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Abstract. Starting from a 4π-dimensional quaternionic Kahler base space, we
construct metrics of cohomogeneity one in (An + 3) dimensions whose level
surfaces are the S2 bundle space of almost complex structures on the base
manifold. We derive the conditions on the metric functions that follow from
imposing the Einstein equation, and obtain solutions both for compact and
non-compact (An + 3)-dimensional spaces. Included in the non-compact solu-
tions are two Ricci-ίlat 7-dimensional metrics with G2 holonomy. We also
discuss two other Ricci-flat solutions, one on the R4 bundle over S3 and the
other on an R4 bundle over S4. These have G2 and Spin (7) holonomy
respectively.

1. Introduction

There are many examples of homogeneous Einstein metrics to be found in the
literature, but inhomogeneous examples, where there is no transitively-acting
isometry group, are much rarer. In this paper, we construct examples in An + 3
dimensions which can be described as S3 or R3 bundles over quaternionic Kahler
base manifolds. After reviewing some relevant properties of quaternionic Kahler
spaces, in this section we then discuss the notion of the twistor space Z cor-
responding to a quaternionic Kahler space M [1]. This space plays a central
role in the rest of the paper. In Sect. 2 we give a local discussion of our construction,
including details of the local calculation of the curvature of our spaces. In Sect. 3
we consider the regularity conditions on the local metrics that ensure that they
can be extended to globally-defined metrics on complete manifolds, and we apply
these conditions to discuss the existence of complete Einstein metrics on compact
manifolds, which we have found numerically. In Sect. 4, we consider non-compact
Ricci-flat spaces, and present two exact solutions in seven dimensions. These are
the same as the seven-dimensional metrics with G2 holonomy constructed recently
by using different methods [2]. In Sect. 5, we consider two more exact Ricci-flat
metrics, one on the manifold R4 x S3, with G2 holonomy, and the other on an R4

bundle over S4, with Spin (7) holonomy. Again, these coincide with examples
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constructed in [2]. In Sect. 6 we discuss the asymptotic structure of the non-compact
metrics, and relate this to earlier work on gravitational instantons. Finally, in
Sect. 7, we use the fact that metrics with G2 or Spin (7) holonomy admit a
covariantly-constant spinor to obtain relations between the eigenfunctions of
certain differential operators on the manifold, and also to relate the space of moduli
for the Ricci-flat metric to certain topological invariants of the manifold.

A quaternionic Kahler space is a Riemannian space M of real dimension 4n
whose holonomy group is contained in Sp(rc) Sp(l). It has a set of three almost
complex structure tensors J\β (i = 1,2,3; α, β = 1,..., 4n) which satisfy the quater-
nion algebra

The metric is quaternionic-Hermitian, which implies that J\β = — Jι

βa. From
the corresponding 2-forms Jι one may construct the closed 4-form Ω = Jι A J\
dΩ = 0. These conditions imply the existence of three local 1-forms A\ such that

y ji +ε AjJk = 0. (1.2)

A1 corresponds to the Sp(l) part of the Sp(n) Sp(l) connection, and has curvature

F* — ήA1 A- -p A i Λ Λk (\ V\

One can show that

All four-dimensional manifolds are quaternionic Kahler, but in An ^ 8 dimen-
sions the quaternionic Kahler condition is more restrictive, implying in particular
that for an irreducible space the metric is Einstein, Raβ = Λ^g^, and

F1 — 4 w r Π M

We shall be concerned exclusively with the case where Λ4n is strictly positive, and
so without loss of generality we may choose Λ4n = n + 2;

Raβ = (n + 2)gaβ. (1.6)

Thus if 4n ^ 8 and M is irreducible it follows that

F\β = J\β. (1.7)

If 4n = 4 or M is reducible, we shall impose (1.7) as a further condition. Classic
examples of quaternionic Kahler spaces are provided by the quaternionic projective
spaces Pn{H). A more complete description of quaternionic Kahler spaces may be
found in [3,4,5,6].

Before describing our construction of metrics on S3 or R3 bundles over M, we
first consider the bundle of almost complex structures on M. This has been discussed
extensively in [1]. It follows from (1.1) that the tensor Ja

β defined by

Jj^u'J'J (1.8)
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is an almost complex structure tensor, where the uι are any set of three scalar fields

satisfying

w V = l . (1.9)

Thus the bundle of almost complex structures on Aί is parametrized by points on
a 2-sphere. The (4n + 2)-dimensional total space of this S2 bundle over M is known
as the "twistor space" Z of M [1]. Defining the Sp(l)-covariant exterior derivative
D of uι by

θι ΈEDU1 = duι + εijkA V , (1.10)

one can show that dJ = θι A Jι and that

w'fl'^O; DΘι = εijkFjuk, (1.11)

where Dθι = dθι + εijkAj A θk. The twister space Z may be given the metric

ds2 = / t 2 ^ 1 ' + eaea = λ\duι + εijkAjuk)2 + έ?V, (1.12)

where A is a constant, ea is an orthonormal frame for M and the coordinates uι

on the S2 fibres are subject to the constraint (1.9).
The isometry group G of the metric (1.12) on Z is generically equal to 50(3) x G,

where G is the isometry group of the quaternionic Kahler base space M and the
SO(3) preserves the condition (1.9) that defines the S2 fibres. (In special case G
might be larger than SO(3) x G, in the same way as the (4n + 3)-sphere, described
as an SU(2) principal bundle over Pn(H), can have SO (An + 4) rather than the
generic SU(2) x Sp(n + 1) as isometry group in the special case that it is metrically
the round sphere.)

It is straightforward to calculate the curvature of the metric (1.12) on Z. This
is most easily done by first taking the three coordinates uι to be unconstrained,
and then using the Gauss-Codazzi equations to relate the curvature of this
(An + 3)-dimensional metric to the curvature of the metric on Z defined by imposing
the hypersurface condition (1.9). The non-vanishing components of the Ricci tensor
on Z, in the orthonormal frame (λθ\ e% are

Ru = (nλ2 + λ-2)hip (1.13)

where

hijΞΞδiJ-uiuJ (i.i4)

is the two-dimensional metric on the S2 fibres, referred to the frame λθ\
From (1.13) we see that Z admits two Einstein metrics of the form (1.12),

corresponding to taking the "squashing parameter" λ to be given by

A2 = l or λ2 = -—. (1.15)
n+ 1

They satisfy the Einstein equation Rab = Agah with A = n + 1 or A = (n2 + 3n + 1)/
(n + 1) respectively. If λ2 = 1, one can show that the metric on Z is Kahler, with
the Kahler form given by
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j'= -uίJi + ̂ λ2εijku
iθj A θk. (1.16)

If we take M = Pn(H\ the corresponding twistor space Z is the complex
projective space P2n+i(Q' Taking λ2 = 1 in (1.12) gives the usual Fubini-Study
Einstein-Kahler metric on P2n+1(C), while λ2 = (n+\)~ι gives the second homo-
geneous Einstein metric discussed in [7], which is Hermitian but not Kahler. When
n = 1, so that M = P^H) = S4, Z is the ur twistor space P3(C).

