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Abstract. Let V^l) and V^ be two ergodic random potentials on KA We
consider the Schrόdinger operator Hω = H0 + Vω, with Ho= —A and for
x = (x1,...,xd)

if xt<0
if x^O '

We prove certain ergodic properties of the spectrum for this model, and express
the integrated density of states in terms of the density of states of the stationary
potentials V^1] and V^2\ Finally we prove the existence of the density of surface
states for Hω.

1. Introduction

In this paper we consider Schrδdinger operators Hω = H0 + Vω with random
potential Vω on L2(Rd). The random potential Vω we consider has different
behavior in the left and right half space. More precisely, there are two ergodic
random fields Fω

+ and V~ on Rd such that Vω agrees with Fω

+ in one half space and
with V~ in the complementary half space. To be specific we assume Vω(x) = Fω

+ for
x± ^ 0 and VJx)= V~(x) for xx <0.

Thus Vω is not an ergodic potential (unless Vj1 happen to agree). Consequently,
the general theory of ergodic potentials (see e.g. [4, 2,10] and references therein)
does not apply. For example, a priori the spectrum σ(Hω) may depend on ω. In fact,
Molcanov and Seidel [15] consider the one dimensional case in detail. They prove
that, in their special case, the spectrum σ(Hω) consists of the half line [0, oo) plus an
additional isolated negative eigenvalue. This eigenvalue depends on the random
parameters.

We will prove in the next section that in the higher dimensional case (d>l)
the spectrum is non-random under very mild assumptions. The main difference
between d = 1 and d> 1 lies in the "ergodicity" of the potential under shifts parallel
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to the surface of the half space, which clearly does not apply to the one dimensional
case.

Carmona [3] also considers the one dimensional case. He looks at the measure
theoretic nature of the spectrum. Carmona proved the remarkable fact that, under
suitable assumptions, Hω = H0+Vω has absolutely continuous resp. p.p. spec-
trum if H* has ac. resp. p.p. spectrum near E and Eφσ(H~).

The only paper about the multidimensional case we are aware of is the paper
[5] by Davies and Simon. While they treat only periodic V^ this paper was one of
our main motivations.

Our paper is organized as follows: In Sect. 2 we give some basic results about
the spectrum ofHω. We prove that σ(Hω) is non-random and contains the spectra
σ(H+)κjσ(H~). In general, however, σ(Hω) is bigger than σ(H+)uσ(H~) and we
give a class of examples for this phenomenon. We call the energies in σ(H*)vσ(H~)
the bulk spectrum and the other energies in σ(Hω) surface spectrum. This notation
is justified by proving that points in the surface spectrum correspond to Weyl
sequences concentrated near the surface {x^O}.

Section 3 discusses the density of states for Hω. We show that the integrated
density of states for Hω is nothing but the arithmetic mean of the density of states of
H* and H~. Therefore the density of states is unable to detect the surface states. It
is rather straightforward to conjecture that this is due to the fact that we normalize
by a volume in the density of states while we should normalize by a surface term to
grasp the surface states. This conjecture is proven in Sect. 3 and 4. In fact, we prove
that there is a density of surface state which exists as a measure in the gaps of the
bulk spectrum. Inside the bulk spectrum, the density of surface states exists in the
sense of a next order correction to the (bulk) density of state. In this case, however,
we can only prove existence in the sense of a (Schwarz) distribution.

The result about the density of surface states was already obtained for the
Anderson model by two of the authors [7]. See also [8] and references therein for
the consideration of special cases. Our results have been announced in [6].

In Sect. 5 we discuss some extensions and modifications of our results.

2. Basic Definitions and Results

Throughout this paper, we take d^±2. Let Vω(x), x e R d b e a random field on a
probability space (Ω, F, P). Vω is called RΛstationary (respectively Zd-stationary) if
there is a family {Tj ί e / of measure-preserving transformations on (ί2, J*,P) with
index set J=]Rd (respectively ΊLd\ such that Vτ.ω(x) = Vω(x — ί). We call a random
field stationary if it is KΛstationary or Zd-stationary. Vω is called ergodic
(respectively Rd-ergodic, respectively Zd-ergodic) if the corresponding measure
preserving transformations are ergodic, i.e. if any set A e $F invariant under all Tt

has probability zero or one. There is an easy procedure, the "suspension
technique," to transfer results from the Rd-ergodic case to the Zd-ergodic case
almost automatically (see [9]). We will use suspension freely in what follows.

