
Commun. Math. Phys. 129, 1-25 (1990)

Physics
© Springer-Verlag 1990

The Scaling of ArnoPd Tongues for
Differentiable Homeomorphisms of the Circle*

Leo B. Jonker
Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

Abstract. We show both for diffeomorphisms of the circle and for differentiable
homeomorphisms that are not diffeomorphisms, that the widths of the ArnoΓd
tongues in a one parameter family scale as q~~3 when q is the denominator of
the rotation number.

0. Introduction

When / is a homeomorphisms of the circle S1 = R/Z to itself, the rotation number
p(f) of / constitutes an invariant that measures the rate at which the orbit of a
point wraps around the circle. The concept originated with Poincare [9] and is
best defined in terms of a lift F of / to the real line as

p(f)= limV"(x)-x),
π-»oo 7Z

where x is any initial point. Both F and the rotation number are defined uniquely
up to translation by an integer. It is easy to see that as a function C°(S1) -»R, p(f)
is continuous on the set of homeomorphisms, and that f1 < f2 implies p(/Ί) ̂  p(/2)
ArnoΓd in [2] was interested in the level sets of the function p in the (λ9 κ)-parameter
plane of the "standard" function family

FλtK(x) = x + λ + (κ/2π) sin (2πx),

giving rise to the so-called ArnoΓd tongues. Since that time the universal attributes
of such ArnoΓd tongue pictures have been of considerable interest. The following

is a consequence of the work of Herman [6]: Let σ be the golden mean (^/5 — l)/2
and let pn/qn be the nth rational approximant of σ. For some fixed initial point x0

and fixed K let λ = λn represent the parameter value at which x0 is periodic under
Fλκ with rotation number pn/qn, and let λ0 be the parameter value at which Fλκ
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has rotation number σ. Then

For circle maps which are homeomorphisms but not diffeomorphisms (e.g. Fλκ

with κ=l), work by Rand, Ostlund, Sethna and Siggia [10] gives numerical
evidence for an analogous scaling at the golden mean. See also [8] in this
connection.

Other results concern the "thickness" of the set of ArnoPd tongues at a fixed
value of k. Herman in [6] proved the following result: If fλ is a C1 family of Cr

orientation preserving diffeomorphisms, r ̂  3, with p(/0) Φ p(f\\ then the set of
parameter values for which the rotation number is irrational has positive Lebesgue
measure. More recently, in [11] Swi^tek proved that the analogous result is false
for homeomorphisms with critical points: Under rather general assumptions, which
certainly admit the family Fλκ with K = 1, he shows that the parameter values
corresponding to rational rotation numbers constitute a set of full measure. This
was previously conjectured and supported by numerical evidence in a paper by
Jensen, Bak and Bohr [7]. In [1] Alstr^m reports on a numerical study of the
dimension of the set of parameter values giving irrational rotation numbers for a
family of one-to-one differentiable circle maps with critical points. Alstηίm
conjectures that for a family of the form Fλ(x) = F(x) + λ, where F is assumed to
have just one critical point of order r, the limit capacity of the set of parameter
values giving rise to irrational rotation numbers is equal to r~1/8.

In [3] Cvitanovic, Shraiman and Sόderberg examine numerically the scaling of
the widths of ArnoΓd tongues for a family of critical maps (K = 1). They find that
if p is a fixed integer and if q-+ oo, then the width of the ArnoΓd tongue for the
rotation number p/q is asymptotic to Cq~3 for some constant C. A recent preprint
by Ecke, Farmer and Umberger [4] examines numerically this scaling at a fixed
value of the parameter K < 1. They find that the ArnoΓd tongues in this case also
satisfy the same scaling law.

The purpose of this paper is to prove that these conjectures are correct for
generic families of circle maps, and for more general sequence of rational rotation
numbers, obtained as successive mediants between nodes in the Farey tree. Our
proofs do not yield the conclusion that the asymptotic estimate is uniform with
respect to the natural rescaling associated with the Farey tree. For diffeomorphisms
a uniform scaling estimate is obtained (by different methods) in a preprint of
Graczyk [5]. We indicate as well that for non-generic families of circle maps other
scalings can occur. Although experiments suggest it, we do not know whether the
standard family satisfies the generic conditions required for our main scaling results.

1. Statement of Results

We consider families of homeomorphisms of the circle satisfying the following
assumptions:

Fλ belongs to the class 3F consisting of one-parameter function families satisfying
the following hypotheses:
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(i) As a function of x and λ the function Fλ(x) has continuous derivatives up to
first order in λ and x.
(ii) For each λ in the parameter interval T the function Fλ is a homeomorphism
of the circle.
(iii) If λ is on the boundary of the set of parameter values for which p(Fλ) = p/q
for some rational p/q, and if Fq

λ(x) = x + p, then the Frorbit of x is the only periodic
orbit, (F9"(x), (d/dλ)((Fq

λ)'(x)) and (d/dλ)((Fq

λ)"(x)) exist and are continuous on a
neighbourhood of (A, x), and (F^)'r(x) is different from zero.
(iv) (d/dλ)Fλ(x) > 0 for all xeK.

Condition (iii) is a condition that holds for a generic diίferentiable family of C2

circle maps. It is easy to see that condition (iii) holds for the standard map with
q=l. Whether it holds true in general for the standard map / do not know. We
also have the following more general condition.

(iii') If λ is on the boundary of the set of parameter values for which ρ(Fλ) = p/q
for some rational number p/q, and if F\(x) = x + p, then the FΛ-orbit of x is the
only periodic orbit. Furthermore, if t is the smallest integer greater than 1 for
which (F9(ί)(x) Φ 0, then (F5)(f)(x), and (d/dλ)((Fq

λ)
(t)(x)) exist and are continuous on

a neighbourhood of (λ, x).