2. Curvature and Local Calculations

In this paper, we shall construct metrics on (4n + 3)-dimensional manifolds M, for
which the metrics take the local form

ds2 = oc2dr2 + β2(dui + εijkA
juk)2 + y2eaea, (2.1)

where r is an additional coordinate and α, β and γ are functions solely of r. The
level-surfaces r = constant are therefore the (4n + 2)-dimensional twistor space Z
described in the previous section. The isometry group of the metric (2.1) is
generically the same as that on the level surfaces, which as discussed in the previous
section is itself generically 50(3) x G, where G is the isometry group of the base
space M.

We introduce an orthonormal frame ea for (2.1) that is defined by

έ° = θίdr9 ei = βθi\ ea = ye\ (2.2)

where θ* is given by (1.10) and as before ea is an orthonormal frame for M. The
connection 1-form ώab, defined by dea = —ώab A eb and ώah — —ώba9 is given by

ώ -^-ε..kJ
j uΨ (2 3)

aβ aβ 2y2 ιjk

where a prime denotes differentiation with respect to r and ωaβ is the connection
1-form for M. Note that we have not yet imposed the hypersurface condition (1.9).
The curvature 2-form defined by Θab = dwab + ώac A ώcb has the components

oc2γ cry J \ lay

V a2βy
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Θaβ = Θaβ - ^(δiju2 - u V K r ^ + Ji

ayJ
J

βδ)έy A eδ

- (-Xέ* Λ έ* + (fin2 - ^Λεtjέ* A e\ (2.4)
\ocγj V 4 Γ 2y J

where Θaβ is the curvature 2-form on M and u2 = MV. The calculate the curvature
of the metric (2.1) with the hypersurface condition (1.9) imposed, we use the
Gauss-Codazzi equation (see, for example, [8])

Rabcd— " Rabcd= n Refgh'lae'tbfKghdh +XacXbd~ XadXbo (2-5)

where

hab = δab-u"ub, (2.6)

with ua = (M°, U\ ua) = (0, u\ 0) the orthonormal frame components of the unit vector
N = β~1uiδ/dui orthogonal to the hypersurface, and χab = K\d^cud the second
fundamental form of the hypersurface. Since Vufl = dua + ώabub = Vbuae

b, it follows
from (2.3) and (2.6) that the only non-zero components of hab and χab are given by

^oo = 1; hij = δu - Uiuy, haβ = δaβ; χ o = -hu. (2.7)

The Ricci tensor Rab of our (An + 3)-dimensional metric (2.1) with the constraint

(1.9) therefore has the following non-zero orthonormal-frame components:

β _ 2β" 2ot'βf Any"

β β_
00 ~ 2~o "• To 2 ' 3

α β a β ay ay
ij \ 2/J + 3jί 2β β2 2β2+αjί a2βy β2 a 2 β 2 + γ 4 j i p

a'y' 2β'y' (4n-l)y'2 n + 2 β2

{ '

In subsequent sections we shall find it useful to construct a certain harmonic
3-form on the space M, and here we give the local construction of this object. There
are three 3-forms on M that are invariant both under the isometry group G of the
base space M and under the SO(3) symmetry of the 2-spheres defined by (1.9).
These 3-forms, which we denote by ωί,ω2 and ω 3 , take the local forms

ωί = θι A Jι; ω2 = drAj; ω 3 = dr A Σ, (2.9)

where J = uiJi as in (1.8) and

Σ = \εijkuΨ Aθk (2.10)

is the volume element on the S2 fibres uιu[ = 1. Using Du[ = Θ^DΘ1 = εijkJ
juk and

DJ' = 0, where Da11 = da1[ + εijkA
J!Λ ak for any Sp(l)-valued p-form a1, it follows
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that the exterior derivatives of the 3-forms (2.9) are

dωΐ=0; dω2 = — dr A ωx\ dω3= —dr A ωι. (2.11)

The duals of the 3-forms (2.9), in the (An + 3)-dimensional metric (2.1), are

β2 V4

friθj Λ Jk; *ω2=~ΣAj; *ω3=γ—2-J AJ. (2.12)

An harmonic 3-form, which is invariant under G and Sp(l), can be written as

ω=fωι + gω2 + /zω3, (2.13)

where f,g and h are functions of r to be determined. From (2.10) it follows that
the condition that ω be closed, dω = 0, implies that

f' = g + h. (2.14)

The condition that ω be co-closed, d*ω = 0, implies that

« J \aβ2

There is therefore an harmonic form (2.13) if /, g and h satisfy

(2.16)
\ T J J

g = / ' ( I - β*/γ*)- ιandh=- gβ4/y4.

Finally in this section we note that for some purposes it is advantageous to
have a parametrization of the metric on M that is given in terms of (An + 3)
independent coordinates rather than the (An 4- 4) coordinates subject to the
hypersurface constraint (1.9) that we have been using so far. This can be done by
writing the metric ds2 in the form

ds2 = oc2dr2 + β2gij(dxi + KiAAA)(dxj + KjBAB) + γ2ds2, (2.17)

where i, 7,... run over the values 1,2, gtj is the standard metric on the unit two-sphere
and KiA, A = 1,2,3, are the three Killing vectors on the two-sphere. Thus we may
introduce the orthonormal basis

e° = adr; e* = ye\

i ι = β(dθ - sin φAι + cos φA2\

e2 = βύn θ(dφ - cos φcot ΘAι - sin φ cot ΘA2 + A3). (2.18)

This yields the connection form

ώ12= cotθe 2 — cosecθίcos^Λ1 +sinφA2),

ώlx = ̂ (-smφF\β +cos φF\β)eβ,
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cδ2α = JL ( _ cos φ cos ΘF\β - sin φ cos 0F 2

α / 3 + sin ΘF3

aβ)eβ,

β 1 JL 2 V Λ I

ώα^ = ωα/? + -—2 (sin φF aβ — cos φF aβ)e

+ A (cos 0 cos ΘF 1 ^ + sin φ cos 0F2

α / ? - sin ΘF3

aβ)e2, (2.19)

where coα/? is the connection form for the base space M. From this, it follows that
the curvature 2-form is given by

P" . *'F\AO A A I , / ?!L_ίL ( ( - s i n ^ F 1 +COS0F2),
ocy α /

5 ̂5 + r V Λ ̂  + ί^-3 - ̂ π V -sin *Fl«/»+ cos

oc y cry) \2αy 3 2cty2J p

βy' β'
n/ \

γ-2 )(-cosφ cos ΘF 1 ^ - sin φ cos 0F2

α / ? + sin θF3

aβ)e2 A eβ,
K2ocy3 2ocy2

y

0 1 2 = ί ^——ίL— b 1 Λ e2 + ( —y — 1 HcosφsinθF 1 + s inφsinθF 2 + cosθF 3),

\^-^)(-^nΦFaβ^^osφF2

aβ)e0 Aep + (-^-
\2ocy2 2(xy3 J μ μJ \4y4

^ 3 ( - sin φDyF\β + cos φDyF
2

aβ)e? Λ

^* ~ 2 ^ ) ( C O S ̂  S i n ΘF'aβ + S i n ^ S i n ΘF2χβ + C ° S θ f 3

~~ ̂ hr cos *cos ΘFlχβ ~sin φ cos 0F2α/)+sin ΘFi*β)έ°

n

γΊ(-cosφ cos ΘDyF1^ - sin φ cos 0Z>yF
2

α/) + sin θDyF\p)ey A eβ

4~* ~ 2 ^ )4~* ~ 2 ^ ) ( C O S ̂  S i n θ f l α " + S i n ^ S i n θ f ̂  + C O S ΘF3χβ^έl Λ ̂ '

