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Abstract. In many applications of conformal field theory one encounters
twisted conformal fields, i.e. fields which have branch cut singularities on the
relevant Riemann surfaces. We present a geometrical framework describing
twisted conformal fields on Riemann surfaces of arbitrary genus which is
alternative to the standard method of coverings. We further illustrate the theory
of twisted Grassmannians and its relation with the representation theory of
the twisted oscillator algebras. As an application of the above, we expound an
operator formalism for orbifold strings.

1. Introduction

In the past few years, there has been great progress toward the formulation of
phenomenologically viable string models. All these attempts involve the compacti-
fication of the extra dimensions of the heterotic string [1]. The resulting string
models are described by superconformally invariant non-linear sigma models [2].
In realistic compactification schemes the conformal field theories involved are
interacting and very difficult to deal with [3]. More manageable schemes are based
on orbifold backgrounds and the corresponding conformal field theories are exactly
solvable [4]. At present, orbifold compactification seems to be the best compromise
between computability and phenomenological viability.

It is well-known that the space of classical solutions of string field theory
consists of two-dimensional conformally invariant field theories. Therefore, it is
important to understand the space of conformal field theories and to develop
systematic methods for its study. Within this framework, it is necessary also to
understand how to account for quantum effects and carry out non-perturbative
analyses. Since string loop effects are described by conformal field theories on
higher genus Riemann surfaces, a Grassmannian treatment may provide a unified
framework endowed with a topological structure [5].

In this paper we formulate an operator formalism for orbifold strings, on the
same line as Alvarez-Gaume et al. [6]. The possibility of such a generalization of
the standard operator formalism was hinted originally by these authors but, to
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the best of our knowledge, never fully developed. This is not a straightforward
matter as it may look at first glance, as the nature of our operator formalism
forces us to consider sections of the relevant bundles having power branch cuts
at prescribed points [7], instead of resorting to the standard method based on the
use of suitable coverings [8]. An operator formalism for Z2 orbifold models, based
on the method of coverings, has been developed in ref. [9].

Since the essential features of the operator approach have been exhaustively
explained in refs. [6], we shall limit ourselves to outline the necessary modifications.
The reader is referred to those papers for a clear and selfcontained exposition of
the theoretic ideas at the basis of our work. The plan of this paper is as follows.
In Sect. (2) we review twisted geometry. In due course, we shall define twisted
sections of a line bundle and develop the twisted Serre and Riemann-Roch theory.
In Sect. (3) we shall introduce the notion of twisted Grassmannian and define the
counterpart of the Krichever map in this context and the state corresponding to
a Riemann surface with any number of punctures. In Sect. (4) we shall outline the
operator formalism for orbifold strings. In Sect. (5) we discuss briefly possible
extensions of our analysis. Finally, in the appendix we collect some useful formulae,
which are not directly connected to the main line of development of the paper.
Our treatment applies both to the quantum and the instanton part of orbifold
amplitudes. We have not attempted a fully supersymmetric formulation, as our
understanding of twisted supergeometry is not sufficiently deep yet.

Although some of the conclusions of our work may be expected on the basis
of the analogy to the standard operator formalism, there are however original
results. We show that all the main theorems of standard algebraic geometry can
be suitably generalized to a twisted context and have useful applications to twisted
conformal field theory on higher genus Riemann surfaces. We also find that the
state IΣ > representing an orbifold conformal field theory on a Riemann surface
Σ is a superposition of states each of which corresponds to an element of a family
of parallel hyperplanes of a certain Hubert space, generalizing the ordinary
Grassmannian treatment.

In what follows, we concentrate on the matter sector as this requires a special
analysis. In one complex space-time dimension the basic variables are one complex
bosonic field x and two complex fermionic fields ψ and ψ defined on a Riemann
surface Σ. The boson field x represents the quantum fluctuation around any
instanton background. The dynamics is described by the action

SM,fa = SbW + SfW,$l (l.la)

where

S/ M = — J Ixddx + xddxl (1.1 b)
8π Σ

S/IΨ, <?] = — J [<W + φdψ + $$ + fcfa, (l.lc)
4π Σ

and x = x*9 ψ = ψ*9 φ = ψ*. In orbifold models all the above fields must be twisted,
i.e. multivalued, on Σ. As is well-known, field twisting in a path integral formulation
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is equivalent to the insertion in correlation functions of certain vertex operators,
called twist or spin-twist fields, having non-local operator product expansions with
the basic fields [7]. In explicit calculations one must use a given determination
or sheet of the fields. All physical quantities cannot depend on the specific sheet
used i.e. must be invariant under sheet redefinitions. This is in a sense a sort of
discrete gauge symmetry. In particular, the global (7(1) symmetry of the action
ensures that the dynamics is sheet independent. One of the aims of our work is
to give a precise geometric definition of these simple physical ideas by means of
a manifestly sheet invariant formulation.

2. Twisted Algebraic Geometry

As already noticed, the orbifold operator formalism naturally involves twisted
conformal fields, i.e. fields which are multivalued. Therefore, a geometrical setting
suitable to deal with multivalued fields on Riemann surfaces is necessary [10].
This is outlined below. The proof of the main results is technical and it is sketched
in App. A. In what follows, we assume that the reader is familiar with the basics
of sheaf theory and complex algebraic geometry [11].

Following the analysis of Alvarez-Gaume et al. [6], we consider a Riemann
surface Σ of genus g with h punctures pι,p2, ,Ph Occasionally, we shall write
Σ0th to emphasize the topological type of the surface Σ.

We further consider a finite subgroup Γ of the circle group T, called the twist
group. Any element y of Γ can be represented as y = exp (— 2πiv(y)), where v(y) is
a rational number such that — 1/2 ̂  v(γ) < 1/2, depending on y. v(y) is called the
twist of y.

A twist structure on Σ is an assignment of an element y(l) of Γ to any homotopy
loop / of π^Σ). Twist structures describe the multivaluedness of smooth maps of
Σ into the one-dimensional orbifold Sί/Γ when viewed as maps of Σ into S1. A
simple analysis shows that twist structures are homomorphisms of the first
homology group Hl(Σ,Z) into Γ. Therefore, any twist structure y is completely
determined by specifying the twists v(/, y) corresponding to each homology loop /
of a set of generators of H^Σ, Z). We shall denote by vk(y) the twist associated
to the homology loop which only winds once around pk anticlockwise with respect
to a chosen orientation of Σ. Since the homology loop which only winds once
around each puncture is trivial, the total twist

n(y)= Σ Vfc(y) (2.1)
/ c = l

is an integer number. Often, we shall write Σ(γ) to evidentiate that Σ is endowed
with the twist structure y.

In what follows, we shall first consider special twist structures, i.e. twist structures
y whose only possibly non-vanishing twists are the vfc(y)'s. Later, we shall explain
how to extend our analysis to arbitrary twist structures.

We shall now tackle the problem of defining twisted fields on Σ. We assume
that the multivaluedness of the fields is described by a special twist structure y, i.e.
that the fields have a power branch cut of the form zk

 Vk(y) at the kth puncture,
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where zk is a holomorphic coordinate defined in the neighbourhood of the kth

puncture and vanishing at the puncture. We further assume that these fields are
sections of some type of a holomorphic line bundle ξ on ΣC9 where Σc is the
compactification of Σ, i.e. the Riemann surface obtained by filling the punctures
of Σ. The information contained in the above assumptions is only local, that is it
states the properties of local germs of twisted fields. We are interested conversely
in globally defined twisted fields. Therefore, we need a systematic method to study
the ways germs of fields can be assembled to yield globally defined fields. As is
well-known, this is provided by sheaf cohomology theory. The sheaves we shall
define below are all supported on Σc. In fact, the punctures are not really deleted
points but serve only the purpose of defining the boundary conditions obeyed by
the twisted fields.

