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Abstract. We use the Feynman functional quantization scheme adapted to the
gauge theories with reparametrization invariance to the functional covariant
first quantization of the open bosonic BDHP string in a position representa-
tion. The consistent functional integral representation of the open string
propagator is derived and evaluated. This result is used as a starting point for
two kinds of constructions of the off-shell multiloop open string amplitudes.
The general idea of the presented approach is to consider the off-shell
amplitudes as functionals on the space ̂  of contours endowed with an intrinsic
metric or on the space

1. Introduction

The Polyakov path integral [1] over bordered surfaces was first considered in the
context of dual models beyond the critical dimensions [2]. At the same time its
application to the phenomenological model for the Wilson loop was discussed in a
more general framework by O. Alvarez [3]. In the current renewal of interest in
quantum string theory it has become clear that the Polyakov path integral
provides an efficient, manifestly covariant description of string theory at the
critical dimension [4—6]. The basic objects of the modern S-matrix formulation are
the on-shell multiloop amplitudes defined by means of the Polyakov functional
integral over surfaces with prescribed topology and with vertex functionals
corresponding to the ingoing and outgoing on-shell particle states [7]. The
advantage of this approach is that the Polyakov functional measure is reduced via
the Faddeev-Popov procedure to the uniquely determined measure on moduli
space [3-6]. As a result, on-shell amplitudes can be written as finite dimensional
integrals over moduli space of expressions made up of the known functions [8]. In
the past few years, important progress has been made in the investigation of these
amplitudes, especially in the case of the closed string [4-9]. Within the S-matrix
formulation, the sum over bordered surfaces appears in the functional integral
representation of the on-shell open string amplitudes [10].
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Although the S-matrix approach provides a full description of physical
processes, there are some questions of interest (i.e. the string vacuum, general
coordinate invariance, and low energy limits) which seem hard to answer within
this prescription. An alternative approach based on Alvarez' paper [3] has been
proposed by Cohen et al. [11]. The general idea of this approach is to consider the
functional integral over surfaces (with a given topology and endowed with an
intrinsic metric), connecting prescribed contours ku ...,kN in the target space:

4off
[fe1,...,feJV]= f 9g f ^ ( V o l ^ M x V o l - r M ) - ^ - ^ ^ . (1.1)

MM $M

In the case of a closed string the model manifold M is a two-dimensional
oriented manifold with iV-holes and /ι-handles and the functional integral (1.1) is
interpreted as an ft-loop N-states off-shell closed string amplitude.

In contrast to the functional integral representation of on-shell amplitudes, the
evaluation ( = definition) of (1.1) by the F-P procedure causes some problems. In
general the F-P method works only when the number of nondynamical variables
in a functional integral is equal to the number of parameters of a gauge group. To
be more precise, it can happen that nondynamical degrees of freedom become
dynamical due to an anomaly [1], but it is not of concern in our case (d = 26). A
simple counting shows that there are too many nondynamical variables in (1.1).
One can resolve this problem by imposing some ί^Oi^-invariant boundary
condition on the space of fields JίM x Sk

M. Such a boundary condition has been
proposed by Alvarez [3],

na

gt
bδχdbx» = 0. (1.2)

The problem with this condition is that we cannot integrate over x-variables. If
we consider (1.2) for a fixed metric g as a condition for x, the submanifold of δk

M

determined by (1.2) is not an affine space nor a sum of various affine spaces and the
functional integral over x is not Gaussian and therefore untractable. In the
literature [3,11-17] the calculation (= definition) of the functional (1.1) is based on
a modification of the result obtained in the case of closed surfaces:

Aoΐΐlkί,...,kN]= Π ί ®Ίi ί [Λ](det'P+P) 1 / 2(det^)- 1 3β-S [^^ l ].(1.3)
t = l ®m \ΎMΛ

The determinant of P+P, as well as the finite dimensional determinants
included in the measure [dt] on a fundamental domain [T^] in the reduced
Teichmϋller space [25], are evaluated with the mixed boundary conditions [3].
The determinant of the Laplace-Beltrami operator &g is evaluated with the
Dirichlet boundary conditions, and xcl denotes the solution of the equation
£PgXcι = 0 with the boundary conditions x^\dM = fef ° yf.

The expression (1.3) is unsatisfactory for several reasons. First of all the mixed
boundary conditions do not follow from the boundary conditions (1.2) and
therefore cannot cure the problem of nondynamical variables in (1.1) mentioned
above. This is just the origin of the averaging over boundary reparametrizations in
(1.3). In contrast to other functional measures in Polyakov's theory the functional
measure 2)f remains undetermined and is an untractable formal symbol. This
problem disappears for pointlike strings, i.e. for the semi- off-shell amplitudes
obtained by shrinking the contours kt to points [11,17]. In this case the expression
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(1.3) leads to the expected results [12-14,17]. Let us also note that even if it is
possible to provide a precise meaning to the averaging over boundary repara-
metrizations the resulting expression should be interpreted as an off-shell
amplitude sandwiched between projectors on the space of diff-invariant states
[12]. It is clear that such objects are insufficient to build up the Feynman rules for
the interacting string field theory.

There are some other evidences [18-22] that the off-shell amplitudes in the
string theory should be gauge dependent and therefore the averaging over
reparametrizations in (1.3) seems to be spurious. The arguments in [21, 22] are
mainly of a string field theory nature, while the derivations in [18,19] are based on
the BRST extension of the string hamiltonian and the proper time representation
of the propagator. In [20] another derivation of the off-shell string propagator
within the Batalin-Fradkin-Vilkoviski phase space path integral approach has
been proposed. In all these cases the original geometrical interpretation of the
Polyakov path integral is lost.

The aim of this paper is to construct a consistent covariant functional integral
representation of off-shell open string amplitudes. The general idea of the
approach presented here is to consider the off-shell amplitudes as functional
either on the space ^£6 of contours in R26 endowed with the intrinsic one-
dimensional metric or on the space <̂ £6 = ̂ 6 / R + . Such choices of variables in the
off-shell formulation of string theory are justified by the structure of the space of
string wave functional in the first quantized theory in the covariant gauge.

In Sect. 2 the consistency of the F-P procedure is discussed in the case of the
functional integral representation of on-shell open string amplitudes. This section
has an introductory character and the majority of the presented materials is not
new. The only novelty is an "integrated" version of the mixed Alvarez boundary
conditions which play an essential role in further considerations.

In Sect. 3 the covariant functional first quantization of the open bosonic string
in the position representation is carried out, according to the Feynman functional
quantization scheme [23] adapted to the case of the gauge theories with the
reparametrization invariance. The general ideas of this quantization scheme are
presented in Subsect. 3.1. In Subsect. 3.2 two different spaces $off, $off of open
string wave functionals are introduced. They lead to different formulations of the
first quantized string. The functional integral representations of the open string
propagators in both formulations are proposed and evaluated in Sect. 3.3. It was
shown that the consistency of these representations requires an additional stage of
the gauge fixing consisting in a choice of an appropriate subbundle of allowed
metrics in the space of string trajectories. This gauge freedom is related to the
freedom of choice of the open string hamiltonian. The considerations in Sect. 3 do
not provide a full description of the first quantized string. The complete
formulation requires the BRST extension of the propagator and of the space of
wave functionals. This problem is beyond the scope of this paper and will be
presented elsewhere. Nevertheless, the results of Sect. 3 allow us to generalize the
functional integral representation of the propagator to the case of arbitrary off-
shell open string amplitudes. Such a generalization is presented in Sect. 4.
Conclusions and a discussion of directions of further work are included in Sect. 5.
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2. The On-Shell Open String Amplitudes

In order to give a meaning (via the F-P procedure) to the Polyakov functional
integral over surfaces with a boundary it is necessary to specify appropriate
boundary conditions [3]. In the case of on-shell open string amplitudes the
boundary conditions for the variable x: M-*]Rd are a natural generalization (for
an arbitrary bordered Riemann surface M) of the string edge conditions. They
follow from the variation of the classical BDHP [20] action:

na

gdax%M = 0. (2.1)

ng denotes the normal inward direction to the boundary dM with respect to the
metric g on M. This condition is invariant under the action of the semidirect
product ̂ Q i f M of the group 3)0

M of all diffeomorphisms of M connected with the
identity and the group iΓM of conformal deformations of metrics on M.
Throughout the whole paper we will deal only with S%. (The residual modular
invariance can be taken into account by restricting the final integral over the
reduced Teichmuller space [21] to a fundamental domain of the discrete mapping
class group ^M/^M)- I*1 order to simplify the notation we shall write in the sequel
9M instead of 3f%.

