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Abstract. In this paper the nonlinear wave equation

un — uχX + v(x)u(x91) + εu3(x, t) = 0

is studied. It is shown that for a large class of potentials, v(x\ one can use
KAM methods to construct periodic and quasi-periodic solutions (in time) for
this equation.

I. Introduction

This paper studies the non-linear wave equation

utt(x, t) - uxx(x, t) + v(x)u(x91) + εw3(x, t) = 0,

O ^ x ^ l , ί^O; i*(O,t) = u(l,t) = O; i;eL2[0,l]. (1.1)

We show that for a large class of potentials, v9 one can construct periodic and
quasi-periodic solutions for (1.1), provided ε is small, using a variant of the
Kolmogorov, Arnold, Moser [KAM] scheme. The method allows one to study
more general non-linear terms than the cubic term in (1.1). For a discussion of the
types of non-linearities that are permitted, see Sect. 2.

The existence of solutions, periodic in time, for non-linear wave equations has
been studied by many authors. (See [B] for a review of these results. [BN] contains
an extensive bibliography.) A wide variety of methods have been brought to bear
on the problem, ranging from bifurcation theory, (see for example [H]), to
variational techniques, pioneered by Rabinowitz [R], to ideas which exploit the
hamiltonian structure of the problem.

The KAM techniques are somewhat complementary to these approaches. They
are local methods in that they can only be applied if ε is small, (or equivalently
to construct solutions u(x, i) of small norm) whereas the variational methods often
yield global results. On the other hand the variational techniques place very strong
restrictions on the allowed periods of the solutions. The period, in time, must be
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a rational multiple of the length of the interval in x. This restriction results from
the inability of these methods to deal with "small denominators" which arise when
the period (in time) is irrationally related to the length of the interval in x. The
KAM theory, on the other hand, was developed specifically to deal with such small
denominator problems, and hence these restrictions on the period are absent in
the present case.

In addition, previous techniques do not seem to give any information about
the existence of quasi-periodic solutions, but using KAM ideas they become an
easy extension of the periodic problem.

The KAM theory was developed to treat perturbations of integrable hamiltonian
systems. Formal perturbation theories had existed for decades for such problems,
but the convergence of these expansions was unresolved until Kolmogorov, Arnold
and Moser showed how the convergence could be "accelerated." In its classical
form the KAM theory only applied to systems with finitely many degrees of
freedom. Recently, however, progress has been made in extending the theory to
certain infinite dimensional cases. Thus far the systems studied have arisen mostly
in condensed matter physics. In [FSW,BV, and PI], for instance, infinite
dimensional invariant tori were constructed for some approximate models of
anharmonic, disordered, crystals. More recently, in [AF and AFS], bifurcation
theory ideas were combined with accelerated convergence techniques to prove the
existence of periodic orbits in other, more realistic, models of these phenomena.

In this paper we seek to extend the KAM ideas to a different infinite dimensional
setting, namely, perturbations of completely integrable partial differential equations.
Nikolenko [N] has applied similar ideas in his study of normal forms for evolution
equations, but here we wish to focus on the hamiltonian nature of the problem.
We hope that this will shed some light on related, but more difficult, problems
such as perturbations of the KdV equations. We use the KAM ideas to construct
finite dimensional tori in the infinite dimensional phase space of this system. Our
method was influenced by Eliasson's work [E] on constructing low dimensional
tori for nearly integrable hamiltonian systems with finitely many degrees of freedom.
Eliasson's work has been extended by Rϋssmann [Ru] and Pόschel [P2]. In fact,
since the results of this paper were presented at the Oberwolfach meeting in May
1987, Pόschel has been able to show that his construction of these low dimensional
tori can be extended to treat (1.1). The results he obtained are apparently
similar to those presented here, but an exact statement of them is not contained
in [P2]. While it seems like a very interesting question to inquire whether or not
there are infinite dimensional invariant tori in these systems, corresponding to
quasi-periodic motions with infinitely many frequencies, I do not yet have any
idea how to prove or disprove their existence.

Our method is based on a perturbation of the known solutions of the ε = 0
case of (1.1). As such it will clearly be important to know the eigenfunctions
and eigenvalues of the Sturm-Liouville operator Lv = d2/dx2 - v, with Dirichlet
boundary conditions. In particular we will need to know what sequences of numbers
can occur as the eigenvalues of Lv. This constitutes the inverse spectral theory of
such operators, a topic which has been studied in [Bo and GL], and recently cast
in a clear form by Pόschel and Trubowitz, [PT], to which we shall often refer.
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II. Statement of Results

We begin by remarking on why the particular form of Eq. (1.1) was chosen. Suppose
we began with a general non-linear wave equation

utt - uxx + f(χ, u) = 0; iι(0, ί) = ιι(l, ί) = 0.