From the above, it follows that the relevant sheaves describing twisted fields are

(2.2a)

(2.2b)

C{z} being the ring of holomorphic functions of the complex variable z. The sheaf
of germs of twisted holomorphic functions 0±(y) can be topologized in standard
fashion by assigning a system of neighbourhoods of each germ φ at each point p
of Σc. Given any function /, defined in a neighbourhood of p, with the regularity
properties specified by (2.2a-b) and such that fp = φ, define a neighbourhood of
φ as the set of all germs fq with q in the domain of/. Clearly, this neighbourhood
depends on the choice of /. A system of neighbourhoods is then obtained by
varying / in compliance with the above restrictions.

The + -twisted holomorphic fields are just the continuous sections of the sheaf

(2.3)

where &(ξ) is the ordinary sheaf of germs of holomorphic sections of the line bundle
ξ. They form a space given by

Γ(ΣC, 0 ± (ξ, y)) = H°(ΣC, Θ
 ± (ξ, y)). (2.4)

The Serre duality and Riemann-Roch theorems generalize to the present
setting. The twisted Serre theorem states

H\Σff0
±(ξ,γ)) = H0(Σc90*(κ®ξ-ί,γ))v, (2.5)

where K is the canonical line bundle and the superscript V denotes duality of vector
spaces. The twisted Riemann-Roch theorem reads

dimHVc,«±fey))-dimH^c,«±K,y))= ±Φ) + c1«)-^+ 1, (2.6)

where c^ξ) is the first Chern class of ξ. Note that the twisted Riemann-Roch
index differs from the usual index by an amount determined uniquely by the twist
structure y and independent from both the holomorphic line bundle ξ and the
genus of Σ. Mimicking the standard Riemann-Roch theory, it can be shown that
in general

dim Γ(Σ& &*& y)) = max (0, ± n(y) + c^ξ) -g+l). (2.7)
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The result is strictly true only if either ± n(y) + c^ξ) < 0 or 2g — 2 < ± n(y) + c±(ξ\
but it holds also when 0^ ± n(y) +c^)^2g — 2 for a generic location of the
punctures and a generic line bundle ξ. In the following, we shall always assume
the generic situation, although we should always be aware of possible exceptions.

Meromorphic twisted fields are treated similarly. In this case the relevant sheaf is

Jt±(ζ,Ί) = Jt(ζ)®(9±(Ί\ (2.8)

where Jt(ξ) is the ordinary sheaf of germs of meromorphic sections of ζ. The
±-twisted meromorphic fields are just the continuous sections of the sheaf ̂ ±(ζ, y).
They form a space given by

Γ^Jlϊ&γ)) = H^Σ^&γ)). (2.9)

As in the standard case, twisted meromorphic fields cannot have poles of arbitrary
order at the punctures. Indeed, the orders of these poles are restricted by the
twisted Weierstrass gap theorem. If q^q2,...,qr are r points of Σ (part or all of
which may coincide with the punctures) and w l 5 n 2 , . . . , rc r are r integers, the
dimension of the space of sections of Jί±(ξ),y) having poles only at the gk's of
order at most nk is given by

Σ nk + Cl(ξ)-g+
fe=ι

(2.10)

in the generic situation (cfr. Eq. (2.7)). As in the ordinary operator formalism, the
knowledge of the gap structure of the meromorphic sections of the relevant bundles
plays an important role.

It is easy to see that the sheaves J f ± ( ζ , y ) and Jί*(ζ,y~l) are isomorphic,
unlike their holomorphic counterparts. However, when applying the identity (2.9)
we should be aware that the definition of order of a pole may differ by a unit in
the two sheaves.

As an application of the above results, we consider the important cases where
either ξ is the trivial line bundle 1 or one of the 22g spin bundles λ. From (2.7),
we see that the number of linearly independent + -twisted holomorphic functions
is given by max(± n(y) — g+ 1,0) in the generic situation. Note that +- and
— -twisted holomorphic functions cannot exist simultaneously if n(y) Φ 0. We have
verified this result by explicitly constructing a basis of + -twisted holomorphic
functions for \n(γ)\ ^g and signn(y)= ± 1 (cfr. (AlOc)). The above result fails to
hold for n(y) = 0 and g > 0, as it does in the standard case. Similarly, we see that
the number of linearly independent + -twisted holomorphic spinors is
max (± n(y\ 0). Thus, the number of twisted holomorphic spinors is determined
entirely by the total twist and, as in the bosonic case + - and — -twisted holomorphic
spinors cannot exist at the same time. We have verified also this result by explicitly
constructing a basis of ±-holomorphic spinors for \n(γ)\ >0 and signn(y)= ± 1
(cfr. (A.lOd)). The above result does not hold for an odd spin structure for n(y) = 0
and g > 0, as in the standard case.

Next, we shall introduce the notion of twisted harmonic function and
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differential. The justification of the definitions given below will be provided later.
The ± -twisted harmonic functions are defined as the elements of the space of sections

(2.11)

where the bar denotes the ordinary complex conjugation of sections. The dimension
of H±(Σ9γ) is 0 if γ Φ 1 and 1 otherwise. In the following we shall consider mainly
± -twisted functions which are harmonic off the punctures. These are the elements
of the spaces H*m(Σ, γ) of continuous sections of the sheaves obtained by tensoring
the sheaf appearing in the right-hand side of Eq. (2.11) by the sheaves

ft \ ~~T~h \
Σ mιPι ) ® ̂  Σ nιPι )> where the m/s and rc/s are arbitrary non-negative

ι=ι J \ι = ι J
h h

integers. The dimension of H*m(Σ, γ) is given by dim H ±(Σ, y) + £ ml + Σ nl9 that
1=1 1=1

is there are no gaps. This can be proven by constructing a generating kernel whose
derivatives with respect to the second argument provide a basis of the above space
(the kernel happens to be the correlation function of the fields x and x which has
been computed in ref. [12]). The ±-twisted harmonic forms are similarly defined
as the elements of the space

- £ \_±vfo) ]p\®β*(κ9γ)®Θ- £
/ = ! / \ 1=1

(2.12)

From the twisted gap theorem it follows that the dimension of K±(Σ9γ) is
2g — 2 + h(y\ where h(y) is the number of punctures of Σ such that vt(y) Φ 0, if
y ^ l , and 2g otherwise [12]. It is also convenient to introduce the + -twisted
forms which are harmonic off the punctures. As for the functions, these are the
elements of the spaces K*m(Σ, γ) of continuous sections of the sheaves obtained by
tensoring the sheaf in the right-hand side of Eq. (2.12) by the sheaves

h \ ~/ h \
Σ mιPι I ® 0( Σ nιPι ) f°Γ arbitrary non-negative integers ml and nt. The
=ι / \ / = ι /

h h

dimension of K*m(Σ,γ) is given by dim K±(Σ,γ) + ^ ml + Σ nι-
1=1 / = !

Note that H*m(Σ,y) is always contained in Γ(Σc,Jί±(\,y}®Jί+(\,y)\ but not

in Γ(Σc,J^±(\,y))@Γ(Σc,J/+(\,y)) in general, because of the restrictions imposed
by the gap theorem on the latter space. However, it is always possible to express
a twisted harmonic function with poles as a sum of an intrinsically multi-valued
meromorphic and antimeromorphic function. We have to explain clearly the
meaning of intrinsic multivaluedness. In fact, twisted functions are multivalued in
any case around the punctures of Σ. A function is intrinsically multivalued when
its variation around any loop of zero (mod Z) total twist is non-zero. These loops
form a complex vector space which may be considered a twisted generalization
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of the ordinary first homology. Its dimension is 2g — 2 + h(y) if γ φ 1 and 2g
otherwise [7,12]. The space of zero total twist loops is naturally identified with
the dual K±(Σ9γ)v of K±(Σ,γ). As usual, the duality is defined by

α,ω> = $ω, (2.13)
λ

where λeK±(Σ,y)v and ωeK±(Σ,y). These results partly justify the above
definitions and will be useful in studying the operator formalism.