We shall use OF* to denote the class of function families satisfying conditions (i),
(ii), (iii') and (iv). Note that the value of t in (iii') is necessarily even. We shall see
below that the asymptotic behaviour for members of &' is in general different
from the behaviour observed in the computer studies cited above. Our main results
are the following:

Theorem 1.1. Suppose Fλ is a function family belonging to the class ̂  and suppose
p/q < r/s [respectively p/q > r/s~] is a pair of Farey neighbours. For a fixed point
aeUlet λ0 be the largest [respectively smallest'] parameter at which p(Fλ) = p/q and
let λn be the unique parameter at which Fn

λ

q+s(a) = a + np + r. Then there are numbers
C1 and C2 such that C^nq + s)~2 < \λn - A 0 | < C2(nq + s)~2 for all n ;> 1.

Two rational numbers p/q and r/s are called Farey neighbours iϊrq — ps= +1.
This is equivalent to saying that r/s and p/q are adjacent in the set of rational
numbers with denominators bounded above by the maximum of q and 5.

Theorem 1.2. Under the assumptions of Theorem 1.1, let θn = (np H- r)/(nq + s), and
let Δn be the width of the parameter interval on which p(Fλ) = θn. Then there are
positive constants C3 and C4 such that C3(nq + s)~3 <Δn< C4(nq + s)~3 for all n.

In fact, it suffices to prove these theorems for the case where p/q < r/s for this
result can then be applied to the function family — F_ Λ ( —x). Also, the conclusions
of Theorems 1.1 and 1.2 for a specific rational number p/q require assumption (iii)
only for that specific p/q.

The theorems are both consequence of a study of the restriction of the iterates
of the map Gλ = F\ — p to an interval [α, Gλo(α)]. For each iterate G" we consider
the values of λ for which that iterate followed by {Fs

λ — r} maps a to a point w in
the interval [Gχ^(a\ Gλo(α)]. We refer to these functions as the nth return maps
associated with the pair {p/q,r/s}. We have the following propositions regarding
these return maps:
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Proposition 1.3. Let I — [α, GΛo(α)], and let wbea point in the interval [G^1 )̂, Gλo(α)].
Let λn(w) be the unique parameter value for which the nth return map &n^λ = {Fs

λ — r}°
{Fq

λ — p}n sends a to w. Then the sequence of functions £n,λn(w) is uniformly convergent
to a function /w of I into J = [G^(a\ G2

0(α)].
It will be noted in the proof of this theorem that the result is valid on the larger

class <F'. The next estimate is specific to 3F . For a corresponding estimate on 3F'
the expression λ"~3/2 should be replaced by A(1/ί)~2, where t — 1 is the order of
contact between the graph of Fq

λo and the line y = x + p:

Proposition 1.4. Let &n^λ be as defined in the statement of Proposition 1.3, with
/π λ(/)c= J. Then there exist numbers c1 and c2 independent ofn such that

;-3/2^_/> (γ\< r ;~3/2

Cl J i Λ «,λW ^ C2Λ

dλ

for all xel.
To prove Theorems 1.1 and 1.2 we use the uniform approximability of /Mn(vv)

by /w and the estimate of the derivative of £n,λ(ά) given in Proposition 1.4 to
estimate the size of the parameter interval required for the graph of /M>λ to cross
the diagonal line y = x.

2. Intermittency

When p/q and r/s are a pair of Farey neighbours with p/q < r/s, then the sequence
of numbers θn = (np + r)/(nq + s) constitutes a sequence that converges to p/q. Thus
the behaviour we are studying is in the parameter range for which the graph of
the function Fq

λ — p lies just above the diagonal line y = x. The behaviour of the
return map &Λtλ> is therefore dominated by the large number of iterates (Fq

λ — p)n(I)
located near the location where Fq

λo — p had a fixed point. This phenomenon is
known as intermittency. The two lemmas in this section serve to show that the
effect of this intermittency on the return map is uniform if interpreted in the right
way.

Lemma 2.1. Suppose Fλ is a family of functions belonging to the class 3F' or to the

class ^, and suppose that 0 is the largest parameter value such that p(Fλ) = 0, and
that F0(0) = 0. Then for any δ > 1 and weZ+ there exist numbers τ > 0 as small as
desired, and ε > 0 such that for 0 < λ < ε we have F™( — τ) < 0 and F^m(τ) > 0, and
for any xeIR and geZ+ with

xe[-τ,F?(-τ))

and

we have

Proof. Let φλ(x) = Fλ(x) - x and suppose the ίth is the first non- vanishing derivative
of φ0 at x = 0. Let ̂ (O) = (ί!)α. It is easy to see that t must be even. Choose δ1>\
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so that δl < δ. Also choose ct,l and α2 so that 0 < aί < α < α2, and l/δί < al/a2
α2/αι <<5ι Choose σ>0 so that for xe[ — σ,σ] we have

Integrating this ί times gives

α^^oM^*1- (2.1-1)

Now choose τ > 0 so that F%( — σ) < —τ and FQ 1 (σ) > τ. Furthermore, by the Mean
Value Theorem, T/FQ m~2(τ) is the product of the derivatives of F0 at m — 2 points
in the interval (0, τ). Therefore, by picking τ > 0 small enough we may assume that

Using (2.1.1) we conclude that if w,ι;e[Fo m~2(τ),τ] then

«ι 1 Φo(Fόm~2(τ)) Φo(u) Φo(τ) α 2 c
—•— < T— < . . . < . ,„-„->>, „ < —0ι
α2 δ{ 00(τ) (poM </>o(^o (τ)) αι

Thus

^<M^<(52 (2.1.2)

Similarly, by choosing τ > 0 small enough, we may assume that if u,ve
[FO 2(-τ),FJ?+1(-τ)] then (2.1.2) holds. Note as well that from (2.1.1) we have