We would like to define a partition function for the open string by analogy with
the closed string case [4-6]:

ι= \ ®% \ (\ @fx J 9φ\-χe-**-*\ (2.2)

where JίM is the space of all metrics on M, <fjf - the space of mappings x: M-^Rd

fulfilling the boundary condition (2.1); S[g,x] denotes the BDHP action for the
bosonic string. According to Polyakov's ideas [1, 28], the functional measures in
(2.2) are treated as infinite dimensional volume forms related to the ultralocal
Riemannian structures H(\), E9(\% Hβ(\), W9(\) defined on JίM, S% ®M9 iTM9

respectively:

Mg{δg\δg') = l }fgd2zgacgbdδgabδg'cd, δg, δg' e *rqJtM, (2.3)
M

Eg

x(δx\δx') = f ]A>d2zδxμδx'μ, δx, δx' e2ΓJn^ « $1%, (2.4)
M

HUδfW') = ί }/gd2zgabδf°δf'b, δf, δf e Γuβ°M, (2.5)
M

Wξ{δφ\δφ')\]/~gd2zδφδφ', δφ,δφ'e<Γφψ Mκψ M. (2.6)
M

Since the quotient space JίMl{@M x iΓM) is homeomorphic to the reduced
Teichmuller space T^ of the surface M [25] one can expect that the functional
integral (2.2) reduces (via the F-P procedure) to a finite dimensional one over T$.

The integration over $Jf in (2.2) is Gaussian and yields the ^M-invariant
functional on MM\

. ~dl2
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where det^ S£g denotes the determinant of the Laplace-Beltrami operator acting on
the space of scalar functions with the Neumann boundary conditions.

In the conformal gauge the F-P procedure with respect to the group ΘM is
based on the splitting of the space ^gJtM tangent to JίM at every point g e JtM,

ergjιM=πg®tfg, (2.7)

into the space #?g of traceless symmetric tensors δhab and the space Jfg of tensors
proportional to the metric δφgab(δφ e 1V*M\

The F-P operator Λg

+) = PgPg is defined by means of the conformal Lie
derivative operator Pg [3, 22]:

Pβ • rid®M^3€β, (Pβδf)ab = Vaδfb + Vbδfa - gabVcδfc, (2.8)

and its formal adjoint Pg,

P;:Jf§^^S°M9 (P^δh)a= -2Vbδhab, (2.9)

where SΓiόβM denotes the space tangent to the group 3>M at the identity.
As it was pointed out by Alvarez [3] the determinant oϊPgPg can be evaluated

if the operators Ag

+) and Ag~
) = PgPg are self-adjoint positively semidefined elliptic

operators. This requirement, together with the additional one concerning the
relation between the spectra of Δg

+) and Δg~\ leads to the following general
structure of the admissible boundary conditions on dM [3]:

Λ 1 5 / = 0 , a2δh = 0, @2(Pgδf) = 0, Λ1(P;5Λ) = 0, (2.10)

where J^1? J*2

 a r e local linear relations not involving derivatives for which the
integral

f dsnaδhabδfb

dM

vanishes.
The space ^iύβM consists of vector fields δfa an M with the boundary

condition naδfa\dM = 0. This condition has the unique extension to the system
(2.10):

naδfa = 0, (2.11)

fnbδhab = 0, (2.12)

fnb(Paδf)ab = 0, (2.13)

rf{P^h)a = 0. (2.14)

From now on the system above will be called on >l-type system.
The additional boundary conditions mean that in the functional integral (2.2)

we cannot integrate over the whole space JίM but rather over a submanifold of JίM

the tangent space of which is determined by (2.12), (2.14). Similarly, the condition
(2.13) leads to a restriction of the diffeomorphisms group.

In order to construct an appropriate submanifold of MM let us first recall some
basic facts about the doubling construction [13]. For a given oriented 2-dimen-
sional surface M with boundary we consider its copy M with the opposite
orientation (the mirror image). The double MD of M is the orientable closed
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manifold obtained from M and M by gluing about the corresponding points on the
appropriate boundaries. With this construction M and M become bordered
submanifolds of MD and dM = Mc\M is a one-dimensional submanifold of MD.
We say that an orientation reversing diffeomorphism i of MD is an involution of
MD if its set of fixed points is dM and i2 = idMjD. Note that the existence of at least
one such involution follows immediately from the definition of MD. Equivalently
one can define the doubling as a closed manifold with involution. For every
involution i on MD there is the uniquely determined invariant direction nt on dM:

! > — - « , . (2.15)

A metric g on MD will be called i-symmetric if the involution i is an isometry of

g

It is clear that for an i-symmetric metric g the normal direction ng determined
by g on dM coincides with the invariant direction of /,

Furthermore, for any i-symmetric vector field F ( + ) on MD,

V{+) = ί^+\

and for any i-antysymmetric vector field V(~) on MD,

we have the identities:

0, (2.17)

Λϊ sO, (2.18)

where f denotes the unit vector tangent to dM. Note that dM is geodesic with
respect to the metric g.

Let us now consider a metric g on M and define the metric gs on MD by setting

gs\M = ί*g, gs\M = g, (2.19)

where i is some involution of MD. The resulting metric gs, in general, will not be
continous and differentiable across dM. The coincidence of the normal direction
ngS with Hi is a necessary condition for the metric (2.19) to be continuous. Equations
(2.17), (2.18) provide conditions for (C1) differentiability. The conditions for
continuity of higher order derivatives of g can be formulated by relations on dM
involving higher order covariant derivatives of (anti-) symmetric vector fields.

For a given involution i on MD we define the space Jίιi} as a space of metrics
admitting a C1 extension to i-symmetric metrics on MD. We are interested in the
space ̂ gJ^M tangent to Jtl

M at g e Jίι

M. This space consists of symmetric co variant
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tensors δgab fulfilling the boundary conditions:

> ^ 0 ' (2 2°)

The conditions above can be easily derived by the variation of the conditions
(2.16-2.18). The important feature of the boundary conditions (2.20) is that they are
compatible with the orthogonal decomposition (2.7):

(2.21)

b = 0, nlVδhab

The space Jfj is just the space of symmetric tensors determined by the
boundary conditions (2.12), (2.14), therefore we should replace JίM by Jίι

M in the
functional integral (2.2). But Jί{

M is not invariant under the action of \ 0 i f M , so
we must restrict the gauge group too. Fortunately, this can be done consistently
with the boundary conditions (2.13).

A diffeomorphism / of MD will be called /-symmetric if it commutes with the
involution /:

iofoί = f. (2.22)

It is clear that if g and / are /-symmetric on MD then /*g is /-symmetric too. For
feS)M let us introduce the diffeomorphism fs of MD defined by

/SIM=/> fs\M = i°f°i'

The diffeomorphism fs constructed in this way is /-symmetric and continuous
for all fe 3)M. It follows from (2.22) and the uniqueness of the invariant direction nt

that the equation:

is a necessery condition for fs to have continuous first derivative.
We define the subgroup S)1^ e S>M as the group of all diffeomorphisms of M

which admits the C1 extension to /-symmetric diffeomorphisms of MD. The space
SΓiffiu consists of all vector fields on M satisfying the boundary conditions (2.11)
and (2.13).

In a similar way one can obtain the restricted group of conformal
deformations:

ir^=^φeiTM:n^aφ =
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Resuming, the imposition of the ^4-type boundary conditions necessary to
ensure the consistency of the F-P procedure is equivalent to the restriction of JίM

and @ M 0 # M in the definition of the partition function to Jl^ and ^OΨJi1

respectively. There is, however, some technical problem related to the geometry of
the action of the group of diffeomorphisms on the space of metrics. In fact, Ji{£ is
invariant under the action of the group 3)^ (diffeomorphisms which admit
continuous, up to the second derivative, i-symmetric extension on MD) but not
under the action of &£. To avoid this problem we can consider the spaces Jί^,
^M°°? ^M°° defined by means of smooth i-symmetric extensions on the doubling.
This is possible because for a smooth /-symmetric metric g on MD the operators
PgPg and PgPg are elliptic and positively defined and therefore they have smooth
eigenfunctions which can be symmetrically divided into ϊ-symmetric and
i-antysymmetric parts. It is clear that the i-symmetric part provides the solution of
the ,4-type boundary value problem for the operators PgPg on ̂ β^0 and PgPg
on J ^ 0 0 . Therefore, for the evaluation of the F-P determinant it is inessential in
which class of spaces we work (provided that the boundary condition up to the first
derivative is taken into account). Note that the quotient space Jί1^l&iΓ O^M °°)
is the relative Teichmϋller space T^oίM [26] which is isomorphic to the reduced
Teichmύller space T$ [27]. The relation between the 4-type boundary value
problem and the doubling construction was first pointed out by Blau and
Clements in the case of constant curvature metrics and used in the evaluation of
the off-shell closed string amplitudes [13].