The natural question arises about whether the (anti)holomorphic sections of
the bundles 1 and λ correspond to the solutions of the classical equations of motion
associated with the action (I.la). In the following discussion we shall assume for
simplicity that all the twists vk(y) are different from — 1/2. The modifications
necessary in the case where some twists take this exceptional value are left to reader.

Let us introduce the sheaves

£±(ξ,y) = £(ξ)®(9±(y\ (2.14)

where $(ξ) is the sheaf of germs of smooth sections of the line bundle ξ. The
continuous sections of S>±(ξ,y) are just the ±-twisted smooth fields. A simple
analysis based on the power counting of the possible integration singularities shows
that the domain of finiteness for the bosonic action 5fc[x] (cfr. (l.lb)) is

;i,y)). (2.15a)

Similarly, the domain of finiteness for the fermionic action Sf[ψ, ψ~\ (cfr. (1. lc)) is

¥(Σ,y) = Γ(ΣC,<t>+(λ,y)®£'~(λ,y))®G x Γ(ΣC,£
>+(λ,y)®$'~(λ,y))® G, (2.15b)

where λ denotes the complex conjugate of the line bundle λ and G is the fermionic
Grassmann algebra. The two factors of the right-hand side of (2.16b) are the
domains of the two independent fermionic fields. In addition to finiteness, we must
require that the bosonic Laplacian operator dd and the fermionic Cauchy-Riemann
operator d have a well-defined adjoint. In the bosonic case, this entails the further
restriction

h

), (2.16a)

where the xfc

±9s are smooth functions such that

X(P) = x*+(P)*fc(PΓVk(y) + *k~(rt**(rtvfc(y) (2-16b)

near ph zk(p) being a local holomorphic coordinate vanishing at pk. There are no
additional restrictions in the fermionic case. In orbίfold conformal field theory,
condition (2.16a) is satisfied by imposing the natural condition xj~(pk) = Q for
± vk(y) > 0 [7]. This restriction eliminates all twisted holomorphic functions, which
therefore cannot be considered solutions of the classical equations of motion. The
only allowed bosonic zero modes are the twisted harmonic functions which exist
only in the trivial case y = 1 (see the discussion following Eq. (2.11)). Conversely,
the twisted holomorphic spinors are really fermionic zero modes and their existence
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corresponds to the presence of a twist background charge which must be accounted
for in a consistent path integral formulation. This point should be emphasized.

We now shall comment on the extension of the previous results to arbitrary
twist structures. We note that twists around the non-trivial homology loops Σc

can be enforced by tensoring the relevant line bundles with an appropriate flat
line bundle [11]. Thus, a general twists structure can be viewed as a pair (φ,γ)
formed by a flat line bundle φ and a special twist structure γ. All the above
theorems generalize straightforwardly by replacing a general line bundle ξ by
ξ®φ. Note in particular that the twisted Riemann-Roch index is not altered by
this substitution as c1(φ) = 0.

We conclude this section by illustrating an application of the above theorems.
Correlators with twist field insertions have been computed by several authors
[7-8, 12]. In particular, in the fermionic case the bosonization formulae can be
used [13]. The twisted gap theorem allows an economical derivation and provides
an original geometric interpretation of those formulae. Assume for definiteness
that n(y] > 0. Then, according to the above discussion, there are n(y) fermionic zero
modes. Thus, the only non-zero twisted fermion correlators are of the form

(2-17a)

The operator product expansions are

(2 17b)

(2.17c)

(2.17d)

The monodromy at the punctures is

Ψ(qi)~(z(qi)-z(pk)ΓVk(y\ (2.17e)

φ(rj)^(z(rj)-z(pk)r^\ (2.17f)

while the monodromy around the homology cycles of Σc is trivial. The bosonization
formula for the correlator with twist field insertions corresponding to (2.17a) is a
trivial solution of the above operator product expansions and monodromy
conditions. We have to prove that it is the only solution up to a multiplicative
factor. If we allow only qt to vary and keep all the other insertion points qj9 j Φ i
and rk fixed, then the correlator (2.17a) is a section of the sheaf 0+(λ,y)®

N + n(y) N \

£ qj + £ rk \. By the twisted gap theorem there is only one continuous
j=l,j*i k=l /

section of such a sheaf. A similar reasoning applies also if we consider the correlator
(2.17a) as a function of rk only. Thus the bosonization formula is the only possible
solution of the operator product expansions and monodromy conditions (2.17b-f ).

3. Twisted USp- and U-Grassmannians

In the standard operator formalism an important role is played by Grassmannians,
as they provide a unified framework for the study of conformal field theories on
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higher genus Riemann surfaces [5, 6], One may expect that in the orbifold operator
formalism a similar role is played by twisted Grassmannians. This is indeed the
case. We shall now outline the theory of twisted USp- and (7-Grassmannians, as
these are relevant for the study of world-sheet bosons and fermions for string
propagating on a orbifold background.

We consider a set of rational numbers τpj = 1, . . . , h such that - 1/2 ̂  τj < 1/2.
Eventually these will be identified with the twists of a given twist structure.
However, in the following analysis this assumption is not necessary.

We examine first orbifold bosons. We define L(τ) as the complex vector space
of all formal power series

m- (3 lb)

Here and in the following we assume without statement that any quantity with
an index m + τ , either vanishes or is absent whenever this index vanishes. This— j
convention will save us a lot of writing and will also simplify our formulae.

The space L(τ) can be given the structure of complex Hubert space by means
of the norm defined by the expression (3.1b). This structure is then used to provide
L(τ) with a suitable topology.

The elements of L(τ) represent the oscillatory part of the classical configurations
of strings belonging to h twisted sectors with twists specified by the τ/s. Of course,
the acutal configurations which appear in string perturbation theory correspond
to certain proper subspaces of L(τ) depending on the Riemann surfaces involved.
This will be explained in greater detail later.

It is possible to endow L(τ) with a non-singular antihermitian sesquilinear
form, which renders it a unisymplectic space. Such form is essentially the integral
expression of the charge associated with the global 17(1) symmetry of the bosonic
action Sfc|>] (cfr. Eq.(l.lb)),

φb(ξ, n] = Σ ̂
7=1 47Π51

(3.2)

We denote by USp(L(τ)) the group of continuous unisymplectic linear operators
on L(τ).

