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Abstract. We study the problem of finding the shortest loops with a given
holonomy. We show that the solutions are the trajectories of particles in
Yang-Mills potentials (Theorem 4), or, equivalently, the projections of
Kaluza-Klein geodesies (Theorem 2). Applications to quantum mechanics
(Berry's phase, Sect. 3) and the optimal control of deformable bodies (Sect. 6)
are touched upon.
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1. The Problem and an Introduction

1.1 The Problem which we investigate is the isoholonomic problem: among all loops
with a fixed holonomy, Ώnd the loop of minimum length.

The data needed to formulate this problem are a principal bundle

π:Q-+X [1.1]

with connection A, a Riemannian metric k on X, and a point xoeX at which the
loop and its holonomy are based. (The holonomy is called the Wilson loop integral,
or the path-ordered exponential of — A in the physics literature.) The structure
group of the bundle will be denoted by G. It is a Lie group which acts on Q on
the right, and such that X ̂  Q/G.
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1.2. Motivation

1. The physical chemist Alex Pines posed this problem in an effort to better
understand and design nuclear magnetic resonance experiments for measuring the
non-Abelian Berry's phase. Berry's phase is an element of the unitary group,
G = U(k), which is associated to a closed curve of quantum mechanical states. It
is the holonomy of the loop of states with respect to a canonical connection. The
Abelian (k = 1) Berry's phase is the case in which the states are pure states, and
has been measured in numerous experiments (Tomita and Chiao [1986], Tycko
[1987], Suter, Mueller, and Pines [1988]). The non-Abelian Berry's phase occurs
for mixed states, and is related to weak measurements. It has not yet been
experimentally measured. See Sect. 3 for details.

There is a booming literature on Berry's phase. Some salient papers are Simon
[1983], Berry [1984], Wilczek and Zee [1984], and Aharonov and Anandan [1987].
Our point of view is closest to this last paper.

The length of the loop of states is essentially the energy input required to make
the loop. This is shown in Sect. 3. The isoholonomic problem is then the problem
of generating a desired phase shift with a minimum amount of energy.

2. Another motivation for studying the isoholonomic problem is that, in certain
circumstances, it is equivalent to

The Cat's Problem. Find the most efficient way to deform a deformable body so
as to achieve a desired re-orientation.

A cat, dropped from upside-down with no angular momentum, changes her shape
in such a way as to land on her feet. In doing so, her initial and final shape are
essentially the same, but she has re-oriented herself by a rigid rotation of 180
degrees. See Fig. 1. In addition, by conservation, her total angular momentum is
zero throughout the motion. For a nice mechanical analysis of this phenomenon,
see Kane and Scher [1969]. The cat thus describes a loop in her shape space with
the consequence that, in an inertial frame, the beginning and final shapes are
related by a rigid motion geG = E(3).

Shapere and Wilczek addressed a version of the cat's problem in [1987, 1988].
See also Shapere [1989], and Wilczek [1988]. Their key observation is that certain
dynamical constraints, such as "angular momentum equals zero," define a
connection on the principal bundle Q = (inertial configurations) -> X = (shape
space) = Q/G. The fiber of this bundle is the group G of rigid motions, an element
of which is the cat's desired re-orientation. See Fig. 2.

Iwai [1987a, b,c] also made the observation that angular momentum defines
a connection. He noted that the parallel translation for this connection defines the
Guichardet frame, which plays an important role in molecular dynamics.

The other key ingredient in Shapere and Wilczek's work is their definition of
efficiency in terms of a matric k on shape space. If we define the efficiency of a
path to be its length (or integrated kinetic energy) then it becomes clear that the
cat's problem is the isoholonomic problem.

In Shapere and Wilczek's version of the cat's problem, they do not restrict the
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Fig.1

holonomy, but rather define efficiency as a quotient of (some function of) the
holonomy by length. We discuss their problem in Sect. 6.

We discuss the cat's problem in more detail in Sect. 4. Montgomery [1989] is
devoted to the problem.

13. Perspective. The isoholonomic problem is a generalization of the isoperimetric
problem. Take X to be a Riemann surface. Take Q to be a circle bundle over X
with a connection whose curvature form is a constant non-zero multiple of the
area form on X. Fixing the holonomy of a loop in X is equivalent to fixing the
area it encloses and so the isoholonomic problem becomes the classical
isoperimetric problem. If X has constant Gaussian curvature (or if we instead took
the connection to be the Levi-Civita connection) then the solutions are curves of
constant geodesic curvature. For example if X is the sphere or the plane, these
curves are geometric circles.

The isoholonomic problem is a special case of the problem of finding
sub-Riemannian geodesies. A sub-Riemannian metric (Strichartz, [1983]) consists
of a distribution Hor on Q, that is a subbundle Hor cz TQ -• Q, together with a
positive definite fiber metric κq on Hor. For example, K could be the restriction
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of a Riemannian metric on Q to Hor. Sub-Riemannian metrics are also known as
non-holonomic Riemannian metrics (Vershik and Gershkovich [1988] Carnot-
Caratheodory metrics (Hamenstadt [1986,1988], Bar [1989]), or singular
Riemannian metrics (Hermann [1973], Brockett [1981]).

Call a curve c horizontal if it is piecewise differentiable and its derivative c,
when it exists, lies in Hor. The sub-Riemannian distance between points p,qeQ is

d(p,q) = inf {length(c): c a horizontal curve joining p to q}.

Here length(c) is the integral of ^/κ(c,c)dt over the curve. (If there are no horizontal
paths joining p to q, set d(p,q) = oo.) By taking

Hor-ker(A), [1.2a]

the horizontal distribution for our connection A, and

κq{v, w) = kπ(q){dqπ v, dqπ w), [1.2b]

we see that the isoholonomic problem becomes a special case of the Sub-Riemannian
geodesic problem. Find the horizontal curve joining p to q whose length is d(p, q).

The o.d.e. (see Theorem 5 below) which ought to characterize sub-Riemannian
geodesies has been known for decades. Bar [1988,1989], following a partial proof
of Strichartz [1983], proved that this o.d.e. does in fact characterize them. We
restate Bar's theorem here as Theorem 5 in Sect. 5. The 'hard" half of our main
result, Theorem 1, is an immediate consequence of Bar's theorem.

1.4. Results and Outline. Our key result, Theorem 1 below, states that solving the
isoholonomic problem is equivalent to solving the Hamiltonian differential
equations (with the correct endpoint conditions) generated by a certain
Hamiltonian Ho. More precisely, first relax the condition that the curve in X be
a loop. (This eliminates worry over the endpoint conditions.) consider the

The Isoparallel Problem. Among all piecewise C1 curves c in X joining x0 to xx

with a fixed parallel translation operator

find the loop of minimum length. Here g, is the fiber n~1(xi) over xi9 i! = 1,2.

(Recall that Hόl[c](qo) = qί9 where q(t) is the unique horizontal path covering
(that is, π°q = ) x and satisfying q(0) = q0. We assume here that x is parametrized
by 0 ^ ί ^ 1.) In case x 0 = x1 this is the isoholonomic problem. Theorem 1 states
that the extremals for the isoparallel problem are exactly the projections of the
solutions to the Hamiltonian equations. The rest of our results follow directly
from Theorem 1 and our earlier results [1984] concerning the equations of a
particle in a Yang-Mills fields.