The general situation we consider in this paper is the following: Fω

+ and V~ are
two ergodic random fields on Rd, independent of each other. We set for
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Vω is obviously not an ergodic potential. In fact, it is not even stationary. However,
it is stationary with respect to those 7J with iλ = 0, i.e. for shifts perpendicular to the
x^axis. While some of our results below remain true in a more general situation,
we will suppose a further condition on the ergodic potentials V~ which roughly
speaking, ensures that no direction in space is distinguished by the process.

Definition. We call a family {7]}ίe/ (I=Zd or Rd) isotropically ergodic, if the
families TΠvi for v = l, ...,d are ergodic, where Πv is the projection onto the vth

coordinate axis.

Remark. It is easy to see that any mixing family is isotropically ergodic.

Examples. 1. Any periodic potential is an isotropic Zd-eτgodic process (on a finite
probability space).
2. Suppose that gf are i.i.d. random variables and that

felι(L2):= ίφ Σ (f φ(x-ί)\2dx)1/2 <oo]
\ ieZd \Co ) j

(where C0 = {xe~Rd\ -x/2<.x^\/2, v = \,...,d}). Then the alloy-type potential

is isotropically Zd-ergodic.
3. A homogeneous Gaussian process with correlation function vanishing at
infinitely is isotropically ergodic.

Henceforth we assume d^2 and that V± are isotropically ergodic.

Theorem 1. The spectrum σ(Hω) of Hω is a non-random set (i.e. there is a set
s.t. Σ = σ(Hω) P-a.s.). The same is true for the pure point, singular continuous, and
absolutely continuous part of the spectrum. The discrete spectrum of Hω is a.s.
empty.

The proof is a not too difficult adjustment of the proof in [11] (see also Pastur
[17] and Kunz-Souillard [14]). Another consequence of the ergodicity is the
following result. Let us denote by I" 1 the (a.s. constant) spectra of H*. Set
Σ0 = Σ+vΣ~.

Theorem 2. The spectrum, Σ, of Hω contains Σo.

Proof. Suppose EeΣ+. Then there is a Weyl sequence ψn, \\ψn\\ = l,
(|| H + - E)ψn || ->0 and ψn e C?(Rd). Take ε > 0 arbitrary. Denote by Kn the compact
support of ψn. Consider the set

Ωnε= ίω I ( J \Vω(x)-Vω(x + (ί,0))\2dxy/2<e for infinitely many i ^

By Poincare's recurrence theorem this event has probability one. Thus for
P-almost all ω there exist ψn(x) = ψn(x + i) such that s\xppψnc{x1>0}, \\ψn\\ = 1 and
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(H*— £)$„->0. Consequently \pn is a Weyl sequence for Hω and E, i.e.
Eeσ(Hω). Π

This result, of course, raises the question whether Σo is already all of Σ. The
question was considered in [5] for the special case of periodic Vj1. These authors
found, in fact, additional spectrum in general. They called the corresponding states
surface states, a notion we adopt. We call the corresponding energies in Σ\ΣQ the
"surface energies," while we sometimes refer to Σo as the "bulk spectrum."

To construct additional examples of Hω with Σ\Σ0 φ φ we consider more
closely the spectrum of Hω in the case of alloy-type potentials, i.e.:

vω \χ) = L Qi (ω)J \ x —ι) - (Λ4J
ieZd

We assume that the qf, qj are independent with distributions PQ and that the
measures PQ have compact support. Moreover, we assume that

f±)elί(Π)=ίf Σ (i \f(x-i)\pdx)lίP <ool
1 ieΈ*\Co J J

with CQ = {X 10^Xi< 1; ί = 1, ...,d} and some p>max ( 1, - j . By 2P we denote the

class of all potentials W of the form:

Kf~(χ — i) f°Γ *i<0
[Σλtf+{x-i) for x ^ O '

with λ* periodic sequences (with some period) and λf- e suppP^. Following [7] or
[12] it is not difficult to show:

Theorem 3. Σ= U <r(H0+W). (2.2)

Take now periodic potentials V± =Σλ±f±(x — ί) and V(x)= V±(x) for ±x1 >0,
such that σ(H0+ V)\(σ{H+)κjσ(H~)) + φ. Potentials V± with this property can be
constructed by the methods in [5]. Now we choose distribution PQ concentrated
close to λ± and consider Vω(x) as in (2.2) with these distributions. Then, by the
above theorem we have σ(H0 + V) C Σ( = σ(Hω)). But by shrinking suppPj we can
make σ(H^) arbitrarily close to #(#*). Thus by taking suppPo1 small enough we
get Σ\(σ(H+)vσ(H~)) + φ{-almost surely).

While we believe the notion of "surface energies" for points in Σ\Σ0 is rather
intuitive, we will "justify" this notion further in various ways in the following.
Recall that according to WeyPs criterion (see e.g. [18]) for any Eeσ(H) there is a
sequence ψn e L2(Rd) ("Weyl sequence") with ||ψn\\ = 1 and Hψn - Eψn^0. The next
result tells us that a Weyl sequence for a surface energy remains close to the surface
{x1=0}. Here we can work in the following general setting: Suppose V± are
operator bounded potential (with relative bounds less than 1). Set

V~(x) for xx<0
V+(x) for x^O

andΣ* =σ(H0+ V±),Σ0 = Σ+vΣ~,Σ = σ(H0 + V). Let us, furthermore, denote by
χR the characteristic function of the set SR = {x| Ix^Sj
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Theorem 4. If Ee Σ\Σ0 and if ψn e C£ is a Weyl sequence for H = H0 + Vat energy
E, then for any R>09

\im\\χRψn\\>0.
n-+co

Proof Suppose the assertion is wrong. By going over to a subsequence, if
necessary, we may assume that

It follows that also XfRVψn-^0. This can be seen as follows: Take geC™,
O^g(x)^ 1 such that Δg is bounded and g(x) = 1 for \x±\ rgf K, g(x) = 0 for \x±\ ^R.
Integrating by parts we get

ίg(x) I Vψjfdx ύ ί \Δg(x)\ \Ψn\
2dx + 1 g(x) \ψn\ \Aψn\dx

I \ψn(x)\2dx+\\Aψn\\( j \Ψn(x)\2dxY/2.
\χi\£R \\xi\SR J

Choose now a C00-function ρ, O ^ ρ ^ 1 with ρ(x) = 1 for \x^^R and ρ(x) = 0 for

\*iIS y? such that ΔQ and Vρ are bounded. Then

\\(H-E)ρψn\\ ^ \\(H-E)ψn\\ +2\\VρVψn\\ + \\(Δρ)ψn\\. (2.3)

Since both Vρ and zlρ have support in SR = {x\ \x^ ^ R}, the right side of (2.3) goes
to zero. Consequently ρψn gives a Weyl sequence for H+ or H~ associated to E,
hence E e Σo in contrast to our assumption. •

Corollary. For any ε > 0 ί/î re is an R > 0 swc/z ί/zαί

Remark. Intuitively speaking, this corollary means that "surface states" are
localized around the surface x 1 = 0.

Proof Suppose the corollary is wrong for an ε>0, then (by going over to a
subsequence) eventually

ll(l-Z»)vJ>e
for all n. Let g be a C°°-function on R, such that 0 ^ g(ί) ̂  1, g(l) = 1 for t ^ 1, g(ί) = 0

ΛΛ
for ί^ 1/2 and set ρ(x) = g(*i), ρπ(x) = ρ - . Then ||(1 -ρn)ψn\\ ^ ε > 0 for all n and

\nj
\\(H-E)(ί -ρn)ψn\\ S 11(1 -ρn)(H-E)ψn\\ +2\\ VρnVψn\\ + \\(Δρn)ψn\\. (2.4)

Since both Vρn and J ρ n go to zero in sup-norm the right-hand side of (2.4) goes to
zero, hence (1 —ρn)ψn is a Weyl sequence.