Next, we introduce a set of operators α j, , &J

m+τ, ά
j

m+τ and α^_τ., obeying
the commutation relations

(3.3b)
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the remaining commutators being zero, and the adjunction relations

α j

m _ t . t= -αjlm+t., (3.3c)

α'm+t.t = -a Ίm_ t / (3.3d)

As is well-known, these operators define the Fock representations associated to h
twisted sectors with twists τ,. The oscillatory part of the bosonic field operators
can be expressed in terms of the α operators:

ι Ί
(3.4a)

y>= Σ -^f'-' + ί-^Γ" (3'4b)

j

We can use any element ξ of L(τ) to smear the field operators

x (a=-φ f c(χ,a=Σ Σ
j = 1 r = - oo

x(£)=Φ6(ξ,x)= Σ Σ Γ_L# s/_r+y + _L|i+yS/_r_ J. (3.5b)
j = 1 r = - oo L P "~ τ j r ~r τ j J

The operators x(<f) and x(£) obey the algebra

= -2Φb(ξ,ή) (3.6)

for ξ, ηeL(τ\ the remaining commutators being zero.
From here, it is apparent that the maximal commuting subalgebras of the

algebra (3.6) correspond to the maximal isotropic subspaces of the unisymplectic
space L(τ). We wish to define the manifold of these subspaces in a more precise
fashion [5, 14]. We consider a polarization of L(τ) as a Hubert space

L(τ) = L + Θ L _ , (3.7)

where L + are maximal isotropic subspaces of L(τ). Now, any continuous operator
A in L(τ) can be written as

+ A+

+ A.

with respect to this direct sum decomposition. We denote by USpTCS(L(τ)) the
subgroup of USp(L(τ)) formed by all the elements U of USp(L(τ)) such that 17+ _
and (7_+ are Hubert-Schmidt operators in L(τ). The twisted Grassmannian
manifold USp(L(τ)) is the homogeneous space

USp(L(τ)) = _ - (3.8)

[GL(L+)xGL(L_)];

where the two factors in the denominator are identified by means of the
isomorphism μ:GL(L+)h->GL(L~), μ(U + +) = U~ + f and the adjunction operation
is with respect to the non-singular bilinear pairing of L+ x L_ induced by the
unisymplectic space L(τ).
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USp(L(τ)) can be interpreted as the manifold of all maximal isotropic subspaces
W oϊ L(τ) which do not differ too strongly from L+ [6]. Thus, USpL(τ) does not
contain all maximal isotropic subspaces of L(τ) and in fact depends on L+, even
though we may replace L+ by any element of USp(L(τ)) in (3.8). So, we have to
specify the choice of L+ we shall use in the following. We define L+ as the subspace
of all ξeL(τ) such that ξj

m_τ. = 0 for m > τj and ζj

m+τ. = 0 for w ̂  — τj and L_ as
its orthogonal complement. It is easily checked that L+ are maximal isotropic
subspaces of L(τ). The reason for this definition will become clear shortly.

Since any element of USp(L(τ)) is a subspace of L(τ), it is completely determined
by specifying one of its bases. This basis can always be chosen in the following
standard form. For any j = l,...,/ι, let /, be a set of integers such that //\N and
N\/y are finite sets. This means that /7 contains only a finite number of negative
integers and all positive integers but a finite number. Let further

1
~ τ k + Σ R*+τ.^_τk zr

k~
τk

+ L5-^^"" me~!'
1

(3.9a)

s-τ t

V Ώfr zr + τk m p Γ
L Km-τ7 ,r + τ k v . ^ Zk > mE1P (3.9b)

where — /, denotes the complementary set of the set formed by the negative of
the elements of the set /,,

m + Tj,n — τk

sjk

m-τj,n-τk

(3.9c)

(3.9d)

(3.9e)

and

1 1

1 1

r —

Γ6-/j,S6-/k

1 1

|2 4. yJ ^ 2j
relj,selk

1 1

r-τ,.s-τΛ

|S/*_ τ j ι J_ τJ
2<oo.

(3.9f)

From (3.9a-e), it follows that the τ/'s and /fs span a maximal isotropic subspace
of L(τ). The condition (3.9f) ensures further that this subspace belongs to USp(L(τ)).
We remark that any given element of USp(L(τ)) has in general a multiplicity of
bases of standard form. This apparently trivial fact has actually important
consequences.
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From the boson algebra (3.6), it follows that for any element W of USp(L(τ)),
there may exist a state | Wyb such that for all ξ€\V,

(3.10a)

(3.10b)

Further, when this is the case, this state is unique up to normalization in each
irreducible representation of the algebra. The natural question arises about the
conditions under which the above equations have a non-trivial solution. We
first consider the simple case where W is the subspace Wl of L(τ) defined by a
basis of the form (3.9a-b) with all the R and 5 matrices identically zero. It is easily
seen that Wl belongs to USp(L(τ)) and that the only basis of Wt of standard form
is that which defines it. The corresponding state | Wt >6 exists and is indeed the
ground state \τ^b of an irreducible Fock representation of the boson algebra:

αi-J τf>ft = °» me/,, (3.1 la)

*i+τ»> = 0, me-/,, (3.1 Ib)

«i + J*f>* = 0. ™ε~lr (3 l lc)

(3 l l d )

Note in particular that the state |L+ >b is just the standard bosonic ground state
|τ)b = |τ />5 ϊ where by /j = N + [τj] and [x] denotes the integer part of a real
number x. This fact justifies our choice of L+ as the reference maximal isotropic
subspace. In this way, we see that there is a correspondence between the /ι-ples /,
of sets of integers obeying the conditions stated earlier and the inequivalent
irreducible Fock representations of the boson algebra. If Wis an arbitrary element
of USp(L(τ)), then there is a non-trivial solution \Wyib in the irreducible
representation corresponding to a given h-ple /, if and only if W has a basis of
standard form with the same sets /,. A straightforward albeit tedious algebraic
calculation shows that

(3.1 2a)

where

BWI-\Σ Σ[ _ Σ Jfc,,- ĵ-^7«u,A+*
^ J = l *=1 L r e-/,se/ k

 r + τjS τk

Σ ^_ t j, s_ rk----ai r+t/_ s+ . (3.12b)
relj,selk Γ — 1,5 — Tfc
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The state |τ/> f t is related to |τ> b by

!*/>> = ήΓ Π
J ^ l L m e / Λ ί N u U

_ Π WL^al+τy*. (3.12c)
Lme-/, \(Nu{-[t/]}) J

The δ operators can be defined by bosonizing the x — x system or can be dealt
with by means of an appropriate generalization of the Gaussian representation
introduced in the third reference [6].

We now introduce an interesting generalization of the above construction. For
any element W of USp(L(τ)) and any element ζ of L(τ), we consider the state
I W + ζyb satisfying the equations

b, (3.13a)

ζ\. (3.13b)

Geometrically, | W + ζ yb corresponds to the hyperplane W + ζ of L(τ). This
indicates a possible affine generalization of the USp(L(τ)) Grassmannian. The state
I W + ζyb exists in the bosonic Fock representation corresponding to / whenever
I Wyb does. In that case, we have the following relation:

W + ζ)Ib = exp {l[χ(0 + x(C)]} I Wylb. (3.14)

Parenthetically, we note that when ζ belongs to W/, the operator x(ζ) + x(ζ)
commutes with BWI and annihilates the state <τ7 | (cfr. Eqs. (3.11-12)).

Next we consider the fermions. In this case the relevant algebraic structure is
the twisted £/-Grassmannian. The theory of [/-Grassmannians can be formulated
on the same lines as that of the t/Sp-Grassmannians. So we shall limit overselves
to provide the essential definitions and facts.

We define M (τ) as the space of the formal power series

ήzj,Zj)= Σ [^j/2xUzΓ1/2~τj + ̂ )/2#+</Γ1/2+tJ]> (3.15a)
r= — oo

Σ [Ixj

r-τ/ + l#+tjl
2]<°o, (3.15b)

r = — oo

where reZ + |. As it will be explained later, this setting can be used to describe
both twisted Neveu-Schwartz and Ramond fermions by a suitable definition of
the twists τ.

