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Abstract. This paper deals with classical solutions of the SU(2) chiral model on
Ht2, and of a generalized chiral model o n R 2 + 1. Such solutions are shown to
correspond to certain holomorphic vector bundles over minitwistor space.
With an appropriate boundary condition, the solutions (called 1-unitons in
[9]) correspond to bundles over a compact 2-dimensional complex manifold,
and the problem becomes one of algebraic geometry.

1. Introduction

Minitwistor space TΨX is a 2-dimensional complex manifold which was used by
Hitchin [5,6] in the construction of monopoles on 3-dimensional Euclidean space.
The solutions of the Bogomolny equations for monopoles on R 3 correspond to
certain holomorphic vector bundles over TΨV However, by imposing a different
"reality" condition on such vector bundles, one can generate the solutions of the
hyperbolic version of the Bogomolny equations, i.e. solutions which live on (2 + 1)-
dimensional space-time R 2 + 1. These equations form an integrable hyperbolic
system, and they include, as special cases, such well-known soliton equations as the
sine-Gordon, Korteweg-de Vries and nonlinear Schrόdinger equations. So so-
lutions of these correspond to holomorphic vector bundles over TP X ; see [12] for
more details.

The purpose of this paper is to deal with holomorphic vector bundles which
extend to a certain compactification T of TΨV This excludes, for example, those
bundles which correspond to soliton solutions of the sine-Gordon equation. But it
turns out to be the right sort of boundary condition for the chiral model in 2 +1
dimensions. The hyperbolic Bogomolny equations referred to above can be
rewritten as a chiral equation with torsion term, and the aim in this paper is to
describe how solutions of this chiral equation correspond to (and can be generated
from) vector bundles over TΨX or T.

A chiral field is a map from R 2 + 1 into a Lie group G, satisfying a certain
nonlinear equation. In the case of static (time-independent) fields, one has a map



320 R. S. Ward

from 1R2 into G, and then the chiral equation is just the condition that this map be
harmonic. Harmonic maps from R 2 into Lie groups have been extensively studied;
in particular, the paper [9] gives a comprehensive treatment of harmonic maps
into U(N). It introduces the idea of n-unitons, which for n = l,2,... provide a
hierarchy of families of solutions.

It turns out that for a given value of N, the only n-unitons that matter have 1 ̂  n
SN — 1. We shall only deal with the case N = 2, and therefore only with 1 -unitons
but it seems likely that the results can be extended to n> 1.

The paper [9] approaches the problem as one of analysis, and part of the
purpose of the present paper is to show how this material can be translated into
complex-analytic geometry and algebraic geometry. It also provides an alternative
view of a well-known method of generating certain soliton solutions, sometimes
called the "Riemann problem with zeros" [8].

The necessary parts of [9] are reviewed in Sect. 2. In Sect. 3 we see how
solutions of the chiral model on R 2 + 1 correspond to holomorphic vector bundles
over minitwistor space TΨV The vector bundles which generate static 1-unitons
are more special still; they are constructed in Sect. 4. One is led to a description of
the bundle in terms of a "meromorphic framing," which generalizes the way in
which a meromorphic section of a line bundle determines that bundle (because it
determines a divisor).

The static 1-uniton contains an arbitrary meromorphic function of one
complex variable. If (and only if) this function is rational, then the field has finite
action. [This corresponds to having a harmonic map from S2 to Sl/(2).] In this
case, the vector bundle extends to a compactification T of ΊΨt: T is a (compact)
rational ruled surface. This is discussed in Sect. 5. The singularities of the
meromorphic framing correspond to jumping lines of the bundle in T. There are
analogies with various other "twistor" constructions: for example, monopoles can
also be parametrized by rational functions [3], and Yang-Mills instantons on S4

correspond to holomorphic vector bundles over a rational ruled surface (not the
same one as T) [2,1,7].

The above is then generalized to the non-static case; this is dealt with in Sect. 6.
These more general bundles give rise to solutions which can be interpreted as
moving multi-soliton solutions in 2 + 1 dimensions [10]. Many questions and
open problems remain: a few of these are listed in Sect. 7.

2. Harmonic Maps into 517(2): The Uniton

This section is a brief summary of the relevant results of [9]. It deals with harmonic
maps from Ω into the unitary group U(N\ where Ω is a simply-connected domain
inR 2 .