Theorem 2 states that the isoparallel extremals are the projections to X of
geodesies for a Kaluza-Klein metric on Q. To define this metric we must have an
adjoint invariant inner product on the Lie algebra of G.
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Theorem 3.1 of Sect. 3 characterizes the isoparallel extremals for the data
(bundle, connection) of Pine's interest. Theorem 3.1 follows immediately from
Theorem 3.2 which describes the isoparallel extremals when the metric and
connection are homogeneous.

Theorem 4 states that these extremals are the trajectories of a "particle"
travelling in the Yang-Mills potential A. The differential equations of such a
particle are called Wong's equations (Eqs. [4.2a-c] below), after Wong [1970].

Following the statements of Theorems 2,3.1 and 4 we present some examples.
Theorem 5 is Bar's theorem, which we restate in order to prove half of

Theorem 1.
Theorem 6 is a rephrasing of Theorem 1 in the context of the cat's problem.
Section 7 concerns Wilczek and Shapere's problem of maximizing the efficiency

of a loop. Theorem 7 states that the solutions to this problem are isoparallel
extremals, and hence projections of solutions to Wong's equations.

1.5. Solvability and Controllability. There may be no loops whose holonomy is
hoeA\xt(Qo). In this case the isoholonomic problem (for this particular holonomy
constraint) has no solution.

The Ambrose-Singer theorem (Ambrose and Singer [1953], see also
Kobayashi-Nomizu [1963], pp. 83-89) gives a sufficient condition for every
holonomy to be realized. This theorem is a restatement of a theorem of Chow
[1939], now familiar to people in control theory. In control theory a distribution
with the property that any two points can be joined by a horizontal path is said
to be locally controllable, or to provide local accessibility.

The horizontal distribution is said to satisfy 'Ήormander's condition" at qeQ
if the horizontal vector fields, together with all of their iterated Lie brackets span
the tangent space at q. The Chow-Ambrose-Singer theorem implies that if Hor
satisfies Hormander's condition at some qeQ, then any two nearby points in Q
can be joined by a horizontal path, and hence any holonomy near the identity is
realized. (The distribution must come from a connection for this implication to
hold. One uses its G-invariance in the proof.) The Hormander condition can be
expressed purely in terms of the curvature F = dΛ + [Λ, A] and its covariant
derivatives. This gives the following consequence of the Ambrose-Singer
theorem.

Proposition 1. Suppose X and G are connected, and that the Riemannian structure
k on X is complete. Let g denote the Lie algebra of G, and Δ(q) the Lie subalgebra
of g which is generated by the values of the curvature Fq(X, Y) together with all of
its covariant derivatives DZF(X, Y),DWDZF(X, Y), etc., at q. If there is a point qeQ
such that Δ(q) = g, then the isoparallel problem is solvable for every choice of the
parallel transport constraint.

Proof. According to the Ambrose-Singer theorem there exists a sequence cf of
loops with the given holonomy, whose lengths approach the infimum of the lengths
of all loops with this holonomy. Apply the Arzela-Ascoli theorem to get a
convergent subsequence.
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1.6. Earlier Papers. This paper is an extension of two earlier preprints,
Montgomery [1988], and Montgomery [1989].

2. Two Theorems and Kaluza-Klein Metrics

2.1. We begin with some definitions. Call a family c ε , 0 < ε < 1, of piece wise C 1

curves on X an isoparallel deformation of c if as ε-»0 it converges uniformly (i.e.
the C° topology) to c, and if every member of the family has the same end points
and the same parallel translation operator as c. We say that the piece wise C 1

curve c is an extremal for the isoparallel problem if for every isoparallel deformation
cε of c, we have

d

Is
length(cε) = 0 [2.1]

ε = 0

whenever the derivative exists.

Define the horizontal kinetic energy

H0:T*Q^R [2.2a]

by

#o(4,/>) = i l l^Pl l 2 , peT*Q. [2.2b]

Here || | | 2 represents the squared length of a covector with respect to the metric
on the base space X, and

h*:T*Q^Tlq)X [2.3a]

is the dual of horizontal lift operator h. The horizontal lift operator

h:π*TX^TQ', hq:Tπ(q)X->TqQ (linear) [2.3b]

is a vector bundle map which can be defined by requiring that

image [hq) = Hor^; hq° dqπ = identity on Tπ(q)X. [2.3c]

Here Hor^ = keτ(Aq) is the horizontal space defined by the connection, and π*TX
denotes the pullback by π of the vector bundle TX -• X. See Sect. 4.2 for a
coordinate expression for Ho.

Theorem 1. The loop c in X is an extremal for the isoparallel problem if and only
if there is a curve z = (q,p) in T*Q which satisfies π°q = c, and which is a solution
curve to Hamilton's differential equation for the Hamiltonian Ho.

The curve q in Q is the cotangent projection of z.

2.2 Theorem 2 will be a reformulation of Theorem 1 which is applicable whenever
the Lie algebra g admits an adjoint invariant inner product β. We will use β to
define a Kaluza-Klein type metric d2s = βφk on Q. Let Vert = ker(dπ) denote
the vertical subbundle of TQ. The connection defines a splitting

Γ β = Vert®Hor. [2.4a]
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Also,

Vert Θ Hor ^ g © π* TX. [2.4b]

Here g stands for the trivial bundle Q x g -> Q. The isomorphism g -• Vert is the
infinitesimal G action. The isomorphism Hoτ^>π*TX is dπ restricted to Hor.
Define the inner product β © k on TqQ by declaring that

Vert,, _L Hor4 with respect to β © /c,

and

β®k = β on g ^

= /c o n T π ( g ) r

Theorem 2. Suppose g admits an adjoint invariant inner product j5, and use ί/iis to
put the metric βζ&k on Q. Then the following conditions for a curve c in X are
equivalent.

A. The curve c is an extremal for the isoparallel problem.
B. There is a geodesic q aQ which satisfies π°q = c.

2.3. Riemannian Submersions and Examples. The construction of β®k is often
turned around. A G-invariant metric on Q defines a connection on Q-+X and
metric k on X, by declaring that Hor = Vert1, and that π is a Riemannian
submersion. The connection and base metric for the Hopf fibrations S 2 " " 1 ->CPW

are induced by the standard metric on S 2 " " 1 in this manner We recall that a
Riemannian submersion π:Q-+X of Riemannian manifolds is a submersion with
the property that dqπ is an isometry, when restricted to Hor = (ker dqπ)λ. The metric
on Q also induces a family of right invariant metrics on G. If these are all isometric
to a fixed bi-invariant metric on G, then the original metric on Q is of the form β © k.

Example A. Consider the Hopf fibration S 3 ->S 2 = CP 1 , with its canonical
connection and the standard metric on the base. These structures are induced by
the standard metric on S3, as just described. The geodesies on S3 are great circles.
One easily checks, for example by using coordinate formulas, that great circles in
S3 project to small circles (lines of latitude, or curves of constant geodesic curvature)
on S2. Hence these small circles are the isoparallel extremals.

Note that such c's are exactly the solutions to the isoperimetric problem on
S2, as they should be according to Sect. 1.3, "perspectives."

Example B. The same reasoning applies to the Hopf fibrations S2n+1-+ CP". Each
isoparallel extremal is a small circle which lies on some C P 1 in CP".

This reasoning also applies to the quaternionic Hopf fibration S^-^HP 1 = S4,
a bundle with structure group G = SU(2). The connection is induced by the standard
metric on SΊ and is the standard Yang-Mills potential of a symmetric instanton.
The base metric is the round one. The extremals are projected great circles, which
are again small circles on S4.