In analogy with the bosonic case, there is a natural non-singular hermitian
sesquilinear form on M(τ) which makes it a unitary space. This is also related to
the global U(l) symmetry of the action Sf[ψ,ψ],

We denote by U(M(τ)) the corresponding group of continuous unitary operators.
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Next we introduce a set of operators ψj

m_τ., Ψj

m+τj> Ψj

m+τj

 an<i Ψj

m-τj °beying
the anticommutation relations

[^-^+J+ = -2<U,,,o<^ (3 17a)

WU^U]+ = -2<Wo<^ (3.17b)

and the adjunction relations

(3.17c)

(3.17d)

The oscillatory part of the fermionic field operators is given by

Ψj(zpϊj)= Σ [^j'V^/r1/2~

_ ~

Σ Dcί_t^-r+τj + jeί+τ/ίr-τj]. (3.i9b)

r= — oo

For any χ in M (τ), we define the smeared operators

=Φf(ψ,ϊ)= Σ Σ [̂ ίr-τ, + XU>Rr+t;i, (3 19a)
j = 1 r = — oo

_ Λ QO

= <M*,*)=Σ Σ
j = 1 r = — oo

The operators ψ(χ) and ι̂ (χ) obey the algebra

ίΨ(χ\Ψ(ΦK+ = -2Φf(LΦ\ (3.20)

the remaining anticommutators being zero.
In analogy to the bosonic case, the maximal anticommuting subalgebras of

the algebra (3.20) correspond to the maximal isotropic subspaces of the unitary
space M (τ). The manifold of these subspaces can be defined in terms of a given
polarization

M(τ) = M+ΘM_, (3.21)

where M+ are maximal isotropic subspaces of M(τ). Let t/res(M(τ)) be the subgroup
of C/(M(τ)) formed by all elements of (7(M(τ)) such that £/+_ and 17 _ + are
Hubert-Schmidt operators. The twisted Grassmannian manifold U(M(τ)) is the
homogeneous space

U(M (τ)) - _ ^ - , (3.22)
[GL(M+) x GL(M_)]μ

where the map μ is defined in a way similar to the bosonic case. In the present
context, M+ is properly defined as the subspace of all χeM(τ) such that χs

m_τ. = 0
for m > TJ and χj

m+τ = 0 for m ̂  — τjt

From the fermion algebra (3.20), it follows that for any element W of U(M(τ))



Operator Formulation of Orbifold Conformal Field Theory 57

there is a state | wyf such that for all χεW9

0, (3.23a)

0. (3.23b)

As is well-known, there is only one irreducible Fock representation of the fermion
algebra. Thus, unlike the bosonic case, the state | Wyf always exists and is unique
up to normalization. In particular, it is seen that the state \M+yf is just the
standard fermionic ground state |τ>y. The computation of |W>/ for a general
element W of U(M(τ)) is totally analogous to that of its bosonic counterpart. The
straightforward algebraic details are left to the reader.

We now shall establish a correspondence which is the counterpart of the
Krichever map in the present framework [15]. Following Vafa [6,16], we consider
the manifold &(g, h) of all Riemann surfaces Σ of genus g with h punctures and
a choice of a local holomorphic coordinate zk at each puncture pk such that
zk(Pk) = 0 and equipped with a twist structure y (cfr. Sect. 2). More generally, we
may assign a holomorphic coordinate only to a subset of the punctures. In fact,
in a twisted setting a given number of punctures must be included in any case in
order to provide the twisted fields with the appropriate multivaluedness. However,
it turns out that the above definition is sufficient for our purposes. We now shall
show that for any element Σ(γ)eέP(g9h) there are associated two elements
Wb(Σ(γ)) and Wf(Σ(γ)) of USp(L(v(y))) and U(M(v(y))), respectively. In the following
analysis we shall consider only special twist structures for simplicity. The
generalization to general twist structures is straightforward.

We consider first the bosons. For a given Σ(y) in 2?(g,h\ we consider the

subspace 1Tb(Σ(y)) of Γ(Σc,Jt+(\,y)®Jf~(\,y)) formed by all functions which
are twisted harmonic off the punctures (see Sect. 2). Since Σ(γ) is endowed with
a choice of a coordinate at each puncture vanishing at the puncture,
the restriction oΐifr

b(Σ(γ)) to the coordinate domains defines a subspace Wb(Σ(y))
of L(v(y)). By using the Green identity for the Laplacian operator on Σ, it is possible
to show that Wb(Σ(γ)) is an isotropic subspace of L(v(y)), which is easily seen to be
maximal. However, in general Wb(Σ(γ)) does not belong to USp(L(v(y))) as the
condition (3.9f) fails to hold for any given basis of standard form. This is
reminiscent of the occurrence of plane waves in Quantum Mechanics even though
these are not physical wave packets.

A similar analysis can be carreid out for the fermions. In this case, for any
element Σ(γ) of &(g,h) one considers the subspace iff(Σ(y)) of Γ(Σc,Jί+(λ,y))®

Γ(Σc,Jί~(λ,y)) consisting of all sections which either are (anti)holomorphic or
have poles at the punctures and are (anti)holomorphic everywhere else. Here λ is
one of the spin bundles of Σc. As in the bosonic case, ϋ^f(Σ(y)) defines a maximal
isotropic subspace Wf(Σ(γ)) of M(v(y)).

From the above discussion and from Grassmannian theory, we see that to any
Riemann surface Σ(γ) in 0*(g,h) we can associate two states in the appropriate
Fock representations, namely | Wb(Σ(γ))yIb and | Wf(Σ(γ))yf. Note that for a given
Riemann surface Σ(γ), there are in general several states \Wb(Σ(γ))yιb belonging
to inequivalent irreducible Fock representations of the boson algebra. These
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correspond to different pictures, in analogy to the bosonic ghosts [17]. The origin
of this multiplicity is not simply algebraic but can be traced back to the structure
of the space i^b(Σ(y)) and thus to the geometry of Σ(y).

As in the standard case, in general not all elements of i^b(Σ(γ)) can be expressed
as a sum of a twisted meromorphic and antimeromorphic section, as the twisted
Weierstrass gap theorem imposes restrictions on the order of the poles of the
twisted (anti)meromorphic functions. As a consequence, the S and S matrices
(cfr. Eqs. (3.9a-f)) are non-zero and the state | Wb(Σ(y))yib cannot be expressed as a
tensor product of a left- and right moving part [6]. Conversely, it is always possible
to choose a chiral basis for iff(Σ(y)) and | Wf(Σ(γ))yf factorizes in left- and right
moving components.

The basic problem of the operator formalism is the computation of the states
\Wb(Σ(y))}Ib and | W f ( Σ ( γ ) ) y f . In practice, we need to compute these states only
for the cases where Σ is a sphere with two or three punctures, i.e. the sewing and
the vertex states. By means of the sewing operation, we can compute states for
higher values of g and h in terms of these two basic states [6]. In the bosonic case,
of course, we have to make sure that the representations of the boson algebra
involved match so that the result does not vanish identically.

As an illustration of the above results, we consider the sewing state. We
parametrize the Riemann sphere with the usual complex coordinate z and assume
that the punctures are located at z = Q and z= oo with coordinates z x = z and
z2 = 1/z, respectively. We further assume for simplicity that the twists of both
punctures are non-zero. For any integer q there is a chiral basis of standard form
of Wb(ΣQ,2(y2)), namely ^_m_ v ι(z,z) = z—1, m ̂  - q - [v J, η2_m_V2(z,z) = zm + v\

[v2], where v, — Vj(γ). The corresponding state is

X -±—(tf& + δir.V|S!:Γ.vl)

+ Σ -(α 2_ r_V 2ά 1_ r-V 2 + α1-Γ-V2α
2-r-V2r = « - [ v 2 ] r + V 2

(3.24)

It is possible to compute also the vertex state even though the resulting expressions
are rather unwiedly and not particularly illuminating.

Similar calculations can be carried out for the fermions. Ther fermionic sewing
state has a particularly simple expression

|w/(£o,2(y2))>/ = eχp|^ Σ i
' r = l / 2

(3.25)

where v, = v7(y) and we assume that v l 5 v2 ^ — 1/2, 0 and v2 > 0 for simplicity. The
sign ambiguity reflects the two choices of the relative sign of dz[/2 and dz1^2.