1 . ΦoW ^

By continuity we may now pick ε > 0 so small that for all Λ,e(0,ε),

and

Since 0λ converges uniformly to ^0 it follows from (2.1.2) and (2.1.3) that we may
now choose ε>0 even smaller, if necessary, to ensure that for u,ve[Fΐm~l(τ),τ~]
as well as for u,ve[Fϊl( — τ), FJ( — τ)] we have

and

<*
Now suppose xe[ — τ, F^( — τ)) and FJ(x)e[FA

 m(τ), τ). Let xf = Fl

λ(x) and a{ = 0Λ(χi)
for i = -1,0,1,..., q. Using the Mean Value Theorem and the fact that F^(M) ̂  0
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on [-σ,σ] (see (2.1.1)) we have for i= —1,0, l,...,g,

βi-l ai

Therefore

^̂  < (FJ)'(x) < \ (2.1.6)
fl-i 0o

But by (2.1.4),

l a a ι
-3<—^-, τLττ<5? (2.1.7)

and

^j<^Z^, ^~^<^ (1L8)

Combining (2.1.5), (2.1.6), (2.1.7), and (2.1.8) we get

If the function family is of the form Fλ(x) = F(x) + A, then it is easy to see that if
xt = F\(x\ then (d/dλ)Fl(x)=\+F'λ(xq.1) +F'άx^JFΆx^J + + F'λ(xq-l)
^λ(χι) While this formula is not correct for a general family, we shall need to
estimate it in order to obtain an estimate for (d/dx)F\(x) in the general case. The
next two lemmas serve to define a constant Lt needed in this estimate.

Lemma 2.2. For any τ > 0 and fceZ+,
τ dx

0< lim a1-^2" —^r<oo.
α^0+ ^ τ α + x2fc

Pr0o/. Factoring the denominator α + x2k (over C) and using partial fractions and
the principal branch of In z, we get

τ dx 2k ί τ \
-̂-ι 1 / 1 1

^^=

m4ΊCmlnl r^/
where cm = -(α(1/2k)- 1) ωmα/(2fc - 1), and where α = eίπ/2k, y = α α1/2*, and ω = eiιr/*.
Therefore,

= lim — -̂ X ωm

fl-.0-2fc-lm^ι V jτm

— α 2fc /v 1 \ —α 2k

= lim -—- Σ α)mlnΠ- = - r̂—r Σ
β-.0* 2ίc - 1 m=ι \τ ωm/ 2k - 1 m=ι
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χ

Corollary 2.3. J - - ̂ ΰ Z5 of order a

(1/2k)~2 as a goes to zero.
-τ(a

Proof. Let L be the limit obtained in the preceding lemma. Then

τ ΛY f l2-(l/2k) t ΛY

2L = lim a1''1/2*) f -=^ = lim -£ - -̂  J / **
fl^o + -Jt<z + x2k α-o+Λ Λ Λ ( α + x2_

by lΉόpitaΓs Rule.

For an even positive integer we define the constant Lt by

dx
L,= lim α 2- ( 1 / ί )f \2 '

Lemma 2.4. Suppose Fλ is a family of functions belonging to the class SF' such that
0 ϊ's the largest parameter value at which p(λ) = 0, and such that F0(0) = 0. Suppose
that t is the smallest integer greater than 1 for which F(Q\0) ^0. Let (ί!)α = ̂ (O),
let β = (d/dλ)Fλ(0)\λ=0 and let K0 = α1 ~(1/ί)jS(1/ί)"2 Lί. Thenfor anyδ>l and weZ +

there exist numbers τ > 0, as small as desired, and ε > 0 such that for 0<λ<ε we
have FJ(-τ) < 0 and F^m(τ) > 0, and for any xeIR and <zeZ+ such that

x6[-τ,FJ(-τ))
we /zai e

1

Proof. Choose numbers <51,^2>
<53.^4 so that 1 <<?! <^2 <<53<<54<<5. Then

choose fij > 0 such that

<δ*' (2A1)

Λl-βi ,

>^-, (2A2)

<54(l+£l)<^, (2.4.3)

and
1 1 1

(2.4.4)
<54 1 + εί δ

By Corollary 2.3, with fe = 1, we have that if αf and βi are positive reals, then

where L, is independent of αf and ft.
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Now let Kί = K-W βW ~2 Lt9 and choose α 1 , α 2 , β ί 9 β 2 so that 0 < oq < α < α2

and 0<βι<β<β2, and so that

fc" ^ r*~ */*. /?(!/*)-2. r /") Λ r\
T~ ι vl<-α2 P2 *-'f> (Z.H .Jj

α-ι/r.^1/0-2.Lί<^ ιXι? p.4.6)

<54α2 < 5α, (2.4.7)

and

j-α^α. (2.4.8)

Let </>λ(x) = Fλ(x) — x, and choose σ > 0 so that F($(x) > 0,

α1x
ί<00(x)<α2x

ί, (2.4.9)

and

\Φ'o(x)\<*ι (2-4.10)

for all xe[ —σ,σ], and choose τ > 0 such that

Fo1(-τ)>-σ and F0(τ)<σ. (2.4.11)

We now choose ε > 0 so that when /le(0,ε), then FJ(-τ) < 0, and F^m(τ) > 0, and
for all xe[ —σ,σ], we have

> 0, jM + α^' < 0A(x) < j82/l + α2x
f, (2.4.12)

*1 . . / n *2 (2.4.13)
(?2 C^ ι

where for i= 1,2,

ii = Λ 2 - Π / , ) J ^

and

and so that

_£_]£ ^.Lj^ ^2-(i/ί)σJ j. i ( ^ (2.4.15)

and

1 +lL , -1, -n2 (2-4.16)