Of O I

-^2 - - ^ )(cos (/> cos flF1^ + sin φ cos 0F 2

α / ? - sin ΘF3

aβ)e° A e2
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+ ^ 3 (sin φDyF\β - cos φDyF
2

aβ)ey A e1

+ ys(cos φ cos ΘDyF\β + sin φ cos ΘDyF
2

aβ - sin ΘDyF
3

aβ)eγ A e2. (2.20)

With the Ricci-tensor components given by (2.8), the orthonormal components
of the Einstein equation

Rab = Λόab = Λδab (2.21)

are the extremal equations of the ADM-type action

Yndr, (2.22)
\ " /

where
β'2 β'y' y'2

T = 2^- + \6n h 4n(4n — l)—^-, (2.23)
β βy Ύ

2 4 φ + 2) β2

β2 y2 ny2'

The variation of / with respect to the non-dynamical lapse function α(r) gives the
first-order scalar constraint equation

α " 2 T + V = 2G 0 0 + (4n + l)Λ = 0. (2.25)

So long as this constraint is maintained, one may reparametrise the coordinate r
so that ocβ2y4nV is held constant, and then [13,14,6] varying / gives the equation
for a timelike geodesic with affϊne parameter r in the two-dimensional minisuper-
space metric

2 _ Λ4..8Λdω2 =

= _ β*γ*"V( - dt2 + dz2\ (2.26)

where

This geodesic of (2.26) may alternatively be viewed as the trajectory of a particle

of variable mass-squared,

μ2=_βγny9 ( 2 2 8 )

in the conformally-related flat metric — dt2 + dz2.
An alternative way to formulate the Einstein equation (2.21) is to use the

logarithmic expansion rate, the trace of the second fundamental form of the
twistor-space hypersurfaces of constant r,
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The (00) component of (2.21) implies that the proper radial derivative of χ,

£.-,(')*-JLY-Λ. (2.39,

is negative semi-definite for A ^ 0, so in this case χ varies monotonically and hence
may be taken as the independent variable. A convenient choice of dependent
variables is the twistor-space shape parameter

λ = - (2.40)
y

and its logarithmic rate of change with proper radius, the shear

'-4-Ίr-
aλ aβ ay

One can now use the definitions of χ and σ in (2.39) to write the radial proper
derivative as

1 d =χ; d = χ2 + 8mτ2 + (4κ + 2)Λ d

a dr a dχ 4n H- 2 dχ'

In terms of the variables χ, λ and σ, the constraint equation (2.25) gives

J_
' Ί λ' { ' '

and then (2.41-2.43) and the remaining independent component of the Einstein
equation (2.21) give

dχ χ> + 8nσ2 + Λ' ( '

dσ 2(4n + 2)χσ - g(λ)[(4κ + l)χ2 - 8mτ2 + (An + l)(4n •• -,, ̂

dχ 2[χ2 + 8nσ2 + Λ] ' l }

where

gf(A) = 1 - - A l l λ —log [1 + 2n(π + 2)i 2 - πA4]
4n α/i

=

-h 2n(n + 2)A2 - nλ* 1 4-

3. Complete Compact Einstein Spaces

Having given the local construction of the metric (2.1), we now turn to the
consideration of the global topological structure of the manifold M on which (2.1)
is to be defined. The discussion is very similar to that given in [6,9]. The range
of the radial coordinate r in (2.1) is determined by the nature of the zeroes or
infinities of the r-dependent functions α, β and γ. These define the "endpoints"
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of the radial variable. There are essentially two kinds of possible endpoint,
corresponding to one or both of β and γ going either to zero or to infinity. If M
is to be a compact manifold, we require that β should vanish at the endpoints r1

and r2 of the range of the r coordinate, rx ^ r ^ r2. This is necessary in order that
the 3-dimensional fibres parametrised by r and uι (subject to (1.9)) can be compact.
Provided that β approaches zero appropriately at rx and r2, the 3-dimensional
fibres will have the topology of a 3-sphere. The required behaviour for β at the
endpoints is that

β'
= - 1 , (3.1)

together with the requirement that (l/αβX/J'/α)' remain finite at the endpoints. The
3-sphere fibres are foliated by 2-spheres t/V = 1, growing from zero radius at r = r :

and collapsing down to zero radius again at r = r2. The regularity conditions (3.1)
ensure that the 3-sphere does not have conical singularities at the north and south
poles rλ and r2. The requirement that (\/ocβ)(β'/oc)' be finite at the poles ensures
that the curvature does not diverge there (see (2.4)).

Since a level surface r = constant in M is the twistor space Z, it follows that y
must remain non-zero for all r in the interval rι^r^r2. This is because unless
the level surfaces are round spheres, it is impossible for them to "nest" down to
zero radius without the occurrence of a conical singularity. Thus we cannot
have β and y going to zero simultaneously. To see that Z can never be a sphere,
we observe that it is a Kahler space of dimension 4n + 2 ^ 6. Now the only sphere
that is Kahler is S2, whence Z cannot be a sphere. Not only must y be non-zero
everywhere in the interval rι^r^ r2, but also we see from (2.4) that in order to
avoid curvature-singularities at the endpoints, y'/aβ must remain finite at r1 and
r2. In particular, this implies that //α must go to zero there. For M to be compact,
y must also remain finite in the interval rί ^ r ^ r2.

In terms of the geodesies of the minisuperspace metric (2.26), a complete,
compact, non-singular Einstein space requires A > 0, and corresponds to a geodesic
coming from t = — oo,z = — oo at r = rί9 where the regularity requirement (3.1) is
that as r^r1,

2 ( 2 n ' (3.2)
t \4n+l

The geodesic has t increasing until it reaches the region V ^ 0, where it can turn
around. Then it goes back to t = - oo at r = r2, where it must again satisfy the
regularity requirement (3.2). (A generic singular solution has instead z/ί-» ±1.)
The only known non-singular solutions are symmetric about the midpoint of r, in
which case the geodesic turns around precisely on the line V = 0 (where it has
β' = y' = 0) and reverses itself to go back down the same path in the (ί, z) or (β, y)
space that it came up.

In terms of the variables χ, λ and σ, and their equations (2.44) and (2.45), a
complete compact Einstein space must have the shape parameter λ be zero at the
two endpoints but positive in between, and the shear σ vary from + oo to — oo
(not necessarily monotonically), as the expansion χ, taken as the independent
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variable, varies monotonically from + oo to — oo. The regularity requirement (3.1)
is that

H <3 3>
at the endpoints. A solution symmetric about the midpoint would have σ = 0,
where χ = 0.

One can look for solutions numerically by integrating the geodesic equation
in the metric (2.26), starting from the regularity condition (3.2) at r = rx or t = — oo,
with the initial value, yί, of

y = exp [(4n + 1)" 1/2(4n + 2)~ 1/2t - (2n)1/2(4n + 2)~ 1 / 2z] (3.4)

chosen by trial and error to give a geodesic that obeys the regularity condition
again when it returns to t = — oo. Alternatively, one can integrate (2.44) and (2.45),
with the regularity condition (3.3) at χ = oo, and look for a trial initial value of γ,
given by (2.43), that yields a solution regular also at χ = — oo. In actual calculations,
one should replace χ and σ, which have infinite ranges, by invertible monotonic
functions of these variables that have finite ranges.