If J = J(x, y) is a map into U(N), then the harmonic equations are

d^j-'d^+d^j-'dyj^o. (l)

Here dx denotes d/dx etc. If we define null coordinates z and z by z = x + iy and
write d = d/dz, then (1) becomes

1a/) = 0. (2)
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This equation is "completely integrable," in the sense that it can be written as the
compatibility condition for a pair of linear equations involving a "spectral
parameter" λ [4,8]. Define

Az=±J~ldJ, Az=\ΓxdJ. (3)

Then the pair of linear operators

d + (l-λ)A-z, d + il-λ-^A, (4)

commute for all Λe<C* = <C—{0}, as a consequence of (2). Conversely, if (4)
commute for all λ, then there exists a J satisfying (3) and (2).

Given that (4) commute, one can find a solution Eλ of the equations

ZEλ={\-λ)EλAt, dE^il-λ-^A,. (5)

Theorem [9]. // J:Ω-+U(N) is harmonic, then there exists a solution £ A : Ω x C *
-+GL(N, (C) of (5), holomorphίc for λ e <C* and real-analytic for (z, z) e Ω, such that
£ _ ! = J and

( £ ^ , ) * = ( £ Λ ) " 1 , (6)

where * denotes complex conjugate transpose. Conversely, suppose that Eλ is
holomorphic on (C* and real-analytic on Ω, and that the Az, Az defined by (5) are
independent of λ. Then J = E_X is harmonic. •

This Eλ is called an extended solution corresponding to J. As described here, it is
not quite uniquely determined by J, but a unique choice can be made ([9],
Theorem 2.3); we do not need this here.

One can expand Eλ in a Laurent series in λ. In simple cases, this series may be
finite.

Definition. An n-uniton is a harmonic map J:Ω-*U(N) which has an extended
solution of the form

Eλ= Σ Tkλ
k, (7)

fc = 0

where the Tk = Tk(z, z) are N x N matrices.
Note that a constant J is a 0-uniton (take Eλ = J), but is also an n-uniton for any

n [take Eλ = J(—λ)n~\. The uniton number can always be increased in this artificial
way. But any given uniton has a minimal uniton number.

Theorem [9]. // J: Ω-* U(N) is a uniton, then its minimal uniton number is less than
N. If J:Έί2-+U(N) is harmonic, and has finite action

(8)

then it has finite uniton number, i.e. it is an n-uniton for some n. •

So the finite-action harmonic maps from R 2 into 17(2) are all 1-unitons. It is
easy to describe these. Let f=f(z) be a meromorphic function on Ω. Then

(9)
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(10)

is an extended solution, and

is the corresponding 1-uniton. (Here t denotes the identity matrix.) Up to
multiplication by constant matrices, every 1-uniton on Ω has the form (10).

In order to get finite-action 1-unitons on R2, one must take /(z) to be a rational
function of z. In fact, the J given by (10) takes values on the equator S2 oΐSU(2\ and
the condition of finite action means that J extends to the conformal compactifi-
cation S2 of R 2, so in effect J is a harmonic map from S2 to S2. Such maps are
necessarily rational holomorphic (or anti-holomorphic). And /(z) [or J(zj] is

precisely this rational map. ( Note that multiplying J on each side by has

the effect of interchanging /(z) and /(z), so the holomorphic and anti-holomorphic

cases are equivalent in this sense.)

3. Holomorphic Vector Bundles over TTPj

In this section it will be shown that harmonic maps from R 2 into SU(2) correspond
to certain holomorphic vector bundles over a 2-dimensional complex manifold
TP l 5 the so-called "minitwistor" space, which was used in the construction of
monopoles [5,6]. Here TΨX denotes the holomorphic tangent bundle of the
Riemann sphere P l 5 so TΨX is fibred over P 1 ? with each fibre being a copy of C (see
Fig. 1). Let λ be the standard coordinate on the base B^ΨU i.e. Λ,e<Cu{oo}. The
two hemispheres U = {λ: \λ\ ^ 1} and U = [λ: |λ| ^ 1} cover B. The fibre coordinates
ηe<£ over U and ήe(C over Ό are patched by ή = λ ~ 2η. The holomorphic sections

Fig.l
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of TΨ1 are given by

where a, b, c are complex constants. But we wish to introduce a "real structure,"
and restrict to real sections. This is done as follows.