Furthermore, using (2.4.7) and (2.4.8) we may assume that

(2.4.17)
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(2.4.18)

when Λ,e(0,ε). t

We will later need an estimate for J
and (2.4.6), we have ~τ

: Combining(2.4.12), (2.4.13), (2.4.5)

A<ι/υ-2 £ (2.4.19)

For the remainder of the proof assume that xe[-τ, FJ(-τ)) and FS(x)e[f7m(τ),τ).
Let x, = F\(x) and α, = ̂ (x,-) for i = -1,0,1,2,..., q + 1. Also let X denote the
sum 1 +FA(x,_1) + FA(x,_1)Fa(xf_2)+ - + F'Λ(xί_1) F )̂. Then by the mean
value theorem, for / = 0,1,2,..., q — 1, we have

(2.4.20)

Therefore,

9-ι\ + +•••+ —[<X
K-i α,-2 βoj

1 1

We now proceed to estimate aq{(l/aq) H- (1/α^.!) + — h (l/«ι)}, by writing it as

Since 0λ(x/) = xί+ ! — xf = 4x/, this is a Riemann sum for the function (l/(φ λ(Xi)))2

on the interval [xι,xβ+ι] Note that when i;6(M,FA(w)] c [ — σ,σ], then

for some we(w, t;). Thus

Here

t; —

by (2.4.14), and so, whenever ve[u9Fλ(u)] c [-σ,σ], we have

(2.4.22)

Now let HI and vt be points in [xί,xί+1], where φλ(u) reaches its maximum and



10 L. B. Jonker

minimum values respectively. Then

"'' l A ί l \2Adu-i-r^—^] Δxt

1

Ui — Vil for some zie\_xi,xi+1]

1

1 \3 1

Thus,

Similarly, we get

(
1 \3ί-ι 1

7-̂  Σ^-

f l A V l
I χ l|y \

i(0Λ(M))2 faφfa)
We now compare these integrals to the integral from — τ to τ,

7

du du

*«+!

by (2.4.14).

(2.4.23)

(2.4.24)

(2A25)

by (2.2.12). Combining (2.2.25) and (2.2.19), and using (2.4.15) and (2.2.16), we get

λ(ίlt)~2 — K, <Ύ' ,<λ(iv-2 δτ K,. (2.4.26)
C i. J /yJL /V '\'\2 0 1 . V /

By a similar argument,

. 1 x* dx
l 53 Xι. (2.4.27)
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We are now ready to combine (2.4.26) and (2.4.23): Letting

we have from (2.4.23)

\I-S\<2εί

whence

<s<^4-
l+2ε ι(l-ε3)-3 - l - 3

Using (2.4.26) this gives

A(1/t)~2

Using (2.4.1) and (2.4.2) this leads to

jjU/o-2. _£_.]£ < y <^(1/0-2.^ .£ (2.4.28)

Similarly,

;(i/ί)-2._. x ^ V ^ Jl ( 1 / f )~ 2-^ ί̂  Γ9 4 9Q^Λ Λ.χ < 2^ "7~~7 7 ̂  Λ ^4 Λl ^Z.H .Zyj

Thus,

Now let K = Kjα. Then, using (2.4.12), and (2.4.17), we obtain

a.- + — +•••+q[aq β,_! -

Similarly,

^ A<1">-2 A: τ'«v1{-
1-+" +

δ q (α,_! α0

When we combine this with (2.4.21) we obtain the desired inequality.

We will now use Lemma 2.4 to obtain an estimate for (d/dλ) (F\(x)) in a region
of intermittency:

Lemma 2.5. Assume the hypotheses of Lemma 2.4, and let a. = F$(Q), β = (d/dλ)Fλ(0) \λ = 0

and K = L, (a./β)1 ~(ίl'\ Suppose δ>l, and that τ > 0 and ε>0are sufficiently small.
Then for 0 < λ < ε and for xeR and #eZ+ such that

xe[-τ,FJ(-τ))
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and

F\(x)e[_F-λ

m(τ\τ)

we have

" dλ
Proof. Choose <50 so that 1 < δ0 < δ. Now choose βί and β2 so that 0 < β1 < β < β2

and so that

β/δ<βl/δ0, (2.5.1)

and

β2δo<βδ. (2.5.2)

By Lemma 2.4 there exists numbers τ,ε, and K0 such that λe(0,ε), XE[ —τ,F™( —τ))
and Fl(x)e[F^m(τ),τ) imply, with xi = Fl

λ(x) as before,

1
l~^o
δo

^ /S K T

ί;(1/0-2 /o 5 T\
^UQΓLQiA . \^.J.J)

Since (d/dλ)Fλ(u) is continuous in (A, u) jointly, we may assume that ε and τ are so
small that

for all we[-τ,τ) and all /le(0,ε). Now

dλ

whence

Repeating the same estimate for (d/dλ)Fl~1(x), (d/dλ)F\~2(x),... we get

Using (2.5.3) this gives
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When we apply (2.5.1) and (2.5.2) to this we get

β-K^λ^~2 < ̂o dλ

Now let K = βK0. M

3. Two Auxiliary Functions and an Associated Differential Equation

In this section we consider a parameter value (say λ = 0) at which some iterate of
FO, say GO = FI — p, is such that p(G0) = 0 but p(Gλ) > 0 when λ > 0. We assume
that the function family Fλ belongs to J '̂, so that the set {wj of fixed points of
GO constitutes a single cycle (modZ) of F0. We assume ut <ui+1 for each /. We
now define two functions on each interval (ui9ui+1). As in property (iii') in the
definition of the class 3F' we let t denote the lowest order non-vanishing derivative
of ΦQ(X) = G0(x) — x at HI.