Experiments. Avron et al [1989] showed that this instanton connection occurs
for families of time reversal invariant spin 3/2 systems. Koenig, Mueller, and
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Zwanziger [1989] of Pines' group are currently designing an NMR type experiment
based on such a family, namely axially symmetric crystals of potassium or sodium
chlorate. The purpose of the experiment is to detect non-Abelian effects of this
5(7(2) holonomy.

2.4. Relations between Theorems 1 and 2

1. The geodesies q(t) of Theorem 2 will generally not be horizontal, whereas the
curves q(t) of Theorem 1 are always horizontal. In order to obtain q(t) from q{t\
project q(t) to X, and then horizontally lift this projection to form the horizontal
curve q(i) through q(0). There is a formula for this operation:

where ξ = A-—eq.
at 9 [2.5]

See Fig. 2. To check this formula, note that ξ is independent of t. This is the
content of Clairut's theorem, or equivalently, of the conservation of the momentum

Dynamic β

Phase

Holonomy

Geodesic qjt)

°j Horizontal lift q(t)

V

x(t)

Fig. 2
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map for the action of the structure group on TQ. Next, differentiate [2.5]:

dq(i) dq

Here g = exp(— ί£)eG, qξ denotes the infinitesimal generator corresponding to ξ,
evaluated at qeQ, and for veTqQ, vg means dqRg-v, where Rg is the action of g on
Q. Now apply A:

dt I dt

where we have used the fact that g commutes with ξ.

Formula [2.3] is very helpful in applying the Theorems, as it allows one to
calculate the holonomy of the extremal π°q, given the geodesic q. This formula
has a "Berry phase" interpretation: exp(ίξ) is the "dynamic phase," and the
holonomy is the "geometric, or Berry, phase." See Berry [1985] and Fig. 2.

2. A horizontal geodesic on Q projects to a geodesic on X. Conversely, the
horizontal lift of a geodesic on X is a geodesic on Q.

3. According to Theorem 2, the class {n°q} of projected geodesies is independent
of the choice of adjoint invariant form β. How is this possible?

Let Hβ:T*Q^>R denote the kinetic energy for the metric β®k. Let

)), [2.6]

where β~ι is the induced co-adjoint invariant inner product on g*, the dual of
the Lie algebra, and where

is the momentum map for the G action on T*Q. (J(q,p) = σ*p, where σ̂  g-* TqQ
is the infinitesimal generator of the G action.) We have the formula

Hβ = H0 + Cβ [2.7]

which is simply the splitting of the total (βφk) kinetic energy into horizontal and
vertical kinetic energies.

Let Xβ denote the Hamiltonian vector field corresponding to Hβ. This is the
vector field whose flow is the (jSφfc)-geodesic flow. Since G acts by isometries on
β, Xβ is a G-invariant vector field on Γ*β. Let Yβ denote the pushforward of Xβ

to (T*Q)/G:

Yβ = pr*Xβ, [2.8]

where pr:Γ*β->(T*Q)/G is the projection. Yβ is called the reduction of Xβ.
There is a natural sequence of projections T*Q^>(T*Q)/G^>X = Q/G. Any

two geodesies (viewed as curves in the cotangent bundle), which are related by
an isometry gεG have the same projections to (T*Q)/G and to X. It follows that
these projected geodesies π ^ c l a r e the projections of the integral curves of Yβ.

Now Cβ is a Casimir, that is, it Poisson commutes with all G-invariant functions
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on T*β. This is implies that the push-forward of Cβs Hamiltonian vector field to
(T*Q)/G is zero, so that

where Yo is the push-forward to (T*Q)/G of the Hamiltonian vector field of Ho.
Consequently, the class of projected geodesies is independent of /?, as claimed.

In addition, this proves that Theorem 1 and Theorem 2 are equivalent, provided
the Lie algebra admits an adjoint invariant inner product. The preceding discussion
is a synopsis of one of the main results of Montgomery [1984].

4. Replace β by λβ, λeR and let λ-> oo. This makes the vertical kinetic energy go
to infinity (when written in terms of tangent vectors) and so "forces" curves to
become horizontal. Now Cλβ = λ~ίCβ-*0, and so Hλβ->H0. This gives a heuristic
proof of Theorem 1.

5. In order to solve the isoholonomic problem, c must be a loop. Consequently,
q must reintersect the fiber it starts from. It can be a difficult problem to describe
such "re-intersecting" geodesies. See the next section.

3. Pines9 Motivation, Homogeneous Bundles, and some Open Problems

Simon [1983] and Berry [1984] pointed out that the concept of holonomy appears
naturally in quantum mechanics. This holonomy takes its values in the group
G = U(k). In the Abelian case (k = 1) the holonomy is popularly known as Berry's
phase, and has been measured in numerous experiments (see Sect. 1.2). Alex Pines
and co-workers Joe Zwanzinger, Marianne Koening, and Carl Mueller, in
attempting to understand and measure the non-Abelian (fc> 1) holonomy were
led to the question: what are the best loops which give rise to a desired holonomy.

To make sense of this question, we will begin by reviewing the Abelian case.
The space of states in the standard quantum mechanics is the projective Hubert
space X = Pjf. Over it we have the natural t/(l)-bundle, Q = S(JF) = unit sphere
in Hubert space, together with its canonical connection

(A is a one-form on Q with values in iR = Lie algebra of U(l), since <ι/f, φ} = 1.)
A Schrόdinger evolution

on tf induces a flow on Pjf. Here H(t\ the Hamiltonian, is a ί-dependent
self-adjoint operator. Let c(t) = [ψ(t)] be an closed orbit for this flow which has
period T Thus

= exp(iβ)ψ(O).

Writing

dt \dt \ψ'dt/ψ\ y'dt
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and noting that this is the horizontal-vertical split of the vector (dψ/dt)eTQ9 we
find that

where Hoi [c] is the holonomy of the loop c, and where ω(t) = (ψ(t\ H(t)ψ(t)} is
the usual frequency, or energy, of oscillation. (Planck's constant is set equal to 1.)
This formula for β is Berry's result, as reformulated by Aharonov and Anandan.

To measure the holonomy, take two identical systems, each prepared so that
φ is initially an eigenstate of the background Hamiltonian H(0). Alter the first
system by imposing fields which have the effect of changing the Hamiltonian from
H(0) to H(t) in time t. H(ή is to be chosen so that ω(ί) is constant. Interfere the
two systems after time t and measure the resulting phase shift. The integrals in
the formulae for β cancel, and this phase shift is the holonomy of c.

What is the physical meaning of the length of c? The metric on PJf is defined
by declaring that π SpΉ-^Pjf is a Riemannian submersion. This means that

dψ
It dt dt

1/2

= ΔE, the root mean square deviation in energy.

In matrix terms

H Σ
1/2

where we have picked a moving unitary frame {ej in which ex = ψ. This represents
the average energy needed to leave the state [^]. In other words \\dc/dt\\dt is a
measure of the energy output required to move from the state c(t) to the state
c(t + dt) Thus the isoholonomic problem is essentially the following.

Find those time-dependent Held configurations which generate a given phase shift
with a minimum energy expenditure.