A preliminary numerical analysis indicates that complete compact solutions
do exist, at least for small n. For large n, one may readily construct approximate
solutions analogous to those in [6]. Hence it appears likely that solutions exist
for all natural numbers n. All of the solutions found are symmetric about the
midpoint. Further details of the solutions will be given in a future publication.

Having ensured that the above regularity conditions are satisfied, the metric
(2.1) is now seen to be globally extendible on a compact manifold M. The topology
of M is that of a certain 5 3 bundle over the quaternionic Kahler base manifold
M. Although 5 3 is topologically SU(2), the 5 3 bundle here is not a principal SU(2)
bundle; rather, it is an associated bundle with structure group 50(4). In the case
that the base space M is 5 4 it is shown in [10] that such bundles are characterised
by giving the transition functions on an equatorial 3-sphere on 5 4 . Thinking of S3

as SU(2) or the unit quarternions, the transition functions are homotopic to the
map q'^qm+nq'q~m. Steenrod called these bundles Bmn, where Bmn and Bm+Λt-n

are equivalent. The case B0Λ is the standard one-instanton 5(7(2) bundle, which
as a manifold is diffeomorphic to 5 7. The bundle on which we have constructed
our metric is B10. In fact this is reducible to an 50(3) bundle where the action of
50(3) on 5 3 is just rotations that leave fixed the north and south poles of 5 3 .
Because they are left fixed the bundle Bίt0, and more generally Bm0, admits a
global cross section whereas B0Λ does not. In terms of our construction the 50(3)
rotates the u[ and leaves r fixed. The global sections are just r = rγ and r = r2. It
is not difficult to find two charts on the 5 4 base and to calculate the coordinate
transformation between them. The A1 transform as the B0Λ case but the induced
action on the uι is just an 50(3) rotation of the u\ Although the integers m and n
distinguish the bundles as 50(4) bundles, they do not distinguish the bundles as
manifolds. In fact the bundles Bm0 have the same homology and homotopy groups
as the product 5 3 x 5 4, i.e. as Boo. It has been shown however [11] that Bm0 and
Bn0 have the same homotopy type if and only if m = ± nmod 12. Thus M cannot
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be homeomorphic to S3 x S4. It clearly cannot be homeomorphic to S7 either,
because its homology groups are different. The reader will appreciate the need for
care here if he recalls Milnor's famous result [12] that if k2 φ 1 mod 7 then Bik_ ί)/21

is homeomorphic but not diffeomorphic to SΊ. It follows from Hodge theory that
M has just one harmonic 3-form and just one harmonic 4-form. Since it is unique
the 3-form must be invariant under G and Sp(l). It is given by (2.13), where /
satisfies (2.16) and g and h are obtained from / as indicated.

By taking the base space M to be P2(C\ the complex projective plane, we can
obtain another example of a seven-dimensional compact Einstein space M. We
do not know of any discussion of the topology and differentiability of the
three-sphere bundle over M in this case.

4. Non-compact Ricci-flat Metrics

In order that M be non-compact, while the base manifold M is compact, at least
one limit of the range of r must be an infinite endpoint, i.e. it must correspond to
a region in M that is at infinite proper distance from all points in M corresponding
to the other values of r within its range. We shall consider only the case where
there is just one infinite endpoint, which without loss of generality may be taken
to be located at r = oo, so that without loss of generality we may take the range
of r to be rt ^ r < oo = r2. This assumption that there is just one infinite endpoint
is in fact not a restriction at all for the situation of interest to us in this section,
where the Ricci tensor vanishes. This is a consequence of a theorem by Cheeger
and Gromoll [15], which asserts that for any complete manifold with metric
satisfying Rab ^ 0, there can be at most one infinite endpoint (excluding the special
case of R x Tn). This conclusion also follows from (2.39). Since r = oo lies at
infinite proper distance from all points in the manifold, there are no regularity
conditions to be imposed on the functions a,β and y there. At r = ru which we
are taking to be a finite endpoint, the condition (3.1) must hold, together with the
additional requirements discussed in Sect. 3 that ensure boundedness of the
curvature. Over a given point in the base manifold M, the 3-dimensional fibre has
the topology R3, since it consists of a nested sequence of 2-spheres that collapse
down to a regular origin at r = rι. Thus the topology of M in this case will be
that of an R3 bundle over M.

In general, we have been unable to find explicit solutions for α, β and γ such
that the Ricci tensor Rab given by (2.8) is zero. However, in the case that n = 1, so
that M is a seven-dimensional manifold, we have found an explicit solution. The
radial functions take the form

a2 = ( l - r " 4 ) - 1 ; j ? 2 = i r 2 ( l - r " 4 ) ; y2={r2. (4.1)

One can verify by substituting (4.1) into (2.8) that the metric is indeed Ricci-flat.
The range of the radial coordinate is 1 ̂  r < oo, and it is easy to see that the
regularity condition (3.1) is indeed satisfied at r = rx = 1.

Since the quaternionic Kahler base manifold M is four-dimensional in this
example, the conditions (1.6) and (1.7) are not automatic, but must be imposed as
further restrictions on M. We know of two cases for which these conditions are
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satisfied, namely M = S4 and M = P2(Q. When M = S4, with its standard Einstein
metric normalised so that

Θaβ in (2.4) is given by

Θaβ = e«Λeί. (4.3)

The almost complex structures Jι

aβ take the form Jι

Oj = — δij9 J
ι

jk = — εijk, and A1

is a potential for the single-instanton bundle over S4.
We are now in a position to calculate the holonomy group of this 7-dimensional

metric. We recall that the holonomy group of an m-dimensional manifold is defined
as that subgroup of the tangent space group SO(m) which describes the rotation
of a spinor or tensor field under parallel transport around all possible closed curves
in the manifold. The rotation of a field φ under such an infinitesimal transformation
is given by

δφ = GabδAabΦ, (4.4)

where

Gat^RatctΓ", (4.5)

Γab are the generators of SO(m) in the representation of the field φ and δAab is an
infinitesimal area element spanned by the closed curve. In many cases, including
the metrics that we are considering in this paper, the group generated by the Gabs
is the holonomy group. In general, however, the holonomy group may be larger,
corresponding to the fact that parallel transport around non-infinitesimal curves
may enable one to reach parts of the tangent-space group that infinitesimal curves
cannot reach. This is true even for the restricted holonomy group, which is generated
by contractible, but not necessarily infinitesimal, curves. Since parallel propagation
around non-infinitesimal curves involves the components of the Riemann tensor
away from the starting and finishing point of the curve, it follows that in general
the restricted holonomy group is determined by the Riemann tensor and all its
covariant derivatives. Using (2.4-2.7), we find that the generators Gab are given by

GOi = 4AhijΓOj - AsijkJ
j^ukra^

G o a

 = ~ 2AΓo<χ ~~ A £ i j k J aβU i i β ,

Gix =~(A + tyhtjΓj, - BhikhjlεklmJm

xβΓjβ + AεijkJ\βu
kΓOβ,

Gij = hikhjiΓkl - BhikhnεklmJm

aβΓaβ,

Gaβ = |(5Λ + B)Γxβ - UA - B ) M V [ J ' . , J ^ a + J'aβJ
J^Γjδ,

^Γij - 2AεijkJ\βu
kΓOi, (4.6)

where A and B are the following functions of r.