Define an anti-holomorphic involution on B by λ\-^λ~ι (note that this
interchanges U and £/). Extend this involution to T1P1 by saying that the point
(Λ,, η) = (p, q) gets mapped to (λ, ή) = (p ~1, — q). Then the real holomorphic sections,
namely those preserved by the involution, are given by

η = zλ2-2ίtλ-z, (11)

where zeC, ίeR.
Suppose now that we have a holomorphic vector bundle E of rank 2 over ΓP 1 ?

such that

for every real section σ, E\σ is trivial. (12)

We also want E to be real, in the following sense. Let F = F(λ,η) be the 2 x 2
patching matrix which patches E\υ to E\(j, i.e. Φ = FΦ. Define F* by

-λ-2ή)*. (13)

Then the reality condition is

F* = F. (14)

Another way of stating the reality condition on E is that the involution on TΨ1

should lift to an anti-linear isomorphism from E to its dual. Finally, we want the
line bundle det£ to be trivial, which can be achieved by imposing the condition

detF = l . (15)

Such bundles [i.e. those satisfying (12), (14), (15)] correspond to SU(2) Yang-
Mills-Higgs fields, satisfying the Bogomolny equations, on (2 + l)-dimensional flat
space-time. A slightly different reality structure (namely λ \-> — I " 1 ) produces a
correspondence for solutions of the Bogomolny equations on 3-dimensional
Euclidean space, and this was used in the construction of monopole solutions
[5,6]. In the present case, the Bogomolny equations are hyperbolic rather than
elliptic; they can be obtained by dimensional reduction of the 51/(2) self-dual
Yang-Mills equations in 2 + 2 dimensions.

The Yang-Mills-Higgs fields can be written in terms of an S(7(2)-valued scalar
field J and its first derivatives, and we wish to use this alternative "chiral-model"
description. Since this J is obtained by integrating the Yang-Mills-Higgs field, it
contains slightly more information than that field, and so it corresponds to the
holomorphic vector bundle E together with some additional data. This extra data
consists of a holomorphic trivialization (framing) of the bundle E along the two
lines λ = l and λ= — 1 in TΨV See Fig. 1. The patching matrix F(λ,η), which is
defined in a neighbourhood of \λ\ = 1, is taken to be trivial on each of these lines:

F(±l,η) = l. (16)
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The space-time field J can be obtained from F, in the following way. Restrict F
to a real section (11). Because of (12), there exist matrices Hλ and Hλ, holomorphic
and invertible for λe U and λeϋ respectively (and depending real-analytically on
z,z,t), which split F:

F(λ, zλ2 - 2itλ - z) = ίϊλHϊx. (17)

Because of (15) we may take Hλ and Hλ to have unit determinant. Then J = J(z, z, t)
is defined by

J = f f . 1 ( ^ 1 Γ 1 . (18)

Remarks. 1. J is well-defined. First, any change of the bundle coordinates Φ,Φe<E2

must be trivial over λ— ± 1, in order to preserve the framing there, and so will not
affect J. Secondly, the splitting (17) is not unique, the freedom in Hλ and ίlλ being

Hλ^HλΘ, Hλ^ίϊλΘ, (19)

where Θ is a matrix function of z,z, t. But clearly (19) does not affect J.

2. J takes values in SU(2). From (15), (17), (18) it follows that det J = 1. To prove
unitarity, we can argue as follows. First, (16) and (17) give

βx = Hl9 H-^H-^ (20)

so that

J = H_ί(Hίy
1. (21)

Next, (14) and (17) give

which implies

^ ^ (22)

Now the right-hand side of (22) is holomorphic for all \λ\ ̂  1 and the left-hand side
for all \λ\ ̂  1, so by Liouville's theorem each side is independent of A; so we may
conclude that

and hence, by (20), that

mH^Ht.H^. (23)

From (21) and (23) we get J*J = % as claimed.