We arrive at the following definition of the open string partition function:

i*= ί @Z ί ^x ίVol^xVol^ i 0 0 ) " 1 ^" 5 ^* 1 , (2.23)
Jί*>«> Sl

M

M f
The new definition above depends on some arbitrary chosen involution i on M

(in particular it depends on the invariant direction nf). Using the F-P method one
can check by the explicit calculation of (2.23) that Zjfc' is in fact independent of i. It
can also be seen in a more heuristic way. For another involution i on MD we have
the smooth diffeomorphism / = ΐ o i\M. Since the measure and the action S[g, x] in
(2.23) are explicitly ^M-invariant, the change of variables (g, x)->(/*g,/*x) results
only in the change of integration domain Jί^ x S^-^Jί^"0 x S^ and we obtain
ZOi _ yθif

M — ^M '

For the functional integral (2.23) one can apply the F-P procedure exactly as in
the case of closed surfaces [28]. Let us stress that the boundary conditions for the
F-P operator follow from our choice of domain of integration. Moreover, at every
stage of evaluation of (2.23) (i.e. for every gsJί^) one can use the doubling
construction [13]. It allows us to treat the problem of the local and global
conformal anomaly as in the case of the closed string [6]. The evaluation of (2.23)
proceeds along the standard lines and the final form of the partition function in the
conformal gauge g = eφgt is as follows:

1 3
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where M is a surface with /i-handles and b-boundaries, {δψi}ftiβ~3b denotes an
arbitrary basis in KerP^ and

The determinants of PgPg and 3?Q are evaluated with the 4-type and Neumann
boundary conditions, respectively. The formula (2.24) is the starting point to
discuss the on-shell open string amplitudes [10].

3. The Covariant Functional Quantization of the Open Bosonic String

3.1. General Ideas

Within the Feynman prescription of the covariant functional quantization of
nondegenerate Lagrangians [23] the space H of wave functions consists of
complex valued functions on the space Q of boundary conditions {<?/}?= i of the
trajectories of a classical system with the inner product

Sdnqψ(q)φ(q). (3.1)
Q

The central object of this approach is the integral kernel (with respect to (3.1)) of
the evolution operator expressed in terms of a functional integral over trajectories.

The degenerate Lagrangian case requires changes in both stages of the scheme
above. For the gauge theories the space of boundary conditions divides into classes
of physically equivalent conditions. Therefore, the wave functions representing the
physical states should be constant in the equivalence classes. These classes can be
described as orbits of some group ^ (acting on the space of initial conditions)
induced by the group of gauge transformations (acting on the space of trajectories).
Accordingly, the "physical" wave functions can be described as ^-invariant
functions. Roughly speaking, the number of parameters of the group ^ is equal to
the number of first class constraints linear in momenta present in the Dirac
analysis [29] of a system considered. The restriction to the space of wave functions
with some symmetry in the covariant prescription is then equivalent in the
canonical quantization to the restriction to the subspace of states annihilated by
the corresponding constraint operators.

For gauge theories without reparametrization invariance all first class
constraints are linear in momenta and can be taken into account by the
requirement of an appropriate invariance of wave functions. The quantization
scheme is completed in this case by evaluating the integral kernel of the evolution
operator determined as a functional integral over classes of gauge equivalent
trajectories. Let us note that the problem of constructing an appropriate inner
product in the space of symmetric wave functions is not trivial.

The important feature of gauge theories with reparametrization invariance is
the appearance of first class constraints quadratic in momenta. Moreover, since in
this case the gauge transformations connect trajectories starting and ending at
different times the wave functions corresponding to the physical states should be
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time independent. In fact, due to the vanishing of the canonical Hamiltonian for
such theories the Schrόdinger equation is trivial and the whole dynamics is
described by the constraint equations [30]. The integral kernel of the evolution
operator is simply the delta function but there exists a corresponding object
defined by the functional integral over trajectories - the propagator which has the
quantum mechanical interpretation as the integral kernel of the operator inverse
to the operator of a quadratic in momenta constraint. More precisely, such
interpretation is valid only when one can consistently solve all linear in momenta
constraints. With a part of these constraints unsolved the propagator acquires an
additional contribution from the Stύckelberg and the ghost fields.

In the next section we will show how these general ideas of covariant functional
quantization can be applied in the case of the open bosonic string described by the
BDHP action [24].

3.2. The Space of the Open String Wave Functional

In general the open string trajectory is described by the triplet (M, g, x\ where M is
a rectangle-like 2-dimensional manifold, g is a metric on M and x is a mapping
from M into the target space Rd. The general gauge transformations include the
Weyl rescalings of the metric and the diffeomorphisms f:M-±M' (which can
change the manifold M). The first stage of the gauge fixing in the presented
formulation consists in the choice of some fixed 2-dimensional manifold M
(diffeomorphic to the rectangle). With this gauge the space of string trajectories
and the space of gauge transformations reduce to the space JίM x Sd

M and to the
group ^ M O ^ f , respectively.

Let us note that other gauges are also possible. In the local formulation (in
terms of infinitesimal metric variations) they were discussed by Redlih [21]. The
general idea of this approach is to consider the metric variations generated by
diffeomorphisms moving the boundaries of M. In the global formulation it
requires a notion of path integral over the space of 2-dimensional rectangle-like
manifolds and in particular a ^-invariant Riemannian structure on this space.
Realization of this program leads to complicated constructions and will not be
discussed here.

We will call two pairs of the opposite sides of M the "timelike" (T) and
"spacelike" (S) boundaries of M (Fig. la). In order to specify the boundary
conditions along the T-boundaries of M, we will use the doubling MD of M
(Fig. lb) with some involution i on MD. As it follows from considerations of the
previous section the space of string trajectories is defined as the cartesian product
^ M = ^ M x <̂ M °f the space Jίι

M of the metrics on M with smooth i-symmetric
extensions on MD and the space δι

M of the mappings with the Neumann boundary
conditions along the T-boundaries of M. In addition, we require that the
boundaries of M be perpendicular one to another at all corners of M with respect
to the metrics geJ?ι

M [17]. The group of the gauge transformations ^ Q f ^
consists of the diffeomorphisms f:M-+M admitting smooth i-symmetric exten-
sions on MD and the functions φ: M->IR with the Neumann boundary conditions
along the T-boundaries.

Let us consider the space si of the boundary conditions of string trajectories.
Within our (M-fixed) gauge the initial (final) boundary conditions for an open
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where

are the inclusions of the initial Σt and the final Σf boundaries of M (henceforth
(i->/) denotes the same formula for / indices). All possible initial conditions form
the cartesian product JίΣ. x Sd

Σ. of the space MΣ. of all einbeins on Σt and the space
&%. of all mappings xt: ΣΓ»IRd satisfying the Neumann boundary conditions at the
ends of L. Accordingly, the final boundary conditions form the space JίΣj x $Σf.
Both spaces are independent of the special parametrization of M, Σί? and Σf.
However, it should be possible to compare the initial and the final conditions. This
can be done by introducing the "reference" space Jίhxid

L together with the
isomorphisms

σf: MΣi x ti^Jlh x Λi, (i->/) (3.3)

induced by the diffeomorphisms: σ^.h^Σ^ (i-+f). The choice of some "reference"
interval L(L= [0,1]) can be regarded as the first stage of the 1-dimensional part of
gauge fixing in our formulation.

Restricting oneself to the space of string wave functionals on JίL x Sd

L gives
part of the linear in momenta constraints already solved. The remaining unsolved
part is related to the residual induced gauge transformations on JίL x $d

L. They
form the semidirect product 2LQi^L of the group @>L of all orientation preserving
diffeomorphisms y: L^L and the group iVL of all real valued functions $ on L with
the Neumann boundary conditions ($(0) = $(1) = 0). The action of ^ L O # i , on Mh

x Sd

L has the following form:

^ L x $L 3 ie> *) ~~ > (exρ($)y*e, y*x) e Jίh x Sd

L.

The identification of the initial and final boundary conditions of string
trajectories with points in ML x δd

L manifestly depends on an arbitrary choice of
the parametrizations σi9 σf (3.3). One can overcome this problem choosing the
quotient ^ = C ^ L X ^ L ) / ^ L

 a s th e space of boundary conditions for string
trajectories. The space #£ has a simple geometrical interpretation - it is the space
of all metrized open contours in Rd. For every string trajectory we define the initial
ct and the final cf boundary conditions by

where Π<# denotes the canonical projection in the principal bundle

ϊ

We define the space £>off of off-shell string wave functionals as the space of all
functionals on #£. One way of description (parametrization) of the space § o f f is
offered by the Faddeev-Popov method. One can consider § o f f as the space of
^L-invariant functionals on Jth x Sd

L, which are completely determined by their
values on some gauge slice £fL related to a global section of the bundle (3.4). Note
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that in the case of the open string the bundle (3.4) is trivial (there is no Gribov
ambiguity).

In the sequel we restrict ourselves to a special subclass of gauges which can be
called 1-dimensional conformal gauges and are determined by the gauge slices:

S?t = {{e,x)eJίLxSi:e = λe,λeW.+}. (3.5)

This restriction is the 1-dimensional part of the second stage of gauge fixing in
our formulation. In this gauge the string wave functional Ψ[c~\ can be regarded as
the functional Ψέ[oc, x] = Ψ[μe, x] on the space R+ x $d

L.
Let us now turn to the description of the residual gauge invariance in the space

9fn related to the "unsolved" #^-invariance in JίL x δ\. Due to the semidirect
product structure of the group @)LQΨ*L the action of iVh on Mh x Sd

L does not
reduce to a well defined action on %>d

L (with the exception of the 1-dimensional
subgroup R+ Cifh of constant rescalings of einbeins which commute with 3)j).