3.2. In order to investigate the non-Abelian Berry's phase, we find it helpful to
view the base space X as a manifold of quantum mechanical states. Many authors
prefer to view the base space as a Grassmannian of /c-planes in Jf. For the relation
between these points of view see example C below.

Recall that a state is a linear functional defined on the set of observables (the
self-adjoint operators on Jtf) which is nonnegative on the non-negative observables.
A state is normalized if it has the value 1 on the unit operator. In finite dimensions,
the normalized states are identified with density matrices p. These are non-negative
hermitian operators of trace 1, the corresponding linear functional being
H-> trace (pH). The set of density matrices can in turn be identified with a certain
cone in su(N\ the Lie algebra of skew-symmetric trace-free matrices; the
identification being p -+ i(ρ — 1/JV). Here N is the dimension of Jt. (Pines' main
interest is in spin systems, for which tf is finite-dimensional.)
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Density matrices evolve according to the Heisenberg equation (also called the
Liousville equation in this context)

ί ^ = [H(t),p], [3.1]

where H(t\ the Hamiltonian, is a time-dependent Hermitian operator. The set
X = X(po) of all density matrices reachable from an initial matrix p0 by all such
evolutions is our base space. In other words, X is the set of all density matrices
unitarily equivalent to p0. Under our last identification X is an adjoint orbit in
su(N).

We define the bundle Q-+X by focusing on a particular eigenvalue λx for p0.
Let k be the multiplicity of λ. All operators peX, being conjugate to p 0 , have λx

as an eigenvalue with the same multiplicity. Attach the corresponding eigenspace
Ep to each peX, thus obtaining a rank k vector bundle E over X. The principal
bundle Q -> X is the associated frame bundle. Its fibers Qp consist of all unitary
frames for the vector space Ep.

The Abelian case is regained by taking ρ0 to be a pure state. This means that
it is a density matrix of rank 1. Any two normalized pure states are unitarily
equivalent, and the set X of such states is a projective Hubert space PJ f. Using
Dirac's notation, the Hopf projection Q = S(J^) -+X = P^f is given by φ -> | φ >< φ |.

The Hubert space structure of Jf induces a natural U(N) invariant connection
on the vector bundlp E, and hence on Q. E is a sub-bundle of the trivial bundle
X x Jf. A local section of E is just a function s:U c X - > j»f satisfying s(p)eEβ.
For peX, let P p : J f ->£ p denote orthogonal projection. The covariant derivative
D on £ is defined by

(Ds)(p) = Ppds(p). [3.2]

D defines the connection on Q in the usual way: a moving unitary frame {s j ί = x fc

is declared to be horizontal at {Si(ρ)}eQ if each Dst = 0 at p.

Problem. Find the isoparallel extremals in this situation.

For this problem to be well-defined, we need a metric on X. There are two
natural choices. Both are U(N) invariant. The first choice is the induced metric
obtained by thinking of X as a submanifold of su(N) with its Euclidean (i.e. Killing
form) metric. In this case, with p satisfying [3.1], we have

= Ctr([p,/ί]2).

A convenient choice for the constant C is 1/2.
We call the second choice of metric the bi-invariant metric since it is induced

from the bi-invariant metric on S = U(N) by declaring that the projection

U(N)^X = l/(Λ0/{l/(fc!) x - x U{kd} [3.3]

be a Riemannian submersion. Here the k 3 are the multiplicities of the eigenvalues
of p0, so that Ufai) x ••• x ί/(fcf) is the isotropy subgroup for the action of U(N)
on X. (See Sect. 2.3 for the definition of a Riemannian submersion.)
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These two choices do not agree in general. However, they always agree (up to
scale) in the very important case in which p0 has exactly two distinct eigenvalues.
Then X forms a Grassmannian, as can be seen by mapping peX to the eigenspace
Λp for (say) its top eigenvalue. To better understand the meaning of length in this
case, let us further assume that p0 is \/k times a projection operator onto the
/c-dimensional subspace A. Then, using the evolution Eq. [3.1] one easily calculates
that

^ 2 = (const) Σ IHiJ 2.

where the Hiμ are the matrix coefficients of H relative to a unitary frame {et}
whose first k elements span A As in the Abelian case, this is a kind of a measure
of the energy required to move the state p(t) to the state p(t + dt). This non-Abelian
isoholonomic problem thus has the same physical meaning as the previously
discussed Abelian case (Sect. 3.1).

If we choose the bi-invariant metric, then we can solve the isoholonomic
problem.

Theorem 3.1. Put the bi-invariant metric on X, the set of all density matrices unitarily
equivalent to p0. Let Q be the frame bundle associated to the 1st eigenbundle over
X, endowed with its canonical connection [3.2]. Then the isoparallel extremals
through poeX are precisely the curves

c(t) = exp (HH0)p0 exp ( - itH0\ [3.4a]

where Ho is any Hermitian matrix which staisfies Σ ^iHoPi = 0. Here
iΦ 1

identity = Pλ + P 2 4 - — h P f is the spectral decomposition of p0. The parallel
transport operator along c from c(0) to c(t) is

Hol(ί) = exp(ίίtf o)exp(- HP^oPJeUiN). [3.4b]

Theorem 3.1 is an immediate consequence of Theorem 3.2 below.
Note that [ i / ^ P j i f o P J / 0 in general, so that [3.4b] does not equal

exp (ίt(H0 - P ^ Q P I ) ) . Also note that if U(t)P1 = U(t)"Pί9 then U(t) and U(t)" define
the same parallel translation operator on E or β, so this equality is to be taken
modulo this relation. This formula can be found in Avron et al as Eq. [7.4].

Example A, 2nd time. Take J f = C 2, and p0 a density matrix with non-equal
eigenvalues. Then the orbit X is isomorphic to S2 = CP 1 , and the two eigenbundles
E± -+X are the canonical line bundle and its negative. The frame bundle Q+ is S3.
The projection π:Q+ ->S2 is the Hopf fibration. (β_ ->S2 is the anti-Hopf fibration
π° antipodal map.) (7(2) acts on X = S2 by isometries. Consequently, an extremal
curve c(t) is the orbit of the point p0 under rotation about a fixed axis. These are
again the small circles.

Example C. J4? = CN, and p0 is a density matrix with exactly two non-equal
eigenvalues, one of multiplicity /c, the other of multiplicity n, where k + n = N.
Then X ^ Gk(Jf) = Gkn, the Grassmannian of complex /c-planes in k + n-space. If
we focus on the eigenspaces of multiplicity /c, then E is the canonical fc-plane
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bundle over X, and Q^Vkn, the Stiefel variety consisting of all unitary fc-frames
in our Λf-dimensional space.

Choose a basis of CN so that p 0 is diagonal. And suppose that the first eigenvalue
(with multiplicity k) is the one we are focusing on. Then, the Hamiltonian Ho of
[3.4a] has the block diagonal form

and its horizontal projection is

0
p rτ |>

We have not been able to characterize the extremals in any more detail than
that given by just plugging these expressions in to [3.4a, b] of Theorem 3.1. See
Sect. 3.4, "Open Problems."

3.3. Homogeneous Bundles. Consider the tower of bundles

S-*Q = S/K0-+X = S/K, [3.5]

S is a "big" compact Lie group containing K and Ko as Lie subgroups. Ko is a
normal subgroup of K and G ^ K/Ko. Keep in mind the case of Example C
immediately above. There Q = Vk n, the Steifel variety of /c-frames in CN, with
k + n = N,S = U(N) =>K= U(k) x U(n)z>Ko = [/] x U(n), and G = (7(/c).