3. J satisfies a partial differential equation in x9 y, t, generalizing the harmonic map
equation (2). Define two differential operators δ and δ by

(24)
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Notice that δ and δ annihilate the expression (11). Consequently, they also
annihilate the left-hand side of (17), whence

H^δHλ=H^6Hλ, (25)

with a similar expression for δ. Now the "Liouville" argument applied to (25) tells
us that each side must be linear in λ~ι. For the sake of convenience, we may choose
the gauge Hί = 1 [i.e. we may transform as in (19) so as to ensure this]. It follows
that the right-hand side of (25) has the form

H^6Hλ=(ί-λ-ι)Az, (26)

and similarly

H^dHλ = (l-λ)A-z, (27)

for some matrices Az, Az of functions of z, z, t. It is clear that (26), (27) is a
generalization of (5). We do not want to think of Hλ as an extended solution
generalizing Eλ, because it has the wrong singularity structure. But in the same way
as before, the integrability condition for the overdetermined system (26), (27) is an
equation on J. By putting λ = — 1, we see that the relation between J and Az9 Az is
[cf. (3)]

(28)

And the equation on J which follows from (26), (27), (28) is
1 (29)

Here the indices μ, v,α range over the values 0,1,2 with x° = t, xx=x, x2 = y; the
tensor ημv is the inverse Minkowski metric in 2 + 1 dimensions, given by
ffv = diag(-1,1,1); εμva is the alternating tensor, with ε o l 2 = l; and Va is the
constant unit vector pointing in the x-direction, i.e. Fα = (0,1,0).

4. Clearly (29) reduces to (1) if J is independent of the time coordinate t. So certain
special bundles give rise to the "static" harmonic maps discussed in Sect. 2. One
may think of (29) as a chiral equation with torsion term. This torsion term breaks
Lorentz-invariance (because of the vector Va). But it is necessary if one wants an
equation which is completely integrable. In fact, (29) is completely integrable in
2 + 1 dimensions if and only if Va is a unit spacelike vector [10,11]. Notice, though,
that the torsion term in effect only involves first derivatives of J: Eq. (29) can also
be written in the (manifestly hyperbolic) form

D J = (ημv + s^K) (dμJ)J~ \dj), (30)

where O = dl + dy— d? is the wave operator.

5. As mentioned earlier, one could also talk in terms of a Yang-Mills-Higgs field
satisfying the Bogomolny equations

DμΦ=±sμaβF«e, (31)

where Φ is the su(2)-valued Higgs field, Fμv is the curvature of the SU(2) gauge
potential Aμ, and Dμ = dμ + Aμ is the covariant derivative. In the gauge H1 = ί, the
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fields Φ and Aμ are given in terms of J by

It is easily checked that (31) is equivalent to (29), (32). One advantage of the
J-description is that one then has a local, conserved, positive-definite energy
density, namely the usual expression [10]

Too= —(δQδv

0-\-^ημv)tr(J~ίdμJJ~1dvJ). (33)

By contrast, the standard Yang-Mills-Higgs energy functional is not conserved if
one uses the Bogomolny equations (31); to put it another way, the one which is
conserved, is identically zero for solutions of (31).

Summary. There is a mapping from

(a) holomorphic vector bundles of rank2 over TΨί9 satisfying (12), (14), (15), and
framed over λ = ± 1 to

(b) real-analytic maps J:R3->St/(2) satisfying Eq. (29).
This can easily be extended to maps into U(N) or SU(N).

4. The 1-Uniton Vector Bundle

The 1-unitons (10) give a special family of solutions of (29), and therefore a special
class of holomorphic vector bundles. The purpose of this section is to describe
these in more detail.

The discussion will be local, in the following sense. The 1-uniton involves a
meromorphic function / on a domain Ω in <C. Let us assume, first, that / is
holomorphic in some neighbourhood of z = 0 (later, we shall deal with the case
when f~ι is holomorphic). In fact, let us think of / as being defined on a
neighbourhood Ω of the point z = z = ί = 0 in R 3, and let Ώ denote the
corresponding region in minitwistor space. So Ω' is an open subset of TPX

containing the curve η = 0.
An extended solution Eλ corresponding to J satisfies

V "~ " (34)
because these are the same as (5), given that J and Eλ are independent of t. The
matrix Hλ of the previous section satisfies (34) as well [cf. (26), (27)], from which it
follows that HλEχ 1 is annihilated by both δ and 5. This means that HλEχ 1 only
depends on z, z, t through the combination (11), and so it is in effect a holomorphic
matrix function of λ and η, i.e. it is defined on an open subset of Ω'.