With respect to this problem the gauges (3.5) are very special. For a fixed e one
can construct the subgroup SlC^LQi^L defined by

The direct product R+ xS)e

L preserves the gauge slice 5^ and describes the
residual gauge invariance in the gauge (3.5). In fact the group S)LQiΓL can be
decomposed as the semidirect product

and for every e we have

The residual gauge invariance in %>d can be also described in a gauge
independent way. Let us consider the space Jih x J*L, where <3>L denotes the group
of the orientation preserving diffeomorphisms of L. The action of the group R +

x 3)L on ML x 3>L defined by

JίL x §L B (e, y)μ> Y ) e R + X fc> (λy*e, y ~ ιy

induces the principal fibre bundle structure:

Let us consider the family of global sections of this bundle determined by the
gauge slices:

®L:e = e}. (3.6)

We define the group structure in ̂ L :

%L x <$L3(Γ, Γ)^ΓΓ = Πφ(e, γ o f) G <$L , (3.7)
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where Γ = Π^(έ,y), Γ = Π9(έ9f). The right action of <$ on %{ is defined by:

<#d

L3c >Γc = Π<e{θLe,x°y)e%d, (3.8)

where c = Π<#{(xe,x) and Γ = Π#(έ,γ).
Both definitions above are ^-independent. From (3.7) it easily follows that (SL is

isomorphic to 3)L. We also have

The subspace ξ>°phCξ>oΐf of the "off-shell physical" wave functionals corre-
sponding to the string states annihilated by all constraints linear in momenta can
then be defined as the subspace of ^-invariant functionals on ^d

L.
Let us introduce another space of string boundary conditions:

As in the case of ^£, for every string trajectory (g, x) e Jil

M x Sd

M one can define two
points in %!d

L as the initial ct and the final cf boundary conditions independent of
any parametrization of M, Σi9 and Σf. We will denote the space of string wave
functionals defined on #£ or, equivalently, the subspace of 1R+-invariant
functionals on ̂  by § o f f . The parametrization of the space based on the Faddeev-
Popov method requires global sections in the bundle:

^dL~£dL' (3.9)

We will use the 1-dimensional conformal gauges:

Pt = {fo *) e Ά x «u e = έ} (3.10)

The residual gauge transformations are described in ^d

L by the action of the group

There also exist gauge independent parametrizations of the spaces ^d

L, ΨL. For
a given einbein eeJtL, let us consider the 1-dimensional Laplace-Beltrami
operator

e dσ e dσ

acting on the space of scalar functions on L satisfying the Neumann boundary
conditions. Let us denote by {ψn}n>0 the complete basis of all normalized
eigenfunctions of ££%.

CP e 1 e d e Λ
<£ΛDe = λnψn , Wn = 0 ,

dσ σ=o,ι

5eψe

nψ
e

mdσ = δn,m9 n,m = 0 , 1 .
L
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We define the mapping Θ> from the space Jίh x Sd

L onto the space Λd of infinite
sequences of modes by

c»= J eψe

xx
μdσ, n = 0 , l . (3.11)

L

It follows from the completeness of {ψ*}n > 0 and the in variance of J5fέ (ψy*e = y*ψn)
that Sf is constant along ^L-orbits in Jίh x Sd

L and reduces to the 1-1 mapping
0*: cβd

L-+Λd. In this parametrization the R+ action on ^ d has the following form:

The corresponding gauge independent parametrization of ^ d is defined by

n = 0,l,.... (3.12)

The next task is to construct an inner product in the space ξf^. It requires some
notion of integration of S)LQ ^-invariant functionals over ^ L x ^ . Applying the
geometrical framework of functional integration of invariant objects one should
start with some ultralocal, invariant Riemannian structure on Jίh x $d

L. Just like in
the case of the space of string trajectories there are no 3)LQ^-invariant,
ultralocal structures on JίL x Sd

L (one can achieve either ^ L - or ^L-invariance).
The ^-invariant metric structure G(|) on JίLxSd

L is well known from the
functional quantization of the spinless particle [11, 28], where JίL x Sd

L plays the
role of the space of trajectories. We have [28]

δeδe'
G(et5t)(δe,δx\δe',δx')= J ds+ J eδxμδx'μds.

We define the inner product (.) in ξfj^ by

(Ψ, Ψ')= j {e,x){Vo\βLy\Vo\e1irL)-'Ψ[_e,x\ Ψ' [β, Jc],

where the functional measure 3)(e, x) is related to the metric structure G(|). In the
gauge (3.5) the standard application of the Faddeev-Popov method with respect to
the group Q)h yields

(Ψ\Ψ') = ί J da j ^ ^ ( V o l ^ Γ 1 ^ [ α , x ] Ψ'^x], (3.13)
o sL

where / = J έdσ and the functional measure 3)™x is related to the metric structure

Ea\\) on Si6 defined as follows:

Ef{δx\δx')=\aιeδxδxfds.
L

The functional measure in the inner product (3.13) is not R+ x ^-invariant
and cannot be reduced by the Faddeev-Popov method to an ultralocal measure on
the quotient spaces ΨL =
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3.3. The Open String Propagator

According to the general scheme of the functional quantization presented in
Subsect. 3.1 the string propagator P^c^Cf] in the space § o f f is defined as a path
integral over the space ^M(U f) of the string trajectories starting at the "initial"
class of metrized contours cte^d

L and ending at the "final" one cfe%ld

L. In the
parametrization of %>d

L determined by the gauge fixing PI (3.8) one can formulate
these conditions in the following way:

,, σfXi) = Π^(e, xj = ct, ( i-/). (3.14)

Note that the conditions (3.14) are independent of the choice of parametrization
σ, : L^Σb σf: L-+Σf and of the choice of gauge fixing in %ίd

L.
The boundary conditions (3.14) are ^-invariant, and one can expect that in

the "evaluation" of the propagator P[cb c/] the Faddeev-Popov method should be
applied for the group &M. As was discussed in Sect. 2 the requirement of
consistency of this step leads to some restrictions on the space of metrics and gauge
transformations. In our case the boundary conditions along the T-boundaries of
M fulfill this requirement. It is convenient to derive the corresponding conditions
along the S-boundaries Σi9 Σf of M, before we give an appropriate definition of the
string propagator. Repeating the considerations of Sect. 2 we obtain the space of
open string trajectories 2T$f = Jί^ x Sd

M, where Jfy is the subspace of Jί{

M

consisting of all metrics admitting y-symmetric extensions on MD. MD denotes the
doubling of M with respect to the "spacelike" boundaries and j is an arbitrarily
chosen involution on MD (Fig. lc). The corresponding restriction of the gauge
group ^MΘ^L we will denote by ^ © # 2 / .

Since the conditions (3.14) are not invariant under the action of the whole
group ϋ^li, the gauge invariance which should be taken into account in a
functional integral representation of the propagator is related to the subgroup
^ & O # # C ^ r Θ ' ? ^ / , where # # denotes the subgroup of HT$ consisting of
functions which are constant on the S-boundaries Σb Σf. It leads to the following
formal expression for the open string propagator:

Plcbcf\= .J 9{g,x)( [.@fYΊ f SφY'e-sf-*, (3.15)

where the functional measures Θ{g,x\ 3ff9 Q)φ are related to the Riemannian
structures defined by (2.3,4), (2.5), and (2.6) respectively. Note that there are too
many nondynamical variables in the path integral (3.15), so one can expect that
this expression should be modified. We will return to this problem after the
discussion of the F-P procedure.

Using the formal generalization of the Fubini theorem [28] one can replace the
integration over ̂ (i, f) by the integration over the subspaces of a fixed g and then
over the manifold Ji%\

J 9xe-s™. (3.16)

Sg

M{i,f) denotes the affine space of mappings x:M->Rd fulfilling the boundary
conditions:

xί = Xi°7,[g,«], (*->/). (3-17)
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where for every g the diffeomorphisms

Vi[g,e]:Σt-+L9 (*-»/),

are uniquely determined by the equations

const, x et = γf [g,έ]έ, (/-*/). (3.18)

Since for γ e <3L

Vt[g, 7*2] = 7~x ° 7,[g, έ], («-/) (3.19)

and
γt[g9 const x e] = yf[g, έ], (i->/),

the boundary conditions (3.17) are independent of the choice of gauge 9*1 in Ψ.
The functional integral over $g

M{Uf) is Gaussian and can be evaluated:

f ^xe-S[^x] = (dQtDN^Q)-d/2e-s^xί[g]\ (3.20)
(if)

where Jδf̂  denotes the 2-dimensional Laplace-Beltrami operator acting on the
space of scalar functions on M with the Dirichlet boundary conditions along the
S-boundaries and the Neumann ones along the T-boundaries. x{ [g] is a solution
of the boundary value problem

Xι°yι[fc«L (*->/), (3.21)

= 0 on S A A ί Σ ^ )

The right-hand side of formula (3.20) is a ^^-invariant functional of g so one
can apply the standard Faddeev-Popov method to the path integral:

P{.cbcf-\= f ^ ^ g ί V o l ^ - ^ o l i ^ - ^ d e t ^ ^ - ^ β - ^ ^ M (3.22)

with respect to the group
In order to construct a conformal gauge slice let us consider the principal fibre

bundle [25-27]:

T* = T*. (3.23)

In the case of a rectangle the relative (reduced) Teichmύller space T^(T^) is
isomorphic with 1R+ and there exists a global smooth section of the bundle (3.23):

Using the section Ξ one can construct the global conformal section Ξc of the
bundle:

i
Jty&lt (3.24)
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determined by the conformal gauge slice 5^ = 3 c

teΓ*}. (3.25)

The application of the F-P method for the functional integral (3.22) in the
gauge fixing (3.25) together with the change of variables ^3g-^{t, φ)eΈL+ x ^
yields

J?zΓdl2

 e~
s^x(m, (3.26)

where all symbols are defined as in Sect. 2. The index AA in the symbol of
determinant of PgP^ means that the ,4-type boundary conditions have been
chosen on the S- and T-boundaries of M. Note that there are no conformal Killing
vector fields on M with the ̂ 4-type boundary conditions [17]. The functional
measure S)φ in (3.26) is related to the nonconstant Riemannian structure W((\)on

Wφ{δφ\δφ')= I eφ\fg<d2zδφδφ'.