3. The Density of Surface States

There are two equivalent ways to define the (integrated) density of states for an
ergodic quantum mechanical disordered system. Let Hω be a random Hamil-
tonian, with ergodic potential VωΛL a cube of side length 2L centered at the origin.
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We denote by (Hω)^L respectively (Hω)^L the operator Hω restricted to L2(AL) with
Dirichlet, respectively Neumann boundary conditions. It is easy to see that the
functional

tfdHXj for /eC 0 (R)

on the continuous functions of compact support defines a Borel measure vf on R.
Under mild assumptions on the potential Vω it can be shown that v£ converges
vaguely to a measure v as L-*oo. Moreover, if we define v£ in the same way
replacing Dirichlet with Neumann boundary conditions, v£ converges to the same
limit. The measure v is called the density of state measure for Hω.

The other method to define the density of states starts from the measures vL

given by

/

Again, it can be shown that vL converges vaguely as L-> oo and the limit is v. As one
might expect from physical intuition the support, suppv, of the density of states
measure coincides with the spectrum Σ( = σ(Hω)). For technical details we refer to
[16, 1, 2, 13, 4].

To be specific, we will assume throughout that for all t > 0,

j e

 tVa>Wdχ\ < oo .
Co

This ensures the existence of the density of states measures v± of H*.
It is remarkably easy to prove the existence of the density of states v also for the

operator Hω = H0 + Vω, with Vω given by (2.1) and to express it in terms of v+ and

Theorem 5. The density of state measure v of Hω = H0 + Vω9

\Vω

+(x) for Xl<0

ίV-(x) for x^O

exists and is given by v = ̂ v+ +jv~.

Proof Let us set Al = {xeΛL\ xί^0}Λ£ = {xeΛL; x1<0}. By Dirichlet-
Neumann bracketing (see [20, 13]) we have

and

Consequently, the distribution functions JV^, N%L of vf and v£ admit the estimate
(\A\ denotes the Lebesgue measure of the set A):

\ΛL\ ^

\- \ {ϊh
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and similarly

\ΛL\ ΛL

(3.2)

! / λ λ _ \

The right-hand side of (3.1) and (3.2) both converge to - ( J dv£ + J dvL 1 at all
£ \ — oo — oo /

continuity points of the latter function; thus both N^L(λ) and N^L(λ) converge to
this limit. It is well known that the vague convergence of the measure follows from
the convergence of the distribution functions (at all continuity points of the
limit). •

The above result has as an immediate consequence that supp(v) = Σ 0 which is
(strictly) smaller than Σ in general. This should not be too surprising from a
physical point of view. It only tells us that the density of state is too rough a
quantity to "see" the surface states. In fact, for an energy interval, /, to have non-
trivial density of states measure, it is necessary that the number of states with
energy in / grows like the volume of the sample. For surface states it is however
intuitively clear that their number should grow like a surface term.

Thus, instead of normalizing by the volume term \ΛL\ = (2L)d we should rather
normalize by a surface term (2L)d - 1 which is just the area of the (hyper-)surface
{xί =0} inside ΛL. This is precisely how we define the density of surface states in

Σ\Σ0. Obviously, for an interval ICΣ0 the measures J'_1 vL cannot converge
(2L)

since vL converges to a nonzero limit. Therefore, inside the bulk spectrum, Σo, we
define the density of surface states as the order Iί~1 correction to the bulk density
of states (see below).
Definition. For a bounded function of compact support we set

vί(/):= 1

In other words v£ just measures the deviation of f(Hω) on ΛL from the direct sum of
Γ+) on Λl and f(H~) on A^.

We state our main result about the density of surface states:

Theorem 6. Suppose feC3(R) and f(χ) = 0(e~alx) for some α>0. Then the limit

vs(f)= lim v£(/)
L->oo

exists P-almost surely and is non-random. vs is a distribution of order (at most) 3.

The above defined vs is called the density of surface states (distribution). Before
we begin the proof of Theorem 6 we turn to the behavior of vs in the "gaps" of Σ°.