It is possible to find semiexplicit formulae for the state \Wb(Σ(γ)))Ib in the
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standard representation /,- = N + [vy(y)]. For convenience, we parametrize the
twists as follows:

Note that 0 ̂  μ^y) < 1. This is in fact the customary parametrization of the twists
found in the literature [4,7]. Then it can be seen that

> w|z, z-)Uz = 0. r^O, S >0 (3.27a)

(w. w|z,Z-)Uz=0, r^0,s^0 (3.27b)

*!*• z)|w=z = 0, r > 0, S ̂  0 (3.27c)

~ wf ^w. w|z,Z-)L = z = 0, r>0,5>0 (3.27d)

where we have suppressed the y dependence for simplicity. The kernel K(w,w|z,z)
can be computed in terms of the suitably regularized two point correlators of the
derivatives of the fields x and x on Σ:

K(W,w\z,z)=l- X HwtwAZfiZj), (3.28a)
4 ij=ι

where, in terms of the local coordinates of the ith and jth puncture

/c(wt, w£ I Zj9 zj) = ] du, / dVj
0 0

0 0

W j ZJ

+ j dίii J dV
0 0

+ ]'du( Sdϋjζdxdώdx&j)), (13.28b)
0 0

and the correlators are regularized as follows:

1 " (3.28c)

(3.28d)

The above correlators have been computed in terms of theta functions in ref. [12].
The regulator of the operator product singularity of the correlators (dx(Ui)dx(Vj)y
and (dx(ΰ$x(ϋj)y has the same analytic form of the corresponding correlators on
the sphere, but, of course, is restricted to the appropriate domains of the relevant
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variables. The choice of 0 as base point of the integration path is the only one
which provides the correct monodromy at the fh and /* puncture.

A similar analysis can be carried out for the fermions. In this case, however,
the possible existence of zero modes associated with twisting introduces an element
of complication. However, when n(y) = 0 (cfr. Eq. (2.1)) there are no zero modes
in the generic situation, by the twisted Riemann-Roch theorem (cfr. Eqs. (2.6-7)).
In this case | Wf(Σ(γ))yf can be computed in terms of the derivatives of the suitably
regularized two point correlators of the fermion fields as in the bosonic case. The
analysis is completely analogous to the preceding paragraph and is not expounded
for brevity.

4. Orbifold Operator Formalism

We now shall apply the formalism developed in the previous sections to orbifold
string models.

We consider an abelian orbifold Ω with point group P, lattice L, space group
S and base space E [4]. Since P is an abelian subgroup of 0(E\ Ec decomposes
into the direct sum Ec = E1®E2@' '®Ed/2ξ&E1®E2 ' ®Ed/2, where the Efl's
are 1-dimensional subspaces of Ec invariant under P.

A point group structure on a Riemann surface Σ is defined analogously to a
twist structure, by replacing Γ by P. It is clear that the restriction of P to Ea form
a twist group Γa and that any point group structure π determines a Γa twist
structure γa(π) for each a = 1,..., d/2.

When dealing with fermions, we have to account not only for the standard
orbifold twists but also for the spin twists. The spin twist group is clearly Z2.
Therefore, while the bosonic twist group for the ath complex dimension is Γa the
fermionic twist group is properly Z2 x Γa. Note further that the combination of
a spin twist σ and an orbifold twist vα is the twist σ + vα — [σ -h vα + ̂ ]. Spin twists
around the punctures of a given Riemann surface are described by Z2 twist
structures. For a given Z2 twist structure α, the twist σ/α) around the/Λ puncture
determines the fermionic type of that puncture: the puncture is Neveu-Schwartz
if σ/α) = 0 and Ramond if σ7 (α) = — 1/2 [6].

A space group structure describes the multivaluedness of world-sheet instanton
solutions on a given Riemann surface Σ. A space group structure can be viewed
as a homomorphism of the first homotopy group π^Σ) into the space group S.
Two space group structures related by the adjoint action of S are physically
equivalent. Thus, the set of the inequivalent space group structures is properly
Hom(π1(Σ'),S)/AdS'. To any space group structure ω there is naturally associated
a unique point group structure πω by means of the natural projection S\-^S/L = P.
For brevity, we shall write yα(ω) instead of yα(πω).

To describe the conformal field theory associated to an orbifold model, we
need the following data: i) a Riemann surface of genus g and h punctures with a
choice of a holomorphic coordinate at each puncture vanishing at the puncture,
ii) a Z2 twist structure α and iii) a space group structure ω. Any orbifold correlation
function factorizes into a quantum and instanton contribution
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A quantum correlation function involving a product of local fields defined in
the coordinate domains of Σ can be written as

|i;,α,ω>ίll. (4.2a)

Here

\Σ9 α, ω yqu = \Σ,a >ghosts ® |Γ, α, ω >matter. (4.2b)

|Γ,α>ghosts is the state associated to the Faddeev-Popov (super) ghosts with a
choice of picture compatible with the Z2 twist structure α and has been exhaustively
described in the third reference [6]. Similarly, |^,α,ω>matter is the state associated
to the matter sector and is given by

d/2

l^α>ω>m.tter = ® Wb(Σ(γJ(ω))»Ib®\Wf(Σ(κ x yfl(ω)))>/? (4.2c)

where the states | Wb(Σ(γ))yIb and | W^ίy)))/ have been defined in Sect. (3) (cfr.
Eqs. (3.24)). Finally,

d/2

I α, ω >,u = I α >ghosts ® (x) | v(y») >/b ® | v(α x yα(ω)) >,. (4.2d)
α = l

where |α>ghosts is the appropriate ghost vacuum. Note that the ghost picture and
bosonic representation of the states \Σ, α,ω)^u and |α,ω)^u must coincide in order
to yield a non-vanishing result. Note further that the choice of a picture or a
representation affects the type of operators used in the ghost and matter part of
the correlators for a given amplitude. From the functional integral interpretation
of the formalism, it is clear that the final result cannot depend on these choices.
finally, we observe that when γa(ω) = 1, it is necessary to tensor the states | Σ, α, ω yqu

and I α, ω yqu by an appropriate superposition of /i-particle zero momentum states,
as explained in ref. [6].

The state | Σ, α, ω yqu contains all the dependence of the quantum correlation
functions on the moduli of Σ and the location of the twist and spin-twist field
insertions. As explained in ref. [6] this dependence is determined by the action of
the energy-momentum tensor on the state. This also fixes the relative normalization
of states corresponding to different values of these parameters.

Next, we turn to the instanton part of the correlators. In the following analysis
we shall use the convenient standard bosonic representation introduced at the end
of the previous section (cfr. Eqs. (3.26-28)) and suppress the index / throughout.
We shall also assume for simplicity that all the twist structures involved are special.

For each element ω of Horn (π^Σ), S)/Ad 5 there exists a world sheet instanton
solution ya(ω). The instanton contribution of the amplitudes is of the form

/ d/2 \

< >ci = Σ exp - Σ S*[/M] — - (4.3a)

Here Δ is a subset of Hom(π1(15>S)/AdS depending on the amplitude under
consideration. Sfc[y

α(ω)] is just the action of the world sheet instanton ya(ω). The
ellipses represent insertions of the derivatives of ya(ω) or ya(ω). These are given by
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the expression

m \ (4.3b)

where the κa

a(ω)'s are a basis of the space K+(Σ,ya(ω)) (cfr. Eq. (2.12)), mα(ω) is its
dimension and the Λ^(ω)'s are ω dependent coefficients (see ref. [12] for details).