A ^ β Ξ ^ 2 ( 3 + ' - 4 ) (4-7)

Ostensibly, there are 21 quantities Gab, generating the tangent space group
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50(7). However, not all 21 generators are independent. In fact, we find a total of
7 relations among the Gα5, which take the form

uWaβGaβ + u'εwGj^O. (4.8)

The first of these equations gives four relations amongst the Gab, the second gives
two relations (since although i runs over three values, the expression is orthogonal
to M1') and the final equation gives one further relation. Thus there are fourteen
independent generators Gah of the restricted holonomy group. In particular, it
follows from (4.8) that GOh GOα and Gij9 which comprise 2 + 4 + 1 = 7 combinations,
can be expressed in terms of the remaining combinations, and thus we may choose
the 8 + 6 = 14 combinations Gia and Gaβ as the independent generators. It is a
straightforward exercise to show that Giα and Gaβ may be expressed as linear
combinations of the 14 generators Hab of the exceptional group G2, which can be
written in the form [16]

Hif= 2 Γ / ; + Γ - δ.jΓ^ + εiJkΓoh (4.9)

where i, j = 1,2,3 and ΐ, / = 4,5,6 = ί, 2,3. Since it turns out that the Gia and Gaβ

generate the entire holonomy group, the Ricci-flat metric in the R3 bundle over
S 4 has G2 holonomy, which is the exceptional possibility for 7-manifolds included
in Berger's classification of holonomy groups for Riemannian manifolds [17].

The level surfaces r = constant in the R3 bundle over S 4 are the twistor space
Z discussed in Sect. 1 with M = S4; i.e. Z = P3(C). From (4.1), we see that the ratio
of β2 to y2 tends to 1/2 as r tends to infinity. Thus from (1.15) it follows that the
metric on the P3(C) level surfaces is tending asymptotically to the "squashed"
Einstein metric on P3(C).

There is another Ricci-flat non-compact solution corresponding to the case
where M is taken to be the complex projective plane P2(Q rather than S4. The
only difference in the calculation of the curvature in this case is that the curvature
2-form Θaβ on the base space M now takes the form

Θ*β = &Kh» + K«yKβ> + K*βKys)ey Λ *° ( 4 1 0 )

rather than simply (4.3), where Kaβ is the Kahler form on P2(Q. The generators
Gab of the holonomy group are given by (4.6) except for Gaβ, which now
takes the form

Gaβ = (2A - B)Γaβ -±(Ά - 4B)[KayKβδ + KaβKyδ]Γ
yδ

- BhnhjtS^J^βΓij - 2AεijkJ
j

aβu
kΓOi. (4.11)

One can show that again there are 7 relations among the 21 Gabs, and that the
14 independent ones can be written in terms of the Habs of (4.9). Thus the
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Ricci-flat metric on the R3 bundle over P2(Q also has holonomy group G2. As in
the case where M = S4, the metric on the twistor space Z that comprises the level
surfaces r = constant tends asymptotically to the "squashed" Einstein metric
(λ2 = 1/2 in (1.12)) as r tends to infinity. In this case, the twistor space Z for
M = P2(C) is the flag manifold SU(3)/T2, where T2 is a maximal torus in SU(3).

5. Other Ricci-flat Metrics with Exceptional Holonomy

There are other examples of Ricci-flat metrics with exceptional holonomy groups
that may be constructed by methods similar to those of the previous sections. The
first of these is another seven-dimensional example, which has the topology of an
R4 bundle over S3. Since S3 is parallelizable, the bundle is trivial, and so in this
case the seven-dimensional manifold has the product topology R4 x S3. The metric
takes the form

ds2 = oc2dr2 + β2(σi - A1)2 + y2ΣιΣ\ (5.1)

where Σι are a set of left-invariant one-forms on the S3 base manifold, satisfying
dΣ1 = — Σ2 A Σ3, etc., σ1 are a set of left-invariant one-forms on the fibres of a
principal Si/(2) bundle over S3, with connection A1 given by

Aι = \Σ\ (5.2)

and as usual α, β and y functions of the seventh coordinate, r. The level surfaces
r = constant have the topology S3 x S3. In fact the metrics ds2 = λ2{σi - {\β)Σi)2 +
ΣιΣ\ where λ = constant, give a family of homogeneous metrics on S 3 x S3. The
standard Einstein metric corresponds to taking λ2 = 4, and there is a second
Einstein metric given by taking λ2 = 4/3.

We introduce the orthonormal basis

e° = (xdr; e?= β{σι - Al)\ e^yΣ1, (5.3)

where ί, j = 1,2,3, and ΐ, / = 1,2,3 = 4,5,6. The curvature 2-form for (5.3) can be
calculated by standard methods. It may in fact be read off from the results in [6],
by making minor modifications to take into account the fact that the base space
is three-dimensional rather than four-dimensional. One can then verify that a
Ricci-flat metric is obtained by choosing the functions α, β and y as follows:

α 2 = ( l _ r - 3 ) - l ; / ? 2 = l r 2 ( 1 _ r - 3 ) ; y2 = J ^ ( 5 4 )

As r tends to infinity, the level surfaces therefore approach the geometry
of the second Einstein metric on S3 x S3 discussed above. Defining the functions
A and B as

Λ = Λ ; B = -^(5 + r"3), (5.5)
4 P 4rz

one can show that the curvature components Gab, defined by (4.5), take the form

G0ΐ=2AΓ0ΐ-AεijkΓjk,

Goi= -
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GTJ = - i(4Λ + 3B)ΓTJ + | μ - 3B)Γn + \(A + 2B)όy Γj, + AεijkΓOk,

Gri=BΓrί+BΓip

GtJ = (2A + B)Γtj + β J ^ - 2/lε^Γog. (5.6)

One can easily show that these quantities generate the group G 2 . For example, by
interchanging the hatted and unhatted indices and reversing the sign of the epsilon
tensor in (4.9), one can show that all the 21 components Gab can be expressed in
terms of the 14 G2 generators Hab given by (4.9).

As discussed earlier, strictly speaking it does not necessarily follow that the
group generated by the curvature components (4.5) is precisely the restricted
holonomy group of the space in question: one should really consider the (possibly
larger) group generated by the Riemann tensor and all its covariant derivatives.
However, in this case the following argument enables us to demonstrate that the
holonomy group is indeed just G 2. We note that in a seven-dimensional space,
one can define Majorana spinors that transform as the 8-dimensional representation
of the Spin (7) double covering of the tangent space group. If the holonomy group
is G 2, then there should exist a covariantly-constant spinor η, satisfying

Dη = dη + ϊώabΓ
abη = O, (5.7)

since under the embedding of G2 in Spin (7) the 8 of Spin (7) decomposes to the
7 + 1 of G2. The singlet in this decomposition corresponds to the covariantly-
constant spinor η. The integrability condition that follows from acting on (5.7)
with another covariant exterior derivative D is precisely the condition that η be
annihilated by Gab, i.e. Gabη = 0. But since we have noted that in this case the Gflfe's
generate the group G2, this necessary condition on η in fact determines it entirely,
except for an overall factor. This factor may be fixed (up to a sign) by requiring
that η be real, and be normalised to ήη = l. (Since Dη = 0, it follows that η has
constant norm.) It is now straightforward to calculate D, defined by (5.7),

+ ϊ |? WV+ K ru -^ti^Γij, (5-8)

where ωu is the connection one-form for the base space with dreibein Σι. From
(5.5), one can then show that the unit-norm real spinor annihilated by (5.6) does
indeed satisfy Dη = 0. Thus the holonomy group for the Ricci-flat metric on K4 x S3

is indeed G2.