As was shown in [17], in the case of bordered surfaces with corners the
conformal anomaly does not vanish even in the critical dimension. It is due to the
non-vanishing corner contribution which in d = 26 has the form exp Γf Y φ(zif\ (the

L * J
sum is taken over all corners zx of M). Therefore in d = 26 one can rewrite (3.26) in
the following form:

(3.27)

In the formula above a drawback of the definition (3.15) of the propagator
becomes more visible. Even at the critical dimension the integration over
"conformal factor" does not decouple. There are two independent sources of this
difficulty. First of all, as a result of our choice of boundary conditions for
trajectories (3.14) the maximal symmetry group of the "classical action"
S[g, */Tg]] is ̂ MΘ^M ( a nd not ^ % Θ # $ ) . Secondly, due to the corner anomaly
the symmetry group of the integrand in (3.27) reduces further to the group

ι£, where iVll consists of all functions φeiF'M satisfying the condition:

Note that the symmetry properties of S[g,x/Xg]] are similar for open and
closed strings while the corner anomaly is a specific feature of the open string. For
this reason it is convenient to consider the difficulty with (3.27) in two steps. Firstly,
we assume that there is no corner anomaly. With this assumption all problems are
due to the integration over the whole group # $ in (3.27). This is the reflection of
the problem mentioned above with nondynamical variables in the ("too large")
space of trajectories ^j/(i,/). It follows from formulae (3.22) and (3.27) that an
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appropriate space of trajectories (i.e. a space for which it is possible to define the
path integral (3.15) by Gaussian integrals and by the F-P method) should lead to
the space of metrics @lM C Jty which has the structure of a subbundle of (3.23) with
the structure group 0j&Θ#$.

Let us denote by 95M the space of all subbundles J^M,

T* (3.28)

of the bundle (3.23). Note that fixing some "reference" section of (3.23) one can
parametrize the space 23M by the space of functions:

For every J*M e 95M we define the functional

Pic* cf\aM-\ = .. J 0 ( g , x) (I. ®f\-' (I.. SφY1 e-s™, (3.29)

where

U fWu) = {(g, x) e Jikh f) •

The expression (3.29) fulfills the consistency requirement of the F-P method,
and the functional P[cbcf\^M~\ can be evaluated at the critical dimension:

)
( 3 3 0 )

where Ξ\Ύ^3t^^e^M is a global section of the subbundle J*M.
Let us consider the functional (3.30) in the special case of the subbundle Sf^

constructed from the subspace Ji^ of all metrics geJKJί with zero scalar
curvature by the action of the group # $ . Note that this subbundle is in a way
"natural" since its definition is independent of any parametrization of the
Teichmϋller space and does not require any additional structure on M. In the case
of @t°M an explicit construction of the global section Ξo: Tβ 31 ->gO e @IO

M C Jί^ is
especially easy. In the parametrization (z°, z1) e [0,1] x [0,1] « M of the rectangle
M one can define Ξo by [11,17]:

(3.31)

Taking into account (3.21), (3.30) and proceeding as in [11] we have

i ] =const } dteπtlΠ(ί -ei2i"")~]- « r is e-siΛ.Vto&π; (3.32)
0

where

(3.33)
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and

denote the gauge invariant parametrization (3.12) of cb

Since every subbundle J*M e 33M can be obtained from another one by a vertical
automorphism of the bundle (3.23) we are able to express the functional
P[cbcf\@lM~\ in terms of 3S°M. For every global section Ξ\Ύ^3t-^^eMM there
exists a function T^Bt-^φfeif^i and a section Ξo:T£st^oeΛ^ for which

(3.34)

Let Cf = Π%(e, x(), (i->/). From the if^ί-invariance of the BDHP action we have

where x{[g'] is the solution of the boundary value problem (3.21) with g = g* and
with the boundary conditions:

Since

x{ [g'] is also the solution of the boundary value problem (3.21) with g=g* and with
the boundary conditions:

4' [ Π o h = ίί o ΛCT, «] = X, o y ^ , g\, (i->/). (3.35)

With this identification, using the ^O^M-invariance of the "classical action"
S[g,x/"[g]], we have

S[gί,xί[gί]] = S[g-ί,xf[g-ί]] = S[gί

o,xΓCgίo]]5 (3.36)

where go is the section (3.31) of 0^u.
The relation between x , x'f and jcf, x̂  in (3.35) can be expressed in the following

form:

3 = MM, («-/), (3-37)

where the diffeomorphisms y[[e], y}[έ] are uniquely determined by the equations

const x έ=γl*ie] (exp(#)*), (i-^/), (3.38)

^^^o/^oyΓi^έ], (/-,/). (3.39)

The diffeomorphisms y\[_e\ ff[β] have the following important feature: they
are independent of the choice of decomposition (3.34) and of section Ξ in £SM. In
fact, for a fixed Ξ various decompositions (3.34) yield the boundary values
φt

i = φtojb (i^f) which differ by a constant. One can obtain the same effect
changing the section Ξ by the action of the group # $ . In both cases the solutions
of the equations (3.38) remain unchanged. For sections Ξf:T^3t-^gft = f**g? e $M

the decomposition (3.34) takes the form:
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Since

7 ί[/*g^A]=7 ί[g5έ]°/oΛ J ( i-/)

Eq. (3.39) defines the same function $\ as in the case of section 2,

It follows from the definition (3.38) that

γ'iίλγ*έ-]^γ-1ofi^oγ, (,•_>/).

Therefore the family {I^9Γj}teT^ of elements of the group 0 (3.7) determined by

is independent of the choice of e. Thus it can be considered as an invariant
characteristic of the subbundle J M c 8 M .

Taking into account the relations (3.36), (3.37), the definitions (3.8), (3.40) and
the results (3.32, 33), for an arbitrary subbundle ^ M C ® M

 w e have

P[c l,c/ |ΛM] = c o n s t f Λ β Λ [ Π ( l - β ί 2 ^ ] " 1 2 r 1 3 e - v c ^ l?I/ t ]. (3.41)
o

In the special cases of subbundles βtτ

u for which Γf = Γl = Γ, Eq. (3.41) takes the
following simple form:

nwA&uΊ = PίΓci,Γcf\^°M-]. (3.42)

Let us turn for a moment to the quantum mechanical interpretation of the
functional Plci9cf\όlM']. A detailed discussion of this point requires a BRST
extension of these functional and the space § o f f with an appropriate inner
product. These problems are beyond the scope of this paper and we will restrict
ourselves only to some general remarks.

In the gauge e = 1 and in the case of the pointlike contours (xf = x* =0, fcφO)
the formula (3.32) exactly coincides with the "semi-off-shell" string propagator
considered in [11,17]. For arbitrary contours, proceeding as in [11], one can
rewrite the result (3.32) as

P [ x ί , x / K ] = c o n s t J dte" Π ( ί - e - 2 ^ * ^ * ^ , (3-43)
0 w>0

where H denotes the open string Hamiltonian equal to the zero mode of the density
W(s)~P2(s) + xf2(s) of quadratic constraints. By introduction of ft —c ghost
variables and "exponentiation" of the F-P determinant one can construct [18] the
BRST extension of the functional (3.43):

P[jcf, Θh Θi; xf9 df, Θf\@°M-] = const f Λ<** $ * β«k"* t l Ϊ B R β τ | ic /, Of, Θf}.

(3.44)

Θb Θf and Θh Θf denote appropriately defined boundary values of the ghost
variables b and c, respectively, and UBRST i s a BRST-extended open string
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Hamiltonian. The above form of the BRST-extended string propagator has been
also proposed in [19, 20].

The formula (3.44) offers a quantum mechanical interpretation of the
functional P[_cb cf\3S%] (3.32) determined by the subbundle $&%. It can be regarded
as the "body" of the integral kernel of the operator inverse to the BRST extended
zero mode Wo~ ^(^>2(s) + x/2(s))ds of quadratic constraints.