Definition 3.1. For ze(M ί 5 M ί + 1 ) we let

Rt(z) = lim (G5)'(G0-*(z)) (Go *(z) - utf,
fc-+oo

and for ze(ui-ί,uί\ we let

L i(z)=lim(G*)/(z)/(G*(z)-ιιί)
ί.

fc->00

The next two lemmas show that these limits exist, and prove some of the properties
of LI and Rt.

Lemma 3.2.

(a) RI(Z) is defined, continuous and non-negative, and the sequence defining Rt(z)
converges uniformly on any compact subset of(uiyui + 1 ) .
(b) RI(Z) > 0 for z sufficiently close to ut.
(c) Rί(G0(z)) = Gf

0(z)'Ri(z).
(d) RI(Z) = 0 if and only if z is in the forward orbit of a critical point o/G0.
(e) RI(Z) is uniformly Lipschitz on any compact subset of(uhui+l).

Go(x) I

(f) ί Έ7^dz = 1 f°

Proof. We may assume that ut = 0. Let α = (ί!)G(o}(0). Let φ0(x) = G0(x) - x and
let zk = GO k(z). Using the Mean Value Theorem as in the proof of Lemma 2.1, we
have for sufficiently large n, and for k ̂  0,

+k

Φo(zn+k + ί ) ~ (Gno)'(zn) ~φ0(zn+k)

Thus

z'n + k(G"0

+k)'(Zn + k) 1
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where

z,
Since (φ0(zί)/oίzt)-^l as z->0, and (zn + 1/zw)-> 1 as w-> oo, (a) follows.

To prove (b) we note that by (2.4.9) we have for small z,

where Q(z) -> 0 as z -> 0. Thus

r> /_Λ i:^. ir^k\tt- \. τQ\ k)

Now letting αm = </>0(
zm)> we have

—αk = α0.
«*

Thus

Letting k-+co this gives

^rω)^ ^z)
α α

In other words,

Rj(z)=^)) (322)
for some y(z)e[Go 1(^),2].

Parts (c) and (d) are easy consequences of (b) and the definition of Rt(z).
To prove (e) we only need to prove it at ze(ui9 ui+1) such that G'0(y) > 0 for all

ye(0,z), for then (c) allows us to extend the result to (ui9ui+ί). So suppose

Gol(y2)<yι <^2 an<l let 17= U GO *[>>!, y2]. Since for small y9G'0(y) is mono-
fc^O

tonically increasing, we have meas(U)^A\y2 — yι\9 where A is a constant. Let
N/00 denote the nonlinearity

Therefore

for some constant B. Also
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whence

CoV

Hence

1-(Gtt(GϊHy1))-emn "'•

That is, for some constant C we have

0 ̂  (G*0)'(G0-*(y2)) - (G*0)'(G0-tyj) g C|y2 - y}

Hence

l{Go*(y2)}((G0)'(G(

^((Gό'I(3'2))'-(Go'

o

Letting k -» oo this gives

from which (e) follows. Go(JC)

To prove part (f ) we first show that J (l/Rf(z))dz is independent of x. To do
JC

this we note that for small x,

dx ί ^(z) RjίGoW) Λ,(x)

by (c). To extend this result to all of (ui9ui+i) we have by (c) that

GoW 1 Go(x) 1 Go(x) 1

using the coordinate change w = G0(z).
To continue, we write φ0(z) = {α + Qίz)}^' as before, and use (3.2.2) to see that

for small a,

0(a) I Go(β) α a + φ0(a)

ί lφ)dZ= ί ΦMzγ)dZ== ί (α +

Now choose α so small that |Q(z)| < ε on [α, G0(α)] as well as α — ε < (α + β(y(z)))
(7(z)VzO < α + ε. Then

α + ία-εjα4 J G0(fl) \ α + (α + «)αl J

^= Z= dZ
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That is,

Now let a (and ε) -> 0 and find that

Go(a)O(a) I

j n (r

-dz=L

Lemma 3.3.

(a) Lj(z) is well defined, continuous and non-negative, and the sequence defining Lf(z)
converges uniformly on any compact subset o f f a - ^ U i ) .

(b) Li(z) = G'o(z)Lί(G0(z)).
Go(x)

(c) J Li(z)dz = 1 for every xe(W; _ i , wf).
X

Proof. The proof is similar to the proof of Lemma 3.2, and is left to the reader.

We now introduce an ordinary differential equation on (w t_ 15 w f) whose solutions
play a very important role in the sequel.

Definition 3.4. For ae(u^ 15 M f) and z6(Mt , uf + J we let gz'\Ui- 15 w f) ->(Mi5 w ί+ J be the
solution gz(x) = y(x) of the differential equation

with initial condition gz(a) = z. The fact that a and i have been suppressed in the
notation will cause no difficulty in the sequel.

Lemma 3.5. For each choice ofi, α, and z,gz is continuously differentiate increasing
function with the property gz(G0(x)) = G0(gz(x)).

Proof. The first two assertions are obvious. As to the last assertion, from Definition
3.4 it follows that

9z(Go(x)) dw Go(x)

ί ^-τ= ί
9z(x) ^i(W) X

But by Lemmas 3.2 and 3.3 we have

Go(0z(*))
= ί Lt(v)dv=l.

Hence G0

We end this section by showing that the solution y = gz(x) of the differential
Eq. (3.4) with initial condition z — gz(a) can be altered by arbitrarily small O
perturbations of G0. What is important for us in the sequel is that if r/s is Farey
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neighbour of p/q (rq = ps±l) and if a = Fs

0(b) + r, then the equality gb°(Fs

0 + r) = Id
is generically false for a one parameter family Fλ.