Fix an adjoint invariant metric on the Lie algebra s of S. This defines a
bi-invariant metric on S, which in turn induces metrics and connections on every
space and projection in [3.5]. See Sect. 2.2. The metrics on S and Q are of the
bi-invariant type occurring in Theorem 2. The geodesies through the identity in S
are the one-parameter subgroups, exp tξ9 ξe*. Such a geodesic is horizontal relative
to the connection on S-+Q if and only if ξeΪQ. According to Remark 2.4.2, every
geodesic q(t) in Q through the identity coset q0 is the projection of such a horizontal
geodesic:

(exp(tξ))q09 ξel£. [3.6]

According to Theorem 2, the extremal paths on X, are exactly these curves, pushed
down to X. We have proved

Theorem 3.2. The isoparallel extremal loops through the identity coset xoeX are
the paths of the form

x(t) = exptξ-x0, where £eϊ^. [3.7a]

//the exact sequence l-+K0-^K-+G = K/Ko-• 1 splits, so that G is embedded as
a subgroup ofK (and K^G x Ko) then the parallel transport operator, Hoi (ί), along
x from x(0) to x(ή is given by

Hoi (t)(q) = exp (tξ) exp ( - t?Q(ξ))q, [3.7b]

where P9(ξ) is the orthogonal projection ofξ onto g, identified as a subalgebra of%.
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The last fact follows from Eq. [2.5], the fact that Λ{qo)(ξqo) = Pg(£), where q0

is the identity coset, and the fact that goexp( — tPQ(ξ)) = exp( — tPQ(ξ))q0.

3.4. Open Problems. In these problems we focus on the case where Q -> X is as in
Example C above, the Steifel variety over X = the Grassmannian.
1. Finish solving the isoholonomic problem. The extremals x(t) will not close
in general. In order to understand which of the isoparallel extremals are
isoholonomic, that is, form closed loops, we must answer the following question.

For which £eϊ^ does there exists a t > 0 such that exp(tξ)eKΊ

This seems to be a hard problem. We do not know the solution even for the simple
case in which Q is the Steifel variety V2 l9 so that S = (7(3), K = (7(2) x (7(1) and

It would also be of interest ot characterize those extremal loops which give
rise to the trivial holonomy. Write the Lie algebra of S — ϊ 0 0 g 0 m, so that
I = fo Φ 9 a n d ϊ(j~ = 9 ® m This is the problem of characterizing those pairs
(ξl9ξ2)€Q®rn such that

2. What is the cut locus and conjugate locus for the isoparallel extremals on
the Grassmannians? Ge Zhong [1989] has made some progress on this problem.
This problem, and to a lesser extent problem 1, are related to the Morse theory
of horizontal paths in β, which is one of the main investigations of Ge Zhong.
3. Find an isoholonomic inequality relating the lengths of closed loops in
Grassmannians, and their holonomy. This would be a "non-Abelian" isoperimetric
inequality.

In particular, according to our calculations, the length of a path in X which
is parametrized by arclength is ΔEΔt, where Δt is the length of time required to
traverse the path, and ΔE is the energy. Is there a relation between the uncertainty
principle

ΔEΔt ^ hi An

and this alleged non-Abelian isoperimetric inequality! (Here h is Planck's constant.)
For example, in the Abelian case of example A, where X is the round two-sphere

(or more generally for X = CPW) we have the isoperimetric inequality

length ^jlπΦ-Φ2, when O ^ Φ ^ π . [3.8]

Here exp(iΦ) is the holonomy, and Φ= solid angle/2. This isoperimetric inequality
follows immediately from the more standard isoperimetric inequality

(length)2 ^ 4π(Area) -
r2

for the smaller of the two areas enclosed by a Jordan curve on the sphere of radius
r, together with the equalities Φ = Area/2r, and r = 1/2. That r = 1/2 follows because
we take the sphere in Hubert space to have radius 1, and because the Hopf fibration
is a Riemannian submersion. This "standard" isoperimetric inequality follows from
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trigonometry identities together with the expressions

Area = 2πr2(l — cos α), length = 2πr sin α

for the small circles which are the isoperimetric minima. Here α is the angle between
a point on the sphere and the z-axis. If we are measuring in units of Planck's
constant, and if we make the change of variables θ = Φ/2π, then the isoperimetric
inequality reads

ΔEΔt ^

which is to be compared with the Heisenberg uncertainty relation.

4. Electromagnetic Analogies and Half of the Proof of Theorem 1

4.1. Particle in a Yang-Mills Field. After reduction by G, the Hamiltonian
equations for Ho become the differential equations for the trajectory of a particle
in the Yang-Mills potential A. This fact can be found in Montgomery [1984].
Also compare Eq. [4.4] below with Balachandran, Borchardt and Stern [1978].
Here we review this fact, and rephrase Theorem 1 in this language.

We call the reduced differential equations "Wong's equations" after Wong
[1970], and write them as Eqs. [4.2a-c]. They are equations for a curve e(t) in the
co-adjoint bundle

which is a vector bundle over X with fiber g*. Here V* denotes the dual of the
vertical bundle K = kerdπ. The points esQ*(Q) are called charges.

Write x(t) = π(e(t))eX, and x = dx/dte TX. (We abuse notation by letting π also
denote the projection Q*(Q)-+X.) Let D denote the connection induced on the
co-adjoint bundle by the connection A on Q. In coordinates,

De = de- (ad A)*e.

Let V be the Riemannian (Levi-Civita) connection on X induced by the metric k. Let

denote the curvature of A, viewed as a two-form on X with values in the adjoint
bundle Q(Q) = QxAdQ = V/G. Then e F(x, ) is a one-form along x, (a "force"), and
e-F(x, ) # is a vector field along x, where " # " denotes the operation of raising indices
with respect to the metric k on X. Wong's equations are

#, [4.2a]

De/dt = 0. [4.2b]

They are second order in x and first order in the fiber coordinate e. We can
write them as a "single" first order differential equation on the vector bundle
9*(β)Θ T*X by adding the equation

x = y«, [4.2c]
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(yeTx(t)*X) and then rewriting [4.2a,b] in terms of y and dy/dt. In the beginning
of this section we stated that Eqs. [4.2a-c] are equivalent to the equations for an
integral curve of the vector field Yo of Sect. 2.4.3. Recall that Yo is the push-down
to (T*Q)/G of the Hamiltonian vector field for Ho. Equations [4.2a-c] define a
vector field on the manifold g*(β)® T*X. The connection defines a G equivariant
isomorphism:

T*Q = V* ® HOR* ^ g* x π* T*X,

which is the dual of the usual vertical-horizontal splitting. Dividing by G, we
obtain the isomorphism

(Γ*β)/G^g*(β)ΘΓ*X. [4.3]

Under this identification, the equations defined by Yo become Eqs. [4.2a-c].
Conversely, given Yθ9 the vector field Xo on T*Q is uniquely determined by

the conditions that it project to Yo, and that the projection of its trajectories onto
β are horizontal. It follows that Theorem 1 is equivalent to

Theorem 4. The following conditions for a curve x(t) in X are equivalent.
A. The curve x is an extremal for the isoparallel problem.
B. There is a solution e(t)ea*(Q) to Wong's equations such that

π°e = x.