Given Eλ, we want to find a matrix K = K(λ, η) such that Hλ: = KEλ is
holomorphic and invertible for \λ\ ^ 1, as it should be. Note that Eλ is holomorphic
for \λ\ < oo, but Eχ ι has a pole at λ = 0, since det£λ =—λ. Similarly, we want K(λ, η)
such that Hλ = KEλ is holomorphic and invertible on |/l|^l. Then the patching
matrix F will be given by [cf. (17)]

(35)
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In other words, Eλ determines F in this way.
It is straightforward to find such K and K. One choice that works is

° 1 (36,

Hence one can write out F = KK ί=(KK1[) ί

9 and check that it has all the
required properties: in particular, F f = F and detF=l. It is not the case that
F(±ί9η) = ί9 but choosing K to be

- 1 J
would achieve this as well; for the sake of simplicity we shall stick to (36).

This description of the bundle, in terms of the patching matrix F, is perhaps not
very illuminating. An alternative description is to observe that the columns of (36)
describe a pair of meromorphic sections of the vector bundle, and that this data
determines the bundle, in the same way that a meromorphic section of a
holomorphic line bundle determines that bundle (because it determines a divisor).

In general, this works as follows. Let X be a complex manifold, and V a
holomorphic vector bundle of rank n over X. Let Φ denote a set of n meromorphic
sections of V, linearly independent almost everywhere. We could call Φ a
meromorphic framing of V. Choose an open covering {Ua} of X, such that Φ is
represented by meromorphic nxn matrices Φα on Ua, patched together by
Φa = FaβΦβ. Then the meromorphic framing determines the bundle, by
Faβ = ΦaΦβ *. Any other meromorphic framing will determine the same bundle, up
to equivalence. One could think of the meromorphic framing as determining a
"generalized divisor," which in turn determines the bundle. So the K, K given by
(36) determine the vector bundle in this way.

So far, we have been assuming that the function / is holomorphic. If, on the
other hand, / has a pole, then we can repeat the procedure using g = 1// instead
of / In this case, (36) is replaced by

i-rι) λ~Γ

0
(37)

λ-1 Ί

-g\-η)i °r

Finally, we can get a global description by patching everything together. In fact, if
f(z) is meromorphic on (C, define four patches, covering TΨl9 by

Then K on U, etc., is a meromorphic framing (singular along λ = 0 and Λ. = oo),
which determines the holomorphic vector bundle corresponding to the 1-uniton.
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Summary. The 1-uniton extended solution Eλ determines, through its singularity
behaviour, a "generalized divisor" on twistor space, and this in turn determines a
holomorphic vector bundle over twistor space. This can be described explicitly by
means of a meromorphic framing such as (36), which has a singularity structure
corresponding to that of Eλ.

5. Finite-Action 1-Unitons: Bundles on a Compact Space

In this section, it will be shown that the finite-action 1-unitons on R 2 give rise to
certain holomorphic vector bundles over a compact 2-dimensional complex
manifold T. The space T is a compactification of the minitwistor space T1P1 used
previously. Recall that TPX is fibred over P 1 ? with each fibre being a copy of C To
compactify, we add on an extra section /^ the resulting compact space is still
fibred over P 1 ? but each fibre is now a copy of Ψv

One way of constructing T is to projectivize the rank2 bundle H°φH2, where
Hn denotes the nth power of the hyperplane-section bundle H over Ψv (So, in fact,
H° is the trivial line bundle, and H2 is the holomorphic tangent bundle.) Another
way is to take a quadric cone in P 3 , and blow up its vertex. Either way, one obtains
the rational ruled surface T. (In algebraic geometry, this space is usually denoted
S2.)

We shall use the same coordinates (, η, and ή as before, except that now η and ή
are allowed to take the value oo (the curve /^ is given by η = oo = ή).

A finite-action 1-uniton on R 2 is determined by a rational function f(z). The
corresponding holomorphic vector bundle extends naturally from TΨί to T: we
simply use the same description as before, in terms of the meromorphic framing
(36), (37). So we get a holomorphic vector bundle E of rank2 over T.