Let us note that since the canonical string Hamiltonian weakly vanishes there
is a large amount of freedom in the choice of Hamiltonian governing the evolution
in the intrinsic (world sheet) time. In fact one can choose an arbitrary linear
combination of constraints even with time dependent coefficients. Roughly
speaking the freedom of choice of a subbundle βftM C 33M is related to the freedom of
choice of the string Hamiltonian. The interesting question is which subbundles 36M

lead to the time independent Hamiltonians, in particular to higher modes of
quadratic constraints. The formula (3.42) suggests that it is so for the subbundles
&Γ

M. Such interpretation requires, however, special care since the inner product
(3.13) is not ^-invariant. In the sequel we will restrict ourselves to the functionals
P\βi>Cf\&M\ corresponding to the standard choice of the string Hamiltonian.

Now let us return to the corner conformal anomaly. As it follows from the
formula (3.27) the restriction to the space of trajectories ^ / ( Ϊ , / | ^ M ) *S insufficient
to ensure the decoupling of the conformal factorin the critical dimension. We need
a further restriction, which leads to a ^&O#$-subbundle of J^> where # #
consists of functions φ e Ψ*H for which

φ°Iι= —φolf = const.

In order to describe the space of all such subbundles of J ^ let us fix a
"reference" one - ^f( l ) generated from the section Ξo (3.31) of J ^ by the group
^LQ^M- Then every subbundle $°M of 8°M can be obtained from $°M{\) by a
vertical automorphism of J ^ ,

It is clear that the function

provides an invariant characteristic of the subbundle ffiM.
We will restrict ourselves to the one parameter family of subbundles

{̂ ΛfOO}ίeR+ corresponding to the constant functions χ(t) = ί2. Note that only for
these subbundles the quantum mechanical interpretation of the string propagator
given above remains unchanged. For a reason which later becomes clear, we
consider the family {&0

MV)}ieκ+ of the ^ O ^ o - s u b b u n d l e s of Λ%:

M, ί Φ= ί efds = Ά

( ^ 0 denotes the subgroup oΐi^H of functions vanishing along the S-boundary of
M). For every ( e R + the subbundles i ^ / ) and J^OO l e a < i t o the same expression
for the propagator.
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We arrive at the following covariant path integral representation of the one
parameter family of open string propagators in the space ί) o f f :

ί.

= constx/5 / 2 f eπt\χ\{\-ei2πnt)Yl2r^e-W{Zirc^dt, (3.45)

where the space ^ϋ(i,fψ) of the string trajectories consists of (g^eJί^ x i^
fulfilling the condition

ί°yΓ1[g^]) = c i, ( i - / ) , geOΪM (3-46)

As was mentioned above the string propagator P[cb cf\f\ should be interpreted
as the "body" of the integral kernel of some operator in a BRST-extended space
$o f f. It of course requires some notion of integration in the space ^ 6 . But the
ultralocal functional measure on ̂ £ 6 (see (3.13)) is not R+-invariant and cannot be
reduced by the F-P method to an ultralocal measure in %l\β. There are two
possible ways to solve this problem.

In the first approach one fixes the R+-in variance in the space #£ 6, taking the
gauge slice ^ 6 ( / ) c ^ i 6 consisting of all metrized contours with fixed intrinsic
length *f. On # £6(^) there is the induced ultralocal Riemannian structure which can
be used for the construction of the inner product in <f \6. In the gauge 9% (3.8),
J eds = / it is defined by:

(Ψeίxl Ψ'eίXl)1 = L&Z ( f 9ΦY1 Ψ.IZ] Ψ'eW , (3-47)

where 1V°l is the subgroup of Ψ*L consisting of the functions fulfilling the condition

The choice of the gauge slice ^£6(/) and of the subbundle 8tPM(β) which leads to
the inner product (3.47) is the third stage of gauge fixing within the formulation
based on the space f)off. Hereafter we will call this gauge the fixed length gauge.
Note that the resulting formulation does not depend on the choice of L Roughly
speaking the change of ( can be compensated by a renormalization of the string
wave functionals.

In the second approach, instead of restricting an inner product to ^ 6 one
looks for an extension of the string propagator to the space c€\f. The extension
consistent with the constraint algebra has the form

P [c, Cf] = b{{, - ff) P [cb cf\ίd (3.48)

The formula above has been derived from the string propagator in the space %ίd

L

and from the fact that the intrinsic string length ί is a nondynamical variable in the
first quantized free string. One would like to have, however, a co variant functional
representation of P[c ί? cf~] as a sum over string trajectories starting and ending at
fixed points in the space ^£ 6 . The problem with such a representation is related to
the lack of any natural mechanism in the co variant path integral yielding (in the
expression for the evolution operator or for the propagator) the delta function for
nondynamical variables.
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To see this more explicitly, let us consider the space £~U(i,f) of all string
trajectories (g,x)eJiii[ x $j£ determined by the conditions:

σfeh σfxt) = ct, (i-+f),

ΞΞ fg e Λ&: J etds = tx, ( i -/) I. (3.49)

f) is the
For every /ί? /,. e IR+ the functional integral (3.29) over the space ̂ ~H(i, f) yields

the result

which agrees with (3.48) only for tx — ίf. In order to achieve the correct form of the
string propagator on the space ̂ l6 one can impose the additional condition for the
allowed metrics g e S ^ β ^ t f \

, (3.50)

where Jί^ consists of the metrics with the zero scalar curvature on M. With this
condition the space of the allowed metrics is empty for t{ +1 f and equal to J^OO
for i{ = / / = /, which leads to the delta function structure of the propagator. The
special choice of the space ^/(i, /) of string trajectories determined by (3.49) and
(3.50) can be regarded as the third stage of gauge fixing in the formulation based on
the space § o f f . We will refer to this choice as to the constant curvature gauge.

4. The Off-Shell Open String Amplitudes

The formulae (3.45) and (3.48) provide a well justified (from the geometrical and
from the quantum mechanical point of view) starting point for the construction of
the off-shell open string amplitudes in the spaces $ o f f and $o f f, respectively. The
aim of this section is to describe two constructions based on the previous section
considerations now generalized to the case of more complicated topologies of the
world sheet M.

Let us first consider the simplest case of the open string off-shell vertex
functional V[cuc2,c^] in the space ^J 6 . In this case M should be replaced by a
hexagon H with distinguished alternating three "timelike" (T-) and three
"spacelike" (S-) sides and two involutions ij of the "timelike" (HD) and of the
"spacelike" (HD) doublings of H, respectively. We define the spaces Jή£9 Sjf and
the groups 3f% H^H, # # , ̂ HJ> ^ H Ό by the obvious generalization of conditions
used in the case of the rectangle in Sect. 3.

The action of ^QΨ'ϋ on M% induces the structure of the principal fibre
bundle [25,26]:

I-

where T£ denotes the relative Teichmϋller space of hexagon isomorphic to R+.
Note that T£ is isomorphic to the reduced Teichmϋller space 7^ [27]. The



Open String Amplitudes 309

important feature of (4.1) is that there exists a smooth global section with values in
the space Jtil-i of all metrics geJί1^ with constant scalar curvature R(g)= — 1.
The remarks above are valid for more complicated topologies of M as well
[25-27]. This allows for the straightforward extension of the present considera-
tions to the case of an arbitrary off-shell amplitude.

The space S f f of all SJ^Q ##-subbundles of (4.1) can be described as in the case
of a rectangle. There exists the distinguished subbundle 3%C

H

T£ (4.2)

obtained from the space Jί1^ x by the action of the group # ^ . Using 0S°H as a
"reference" subbundle and repeating the constructions (3.34), (3.38), (3.39), (3.40) of
the previous section one can parametrize the space 33H by the space of functions

The generalization of the fixed length gauge (for the case of hexagon) consists in
the choice of the one parameter family {#H(^)}*6R+ of ^ O ^ V s u b b u n d l e s of

(4.4)

In this gauge the space of "trajectories" ^7(1,2,3|*f) is defined as the space of all
pairs ( g , x ) e ^ ^ x ^ 6 satisfying the conditions:

Π%(σfeh σfxt) = c{, i = 1,2,3, g e ST^f), (4.5)

where σt: L-*Σh i = 1,2,3 denote arbitrary parametrizations of the components Σt

of the S-boundary of H and ef = Ifg, xt = Ifx, i = l, 2, 3. {li'.Σ^H, i = l, 2, 3,
denote the inclusions of the components Z1; of the S-boundary of i/.)

We define the covariant functional integral representation of the three open
strings vertex functional in the fixed length gauge in %!d

L by:

V\cuc2, c3\n = __tjJ2 ®{g,x) Π y W\-l Π , &ΦY1 e~S[9'x] (4.6)

The formal expression above can be consistently evaluated ( = defined) by the
Faddeev-Popov method. Proceeding along standard lines [28] we obtain:

F[c 1 ? c 2 ,c 3 | l ]= $Rd3t:

x (detDN&gt)-13

 e-
Sίgt>Xcl[9t]], (4.7)

where T$stag's^H(I) is a global section of ^ ( 1 ) and xcl[_'gr\ denotes the
solution of the boundary value problem (3.21) generalized to the case of hexagon:

=Xi°7ilgJ'], ί = l,2,3, (4.8)

= 0 o n dMMΣΣΣJ
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where (£,xt)ei7f 1(ci), i = l,2,3, and the diffeomorphisms yfEg, έ] are defined by
analogy with (3.18). _

From the QftyOiPfl-vύ.variance of the integrand in the formula (4.7) it follows
that for the decoupling of conformal factor it is enough to consider ^^Qϊf^^-
subbundles of Jjy. As in the case of a rectangle one can fix as a "reference"
subbundle the ^ © ^ - e x t e n s i o n of &C

H(\): &H = ^{&IA\))
 τ h e n every

£^O##-subbundle of SSC

H can be obtained from $C

H(1) by a vertical automor-
phism of the bundle (4.1):

and is uniquely determined by the function:

χH: T*3 ί^exp ( ^ φ<o ij e R + .