Since gz and G0 commute we may assume b as close to a fixed point of G0 as
we please. For a fixed weZ + , suppose ε(x) is an arbitrarily small C perturbation
of the identity function on (Gom(ft), Gom + 1(fc)) with the property ε(x)^x for all
x and ε(x) > x for some x.

Let

n fG0(β(z)) if
o(Z) |G0(z) elsewhere

It is easy to see that H0 + p is the qih iterate of a similarly perturbed F0. Let Rε(z)
denote the function Rt(z) constructed using H 0 in place of G0, and let R(z) denote
Ri(z) where for convenience we assume again that M£ = 0. Then for zε[b, G0(fe)),

Rt(z) = lim (H0-
 fc(z))' (Gfe

0-
m)'(#o *(z)) (GS)'(Go™((z))ε'(tf o m(z)).

fc^OO

Now consider a point ze[fe, G0(ί?)) at which ε'(#o m(z)) ̂  1 but ε(#o m(z)) > HQ m(z).
Then #o fc(z) < GQ k(z) and so (assuming ί? sufficiently close to 0),

(Gfc

0--y(H0-
 k(z)) < (G*- m)'(Go *(z)),

whence Kε(z) < K(z) at such points. But, if the differential equations

and

have the same solution y(x) with y(α) = ft, then #(y(x)) = Kε(y(x)) for all xe[α, G0(α))
and so R = Rε on [b, G0(fo)) contradicting our findings. Thus the function gb has
been altered by the perturbation of F0. Finally, it should be noted that by choosing
m appropriately we can ensure that this perturbation of F0 does not affect the
restriction of F0 + r to any particular given compact subinterval of (uhui + 1).

4. The Return Maps

In this section we will prove Proposition 4.1 and derive Proposition 1.3 from it.
Proposition 4.1 establishes the asymptotically uniform behaviour for the iterates
of Gλ = F\ — p at appropriately chosen parameter values. As always we assume
that the family Fλ belongs to the class ^'9 and that λ0 is on the boundary of the
set of parameter values λ for which p(Fλ) = p/q. A Farey neighbour r/s of p/q is a
rational number with rq = ps ± 1. We will assume that p/q < r/s and that p(Fλ) > p/q
for λ>λ0. The case where the reverse inequality holds may be dealt with by
replacing Fλ(x) by — F_ λ( — x). Suppose wt _ 1 < w, <ui+1 are adjacent points in the
unique periodic orbit of Fλo. It is easy to see that (Fs

λo — r)(uh ui+ί) = (wf _ 19 wj. We
choose a fixed point a^u^^u^. For each ze(uhui+ί) and ne/+ there is a unique
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parameter value λ > λQ such that G\(a) = z. Using that value of λ we define hΛtZ = G\ .
Proposition 4.1 below proves the uniform convergence of the sequence of

functions hn^z as π-» oo. Since the return maps /π,Λn(w) defined in Sect. 1 are related
to the maps hnz by the formula

where zn = (Fs

λn(w}-r)~1(w\ and since the functions (Fs

λn(w}-r) clearly converge
uniformly to (F 0̂ — r), Proposition 1.3 is an immediate consequence of Proposition
4.1.

Proposition 4.1. Suppose Fλ, ui9 a and hntZ are as defined above. Also suppose
z(λ)e(uhui+ί) varies continuously with λ. For a fixed me/+ let Iλ = [α, G™(α)). Let
A Λ > A 0 , n=l,2,3,... be a sequence of parameter values with Iimλn = λ0 and for
which Gn

λn(a) = z(λn). Let hn = hntZ(λn) and suppose I is a compact interval contained
in Iλ for all sufficiently small λ. Then the sequence hn converges to gz(0} uniformly
on I.

Proof. For convenience we may assume that λ0 = 0 and that ut = 0. We will write
L(x) and R(y) in place of Lt(x) and Rt(y). Suppose δ > 1. By Lemma 2.1 there exist
numbers τ>0 and ε>0 such that α< -τ<0<τ <z(λ) and G^+1(-τ)<0
and GA-m~1(τ)>0 for all Λe(0,ε), and such that if we[-τ,G?+1(-τ)) and

-δ<(G\)'(ύ)<δ. (4.1.1)

On the other hand, it also follows from (3.2.2) and the corresponding formula for
L(z) for z near 0:

w= °
that with u and v as described above, and ε small enough,

-<Uu)R(v)<δ. (4.1.2)
0

We may assume ε so small that for some fixed integers k and /,

G*(α)e[-τ,Gλ(-τ))

and

for all >le(0,ε). Then for any xe/λ and yεJ λ = \_z(λ\ G^(z))) we have

and
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Now consider hn\j. Suppose hn(x) = y. Then using 2.1,

(GkJ(x)(GlJ'(G^(y)) ί h'a(x) ί δ(Gl)'(x)(G'J(G^(y)). (4.1.3)

Since Gλn converges to G0 in the C1 topology, it follows from this that for sufficiently
large n,

(Go l(y)) < h'n(x)

Since

L(x)R(y) = (G*

it follows from (4.1.2) that

^L(x)R(y) < h'n(x) < δ3L{x)R(x).
o

Substracting from this the equation

and writing ga for gz(λn), we get

L(x)(^R(hn(x)) - R(gn(x))} < h'n(x) - g'n(x) < L(x)(δ3R(hn(x)) - R(gπ(x))).
\δ )

Thus,

L(X) j(^ *(M*)) - R(ga(χ))} + (ΊS- l}R(β»(χ» \

< h'n(x) - g'tt(x) < L(x){(δ3R(hn(x)) - R(gn(x))) + (δ3 - l)Λ(0n(x))}.

Therefore, using Lemma 3.2(e),

\hn(x) - gn(x)\' < δ*L(x)C\hn(x) - gn(x)\ + (^3 - l)L(x)R(gn(x)).