Example A, 3rd time. The curvature of the Hopf fibration is a multiple of the area
form. This the magnetic field of a monopole at the sphere's center. Wong's equations
are the Lorentz equations for the motion of a charged particle constrained to the
sphere. Again, these are small circles.

Example D. Let β be the bundle of orthonormal frames of the Riemannian
manifold X, and A the Levi-Civita connection. Then g*(β) = g(β) = skew
symmetric endomorphisms of TX ^ Λ2(T*X). (The isomorphisms are defined by
the metric k.) Thus the charge e(x(t)) is a skew symmetric endomorphism of the
tangent space at x(t). We will write F — R for the Riemannian curvature.

If X has constant sectional curvature K, we will now show that the cor-
responding isoparallel extremals are the curves whose curvatures {kl9...,kn_ί}
are all constant (dimJf = ή). This is inspired by Arnold's [1961].

The constant curvature condition implies that e R(x, -ψ = Ke x, so that Wong's
equations read

It follows that xu+1) = Ke-xu\ where x°"+1) denotes t h e / 1 covariant derivative of
x along x, and x(1) = x. Using this, and the fact that e is skew, one can show that
the functions <x°'),x(k)> are constant along x. (They are identically zero if k —j is
odd.)

We now recall the definition of the curvatures fef. For simplicity, suppose that
the {x(1),...,x(w)} are linearly independent. Apply the Graam-Schmidt procedure
to this frame in order to obtain an orthonormal frame {el9...,en} along x, the
Frenet-Serret frame. This frame satisfies the differential equations of the form
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Deί/dt = k1e2, Dej/dt=-kj_1ej_1+kjej+1, 2£j£n-l9 Dejdt=-kn_1en_1.
The coefficients k{ are the curvatures. Set κ\ = <x ( ί ),xω>, and recall that these are
constant. We find ex = x(1)/κ1, e2 = x(2)/κ2. This shows that the first curvature is
k1=κ2/κι. (It is called the geodesic curvature for space curves.) An inductive
argument, based on the fact that the <xω,x(fc)> are constant, shows that the kt are
all constant. Compare with ArnoΓd [1961].

This Gram-Schmidt procedure stops if xu+1) depends linearly on the lower
derivatives, but in this case kj = 0 (constant) and the higher curvatures are all
identically zero.

4.2. Coordinates. (See Montgomery [1984]). Trivialize Q over UaX: π~\Ό) ^
U x G. Put coordinates {xμ} on U, choose a basis {ea} for g, and trivialize

^G x g* by right translating covectors to the identity. Then, over U,
ί / x G x R " x g * and we have coordinates (xμ,g,Pμ,ea) on T*Q. The ea are

linear coordinates on g*, and (xμ,Pμ) are canonical coordinates on T*U. In these
coordinates the horizontal kinetic energy is

Ho = \kμ\x){Pμ - eaa
a

μ){Pv - βα<). [4.4]

Here fcμv is the expression for the metric k on X, and kμv is its inverse. The connection

form A is

A = g~1{ag + dg) geG, where a = Yja
a

μdxμ®ea,

the pull-back of A to X by the local section g = identity. Note that (xμ

9 Pμ, ea)
coordinatize (T*Q)/G over U.

In case G = 1/(1), g* is one-dimensional, and the corresponding linear
coordinate e is a Casimir: {e,xμ} = {e,Pμ} = 0, and so e is an automatic constant
of the motion. If we interpret e as the electric charge then it is well-known that
the Hamiltonian Ho governs the motion of a particle travelling on X in the magnetic
field da.

The substitution

vμ = Pμ-eaa
a

μ

expresses physical momenta vμ in terms of canonical moment Pμ and color charges
ea. (In other words, one of the equations of motion ([4.2c]) is dxμ/dt = kμvvv.)
Together with ea-+ea,x

μ-+xμ this substitution defines the isomorphism [4.3].

4.3. Proof of Half of Theorem 4, and Hence Theorem 1: Wong Implies Extremal. We
rephrase the isoparallel problem in terms of curves q: [0,1] ->g.

Minimize the projected length: length (π ° q)

subject to the constraint: q is horizontal (4.5)

and the fixed endpoint conditions: q{0) = qo,q{l) = qi.

We use the method of Lagrange multipliers. The constraint can be written

q*A = 0, [4.6]
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(q*A is a g-valued connection one-form on the interval.) The Lagrange multiplier
will be a function

(See, for example, Courant and Hubert [1953], vol. 1, pp. 221-222.) The functional
to be extremized is

% , e) = length (π°q) - $e(t)-q*A. [4.7a]

This Lagrangian is precisely the Lagrangian used to derive Wong's equations.
See Balachandran, Borchardt and Stern [1978, Case 2]. In order to see this we
write it in a local trivialization ί / x G ^ π ' ^ j c β . Then q{t) = (x(ί), g{t))eU x G,
and A — g~1(αg + dg), where α is a g-valued connection one-form o n [ / c l . And

[4.7b]

dx

It

Dg

dt

1

dx"

" dt

dxμdxv

~dt~dt

+ dg

dt'

where

and

Equation [4.7b] is exactly formula (2.6) of Balachandran et al. At this point we
could just quote their result to complete the proof. The only real difference between
our calculation and theirs is a matter of interpretation. For us e is a Lagrange
multiplier. For them e(t)δ(x - x(ή) is the (color) current of a point particle. For
completeness and clarity we will complete the proof.

When G = (7(1), so that g = eiθ, we have

dx

It

If e were constant, then the term e{dθ/dt)dt could be ignored as it represents a closed
one-form. The integrand would then be the Lagrangian for a particle of charge e,
travelling in X under the influence of the (electro)magnetic field F = da. It is
well-known that the resulting Euler-Lagrange equations are the Lorentz equations,
which are Wong's equations for G = (7(1). Now e is a constant, since

δS _de

Jθ~Jt'

This proves the half of Theorem 4 (and hence Theorem 1) for G = (7(1).
For general G, essentially the same calculation yields Wong's equations. Varying

S with respect to e yields the constraint [3.2] which says that the curve q is
horizontal.

Split the variations of q into vertical and horizontal variations. Vertical
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variations can be written

where ξ(ή is any differentiate curve in g satisfying the boundary conditions
£(0) = ξ(l) = 0. Now

dξ

' dt'

Imposing the horizontal constraint q*A = 0, we obtain
d

dε d t d t

from which it follows that e is constant. (Note that the projected length is
independent of vertical variations, so does not enter into the variation.) Since e is
constant and q is horizontal, it follows that the projection

e = [#>£]e9*(6) is convariantly constant.

(Excuse the double use of e, please.) This is Eq. [4.2b].
Let xε be a variation of x = π°q9 with derivative δx at ε = 0, a tangent vector

along x, satisfying δx{0) = δx(l) = 0. Let δq denote the horizontal lift of δx, which
we can extend to define a horizontal projectable vector field in a neighborhood
of q. Let ηε denote the local flow of δq. Then

is a horizontal variation. The derivative of the length functional with respect to
such a variation is well known from Riemannian geometry:

— length (xε) = — f || x || ~1 < Vάx, δx }dt.
dε ε=0

To determine the variation of the Lagrange multiplier term, one calculates

— q*A = q*&(δq)A = F(δq, q)dt = - F(δx, x)dt. [4.8]

Here i f denotes the Lie derivative, and in the final equality we view F as a two-form
with values in the adjoint bundle. Consequently, the derivative of the Lagrange
multiplier term is

JVF(<5x,x)Λ.