The ^0#^-subbundle Mc

H(ί) corresponding to the constant function
yields the same expression for the vertex as ^°H{(\

It follows from the corner anomaly [17] that:

therefore the /-dependence can be compensated by a renormalization of string
wave functionals as it was suggested in [17].

Summing up, in the fixed length gauge the "body" of the off-shell formulation of
the open bosonic string in the space $ o f f includes the inner product (, ) ι (3.47) in
§ o f f , the off-shell string propagator P[ch cf\ϊ\ (3.45) and the off-shell three strings
vertex functional V[c1,c29c3\i] (4.6). The off-shell amplitudes corresponding to
more complicated topologies of the world sheet (including handles and holes) can
be constructed by a straightforward generalization of the formulae (4.6, 7). Let us
note that in the gauge (3.10) with e = ί on L and for pointlike string states the
expression (4.7) exactly coincides with the semi-off-shell vertex discussed in [17]
(see also [12] for the closed string case). For the arbitrary contours the formulae
(4.7) is the open string version of the off-shell amplitudes considered in [15,16].

Let us now turn to the construction of the off-shell open string amplitudes in
the space £)off. In the case of a hexagon the requirement of the consistency of the
Faddeev-Popov method and of the vanishing of the corner anomaly admit a
choice of the space of "trajectories" (g, x) e </## x <?#6 fulfilling the conditions:

2^3) denotes the ^ O ^ V s u b b u n d l e of St°H consisting of metrics with
the fixed intrinsic lengths:

ί^ίβids, i=l,2,3 (4.9)

determined by the intrinsic lengths of the contours C1,C
However, as was discussed in the end of the previous section the analogous

choice in the case of a rectangle does not lead to the correct form of the open string
propagator and some additional condition for allowed metrics have to be
introduced.
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In the case of a hexagon the additional condition takes the form

- 1
HO

where 38Hl is the ^©i^ 0 -subbundle of (4.2) obtained from the space Jt^_γ by
the #JVaction. The space &%(\92,3)CJKM x ^H6 of "trajectories" in the constant
curvature gauge is therefore defined by the conditions:

ΠJσfe,, σfxt) = ci9 i = 1,2,3, ge ®Wι> *2, ^3)^^HO (4.10)

Note that in the case of a hexagon for every (/ ly 2 ?/ 3)e]R+ the intersection
J^(/ 1 ? ίC2, / 3 ) π J # d is the fiber of the bundle J ^ 1 o v e r a fiχed point in T£. In fact
as is well known from the hyperbolic geometry a hexagon with right angles and
geodesic sides is completely specified by the lengths of three alternating sides.
These lengths (which can be arbitrary positive real numbers) provides the Fenchel-
Nielsen coordinates [32] on the relative Teichmύller space T£ of the hexagon H,

L ί : T # 3 ί - L j ( ί ) e R + . (4.11)

As a consequence the final expression for the vertex functional should not
include any integration over Teichmuller parameters.

In contrast to the case of a rectangle the construction of an appropriate
functional measure on the space &Ίf(l9 2,3) is not straightforward. This space is a
submanifold of Jί^ x <?#6, and we have the ultralocal ^-invariant Riemannian
structure determined by (2.3), (2.4) on Jί^ x Sff. For the functional measure on
.^(1,2,3) related to the induced metric even in the critical dimension the
conformal anomaly does not vanish. In order to overcome this problem we
introduce the larger space #^(1,2,3) defined by the conditions

Π^σf eb σfXi) = Π(Ci), i = 1,2,3, g e ^ o , (4.12)

where Π: ̂ l6-*^6 denotes the canonical projection in the bundle ^ 6

In addition we introduce the delta function on T^,

Π δtf.-Llt)), (4.13)
i=ί

where L^t) are the Fenchel-Nielsen coordinates (4.11) on 7]f. After the substitution
t = Πτ(g) this delta function can be regarded as a ̂ O#^ 0 -invariant "character-
istic" functional of the submanifold ^(1,2,3) C ^(1,2,3).

In the constant curvature gauge we define the functional integral representa-
tion of the three open strings vertex functional V[cu c2, c3] in the space <£l6 by:

^(i,2,3) \<M ) \arUo ) i = i

The path integral above fulfills the requirement of the consistency of the
Faddeev-Popov method and can be evaluated ( = defined) in the critical
dimension: 3dimension:

V l c l 9 c 2 9 c A = I Λ Π

(Het P+P \ 1 / 2

ZtH(P+,) (
(all symbols are defined as in the formula (2.24)).
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One can simplify the expression (4.15) using the Fenchel-Nielsen coordinates
on Tβ. In these coordinates the Weil-Petersson volume element on Tξ has the
especially simple form: dωwp = dL1dL2dL3 [32]. Taking into account the relation:

we arrive at the following expression for the vertex:

V\clt c2, c 3 ] =(detAAPΪPgt)
ι'2(detDNJ?βt)-13e-Sί»c'x< W. (4.16)

Note that the right-hand side of (4.16) is ^-invariant but not ΊV^ ΛΆvariant
and must be calculated for the metrics g* with constant scalar curvature R = — 1
and with the boundary conditions (4.9).

The generalization for more complicated topologies of the world sheet M is
now straightforward. The off-shell open string amplitudes have the following
general structure:

= J M ( d * A A P } P J ( d e t D t l & i t r e .
(4.1 /)

TM denotes the subspace of T$ defined by the equations Lt = {{(i = 1,..., n) where Lf

are the Fenchel-Nielsen coordinates corresponding to the "spacelike" segments of
the boundary of M, and dώWP is the volume element on 7JJ obtained from dωwp by
omitting the factor dL1?..., dLn. The integrand in (4.17) is evaluated for any section
T^Bt^^eJί1^ with values in Jίιά-ι and fulfilling the obvious generalization of
the boundary conditions (4.9).

The simple form of (4.16) and (4.17) is a consequence of the choice of functional
measure on &~#(ί, 2,3) or more precisely of the "characteristic" functional (4.13). It
should be clarified that it is not completely determined by the requirement of
vanishing of the conformal anomaly. Our choice is motivated by the special role of
the Fenchel-Nielsen coordinates in the construction of Riemann surfaces from
simpler building blocks [32]. The idea to extend this construction to multiloop
closed string amplitudes has been proposed by DΉoker and Phong [28].

Summing up, in the constant curvature gauge the "body" of the off-shell
formulation of the open bosonic string in the space § o f f includes the inner product
(3.13), the off-shell string propagator (3.48) and the family of the off-shell
amplitudes (4.17). Constructing these amplitudes in the space § o f f is equivalent to
extending the corresponding objects defined on the space Ήl6. As was mentioned
above the path integral techniques are insufficient for this purpose and should be
supplemented by some additional constructions (4.10,12-14). It should be stressed
that the extension presented above is based on purely geometrical arguments. Its
quantum mechanical justification requires a BRST-extension of the present
formalism.

5. Conclusions

5.1. The Open String Quantum Mechanics
in the Position Representation

The considerations of Sect. 3 provide the first step of the covariant functional
quantization of the open bosonic string in the position representation. It was
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shown that the general scheme described in Sect. 3.1 leads to the space § o f f of the
string wave functionals defined in the space of contours ̂ 6 with the inner product
(, ) ι (3.47). The physical string states are described by the ^-invariant wave
functional fulfilling the on mass shell condition uncoded in the propagator
P[chcf\l~] (3.45). There exists another formulation based on the space § o f f of the
string wave functional defined on #£ 6 with the inner product (,) (3.13). In this
case the ^-invariance should be replaced by the ^xR+-invariance and the
propagator P{ci,cf~] takes the form (3.48).

In both formulations the string propagator is not invertible. This is the basic
reason for constructing a BRST extension. The part of this construction
concerning the BRST extended propagator P[ci,cf\\~] in the fixed length gauge
and in the gauge (3.10) with e = 1 on L is rather well understood [18,19]. Let us
note however that a consistent geometrical setting of a BRST formulation
including a BRST-extension of the inner product and a cohomological description
of the residual gauge invariance is still an open problem and requires a better
insight into the geometry of BRST-invariant functional measures.

In order to complete the covariant first functional quantization described in
Sect. 3, besides the BRST extension, one should find the whole space of the wave
string functionals corresponding to the particle on-shell open string states. These
wave functionals are determined as ^-invariant eigenfunctions of the operators of
the momenta and the angular momenta, fulfilling the on-mass shell condition. One
can expect that a functional integral over surfaces diffeomorphic to the half-disc
with a vertex operator attached to the "timelike" boundary provides a solution to
this problem [34].