Let us study the behaviour of this bundle in a neighbourhood of the protective
line λ = 0. Such a neighbourhood is covered by the two patches U and U\ and the
patching matrix on UnU' which determines E is

κκ Λ/(-,r o ,

It is clear from this that A = 0 is a. jumping line: if/ has degree n, then the bundle
restricted to the line λ = λ0 is

f f l Θ H , if λo = 0
l A = Λ ° - ( f / 0 Θ # ° ( i . e . t r i v i a l ) , if 0 < μ | ^ l K }

Such a jump is said to be of type (n, — n). In the same way, λ= oo is also a jumping
line of type (n, — n).

There is an analogy here with Yang-Mills instantons [self-dual SU(2)
connections on S4]. These correspond to "real" holomorphic vector bundles over
the twistor space P 3 . But Donaldson [2] pointed out that framed instantons
correspond to framed holomorphic vector bundles over P 2 , with no reality
condition imposed. (Here "framed" means "framed at one point in the base space.")
And Hurtubise [7] discussed these in terms of framed vector bundles over a space
P2 (which is P 2 with one point blown up). This complex manifold P2 is, like T, a
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rational ruled surface (but it is not the same as T). The basic idea in [7] is that for an
instanton of charge fc>0, there will be k "vertical" jumping lines in P2 (i.e.
λ = λu...,λ = λk), and each of these jumps depends on three complex parameters.
So the moduli space of framed instantons has complex dimension 4fe, as it should.
The bundle over P2 is constructed by patching together "framed jumps," and this
procedure serves equally well to construct bundles over T.

The simplest example is if J is a 1-uniton depending on a rational function of
degree one. Such a J depends on 9 real parameters [3 real to determine an equator
in SU(2% and then 3 complex to specify the map / onto this equator]. The vector
bundle has two jumping lines, at λ = 0 and λ = oo, each of them of type (1, — 1). Now
the most general framed vector bundle with type (1,-1) jumps at λ = 0, oo (and
with no reality condition imposed) depends on 6 complex parameters (3 for each
jump). Imposing the reality condition reduces this to 6 real. So far, the bundle is
framed at just one point, say (λ, η) = (1,0) this determines a frame all along the line
λ = 1 (since the restriction of £ to this projective line is trivial). But we still have to
pick a frame on λ = — 1 (cf. Sect. 3), compatible with the reality condition, and this
requires a further 3 real parameters, since it amounts to picking an element of
SU(2). So the total is 9 real parameters, as anticipated.

The situation when / has degree n^2 is similar. The 1-uniton J depends on
4n + 5 parameters. Each of the two jumping lines is of type (n, — n), and a framed
jump of this type depends on In +1 complex parameters; after imposing the reality
condition and picking a frame at an additional point, we get 4n -f 5 real parameters
for the bundle, as expected.

Summary. A (static) 1-uniton, built from a rational function of degree n,
corresponds to a holomorphic vector bundle over compactified minitwistor space
T. Of the one-parameter family of lines that rule T, two are jumping lines, of type
(n, -n).

6. More Bundles over T: Time-Dependent Unitons

This section aims to indicate how the comments of the two previous sections can be
generalized so as to apply to time-dependent 1-unitons. So here we are dealing
with maps J:IR3^5ί7(2) satisfying (29). An extended solution corresponding to
such a J is a GL(2, C)-valued function Eλ satisfying

dE^iί-λ-^E.A,, 6Eλ = (l-λ)EλA-z, (40)

where Az and Az are defined by (28), and where E_ί=J. Also, Eλ should satisfy the
unitarity condition (6), and Eλ and Eϊx should be holomorphic in λ except at
isolated points. If all the singularities of Eλ are simple poles lying outside the unit
circle \λ\ = ί, and all the singularities of E^1 are simple poles lying inside \λ\ = ί,
then J = £_ ί is a generalized 1-uniton. (For the static 1-uniton dealt with before,
Eλ has a simple pole at λ = oo and Eχ * a simple pole at λ = 0.)

This structure is one that has been used for generating solutions of various
integrable systems of partial differential equations, and which is sometimes
referred to as the "Riemann problem with zeros" [8,4]. The corresponding
holomorphic vector bundles over minitwistor space TΨ1 can be constructed as in
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Sect. 4, in terms of a meromorphic framing determined by Eλ. The singularities of
the meromorphic framing are located on the lines λ = λβ where Eλ or E^1 are
singular. (It might be remarked that in the case of monopoles [4], the singularities
lie on curves in TJPX that are not of the form λ = constant; such bundles do not
extend to the compactification T.)

