μk) ^ I
Σ — i — - — + ̂λj = 2πj/L AJ - μk 2

2π λ — μk 2π λ — μk

Here we used the formulae

(A 2)

JeZ J ~ 2

So the thermodynamic limit of the sum (A.I) is equal to the integral (A.2)

1

(AJ)

^
L λj = 2χjiLλj-μk 2π λ-μk

Consider now the more singular sum:

1 g(λj)82 ' (A 5)

To study the thermodynamic limit, we transform it in a similar way:

λ j j - k j-

The first term can be transformed in the following way:

The second term can be written, by means of (A.4), in the form
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Now we use (A.3) to get

1 , ,M)-9(μk)= 1 3 f .g(A)-g(n t) 1 d . dλ g(λ)
2π * (λj-μk)

2 2π dμk

 t (λj-μk) 2π dμk * λ - μk ' l ' '

Finally we have

E Σ A-ϊ ω+ss-ί nΓ w (A 10)
^ A = 2 π L IΛ — /*fc ) 4 Zπ V^k λ ~ Vk2π//L

In our case we obtain (3.7)

' X j '' :). (A.11)

Appendix B

For the equal temperature correlator Lenard [1] showed that

-x)>Γ = -p(x, -x)det( 1--Θ ); x^O. (B.I)
π π

Here we use the fact that <^ + (xι)(A(x2)) depends only on difference xί — x2. In
(B.I) θ is a linear integral operator acting on the interval [ — x,x] with the kernel

0(f _,,) = ! J dλei(ξ-η)λθ(λ). (B.2)
2 - αo

Here we denote

- * τ (B-3)

The kernel of the resolvents operator is defined in the usual way:

p(ξ, η}--} θ(ξ- ξ')p(ξ', η)dξ' = θ(ξ - η). (B.4)
n -x

The value of the kernel p(x, — x) at the ends of the interval [ — x,x] enter (B.I).
Our formula (3.13), (4.9) for the equal time case can be represented in the

following way:

λ). (B.5)

Here we evaluate the derivative with respect to α. In (B.5) K is the integral operator
on the real axis with the kernel

- (B.6)
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and the function f(λ) is defined by the integral equation

2 oo
f±(λ) f K(λ,μ)f±(μ)dμ = e±iλxJθ(X). (B.7)

π -oo

We will show, by means of Fourier transformation, that (B.I) and (B.7) are
equivalent. Consider the integral equation

φ(ξ)~ f θ(ξ-ξ')φ(ξ')dξ' = Q(Φ). (B.8)

Taking the following Fourier transforms

φ(ζ)= J dλ^/θ(λ)e~
— oo

1 00ί dt

F(λ) = - 7= dξeiλξΦ(ξ\ (B.9)

one has the following equation for the function f(λ):

f(λ)-- J K(λ,μ)f(μ)dμ =
71 — oo

The kernel K(λ,μ) is exactly (B.6). So the Fredholm determinants of operators (B.2)
and (B.5) are the same:

detf 1--K ) = det( l--θ ). (B.ll)
V π / \ π /

Now let us show that

p(x,-x) = i f eiλx

Here we change the sign of the integration variable λ. To prove (B.I2), consider
Eq. (B.4) for η = - x. The Fourier transform of p(ξ, - x) is denoted by r(λ\

r(λ) = ί== ? dξeίλξp(ξ9-x). (B.13)
2πv/βW -«

Fourier transformation of (B.4) leads to the equation for r(λ\

Comparison with (B.7) shows that
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Inverse Fourier transformation shows that

So (B.I2) is proved. This finally shows that (B.I) and (B.5) are equivalent. Also,
our formula in the equal time case is equivalent to the Lenard formula [1].
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