The general structure of the gauge fixing used in Sect. 3 is described in Table 1.
The first stage consisting in the choice of a model manifold M reduces the large

space of gauge transformations of the BDHP action to the group ^MQ^M- It is
further restricted to the group ^ % Θ ^ M by the requirement of the consistency of
the F-P method. It also follows from this requirement that the space of boundary
conditions for string trajectories should be defined in a i^-invariant way. The
simplest admissible choices are therefore JΓL

26, ̂ 6 , ζβ]^>. But as it was discussed in
the introduction the choice of JfL

26 leads to the path integral (1.3) in which an

Table 1. (See text)

Space of boundary Space of string
conditions trajectories

I <Boff Infixed M-fϊxed
93 o f f

II © o f f (3.10) (3.25)
conformal gauges conformal gauges

95off (3.5) (3.25)

III © o f f ^ L > ^ L 6 ( < 0 fixed length gauge
93off ^ L x R + constant curvature

gauge
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averaging over boundary reparametrizations appears. On the other hand the
comparison with the canonical quantization suggests that the path integral (1.1)
with a suitable x-dependent gauge should yield the light-cone string propagator.
The simplest choices admitting the explicit covariant (with respect to the symmetry
of the target space) formulation are therefore ΉI6, ^l6.

The requirement of explicit covariance imposes some restrictions on the
possible choice of gauges at the second stage - they cannot involve conditions for
the x-variables. In the case of ̂ 6 every jc-independent gauge is a 1-dim conformal
gauge (3.10). In the case of ^ 6 there exist more general gauges but they lead to an
inessential generalization of the formulation based on the 1-dim conformal ones
(3.5). The 2-dimensional conformal gauges (3.25) form a special class of
x-independent gauges in the space of trajectories. In these gauges the mechanism of
the decoupling of the conformal factor in the critical dimension is rather simple.
Since there is no ^j^-anomaly one can expect that more general x-independent
gauges should lead to the same functionals P[cbcf\Y], Plc^c/].

The third stage of the gauge fixing has a quite different nature. It consists in the
choice of the form of the conditions determining the subspace of the physical off-
shell states. In our case these conditions are the ̂ - (^ x R+-) invariance of the wave
functionals defined on the space #£ 6 (^ 6 , respectively). According to the
considerations of Subsects. 3.1, 3.2 the space of off-shell physical states |>°f

h

f = § ^ f

has the quantum mechanical interpretation of the space of all string states
annihilated by every constraint linear in momenta. In the canonical analysis of a
system with first class constraints one can determine the same constraint surface
by various choices of a set of constraint functions. This freedom corresponds to the
freedom of choice of conditions determining the space $?$ ($^f) Note that our
choice is related to the standard choice of the subalgebra of linear constraints
{V{σ)~0>(σ)xXσ)) in string theory.

The second part of the third stage of the scheme presented in Table 1 plays a
similar role. It fixes the freedom of choice of space of allowed string trajectories. As
was argued in Subsect. 3.3 the fixed length gauge in 9ffί and the constant curvature
one in § o f f are related to the standard choice of a string Hamiltonian. It is an
interesting problem to find a BRST extension and a quantum mechanical
interpretation of the functionals (3.41) corresponding to arbitrary choices of
® ϋ Θ * Λ r ' - ( ^ O ^ 0 - ) subbundles of Jί% The third stage of gauge fixing is
therefore related to the choice of set of constraint operators determining the space
of the physical on-mass shell string states.

Finally let us note that the fixed length gauge has the 1-dim part consisting in
the choice of gauge slice ^£6(/) e ̂ 6 which fixes the choice of inner product in the
space § o f f .

5.2. Sewing of the Off-Shell Open String Amplitudes

The potential usefulness of the covariant off-shell formulation of string theory is
related to the hope that within this formalism one can correctly describe the
Feynman rules of the interacting string field theory. The central problem of this
approach is to find the sewing rules for amplitudes. In the case of the closed
bosonic string the important progress in this direction has been recently made
[15,16].
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Fig. 2

The considerations of the present paper provides the geometrical and quantum
mechanical setting for the "body" of the off-shell formulation in 5>off and § o f f . The
detailed discussion of the sewing amplitudes requires the BRST extension, so we
will restrict ourselves only to a few remarks concerning these elements of the
sewing problem which crucialy depends on the "body" of our formalism.

In the formulation based on the space § o f f the off-shell amplitude for the
surface M has the structure of a finite dimensional integral (4, 7) over the moduli
space mM of M. The BRST-extended integrand of this expression can be regarded
as a partition function on M depending on the boundary values of the ghosts and
of the x- variables. With our choice of boundary conditions for trajectories (4.5) this
partition function is a ^ j £ θ ^ί-invariant functional on metrics on M. As it was
pointed out in [15] the sewing problem consists of two elements: the sewing of
partition functions and the sewing of integrals over moduli spaces.

The sewing property of partition functions crucially depends on the third stage
of gauge fixing which consists in the choice of the ^ O ^ i - s u b b u n d l e #& of
allowed metrics for each topological type of M. In the fixed length gauge
&M = &M(1), where 0&C

M(\) is defined by the obvious generalization of the formula
(4.4). The important feature of this gauge is that it possesses the following sewing
property: for arbitrary topological types of M1 and of M2 and for every tί e 7$1?

t2e T£2 such that L/(ί1) = L/(ί2), there exist metrics gx e J ^ , g2e&M1

 o v e r h a n d

t2, respectively, which can be glued together into a smooth metric g e $%. The
details of this glueing procedure are presented in Fig. 2.

By an appropriate choice of diffeomorphisms / i : Mj-^MU f2: MU^M2 one
can always achieve the coincidence of the normal directions of the metrics f*gi,
f2*g2 along the submanifold / = MjnMn C M. Then changing the metric gt (or g2)
along the fibre of St^γ (or of 0S%2) one can also achieve the coincidence of the
induced einbeins on / and of other metric components in such a way that f*gχ and
f2g2 form a smooth metric g on M. All metrics g on M obtained in this way are
^O^^-equivalent. The sewing property of the gauge fixing means that these
metrics belong to the subbundle #&.
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The partition function considered as a functional of (M, g) is invariant with
respect to the transformations (M9g)-*(f~1M,f*g) generated by arbitrary
diffeomorphisms / : M'^M. Therefore in every gauge with the sewing property the
sewing problem for partition functions can be reduced to the one of sewing at a
fixed conformal structure which was recently solved [16]. Moreover, if we use the
fixed length gauge the sewing of the partition functions for the x variables is
described by the path integral over ΨL used in the definition of the inner product
(, Ϋ (3.47). The interesting question is how many gauges with the sewing property,
consistent with the inner product (, Ϋ do exist.

It is worthwhile to compare at this point the formulation presented in this
paper with that proposed in [15,16]. In the fixed length gauge and in the gauge
(3.10) in <̂ £6 the off-shell amplitudes constructed in Sect. 3 coincide with the
functionals considered in [15] (suitably modified to the open string case). The
difference in both approaches consists in different geometrical interpretations of
the objects involved. In [15] off-shell amplitudes are considered as functionals of
parametrized contours. In such a formulation there are no relations between a
conformal structure on a surface M and parametrizations of the S-boundaries of
M. Note that such a relation is necessary for sewing rules for partition functions. In
our formulation it is determined by the choice of the space of allowed "trajectories"
in the path integral representation of an off-shell amplitude. It will be interesting to
interpret within this framework a special relation constructed in [15] by means of
holomorphic quadratic differentials on M.

Let us now briefly comment on the second element of the sewing problem. The
moduli spaces mMl, mM2 of surfaces M l 5 M 2 include the parameters related to the
lengths of the S-boundary segments Σt along which Mt and M2 are sewn. In the
case of the open string we have therefore one redundant parameter for each Σv As
was argued in [15] these redundant parameters can be removed by the insertion of
the inverse of the off-shell string propagator "between" the sewn amplitudes. It
does not solve, however, the sewing problem completely. In general the resulting
expression involves as infinite overcounting of the moduli space [15].

The formulation in the space § o f f provides a new alternative approach to the
interacting open string. The remarks above concerning the sewing rules for
partition functions apply to this case as well. The constant curvature gauge has a
similar sewing property and there appears the question of the uniqueness of this
gauge. In contrast to the previous approach the off-shell amplitudes do not contain
any integration over moduli parameters related to the lengths of S-boundary
segments. It leads to a simplification of the sewing rules for amplitudes. They can
be sewn immediately by means of a BRST-extended inner product in ^ £ 6 which
provides (with the correct measure!) the missing integration over lengths of
common boundary segments. Note that the propagator is not present in this
sewing procedure. The only role it plays is the determination of the wave
functionals corresponding to on-shell string states. It should be stressed that the
sewing in the space 9fn leads to exactly the same overcounting as in the
formulation based on the space 9f{ΐ. The sewing procedure in both formulations
should be therefore supplemented by suitable rules ensuring a single cover of the
moduli space. Whether such rules exist is still an open question.
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