Therefore the horizontal variation is

^ | | x | | f e V χ + ^ F ( x , ) . [4.9]
δx

Setting this equal to zero is almost the first Wong's equation [4.2a]. Setting it
equal to zero and using the skew symmetry of F and the co variant constancy of
e implies that | |x| | is constant along x. Then redefining e to be | |x| |e, we obtain
Wong's Eqs. [4.2a-c]. Q.E.D.
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5. Sub-Riemannian Metrics and Proof of the Hard Half

5.1. Bάfs Result. The hard part of proving Theorem 1 is to show that every
extremal satisfies the Hamiltonian differential equation. We will do this by simply
quoting a recent result of Bar's [1988,1989] concerning sub-Riemannian metrics.

Recall from the introduction that a sub-Riemannian structure on Q is a
"horizontal" distribution Hor, together with a metric K on Hor. As noted in the
introduction (see Eqs. [1.2a, b]), the isoparallel problem is a special case of the
sub-Riemannian geodesic problem.

Definition. A sub-Riemannian geodesic q(t) on Q is a horizontal curve which
extremizes the integrated energy functional

among all piece wise C 1 horizontal paths γ which join q(0) to q(\).
As in Riemannian geometry, the extremals of E and of the length functional

are the same, when viewed as unparametrized curves. The energy functional is
more convenient from the point of view of analysis.

A sub-Riemannian metric defines (and is defined by) a constant rank co-metric
C. C is a symmetric non-negative vector bundle endomorphism C:T*Q-+TQ9

which is defined by the requirements that

(1) imC = , ,
(2) if v = C(q)-p, then kq (v, v) = p v.

Alternatively, C is a smooth, constant rank, contravariant, symmetric, non-negative
two tensor:

The fiber-wise quadratic form

$) [5.2]

will be called the horizontal kinetic energy, or sub-Riemannian kinetic energy. It is
a smooth function on T*Q. A straightforward calculation shows that this Ho

equals the earlier Ho in the case of the isoparallel problem.

Theorem 5. [Bar, [1988,1989]]. Every sub-Riemannian geodesic is the cotangent
projection to Q of a solution on T*Q to the Hamiltonian differential equations for
the Hamiltonian Ho.

The other half of Theorem 1 is a special case of this theorem.
In canonical coordinates (q\pi) on T*Q the differential equations of the

theorem are

Here Ho = ^^CkJ(q)pkpj. Note that the first equation implies that q(t) is horizontal.
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5.2. Remarks and History. There is a large literature on the sub-Riemannian
geodesic problem. Vershik and Gershkovich [1988] is a review with a summary
of facts, some intriguing pictures, and an extensive bibliography. Beyond the works
mentioned in Sect. 1.3, the following works have come to our attention: Hermannn
[1962,1973], Brockett [1981], Baillieul [1975], Gunther [1982], Faibusovich
[1988], and Taylor [1989]. The sub-Riemannian geodesic problem is a special
case of the problem of Lagrange in the Calculus of Variations. This is treated by
Caratheodory [1967, final chapter], and by Bliss [1930].

The converse to Bar's theorem (our previous section) was proved for H1 paths
by Hamenstadt [1986,1988]. She also showed that any solution to the differential
equations is locally length minimizing. Bar has an interesting counterexample
which shows that locally length minimizing curves need not satisfy the Hamiltonian
differential equations globally, a situation impossible in Riemannian geometry.

The proof of Bar's theorem is easy in the extreme cases where the connection
A is flat or fat. (See Ge Zhong [1989], or Strichartz [1983].) This is because in
these cases the set of horizontal paths joining q0 to qt forms a smooth manifold,
and so standard calculus techniques, such as the Lagrange multiplier technique
of Sect. 4 apply. In the flat case one can work on a single integrable leaf of the
horizontal distribution, and the problem is identical to the Riemannian geodesic
problem. The condition that a connection be fat is equivalent to the condition
that its horizontal distribution satisfy what is sometimes called the "strong bracket
generating condition." "Fatness" means that for every non-zero ve Horg, the map
w -> Fq(v, w) is onto g. (F is the curvature of A.) Fatness implies that every qxφq0

is a regular value of the end-point map

e\ {horizontal i / r paths starting at q0} -• Q; e(q) = q(\).

In general the rank of e varies (Hamenstadt).
Bar's proof does not make any assumptions regarding the horizontal

distribution. In fact, the co-metric C may even have variable rank, in which case
the "distribution," im (C) is a singular one. His proof is based on a partial proof
of Strichartz [1983]. (Strichartz's proof contains an error. He ignored the possibility
that his H9 defined by a minimization procedure could have the value zero.)
Strichartz's idea is to apply the Pontrjagin maximum principle, as found in Cesari
[1983], Chap. 7.

The essence of the difficulty in the proof is that extremals may be abnormal.
The method of Lagrange multipliers, in full, is to find {eo,e(t)\ not identically zero,
with eoeR, such that

e0 length(π°g) — \e(t) q*A

has a critical point as a function of q. (Compare with [4.7a].) In Sect. 4 we set
eo=l. Abnormal extremals (Bliss's terminology) are ones for which e0 = 0. Truly
abonrmal extremals (our terminology) are ones for which every nonzero multi-
plier satisfies e0 = 0. If one can eliminate these, then the standard Euler-
Lagrange equations of Sect. 4 apply. The crux of Bar's argument is then to eliminate
these.
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6. The Cat's Problem

The configuration space Q for a deformable body is a submanifold of the space
of embeddings of the body B into Euclidean 3-space. A point q of Q is then a map

q:£->R3; x = q(X)eR\ XεB. [6.1]

The body B is assumed to have a mass density, dm(X\ which together with the
inner product <-,*> on R3 defines a Riemannian metric d2s on Q:

d2sq(δq,δq) = $<δq(Xlδq(X)}dm(X). [6.2]
B

The group G of rigid motions (isometries of R3) acts isometrically on Q. The
action is left composition: gq = g°q, and corresponds to rigidly rotating and
translating B. If the body is never colinear (q(B) is never contained in a single line)
then the action is free.

We thus have the following situation. The Lie group G acts freely, properly,
and by isometries on the Riemannian manifold Q. From this data we can recover
the data (Sect. 1.1) needed to state the isoholonomic problem. Set X = Q/G. It is
the shape space of our deformable body, and π:Q->X forms a (left) principal
G-bundle. X inherits a Riemannian metric by declaring π to be a Riemannian
submersion (Sect. 2.3). Q inherits a connection by declaring that horizontal is
orthogonal to vertical ( = ker dπ).

We will now show that in this setting the isoholonomic problem is

The Cat's Problem: Given a deformable body in free-fall with initial angular
momentum zero, find the most efficient way to deform it so as to achieve a desired
re-orientation.

We will ignore the translational degrees of freedom in G, because changing the
shape of a freely falling body cannot affect the motion is its center of mass.
Consequently, we will fix the center of mass \q(X)dm(X) by setting it equal to zero.
This defines a new fixed center of mass configuration space which we again call
Q. The group G becomes the group of rotations about the center of mass. (Shapere
and Wilczek are interested in translations of their paramecium. Affecting the
translation is possible here because strong friction is present, so that linear
momentum is not conserved.)

The basic observation which translates one problem into the other is the
following:

Observation. A tangent vector (v,q)eΓqβ is horizontal if and only if its angular
momentum is zero.