In eight dimensions, where the holonomy group is generically SO(8), there is
another exceptional possibility that appears in Berger's classification [17], for
which the holonomy group is Spin (7). An example of an 8-manifold with Spin (7)
holonomy may also be constructed using the techniques of this paper. In fact this
example is a special case of the general class of quaternionic line bundles over
quaternionic projective spaces that were discussed in [6]. The metric takes the form

ds2 = oc2dr2 + 0 V - A1)2 + y2ds2, (5.9)
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where ds2 is the metric on the base space, which we take to be S4 = P1(H). The
σι are left-invariant one-forms on the SU(2) fibres of the single-instanton bundle
over iS4, and as usual α, β and γ are functions of the remaining coordinate r. We
introduce the orthonormal basis

e° = ocdr; e[ = β(σι - A1); ea = ye\ (5.10)

where ea is an orthonormal basis for S4. The curvature 2-form for (5.10) is given
in [6]. One can then verify that if one takes α, β and γ to be given by

α ^ ί l - r " 1 0 ' 3 ) - 1 ; β2 =^\\ - r" 1 0 ^); Ί2 =γtf\ (5.11)

then the metric (5.9) is Ricci flat. Topologically, the manifold M is an R4 bundle
over S4. As r tends to infinity, the metric on the level surfaces r = constant tends
to the homogeneous "squashed" Einstein metric on the seven-sphere.

From [6], one can show that the curvature components Gab defined by (4.5)
are given by

Gia =-(A + 2B)Γia - BεijkΓjβ + AJ\βΓOβ,

GU = 4BΓij ~ BεijkJ\βΓaβ,

Gaβ = 2(A + B)Γaβ + 2 ^ α / ? Γ O ι - BεijkJ\βΓφ (5.12)

where /4 and B are given here by

A=-r~16/3' B = —— (4 + r~ 1 0 / 3 ) (5 13)
9 ' 9r2

After some algebra, one can show that all the Gflfe's in (5.12) may be expressed as
linear combinations of the 21 generators of the Spin (7) subgroup of the 28
generators Γab of SO(8), as given, for example, in [18].

As in the case of the Ricci-flat metric on R4 x S3 discussed above, we can easily
show explicitly that there exists a covariantly-constant spinor for our Ricci-flat
metric on the R4 bundle over S4. In this case, the irreducible spinor representations
of the Spin (8) double covering of the SO(S) tangent space group are the 8 + and
8_, which correspond to left-handed and right-handed Majorana-Weyl spinors
respectively. Under the embedding of Spin (7) in Spin (8), one of the spinors
decomposes irreducibly, say 8_->8, while the other decomposes as 8+->7+ 1.
The singlet in this decomposition corresponds to the covariantly-constant spinor
η. Again, this means that Gabη = 0 is an integrability condition for the existence
of η, which determines η uniquely up to an overall factor. As before, we fix the
factor (up to a sign) by demanding that η be real and have unit norm. The exterior
derivative defined by (5.7) takes the form

(5.14)
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where ωaβ is the connection one-form for the vierbein on the S 4 base space. Thus
using (5.11), one can show that the unit-norm spinor η that is annihilated by Gab

given by (5.12) is indeed covariantly constant. Hence it follows that the Ricci-flat
metric on the R* bundle over S 4 has precisely Spin (7) holonomy.

Using the covariantly-constant spinor η in the seven and eight-dimensional
spaces that we have discussed in this paper, one can immediately construct
certain covariantly-constant p-forms, with components given by

ωa, -ap = nΓaχ...apY\, (5.15)

where Γaι...ap = Γ[aί'~Γapl, the totally antisymmetric product ofp Dirac matrices.
In the case that M is seven dimensional, it follows from the fact that η is Majorana
(and commuting) that (5.15) is non-zero only if p = 0,3,4 or 7, owing to the
antisymmetry of the Dirac-matrix products under the interchange of spinor indices
when p = 1,2,5 or 6. When p = 0 or 7 we just get a constant scalar or its dual, but
the case p = 3 gives the 3-form that we discussed in Sect. 2. When p = 4we obtain
the dual of this 3-form. When M is eight dimensional, η is Majorana and Weyl,
so (5.15) is non-zero only if /? = 0,4 or 8. The non-trivial case p = 4 yields a
covariantly-constant 4-form in the Ricci-flat R4 bundle over S4 discussed earlier
in this section.

It is interesting to note that the existence of a covariantly-constant spinor η in
a space automatically implies that it must be Ricci flat. To see this, consider the
integrability condition

0 (5.16)

which follows from taking the commutator of covariant derivatives on η.
Multiplying on the left with Γb, and using the cyclic identity Ra[bcd] = 0, we obtain

RabΓbη = 0, (5.17)

where Rab is the Ricci tensor. Multiplying on the left by ήΓc then yields the result

Rat = 0. (5.18)

This provides a simple alternative derivation of the result [19] that any seven-
dimensional space with G2 holonomy or any eight-dimensional space with Spin (7)
holonomy must be Ricci flat. Indeed, more generally, whenever the holonomy
group H of a space is such that the decomposition of the spinor representation
under H includes a singlet, the space must be Ricci flat. Examples are provided
by 2tt-dimensional Kahler manifolds that have SU{n) holonomy.

6. The Asymptotic Structure of the Non-Compact Metrics

In this section we discuss the asymptotic behaviour of our new metrics in more
detail. In all cases the metric tends to a Ricci-flat metric on a generalised cone, i.e.
the π-dimensional metric tends to

ds2 = dr2 + r2dΩj;-l9 (6.1)

where Ω2

n_ 1 is a metric on the "base" of the cone. The metric (6.1) will be Ricci-flat
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if and only if dΩ%_ x is Einstein, with the scale chosen so that

RAB = (n-2)gAB, (6.2)

where A, B = 1,2,..., n — 1. It seems to be a fairly general feature of cohomogeneity-
one Ricci-flat matrics that they tend to such cones, where dΩ^_1 is an Einstein
metric on the homogeneous space G/H, G being the isometry group and H the
isotropy subgroup. The generic orbit of G is (n — 1) dimensional, but in the interior
the orbit collapses to an orbit of lower dimension of the form G/H\ G => H' ID H.
Such an orbit of lower dimension is called a "Bolt of the second kind" unless it is
zero-dimensional in which case it is called a "NUT of the second kind". In earlier
work the terms "NUT" and "bolt" were used to describe an isolated (NUT) or
2-dimensional (bolt) fixed-point set of a U(\) subgroup (possibly proper) of the
isometry group of a 4-metric [20]. Thus our non-compact metrics can be thought
of as smoothed-out cones, the bolt replacing the singular vertex. In fact our examples
can also be thought of as vector bundles over the bolt; the bolt in fact corresponds
to the zero section of the vector bundle. The space thus retracts onto the bolt and
this is useful in understanding the topology of our manifolds. The Euler number
is, for example, given by the Euler number of the base.