The expression for Eλ is derived, for example, in [10] [which uses a different
notation: Eλ is replaced by ψ = Eϊ1, and λ by C = i(l +λ)/(ί — λj]. Translated into
the present notation, the result is as follows.

Let vα (α = 1,..., k) be complex numbers with |vα| < 1 (these will be the poles of
Eχ *). For each α, let fa be a meromorphic function of the complex variable

zvϊ (41)

(i.e. fa depends on z, z, t in this combination). Define a k x k matrix Γ by

and define a phase factor p by

Then the expressions for E^1 and J " 1 are

J-'-pl-ip Σ TT^^'^Γi Λl ( 4 3 )

If /c = l and v = 0, then ω = z, Γ=| i ( l + | / | 2 ) , p = i, and (42), (43) reduce to (the
inverses of) (9), (10).

If fa is a rational function of ωα (for each α), then the total energy of the field is
finite. When one plots the energy density (33), one sees that the solution (43)
represents a multi-soliton configuration [10]. For each value of α, there are (deg/α)
solitons, all moving at the same constant velocity (determined by vα). When an
α-soliton and a β-soliton pass by each other, no scattering occurs.

It is worth emphasizing that the values of this general time-dependent solution
do not lie on a Grassmannian submanifold P x of SU(2) (unlike in the static case,
where they do).

In the same way as in Sects. 4 and 5, one can describe the holomorphic vector
bundle corresponding to (42), (43) in terms of a meromorphic framing, and (for fa

rational) these bundles extend to the compactified space X The lines λ = vu...,vk,
vj~ \..., vfc~

x are jumping lines. Let us content ourselves here with considering the
parameter count in the case where each fa has degree one (so there are k "simple"
solitons, each moving with a different velocity). To specify the solution J one has to
give the k complex numbers vα, the k functions /α, and an overall constant SU(2)
rotation: this adds up to 8fc-h3 real parameters. On the other hand, a framed
bundle with 2k jumps, each of type (1,-1), depends on 8fc complex parameters;
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after imposing the reality condition and framing at an additional point, we also get
8fc + 3 real parameters.

It is amusing to note that if we omit the framing, which amounts to dealing with
Yang-Mills-Higgs fields satisfying (31) rather than chiral fields satisfying (29), then
the number of parameters is 8/c — 3, which is the same as that of SU(2) Yang-Mills
instantons (cf. [1,2,7]). However, it is important to emphasize that the set of all
finite-energy solutions of (29) is m/zmίe-dimensional. The instanton problem is
elliptic, and there the condition of finite energy is sufficient to make the solution
space finite-dimensional. That is not the case with the hyperbolic equation (29); see
item (2) in the next section.

7. Some Open Problems

There are a number of open problems and questions that should be investigated
further.

1. In Sect. 3 it was shown that there is a mapping from bundles on TΨί to
solutions of (29) on RA Is this mapping one-to-one and onto? The problem is more
delicate than that of, say, monopoles [5,6], because of the different reality
structure.

2. What do bundles over the compact space T correspond to in space-time? In
other words, what are the boundary conditions that one must impose on J, to
ensure that solutions of (29) with these boundary conditions correspond to
bundles over T? As pointed out in Sect. 6, finite energy is not enough. The
condition that seems to be involved is that J should extend across ί = oo. More
precisely, if we take any timelike line in R 2 + 1 and identify t = — oo with t = + oo to
form a circle, then J should be real-analytic on this circle. In this context, it might
be pointed out that points in TΨλ with \λ\ φ 1, are in one-to-one correspondence
with oriented timelike lines in R 2 + 1. The real sections through Z and Z in TΨX

correspond to the points on the timelike line (see Fig. 2).

3. The bundle on T has one topological invariant, namely its second Chern
number. This will correspond to a conserved topological charge in space-time;
what exactly is it?
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4. This paper has dealt with 1-unitons and generalized 1-unitons, and with the
gauge group SU(2). With larger gauge groups, one is led to n-unitons, with n> 1.
These give rise to bundles over TPl9 of rank greater than two. Do these bundles
extend to the compactified space T?
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