By GronwalΓs inequality this implies that for sufficiently large n,

where M is an upper bound for <53L(x) on / and where N is a uniform upper bound
(independent of n) for L(x)R(gn(x)) on /. Since δ may be chosen as close to 1 as
we wish, this proves that on / we have || hn — gn \\ ->0 as n -> oo. A similar argument
shows that gn converges uniformly to gz(0). These combine to prove the proposition.

•
5. Variation of the Return Maps

In this section we will derive Proposition 1.4 which estimates the derivative of the
return map with respect to the parameter λ. In fact we will prove a more general
result below, which applies to a function family belonging to the larger class &'.
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Let AO, p/q9 Gλ, and {uf} be defined as in the preceding section, and let z(λ) = G"(α)
for a fixed point ae(u^ 19 ut). We will study the function z(λ) for values of λ near λ0.

As in Lemma 2.4 we assume that t is the smallest integer larger than 1 for
which G^(ut.) τ*0, and we let

Lt = lim

and

.......
The function z(λ) is described in the following result:

Proposition 5.1. Let 3 be a compact subinterval of(ui^l9Ui). Then for sufficiently
large n there is a function Ki(n9z)>0 defined on a neighbourhood of J such that if
Gn

λ(ά) = zeJ, then (d/dλ)Gn

λ(a) = KfazW1®'2. Furthermore, lim Kfaz) = K-R^z),
uniformly on J. "~*°°

In the case t = 2 this gives (d/dλ)Gn

λ(a) = Kf(n, z)λ" 3/2. Since the return map /Λ?Λ

is equal to

and since (Fs

λn(w) — r) converges uniformly to (F 0̂ — r) in the C1 -topology, Propo-
sition 1.4 is clearly an immediate consequence.

Proof. We will assume that λ0 = 0, i = 0, and ut = 0, and we will suppress the
subscript on Ki9Ki(n9z)9 and K/(z). Suppose δ > 1 and v > 0 are given and choose
ce(w0, w j and m > 2 such that J ̂  [c, GQ ~2(c)]. Obtain numbers τ and β for which
the conclusions of Lemmas 2.2 and 2.5 are satisfied and for which we have as well
that

j<-<δ (5.1.1)
δ z

for all ze[Gόm(τ),τ). Let fc,/eZ+ be such that

and

By continuity we may assume that

and
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for all Λe(0,ε). Next we may first assume τ so small, and therefore / so large that
on J the C°-norm of

is smaller than v, and then assume that ε is so small that for all Ae(0, ε), the C°-norm
on J of

lJ(G;l(z)) - (G0- '(zMGΌytGo'ί

is also less than v. Then if G\(ά) = ze J we have

Tλ Gl(a} = ̂ Γ(GΓ'(α

Now note that dG\/dλ is bounded uniformly on Gλ~Vo)» that (Gl

λ)'(Gn

λ~ *(<*))
converges to (Go)'(Go l(z)) as n-» oo, and that (δG*/δΛ)(0) is uniformly bounded for
small λ. Furthermore, (G"~/~fcy(G^(α)) is uniformly bounded by Lemma 2.4, while
by Lemma 2.5 we have

- -
o oλ

Using these facts along with (5.1.1) we get

v,n.) - 2v)Kλ^-2 <-GJ(α) < βj + δ3(R(z) + 2v)Kλ^~\
o dλ

where Bl is a fixed constant independent of n (but not of τ). Thus, letting

- 2vK) < X(n,z) < B^2~(i/t) + δ3(KR(z) + 2vX).

Hence,

| <(δ 3 - \)KR(z) + 2δ3vK

With NM = sup I K(H, z) — KR(z)\, and letting n -> oo, this implies that
zeJ

limsup]Vπ ^ (ί3 -
n -> oo

Since (<53 — 1) and v can be chosen arbitrarily small, this proves the result.

6. Proofs of the Main Theorems

In this section we complete the paper by proving Theorems 1.1 and 1.2. We restrict
our function families to the generic class $F as indicated in the hypotheses of these
theorems. We leave it to the reader to formulate the corresponding results for
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families belonging to &F'. Their proofs are obvious generalizations of the proofs
presented below.

The idea is to use the fact that the return maps /zn>z = G\ converges uniformly
(Proposition 4.1) and that the dependence of z on λ can be estimated (Proposition
5.1) to obtain an approximate value for the widths of the parameter intervals
between the times at which the graphs of of {Fs

λ — r} " 1 and hnz = Gn

λ meet at a
certain point (giving Theorem 1.1) as well as the widths of the parameter intervals
over which the graph of hnjZ = Gn

λ crosses the graph of {F^-r}"1 (giving
Theorem 1.2).

For the proofs of Theorems 1.1 and 1.2 we may once again introduce the
simplifications we have used repeatedly: λ0 = 0 will be the largest parameter value
at which p(Fλ) = p/q, Gλ will denote Έ\ — p, and M_ x < 0 < u1 are three consecutive
fixed points of G0. We will also let Hλ denote F\ — r.