It is also useful to think of our spaces as manifolds M with boundary dM, the
boundary being a level surface r = constant. By glueing two such manifolds together
across the boundary we obtain a compact manifold without boundary called the
"double," 2M. Our two compact Einstein 7-manifolds with positive Ricci scalar
constructed in Sect. 3 are of course just the doubles of the smoothed-out cones
with base dM where dM is P3(C) or SU(3)/T2. Similarly the compact Einstein
8-manifold with positive Ricci scalar constructed in [6] is topologically the double
of the non-compact 8-manifold with Spin(7) holonomy constructed in Sect. 5. There
is a useful relation [21] between the Euler number of a manifold, its boundary
and its double. This is

χ(dM)-2χ(M) + χ(2M) = 0. (6.3)

Compact odd-dimensional manifolds without boundary have vanishing Euler
number so that we deduce that the Euler number of the boundary is twice that of
the non-compact 7-manifold, that is, twice that of the bolt. On the other hand for
compact 8-manifolds the first term in (6.3) vanishes and the Euler number of the
double is twice that of the non-compact manifold. Clearly not all generalised cones
can be smoothed out even topologically to give a compact manifold of which the
base is the boundary. The base must be cobordant to zero. In particular from (6.3) it
follows [21] that the Euler number of the base must be even.

Since the occurrence of asymptotic behaviour of this conical sort is common
we wish to expand on it a little. If the metric άΩ\_ 1 is not only Einstein but of
constant positive curvature, i.e.

RABCD = (QACGBD ~ QADGBCX (6.4)

the associated cone is flat. If rf/2^_ x is the standard round metric on Sn~1/Γ with
ΓaS0(ή) the metric (6.1) is said to be asymptotically locally Euclidean, ALE,
unless Γ = 1 in which case it is asymptotically Euclidean, AE. It is known [22,23]
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that there are no complete Ricci-flat AE metrics, but examples of Ricci-flat ALE
metrics are known. Note that Sn~1/Γ need not be homogeneous. If it is not
homogeneous the associated ALE metrics are not isotropic at infinity: certain
directions are picked out. The condition that Sn~1/Γ be homogeneous restricts Γ
considerably. From [24] one finds that Γ must be a finite multiplicative group of
numbers chosen from the real, complex or quaternion fields. In all three cases the
sphere is thought of as the set of unit vectors in a /c-dimensional vector space over
the three fields and the group acts by multiplication on the vectors. Thus the
possibilities are:

1. Sk/±l,
2. S 2 * - 7 C p , p = 2,3,...,

3. 54fc"VD*, S4*"1/!1*, S4k~ 7 0 * , S4*-1//*,

where Cp is the cyclic group of order p, D* is the binary dihedral group of order
4p, T* the binary tetrahedral group, 0* the binary octahedral group and /* the
binary icosehedral group. Familiar examples of Ricci-flat ALE metrics of this sort
are generalized Eguchi-Hanson metrics [25,26,9] with p = k, for all k, and the
self-dual gravitational instantans for fc= l[20,27,28]. Both of these examples
have special holonomy. The Eguchi-Hanson metrics are Kahler and so have
holonomy SU(k). Their isometry group is U(k + 1) acting in the standard way on
the kth power of the Hopf bundle over Pk(C). They are cohomogeneity-one metrics
and are thus similar to our present examples, being R2 bundles over the
Einstein-Kahler base manifold with bolt corresponding to Pk(C). The gravitational
instantons are not of cohomogeneity one but they do have special holonomy,
namely Sp(l); i.e. they are hyper-Kahler. It is interesting to note that the only
odd-dimensional flat cones (homogeneous or not) are those over P2n(

R)' However
this has Euler number one so that there is no way of smoothing out the vertex to
obtain a manifold. Thus ALE spaces must be even dimensional. As far as we know
all known ALE spaces, which may be of interest as generalisations to higher
dimensions of the conical metric of a cosmic string, have special holonomy.

The metrics we have constructed also have special holonomy but they are not
ALE, indeed from our remark above, those with holonomy G 2, being 7-dimensional,
could not possibly be ALE; rather they and the 8-dimensional example with
holonomy Spin (7) can be said to be AC, that is, they tend asymptotically to
Ricci-flat cones. In fact Bryant's original incomplete examples [29] were precisely
Ricci-flat cones. The metrics we have constructed in this paper (and which were
previously constructed by Bryant and Salamon [2]) are smoothed-out cones, the
singular "vertex" at r = 0 being replaced by a smoothly-embedded bolt. In this
respect they are similar to Calabi's hyper-Kahler metric on T*(Pk(Q) [25]. This
has isometry group U(k+ 1) acting on orbits of co-dimension one of the form
U(k + l)/(l/(fc - 1) x 1/(1)). The bolt is Pk{C\ and at infinity the metric is asymptotic
to a Ricci-flat cone with base an Einstein metric on U(k + l)/(t/(fc — 1) x U(l)). If
k = 2 we have an 8-dimensional metric on an R4 bundle over P2(C) which is
analogous to the example with holonomy Spin(7), which is an R4 bundle over S4.

For the reader's convenience we list here the bases, bolts, holonomy and Euler
numbers of our four examples and the two generalisations of the 4-dimensional
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Eguchi-Hanson metric:

1. U(k + l)/(U(k - 1) x 1/(1)): Pk(Q: Sp(fc): χ = k + 1,
2. l/(jfc+l)/l/(l): P,(C): Sl/(fc): χ = fc+l,
3. S7: S4: Spin(7): χ = 2,
4. P3(C): S 4: G 2 : χ = 2,
5. Sl/(3)/T2: P2(C): G 2 : χ = 3,
6. S3 x S 3 : S 3: G 2 : χ = 0.

The manifolds that these metrics live on are respectively 1) the tangent bundle
Pk{C\ 2) The kih power of the Hopf bundle over Pk(C), 3) the bundle of positive
chirality spinors over S4, 4) the bundle of anti-self-dual 2-forms over S4, 5) the
bundle of anti-self-dual 2-forms over P2(C) and 6) the spin bundle over S3.

Finally we should remark that not all cohomogeneity-one Ricci-flat metrics
are asymptotic to Ricci-flat cones. The higher-dimensional Schwarzschild metric
[30]:

ds2 = (l -r3~n)dτ2 + (l -r3-")-1^2 + r2dΩϊ-29 (6.5)

where dΩ2_2 is an n — 2-dimensional Einstein metric with scale chosen to satisfy
(6.2), is asymptotic to S1 x whatever Einstein manifold we choose but with the
length of the circle direction going to a constant. It can thus be said to tend to
iS1 x an (n — l)-dimensional Ricci-flat cone. A more complicated but similar
example is provided by the higher dimensional version of Taub-NUT [9,31] which
is defined on R2k + 2 and has a NUT at the origin. The isometry group is U(k + 1)
which acts on the Hopf bundle over Pk(C). The orbits of the isometry group
correspond to S2k~1 but at infinity the length of the Hopf circles goes to a constant
whereas the Pk(C) base expands. The asymptotic form in similar to the associated
Schwarzschild (6.5) metric with dΩ2_2 being an appropriate multiple of the
Fubini-Study metric on P ^ . ^C). This can be said to be asymptotic to a circle
bundle over the Ricci-flat cone with base P ( n / 2 _ υ (C). As far as we know neither
of these two examples, unlike the closely-related ALE Ricci-flat Kahler generalised
Eguchi-metric, has special holonomy except the 4-dimensional Taub-NUT metric.