Check. A vertical tangent vector at q e β is an infinitesimal rigid rotation:

δq(X) = ωx q(X). [6.3]

A vector veTqQ is horizontal, by definition, if and only if it is orthogonal to all
such variations, that is, if and only if

$y(X)'{ωxq(X)}dm(X) for all ωeR3. [6.4]
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After a simple rearrangement, this becomes the statement

$q{X)χy(X)dm(X) = O, [6.5]

which is the statement that the angular momentum vanishes. This shows that the
cat's problem is equivalent to the isoholonomic problem, provided we define
efficiency in the cat's problem to be the integrated kinetic energy. Note that the
re-orientation of the body after a shape change is the holonomy of the loop in
shape space.

One calculates the Ho of [2.2] to be

H0(q,P) = HIIPII2 - Iq" V(q,P% J(q,p))} [6-6]

The terms in Ho are as follows: | | | p | | 2 is the standard kinetic energy for the metric
on Q. 2^ιU{.q^P\ J(q>P)) is the vertical kinetic energy, so when subtracted off it
yields the horizontal kinetic energy. The factors within this vertical kinetic energy
are as follows. Iq is the locked interia tensor. This is the interia tensor of our cat if
we froze it in the shape q.

lq = (tτΨq)l-Ψq, [6.7a]

where

(Ψq)
ij = $q(Xyq(X)jdm(X) for ίj= 1,2,3. [6.7b]

Geometrically, I is the pull-back of the metric k to g:

h(ωι - ω2) = d2sq(σqω1, σqω2) for ct^eg. [6.7c]

Here σqω = q x ω is the infinitesimal generator, [6.3]. lq is invertible, since the
G-action is free. Thus Iq~ * is well-defined as a positive definite quadratic form on
g*. J is the total angular momentum, written as a function of the canonical momenta
p, and not of velocity. In mathematical terms J: T*β->g* is the momentum map
for the action of G.

Warning. Be careful of the difference between this angular momentum and the
corresponding angular momentum

written in terms of velocity (the left-hand side of [6.5]). The two are related by
J(g? p) = M(q, v) provided

v = p* [6.8]

(# is the index raising operation relative to d2sq.) However [6.8] does not hold
along general integral curves (q(t\p(ή) of Ho. In fact every such curve satisfies

since q is horizontal, but J is a constant of the iί0-motion whose value J(q(t),p(ή)
is an arbitrary constant (depending on initial conditions).

Theorem 6. A curve q in Q is an extremal for the cat problem if and only if there
exists a smooth covector p{t) along q such that (q(t\p(ή) satisfies Hamilton's
differential equation for the Hamiltonian Ho.
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Theorem 6 follows immediately from Theorem 1 and the above discussion.

Remarks 1. We could have stated the cat problem for a spinning cat. Then the
constraint would have been M(q, υ) = μ, a fixed constant vector. Theorem 6 still
holds provided we replace Ho by Ho + 1 ^ x (J( r̂, p), μ).
2. Theorem 6 still holds if the G action is only locally free (all isotropy groups
are discrete).
3. If d2s is the bi-invariant metric β © k on Q which was described in Sect 2.2, then
the inertia tensor 1̂  is identically equal to β. The vertical kinetic energy, the second
term of [6.6] is the Casimir Cβ of 2.2.3.
4. Shapere and Wilczek [1987, 1989] give a formula for the connection one-form
A which defines the horizontal subspace here (i.e. the "zero angular momentum
connection"). Their formula is

:TqQ^Q. [6.9]

5. J is a constant of the //0-dynamics. If we fix the value of this constant, then we
can view the motion as that of a particle in a potential field defined by the second
term of [6.6]. This potential is exactly the negative of what is usually called the
effective potential, Ve{{ = \ || α ||2, the square of the covector α which is the
J-component of the connection form A.

7. A problem of Shapere and Wilczek

Shapere and Wilczek [1987] posed a problem closely related to the isoholonomic
and cat's problem in their beautiful paper on the self-propulsion of microorganisms.
For them the group G is £(3), the group of Euclidean motions, and the metric k
measures power output for a given path x in the space X. Let χ:G->R + be the
length of the translational factor: χ(g,υ)= \\v\\2, vεR3. Set

They define the effeciency of a curve x into X to be

More generally, let

be a class function on G. (A class function is a conjugation invariant function,
1) = χ{h), for example, the trace on the unitary group.) And fix

/ :RxR + -R,

a smooth function. Set

Eff[x]=/(χ(Hol[x]),£[x]) [7.1b]

and call this the efficiency of the path x:[0,1] -*X. The problem of Shapere and



590 R. Montgomery

Wilczek is to

find the loops of maximum efficiency.

Shapere and Wilczek actually state an infinitesimal version of this problem. They
look for infinitesimal loops. Their definition of efficiency is the infinitesimal version
of ours: replace the holonomy by the curvature, and the integral by the integand

iil*ll2.
Theorem 7. Assume that x(t) is a loop in X which maximizes the efficiency [4.1a],
is piecewίse smooth, and satisfies χ(Hol [x]) Φ 0. Then x is the projection of a solution
to Wong's equation, [4.3a-c].

Proof. Theorem 4 states that isoholonomic extremals solve Wong's equations. The
isoholonomic extremals solve the following constrained variational problem:
extremize E subject to the constraint Holonomy = constant.

In general, suppose one is trying to extremize a function E subject to a con-
straint h = const. The resulting Euler-Lagrange equations are λodE + λdh = 0 for
some choice of non-zero multipliers λo,λ. Compare this with extremizing eff(x) =
f(E(xlχ(h(x))Y

di^J^dE^dh.
oE dχ oh

This demonstrates that if p is a critical point of (eff) for which at least one of these
two coefficients, λ0 = df/dE, and λ = (df/dχ)(dχ/dh\ are non-zero, then p is an
extremal for the constrained variational problem. For Shapere and Wilczek,
/ = χ(h)/E, so that df/OE = -χ(h)/E2 in non-zero, provided χ(Hol [x]) φ 0. (That
this be non-zero is actually the condition that the extremal be normal. See the end
of Sect. 5.) Q.E.D.

Remark. This theorem can also be proved by direct calculation using the formula

for the variation of the holonomy. Here U^t) denotes the operation of parallel
translation along x from x(0) to x(t\ and U2(ή is parallel translation along x from
x(t) to x(l). Using the fact that Hol[x] = ί/2(0^i(0> this can be rewritten in terms
of just U^t) and Hol[x].
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Note added in proof. It was brought to our attention that Guichardet defined and used the connection

"angular momentum equals zero" in his 1984 paper "On Rotation and vibration motions of molecules",

Ann. Inst. Henri Poincare, 40, 329-342. This paper contains Shapere and Wilczek's "master formula"

for the connection, our Eq. [6.9], and also a nice descriptions of its curvature. Guichardet proves that

when the deformable body consists of four or more point particles, that the distribution satisfies

Hormander's condition, and hence is controllable (see our Sect. 1.5).

Zwanziger, Koenig, and Pines have completed their experiment to measure the non-Abelian

holonomy (Berry's phase) and have submitted the work to Phys. Rev. Lett.. Their experiment concerns

the nuclear quadrapole resonance spectrum of a crystal of sodium chlorate which is rotating

simultaneously about two axes (curves of the form exp(ία)exp(ίb) in SO(3)).