Corollary 7. vs restricted to 1R\ΣO is a positive measure which is finite on any
compact subset of
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Remarks. 1. Because, as is intuitively clear, Dirichlet and Neumann boundary
conditions introduce surface terms, we cannot use Dirichlet-Neumann breaketing
to define a surface density of states.

2. Sometimes we will apply v£ to functions of non-compact support, provided they
decay sufficiently rapidly at infinity. We use this extension of the definition without
further comment.

It is reasonable to call the limit of vf the density of surface states, provided this limit
exists. In fact, below we will prove the existence of the limits v£ (as L->oo) for
functions / that are sufficiently smooth. Therefore, we do not know whether the
limit is a measure; we know, it is a distribution (of a certain order). We will however
prove that it is a measure if restricted to the complement of Σo. We have no clear
intuition whether this limitation is a drawback of our proof or whether vs is really
not a measure. Let us, however, remark that vs certainly is not a positive measure,
in general. In fact, it is not difficult to construct, in the spirit of Theorem 3,
examples where vs(/) is negative for certain positive / This is to be expected from
physical reasoning and we might speak of "surface holes" in this case instead of
surface states.

Proof (of the Corollary given the Theorem):
Take / e C 3 , suρp/ClR\Σ0 compact, / ^ 0 . Then

v£(/)=

(2Lγ-i ~IΛ.

Observe that / ( # * ) = 0 since σ(#*)nsupp/=</>. Therefore the functional vf is
positive and so is vs. But, a positive functional on CQ(JR) is in fact (the integral) with
respect to a positive measure by the Riesz representation theorem (and an
inspection of its proof). •

The rest of this section is devoted to the proof of Theorem 6 modulo an
essentially deterministic result (Theorem 7 below) which is proven in the next
section. To prove Theorem 6, we may restrict ourselves to the "right" part of v|(/),
i.e. to prove the convergence of

^ ^ ( / ( H J - J T O ) } . (3.3)

The other part can be handled in precisely the same way. Equation (3.3) can be
written as a sum in the following way:

Σ tτ{χCui)(f(Hω)-f{H:))},
nΈd~ι
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where

Λ1

L = {yeTRd-1\(x,y)eAL for some xeJR]

(recall that CUJ) = {x\j^xί^j+l, Ϊ V ^ X V < Ϊ V + 1 for v = 2,...,d}). To shorten
notation, we introduce

In the next section we will show that:

Theorem 7. ^

The constant C depends on /

Proof of Theorem 6. Given Theorem 7, we may write v£ + as:

1
VS, + _ λ

Let us set η(= £ ξUii). By Theorem 7 the random variable r\i exists and is

integrable. Moreover ηt is invariant under the shifts T* = TiOi). Consequently

1 y n

the first summand above, converges by Birkhoff's ergodic theorem. The second
summand admits the estimate

as-J=ϊ Σ ( l ίαo)|)^ Σ

It follows from this and the Birkhoff theorem again that this term goes pointwise to
zero (P-a.s.) as L goes to infinity. This finishes the proof of Theorem 6 modulo
Theorem 7.

4. Proof of Theorem 7

In this section we will prove Theorem 7 in a somewhat more general setting.
Suppose that V± are two potentials on Rd in the Kato class Kd (see e.g. [21] or

[4]). We set

V~M f o r

v+(x) for x ^ O

and define H* =H0 + V± and H = H0 + V. As above we denote by CUti) ϊorjeΈ,
ieΈά~x the cube
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We define ξu, 0(/) = tr{χCϋ i }(/(u)-/(i/+)} for/^0 and with H+ replaced by H~
ϊorj<0.

Theorem Ύ. For any f e C3(R) with f(l)(x) = 0(e~ax) (with a>0 and 1=0,1,2,3) as
x -• oo, there is a constant C (depending only on f and the Kd-norms ofV+) such that

We start the proof of Theorem 7' by investigating the special case f(x) = e~tx

for some t > 0. Since if * and if are bounded below we may assume that H± ^ 1 and
if ^ 1 by adding a constant. In the rest of the proof we restrict ourselves to the case
j '^0, the other one being similar.