7. Eigenfunction Relations and Moduli

For a general space in n dimensions, one can consider the spectrum of various
differential operators acting on fields carrying certain representations of the SO(n)
tangent space group. These operators would include the Hodge-de Rham operator
(d + δ)2 acting on p-forms, the Dirac operator iΓaVa acting on spinors, and the
Lichnerowicz operator ΔL acting on symmetric tracefree tensors. Generically, there
will be no relation between the spectra of these various operators. If, however, the
holonomy group H of the space is a proper subgroup of the tangent space group
SO(n\ then rather than classifying fields by their SO(n) representations one can
instead classify them according to their representations under H, since the
differential operators under consideration commute with H. In general a field that
transforms irreducibly under SO(ή) will be reducible under H. This means that the
spectra of the various differential operators will be at least partially related. This
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was discussed in detail in [32] for the case of four-dimensional manifolds with
self-dual Riemann tensor.

Let us begin by considering the case of an eight-manifold with Spin(7) holonomy.
As we know, this implies that there exists a covariantly-constant Majorana-Weyl
spinor η, which we shall take to be left-handed and normalised to unit length.
Thus we see that the 8_ representation of Spin (8), the double cover of the 50(8)
tangent-space group, decomposes under Spin(7) as

8_->7 + l. (7.1)

This defines the embedding of Spin(7) in 50(8) uniquely. It follows that the Sv

vector representation and the 8 + right-handed spinor representation decompose
irreducibily as

8,-8; 8+-+8. (7.2)

Equation (7.2) shows that in a manifold with Spin(7) holonomy, right-handed
spinors and vectors transform in the same way under the holonomy group, and
in fact the spectrum of the square of the Dirac operator on right-handed spinors
is the same as the spectrum of the Hodge-de Rham operator on 1-forms (which
are equivalent to vectors). This can be seen explicitly by noting that if Va is a
vector, then we may form the right-handed spinor φ given by

φ = iVaΓaη. (7.3)

Conversely, given by a right-handed spinor φ, we can form the vector Va given by

Va=-iήΓaφ. (7.4)

It is easy to check from the algebra of the gamma matrices that these maps are
invertible, so that any right-handed spinor may be mapped into a vector, and vice
versa. If Va is an eigenfunction of the Hodge-de Rham operator Δ,

ΔVa=-W ybVa + RΛV
b = λVa, (7.5)

then substituting (7.4) into this equation shows that φ is an eigenfunction of the
square of the Dirac operator with the same eigenvalue:

(iΓaVa)
2φ = - ΨVaφ + ΪRφ = λφ. (7.6)

(Note that the curvature terms in (7.5) and (7.6) are zero in our case, since the
eight-manifold must be Ricci flat.)

In a similar manner one can establish that there is a one-one mapping between
self-dual 4-forms and symmetric traceless 2-index tensors, which transform as the
35 + and 35y of 50(8) respectively. Under Spin(7), both of these representations
decompose irreducibly:

35 + ^35; 35,^35. (7.7)

The mapping can be made explicit by defining the anti-self-dual 4-form

Άabcά = ήΓabcd^ ( 7 8)

which is clearly covariantly constant. Given a self-dual 4-form ωabcd, one can now
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show that hab, defined by

hab = ϊωacdeηb

cd\ (7.9)

is symmetric and tracefree. Conversely, given a symmetric tracefree hab, ωabcd defined
by

U>abcd= -h[ae1bcd]e ( 7 1 0 )

can be shown to be anti-self-dual. The maps (7.9) and (7.10) are invertible, so any
anti-self-dual 4-form is equivalent to a symmetric traceless 2-index tensor, and vice
versa. Substituting into the Hodge-de Rham operator for 4-forms, and the
Lichnerowicz operator for symmetric tracelss 2-index tensors, one finds that if
ωabcd *s a self-dual 4-form satisfying Δω = λω, then hab given by (7.9) is an
eigenfunction of the Lichnerowicz operator with the same eigenvalue;

ΛLhab = -ΨV c h a h - 2Racbdh
cd + 2R{a%)c = λhab. (7.11)

(The Ricci tensor term will be zero in here.) Conversely, if hab is any eigenfunction
of the Lichnerowicz operator, satisfying (7.11), then coabcd given by (7.10) is a self-dual
4-form that is an eigenfunction of the Hodge-de Rham operator, with the same
eigenvalue λ.

One consequence of the relation discussed above is that if ωabcd is an harmonic
self-dual 4-form, then hab given by (7.9) is a divergence-free zero mode of the
Lichnerowicz operator; i.e. it corresponds to an infinitesimal deformation of the
metric that maintains the Ricci-flatness of the eight-dimensional space. Thus such
deformations are in one-one correspondence with the volume-preserving moduli
of the metric. In addition, there is a trivial volume-changing modulus corresponding
to scaling the metric by a constant factor. Thus for eight-manifolds with Spin (7)
holonomy, we have the result that the total number of parameters for Ricci-flat
metrics is b£ + 1, where bX is the dimension of the space of self-dual harmonic
4-forms.

Similar considerations apply to the case of seven-dimensional spaces with G2

holonomy. Here, the spinor representation of the double cover of the SO(Ί)
tangent-space group decomposes under G2 as

8 - ^ 7 + 1 . (7.12)

Since the dimension of the space is odd, the Dirac operator here maps the space
of spinors onto itself. Thus we can look at the first-order eigenvalue equation

ίΓaWaφ = μφ (7.13)

for spinors. Simple algebra shows that if φ is a scalar eigenfunction satisfying

-ΨVaφ = λφ, (7.14)

then ψ+ defined by

Φ±=φη±iλ~1/2(Vaφ)Γaη (7.15)

satisfies (7.13) with eigenvalues μ = ±λ1/2. Similarly, if Va is a divergence-free vector
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eigenfunction satisfying (7.5), then φ± defined by

ψ± = ίVaΓaη ± λ-^2(VaVb)Γabη (7.16)

satisfies (7.13) with eigenvalues μ= +λ1/2. There are also corresponding inverse
transformations from spinor eigenfunctions to scalar and vector eigenfunctions.

In manifolds with G2 holonomy there is a relation between the moduli of
Ricci-flat metrics and the space of harmonic 3-forms. To see this, we note that
3-forms, which correspond to the 35 representation of the SO(1) tangent-space
group, decompose under G2 into the 27 + 7 + 1 representations. On the other hand,
symmetric traceless tensors, which are in the 27 of SO(Ί\ decompose irreducibly
as the 27 of G 2 . Thus together with (7.12), this shows that 3-forms are equivalent
to the sum of spinors and symmetric traceless tensors. One can exhibit these
relations explicitly in much the same way as those that we have discussed previously.
In particular, it follows that the harmonic 3-forms are in one-one correspondence
with the set of Dirac zero modes together with the Lichnerowicz zero modes. Now
if the space is compact, we know from Lichnerowicz's theorem that any Dirac zero
mode is in fact covariantly constant (recall that the Ricci tensor vanishes for a
metric with G2 holonomy). We know that there is just one covariantly constant
spinor if the holonomy group is exactly G 2, and hence it follows that b3, the
number of harmonic 3-forms, must be equal to the number of traceless Lichnerowicz
zero modes plus one. Thus the number of moduli of Ricci-flat metrics in this case
is b3 — 1 + 1 = ί>3, where we have included the trivial scaling mode in addition to
the volume-preserving traceless modes.
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