The incorporation of the instanton part of the correlators in the operator
formalism is achieved by inserting a suitable operator in the quantum correlator,

d/2

JL-i
The operator Ua(ω) is given by

Ua(ω) = exp\->

Σ
d/2

ωe Δ a = 1

(4.4)
qu

(4.5)

where xj^α(ω) and x£fα(ω) are the holomorphic and antiholomorphic parts of the
operators xaj(ω) and xaj(ω) given by (3.4) with τ = ya(ω) and yaj(ω) and yΛJ(ω) are
the restrictions of ya(ω) and yfl(ω) to the coordinate domain of the jth puncture,
respectively. Inserting Ua(ώ) into the quantum correlators shifts the derivatives of
the operators xa and xa by the corresponding derivatives of the world sheet
instantons ya(ώ) and ya(ω) and in this way reproduces correctly the combination
of the quantum and instanton part of the total correlator. Let ζa

a(ω) be the element
of L(v(yα(ω))) defined by the condition that d£a

a

j(co) = κa

a\ω\ where κa

Λ

j(ω) is the
restriction of κa

Λ(ώ) to the coordinate domain of the /* puncture. Then

4 I \ Λ1 mα(ω; _ _ _ J
- > ΓXα(co)xα(co)(Cfl(co)) + X (̂co)xα(co)(ζα(co))l >. (4.6)~ L*ι L αv / V /V* α v // αV / V Abαv //J j V /
^ α = l )

From (4.6), we see that the incorporation of the instanton ya(ω) amounts to the
mα(ω)

replacement | Wb(Σ(γa(ω))) \ - Wb(Σ(γa(ω)))+ X Jf>K»> in Eq. (4.2c) (cfr.
α = l / b

Eqs. (3.13-14)). In this way, the total amplitude can be associated to a family of
hyperplanes in L(v(ya(ω))) parallel to Wb(Σ(ya(ώ))) each of which corresponds to a
particular instanton solution. We shall now provide an interpretation of the
operators appearing in Eq. (4.6). In the following analysis we have been inspired
by ref. [9]. To simplify the notation, we shall suppress the a- and ω-dependence
which is not essential to our argument.

In Sect. 2 we have seen that the space of loops of zero (mod Z) total twist is
the dual space K+(Σ9y)y of the space of twisted harmonic forms K+(Σ,y\ the
duality being defined by Eq. (2.13). Now we shall show the isomorphism

K+(Γ, γ)v ^ K^(Σ9 y)/K+(Σ, y), (4.7a)
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where the n/s and m^s are non-negative integers such that

Σ n, = - n(y) - £ [ ~ v,(y)] + 0-1, (4.7b)
/ = ! / = !

for y ^ 1 and

m, = + n(γ) - [ + v.OO] + 0-1 (4 7b)
/ = ! /=!

/i h

Σ nι = Σ mι = 9 (4.7c)

otherwise. In fact, consider the sesquilinear pairing

= π Σ
^ίj^is 1

where λeK*m(Σ,γ)9 κeK+(Σ,γ), λj and jcj are the restrictions of λ and c to the
coordinate domain of the/* puncture and ζj(λ) and ζj(κ) are defined by the condition
djζj(λ) — λj and djζj(κ) = κj, respectively. From (4.1 d) and the definition of K+(Σ, y\
it is easy to see that the value of /(/ί, K) is left unchanged by shifting λ by any
element of K+(Σ9y). This is sufficient to prove the aforementioned isomorphism.
From (4.7a), it follows that we can represent any loop of zero total twist as a
differential of K^m(Σ9γ)modK+(Σ,γ). From this remark, (2.13), (3.2) and (4.7d), it
follows fruther that to any loop λ in K + (Σ,γ)v and any form K in K+(Σ,y) we
can associate elements ζ(λ) and ζ(κ) of L(v(γ)) such that

>, (4.8a)

Φb(C(κ),ί(/c')) = 0, (4.8b)

Φb(ζ(λ)9ζ(λ )) = 0. (4.8c)

for λ, λfeK+(Σ,y)v and κ,κ'eK+(Σ,y). Define the operators

(4.9a)

(4.9b)

(κ) = x(ζ(κ)\ (4.9c)

(4.9d)

The form a finite dimensional subalgebra of the bosonic algebra (3.6) with the
following commutation relations:

(4.10a)

_ _ , (4.10b)

The operators a(λ\ ά(λ\ b(κ) and b(κ) define a quantum system with finitely many
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degrees of freedom. The α(A)'s and α(A)'s may be interpreted as momenta flowing
through the loops of zero total twist and the ft(κ:)'s and b(κ)'s as the corresponding
canonically conjugate variables. In this case we have two types of variables
corresponding to barred and unbarred quantities. A complete set of commuting
operators is given by the b(/c)'s and the b(/c)'s. This is particularly convenient in
the present context as it is formed exactly by the operators appearing in Eq. (4.6).
In this respect, our construction differs from that of ref. [9] in which a complete
set of commuting operators was chosen corresponding to certain linear
combinations of our α's and b's. Finally, we note that it is always possible to
choose a basis of K+(Σ,y) formed by differentials which are either holomorphic
or antiholomorphic. In this way, the operators b(κ) and b(κ) can be divided naturally
in two chiral subsets.

One of the most attractive features of the standard operator formalism is that
the states corresponding to Riemann surfaces of arbitrary genus and number of
punctures can be obtained by sewing in all possible ways the states corresponding
to the sphere with two and three punctures. Moreover, the result does not depend
on the order in which these operations are performed. We wish to study sewing
in the context of the orbifold operator formalism. Clearly, in the present case we
have to account for the space group structures.

Consider the manifold Ά(g, h) of all Riemann surfaces Σ(a, ω) endowed with
the following structure: i) a choice of a holomorphic coordinate at each puncture
vanishing at the puncture, ii) a spin structure α and iii) a space group structure ω
[6, 16].

Vafa's operations ;θofe and 8{ can be generalized to the present setting. Let
ΣΊ(αι>ωι) and Σ2(a2,ω2) be Riemann surfaces in ^(g^h^ and Q(g2,h2\
respectively. Let pu and p2k be punctures of Σ1 and Σ2. Assume further that
α1(/ l j) α2(/2fc) = 1 and ω1(/ l j ) ω2(/2fc) = 1, where /1; is the homology loop which only
winds once around plj with the appropriate orientation and similarly I2k. We
define a Riemann surface Σ'3(α3,ω3) = Z1(α1,ωJjθok.Γ2(α2,ω2) in £(gι+g2,
hi + h2 — 2) as follows. Σ3 is obtained by sewing the puncture pυ of Σi and p2k

of Σ2 by using the plumbing fixture with parameter 1 (this is possible because we
have assigned local holomorphic coordinates at the punctures). The resulting
Riemann surface has clearly genus Qι+g2 and hl+h2 — 2 punctures with a
holomorphic coordinate at each puncture. Further, the above condition on OLI and
α2 and ωί and ω2 ensures that they are restrictions of a well-defined spin structure
α3 and space group structure ω3 on Σ3. This completely defines £3(y3). The
operation 8£ is defined similarly.

To any element Γ(α, ω) of Ά(g, h) we associate the state

d/2

|£(α,ω)> = (X) Ua(ω)\Σ,a,ωyqu. (4.11)
a=l

Then, the state |ZI

1(α1,ω1)joofcΣ2(α2,ω2)> is given in terms of the states IΣ^α^ωJ)
and \Σ2(oc29ω2)y by

(4.12)

Here, |S,k> is the appropriate sewing state. Its spin and orbifold twists must match
those of the punctures of Σ^ and Σ2 undergoing sewing.
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5. Discussion and conclusions

In this final section we wish to discuss briefly the possible extensions of the above
analysis and the problems still open.