Proposition 1. For some C, α, β>0,

Proof. Set φ(t):=ξUti)(e~tx). Since e~'H^e~\we have for t^j,

For t <j we rely on a Feymann-Kac argument,

\φ(t)\ = |trχCo, 0 ( e - - β - β t ) ) l ^ ί Ufc

where EJj^ denotes expectation over the Brownian bridge starting at time zero in x
and ending at time t in y (see [21] for more information). Unless the path reaches
the negative half space the exponentials cancel so

SJ n:°{{eiv^\φ(t)\

By the Schwarz inequality:

CU, i)

' {1̂ (5)1 >;}V/2

J
The first factor in the above formula is bounded since V, V+ e Kd by assumption.
The second part can be estimated by:

-yt . -Lj -Lt

JPo.o ( sup {|&i(s)|>/H SMe ι <LMe~Ί'3<LMe 2 e 2 . Π

The idea will be to analytically continue the estimates in t and then use the
Fourier transform. So, we consider the function

as a function of the complex variable z(Rez^O).
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Proposition 2.

Proof, ψ is analytic for ί = Rez>0 and \\p(z)\^C2 for Rez^O.

Moreover, from Proposition 1 we learn that

From this we infer the assertion of the proposition by complex interpolation as
follows: The transformation ξ\-+eξ maps the strip { |0^ im£^π/2} into
{z I Rez ^ 0, Imz ̂  0, z # 0}. By setting χ(ξ) = ψ(eξ). We define a function χ analytic
in the above strip. We have

\ύC,e-*i for Imv = 0,

\χ(ξ)\^C2 for Imξ = π/2.

Thus Hadamard's three line theorem (see e.g. [19]) implies that:

I χ(ξ)\ < CIm ξ Cπ / 2 ~lmξe~ a j ( 7 r / 2 " I m ̂ .

Since for z = eξ we have that Imξ = argz, we get

For z = t + is we have argz = arctan-. Thus, we obtain the result for s^O. The
argument for s^O is the same. ί

The above result tells us that
t

_R -α/arctan

We come to the proof for arbitrary / e C3(R) with f(χ) = 0(e~ax) as x->oo (α>0).
Such a function can be written as

f{x)=~g(x) for x> 1/2 (say),

where g is of the same type. Let g be the Fourier transition of g normalized by

Then

)-f(H+) = H-2g(H)-(H+Γ2g(H+)

= 7 (H-2e-isίI-H+2e-isH*)g(s)ds
- 0 0

+ 00 00

= J g(s) i t{e-(t+is)H~e-it+ls)H+)dtds.
- o o 0
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Consequently

I<W/)I = Itr {χa,k)(f(H)-f(H+

T Ks) I ίtr{χC(j. (
- o o 0

^ 7 m 1 t\ξai)((e-«
- oo 0

H. Englisch, W. Kirsch, M. Schroder, and B. Simon

oo oo

Using that

we conclude that

ύC J g(s) J te~βte Wdsdt.
- o o 0

ί te βtί
o i+f '

(4.1)

(4.2)

j .2 J iδv i v - 1 ^ ; ^ = j .2

for a g-dependent constant C.
Note that the regularity assumption on g is used to get J |g(s)| (1 + s2)ds finite, as

well as to justify the Fourier inversion formula. (Recall what if g, g' e L2 then gel})

5. Extensions and Modifications

Let us consider once more the alloy type model with

In the case the "mixed system" Vω consisting of the system " — " in the left half space
and of the system " + " in the right half space might be modelled by setting

K(x)= Σ qΓ(ω)Γ(x-i)+ Σ q?(ω)f+(x-i),
ii < 0 ΐ i^O

which, of course, differs significantly from the Vω discussed above.
Our results in the previous section still can be proven in this case by

modifications of the proofs. To get the existence of the density of surface states,
however, our proof seems to require / to decay exponentially fast. While we feel
this assumption is much stronger than necessary, we don't see how to avoid it.
Similar considerations apply also for potentials with Poisson distributed sources.

It is not difficult to extend our theorem to cover discrete Schrόdinger
operators. In place of the path integral used in the continuum case, one can use a
simple perturbation expansion in Ho.
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