Proof of Theorem 1.1. Since F0 maps (u^^Ui) to (ui+p-ί9ui+p\ and since Fλ is
uniformly close to F0 for small A, we may assume that ae(u-l9Q). Let b = HQI(O)
and let H^(a) = bn. Then lim bn = b, lim Gλn(bn) = G0(fe), and Gn

λn(a) = bn. For the
moment let us assume that G0 has no critical points in [0,Go(fe)]. Let δ>\. Then
for sufficiently large n,

= ί cr»<tt= J κ<

where Ml >0 is a strict lower bound for the value of KiR^z) on [fc, Go(fe)]; the
last step uses Proposition 5.1. Similarly,

G0(b) -b< 2M2

where M2 > 0 is a strict upper bound of the value of KtRi(z) on [b, G^(b)~\. Thus,
letting

^ι=^τr(co(*)-*λ Λ2=^—(GQ(b)-b\
2M2 2Mj

and

we have for m > n,

(m-n)Al+c< —= <(m- n)A2 + c.
V*"

Therefore,

1 . 1

((m - n)A2 + c)2 m ((m - n)Al + c)
2'
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This proves the theorem for the case where G0 has no critical point on [0, GQ(£>)].
If GO does have a critical point on [0, Go(fc)], replace a by a1 = G$ k(ά) and let

b1 = Gΰk(b) = HQ 1(al), where k is large enough to ensure that G0 has no critical
points on [0, Go(bι)]. Let vn be the parameter value for which H^G^a^ = 01? so
that

1 1

((m-n)A2 + c)2 m ((m-πMi + c)2

by the proof so far. But for sufficiently large n we have G^a^ > Gk~ ^(a^. Therefore,

HvG
n

v^(ά) = HVnG
n

v; HGofai)) > H^G^a,) = G*,(fll) > GfraJ = a,

whence vn> λn+ί. Similarly,

HVnG
n

v~
l(a) = HVnG

n

v~ MGfcίfli)) < HVnG
n^k~ l(aι) = Gk~ I ( Λ I ) < GfaJ = a.

Thus vπ < Λ,π_ t . Combining these two results we get vm+ 1 < λm < vm_ x, from which
we obtain

((m - n + 1)A2 + c)2 m ((m - n - l)A, + c)2 '

From this the result follows immediately.

Before we prove Theorem 1.2 we need a lemma to show that H^1 = {Fs

λ — r}"1

converges uniformly on any given compact subinterval oϊ(ui_l9ui). The result is
simple, and undoubtedly well known, but I do not know a reference for it.

Lemma 6.1. Suppose f and gλ are homeomorphisms on a compact subinterval 0/0?
and that gλ-+f uniformly as Λ,->0+. Then on any compact interval I contained in
the image o f g λ f o r all sufficiently small λ, gΐ1 converges uniformly to f'1.

Proof. First we note that if for ε j > 0 we let

then ω(ε1)->0+ as ε1^0 + . We may assume that / is increasing. Now suppose
ε2 > 0 is given. Choose εt > 0 so that ω(εl) < ε2. Then for any yel and x = f ~ l ( y ) ,
f(x — ω(e1)) ^ /(x) — EI and /(x 4- ω(e±)) ^ /(x) + ε^ . Now choose ε > 0 so small
that for λe(0, ε), || gλ -f \\ < ε, . Then gλ(x - ω(εl)) < /(x) and gλ(x + ω(s1)) < /(x).
Hence, if gλ(u) = /(x), then we(x — ω(sl), x H- ω(εt)) g (x — ε2, x + ε2). That is,

\gϊl(y)-Γl(y)\<*2

Pr0o/ of Theorem 1.2. Choose be^u^ so that G0 has no critical point in
[0,Gg(fe)]. Let α = Ho1(fe) and let / = [α,Gg(α)]. By Lemma 6.1, Hλ converges
uniformly on / to H0 as A-^0+. For ze[Go~ l(b), G0(fc)], let λn(z) be such that
hn,z(a) = G"π(z)(α) = z. By Proposition 5.1, hntZ converges uniformly on / to the
function gz defined in 3.4. Furthermore, it follows from the definition of gz that if
Zi < z2, then gzι(x) < gZ2(x) for all xe/, and Lemma 3.5 we have gz(G0(a)) = G0(b).
Now p(Fλ) = θn = (np + r)/(nq + s) if and only if there is a point z0 such that
GA°(^A ~ r)(zo) = zoί that is, if and only if there is a point x0 = (Fs

λ — r)(z0) such
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that G"(x0) = Hλ(x0). But this is the case if and only if there is such a point x0 in
the interval [0, Gλ(α)]. Since [a, Gλ(ά)~] g / for small λ, we conclude that p(Fλ) = θn

if and only if the graphes of Hλ and G" meet on /.
Let ZIG[GO l(b\b] be the smallest number z such that the graph of gz meets

the graph of H0 (note that gb(a) = b = HQ(ά)\ and let z2e[ft, Gλ(b)) be the largest.
By the discussion at the end of Sect. 3 we know that for the generic family Fλ we
havezj < z2. Choose u^ and w2 so that zl < H^ <b< w2 <z2.Lεtη >0 be such that

f ]
< inN inf|#0 - g |,inf |H0 - g»2\ >.

(ze/ ze/ J

Choose NeZ+ so that for π ̂  N, on the interval /,

|| Hλ - HO || < ly, || Λ I I f W l - ^W l || < ly, || /ιπ>VV2 - ^W2 1| < η.

Thus, for n^N, /zΠ j V V 1 < Hλ and /ιπ W2 > HΛ. In particular, the parameter interval

on which p(Fλ) = θn is contained in the interval (λn(wl),λn(w2)\ We estimate the

size of this interval now:

w2 - W l = Gn

λn(W2)(a) - Gn

λn(^(a\

A n (VV 2 ) A λn(\V2)

J -G»λ(a)dλ= f K,.(n.G"Λ(α)μ-3/2dl
λ n(wι)"A λn(wι)

Choosing M! > 0 and M2 > 0 so that M t < KtR^z) < M2 for all ze[w1? w2], we
obtain from this,

whence

Therefore,

Δn^ _ _ _
" * Ϊ 2

But by Theorem 1.1 we have

C^nq -f s)~2 < λβ(w2), ^(Wj) < C2(nq 4- s)~2

for some positive constants Ct and C2. Thus

for a positive constant C3. If we repeat this argument using two numbers w1 and
w2 such that W j < zt <z2<w2 we get the inequality

Δn<C4(nq -3
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