An important issue we have not touched in this paper is the study of modular
invariance. This involves summing the orbifold conformal field theories
corresponding to all spin and twist structures and decomposing the resulting state
\Σy in a superposition of eigenstates of the operators b(κ) and b(κ\ It is important
to understand the restrictions imposed by modular invariance on the spectrum of
b(κ) and b(κ). This is related to the problem of decomposing \Σ) in chiral
components, which is relevant for the phenomenologically interesting asymmetric
orbifold models [18], and the study of background duality [19].

It would be desirable to work out the analog of the picture changing operation
for the bosonic representations. Further, representation changing operators are
probably necessary for a rigorous proof of the representation independence. It
would also be interesting to formulate a twisted supergeometry, which is needed
for the appropriate supersymmetric generalization. We leave these tasks to future
work.

One of the relevant traits of our analysis is that the Grassmannian approach
essentially applies only to the quantum part of the correlation functions. The basic
reason for this is that the proof that a set of harmonic functions on a Riemann
surface defines an element of the relevant Grassmannian requires in an essential
way the use of the Green identity. When multivalued fields are involved one must
use an appropriate dissection of the Riemann surface along the branch cuts of the
fields. For instanton solutions, the Green identity involves non-vanishing
contributions from the branch cuts proportional to the lattice shifts. This is exactly
what makes it impossible to prove that these solutions form an isotropic set. This
reflects the inherent difficulty of dealing with bosonic twists in a operator
framework [7].

Appendix

In this appendix we shall expound certain results of twisted geometry which, albeit
not directly related to the main subject of this paper, are interesting in their own
and may be applied in other fields [10]. We shall further sketch a proof of the
twisted Serre and Riemann-Roch theorems.

To begin with, we recall some basic facts. The holomorphic line bundles on
the compact Riemann surface Σc endowed with the usual operations of tensor
multiplication and inversion form a group, the Picard group Pic( ĉ). Further, there
is a natural isomorphism δ* between the divisor class group Όi\(Σc) and Pic(Γc)
such that for any divisor b in Div(i;c), c^^b) = - deg(b), where c^ξ) denotes the
first Chern class of a bundle ξ and deg(d) the degree of a divisor b [11]

Let y, 7ι, 72 be special twist structures on Σ. We consider the divisor classes
and t(γi9γ2) defined by

h

£ vfy\fpι, deg m(y) = n(y\ (A.la)
/=!
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%ι, V2) = ~ Σ MlΊ) + v<(?2) + i]ft. (A-lc)
/=!

Here [x] denotes the integer part of x. J is the Jacobi map [11]. Equation (A. la)
holds modulo the Jacobian lattice. It is a straightforward consequence of Abel's
and Jacobi's theorems [11] that the conditions (A.la) determine uniquely m(y) as
a divisor class. By means of the isomorphism <5*, we define the holomorphic line
bundles

δ*m(γ)9 (A.2a)

s(y) = δ*S(yl (A.2b)

ί(yι,?2) = <5*t(7ι,y2). (A-2c)

These satisfy the following identities:

m(l) = l, (A.3a)

m(y~1) = m(y)~ 1 ® s(y\ (A.3b)

m(y1'y2)=m(yl)®m(y2)®t(yi,y2\ (A.3c)

s(l) = l, (A.3d)

5(-1)=s(y), (A.3e)

t(l72) = t(y,Λ)=l (A.3f)

(A 3h)

A twisted line bundle is a pair (ξ,y) formed by an ordinary line bundle ξ of f\c(Σc)
an a special twist structure γ. From (A.3a-i), it follows that the set of all twisted
line bundles can be given a group structure in two inequivalent ways,

(ξ,yΓ±1=(ξ-1®s(y)±1,y-ί)±, (A.4a)
(ζι,yι)±'(ξ2,y2)±=(ξι®ξ2®t(yi,y2)

±1,y1 y2)±. (A.4b)

Here the subscript ± only serves the purpose to indicate which type of group
operations are applied. Therefore, the twisted line bundles form two distinct groups
Pic± (Σ,Γ). An ordinary line bundle ξ can be identified with the pair (ξ, 1)±. In
this way, Pic(Σc) becomes a subgroup of both groups Pic± (Σ, Γ)9 and in fact the
group operations of Pic+(Σ,Γ) reduce into the ordinary bundle operations of
Pic (Σc) when restricted to Pic(Σc).

There is a natural group homomorphism μ± of Pic± (Σ, Γ) into Pic (Σc) defined
by

. (A.5)
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The importance of this homomorphism stems from the following fundamental
isomorphism

0(μ±(ξ9y))^β±(ξ9y) (A.6)
(cfr. Eqs. (2.2-3)). From here, the twisted Serre and Riemann-Roch theorems (cfr.
Eqs. (2.5-6)) follow from the corresponding standard theorems.

Proof. For any odd spin structure [α, /?] define [20]

Πi / \\ 1 A
- P + l(Ύ)) m = l __ ... _ ,

: — — - » (A 7a)

/=!

where peC* and

(A 7b)
m = l J = l

By using the Riemann vanishing Theorem [20], it is easy to prove that there is a
meromorphic function φ(γ) on Σc such that the divisor of zeros and poles of integer
degree of φ(γ)f(γ) is exactly m(y) (cfr. Eq. (A. la)). Now, recall that [11]

Θ(μ±(ξ, y))p = 0(ξ ® m(yΓ \ = {h eJΐ(ξ)p\ either h = 0 or *(h)P ^ + m(yU (A.8)

where b(/z) is the divisor of the section h. Define for any he&(μ+(ξ,γ))p9

ω±(y)(h) = LΦ(y)f(y)(p)Γ1h. (A.9)
Clearly, ω±(y)heJί±(ξ, y)p, but since the divisor of zeros and poles of integer degree
of Φ(y)f(y) is m(y), it follows from (A.8) that ω±(y)(h)e(9±(ξ9y)p. We thus have a
map from β(μ±(ξ,γ)) to 0±(ξ,y) which is easily seen to be a sheaf isomorphism.

To conclude, we provide explicit expressions for a basis of ± -twisted
holomorphic functions and spinors for a general twist structure. We denote by λj
and μjyj =!,..., g the twists around the a- and fc-cycles of Σc. We further set

(A.10a)

η±(y) = sqm - ( + ) V((y)^p/, (A.10b)
m = l / = !

where [α, jS] is any odd spin structure.
Assume first that \n(y)\^g. Let qm, \n(y)\ — g + l<m£\rι(y)\ be the g— 1

non-trivial zeros of the theta function 0[α, β](fp — *#q). As is well-known these
zeros do not depend on q [20]. Set for 1 ̂  m ̂  \n(γ)\ —0 + 1,

- m

W

(cfr. Eqs. (A.7b-c)). Then, it is not difficult to see that, provided signn(y)= + 1,
the functions f*m from a basis of + -twisted holomorphic functions.
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Next, assume that |φ)| > 0. Set for 1 g m ̂  |n(y)|,

^-*±*ί±i|̂ ίfe±!f«!*.(A <A,Od>

where E(p,q) is the prime form [20]. Then, it is straightforwardly proven that
these 1/2 forms form a basis of ±-twisted holomorphic spinors provided
signH(y) = ±1.

Acknowledgements. We wish to express our gratitude to T. Jayaraman for helpful discussions and S.
Theisen for providing a part of the relevant literature.

Note added in proof. In the preprint version of this paper the definition of the twisted Krichever map
was both incorrect and incomplete. This has been correct in the present printed version. Further, the
analysis of the instanton contribution outlined above was not contained in the preprint.

After completing this work, we became aware of ref. [21] where a similar formalism for the treatment
of multivalued conformal fields on Riemann surfaces is expounded.
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