Since we will be perturbing about a solution of the linear problem, we expand
/(x, u) in a Taylor series about u = 0. Thus,

f(x9 u) = /(x, 0) + fu(x, 0)u + higher order terms. (2.1)

We assume /(x, 0) = 0. Physically this means that there is no force acting when
the string is at rest, tending to distort its equilibrium of MΞO. We define
fu(x, 0) = υ(x)—we need not assume much smoothness on v(x), so we merely require
that it be in L2[0,1]. The results we obtain below would not be changed if we
assumed more smoothness for v.

Finally, we assume that the higher order terms in (2.1) have the specific form
εu3(x, t). The small parameter ε is introduced just by rescaling u. The choice of a
u3 non-linearity was motivated just by convenience. From the discussion that
follows it is clear that any polynomial nonlίnearity could equally well be dealt
with. However, it is not clear how, or if, one could treat a general analytic interaction
term.

Having now motivated the form of (1.1), let us state our results. We will consider
cases where the potential, v(x)9 lies in the subspace of L2, given by

1

J υ(x)dx = 0, v(x) = v(l - x)

There is nothing special about fixing the average of v to be zero. Changing the
average of υ just shifts the eigenfrequencies of the ε = 0 case of (1.1) by a fixed
amount.

We restrict our attention further to even functions in an attempt to simplify
the description slightly. We select the allowed potentials by placing restrictions on
the eigenvalues of the associated operator Lv. In general the set of v(x) giving rise
to a chosen set of eigenvalues forms an analytic submanifold of L 2[0,1]([PT],
Chap. 4). However, this manifold intersects Eo in a unique point, and it is somewhat
easier to deal with this point, rather than the whole submanifold.

We will, for reasons discussed below, restrict our attention to that subset of
Eo for which the spectrum of Lv = d2/dx2 — v is negative. In Sect. 9 we construct
a probability measure on this subset and show that our results hold for almost
every v with respect to this measure.

Let {φj}JL i be the eigenfunctions of Lv = d2/dx2 - v (with Dirichlet boun-

dary conditions) and {μ^JLi the corresponding eigenvalues. Then u°j{x,t) =

sin(^/\μ~j\t)ιl/j(x) is a periodic solution of (1.1) with ε = 0 provided //, < 0 , and

φjv(x, t) = Σ Uj{x, t) is a quasi-periodic solution provided {-y/ίiΰ/DJL i are irrationally

related to one another. We wish to prove that these solutions persist when ε Φ 0.
That is the content of
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Theorem 2.1. There are sets S0(j) a Eo such that if ve$Q(j), there is a constant
εo(v>J)>Q> s u c n t n a t whenever \ε\ <εo(v,j) Eq. (1.1) has a weak periodic solution
u)(x, t) whose frequency differs from y/\μj\ by Θ(ε). There is a natural probability
measure, P, defined on the subset of Eo for which the spectrum of Lv = d2/dx2 + v is
negative and δQ(j) has measure one with respect to P.

For the quasi-periodic case one has an analogous result.

Theorem 2.2. There are sets ^0(N) c Eo such that if ve^0(N), there is a constant
εo(v,N)>0 such that whenever \ε\<εo(v,N) Eq. (1.1) has a weak, quasi-periodic
solution φε

N(x,t) whose frequency vector differs from that ofφ^(x,t) by Θ(ε). The set
#o(JV) has measure one with respect to the probability measure, P, introduced in
Theorem 2.1.

Remark. By a weak, quasi-periodic solution of (1.1) we mean a non-zero, continuous
function, quasi-periodic in time, which is a distributional solution of (1.1).

Remark. If u(x, t) is a quasi-periodic function of t, with N independent frequencies,
there is a function ύ(x,φ):[0,1] x F - ^ H , and a vector ΩeUN such that u(x, t) =
ύ(x, Ωt). In this last expression we interpret Ωt as an element of ΎN by taking each
of its components (modi).) The vector Ω is the frequency vector of u. For

(^/μ^^/μ^)
Unfortunately, the vector Ω is not uniquely defined. One can take different

linearly independent combinations of its components, which defines a set of
frequency vectors known as the frequency module, all of which correspond to the
same quasi-periodic orbit. In our case, however, we are perturbing a fixed
quasi-periodic orbit of the unperturbed problem, φ%, so it will be clear to which
element of the frequency module we are referring. Note that Theorem 2.1 does not
establish that the solutions constructed there actually have periods that are
irrational, as we claimed in the introduction. One can establish that by keeping
track of the changes in frequency produced by the iterative scheme used to prove
the theorem. However, the existence of solutions with irrational period is
guaranteed by the following result which in addition proves that one obtains a
large number of solutions, which is typical for KAM methods.

Theorem 2.3. Suppose we consider (1.1). If we restrict attention to the subset of Eo

for which the spectrum of Lv is negative, then for almost every potential, v, (with
respect to the measure P) there is a constant εo(v) > 0 such that if\ε\< εo(v), there
is an interval of the real line, A(v), and a subset BaA(v) with meas(β)^
(1 — ̂ (l/|logε|)))meas(^(f)) such that for every point ΩeB, Eq. (1.1) has a periodic
orbit withfrequency Ω. Similarly, there exists a set of positive, N-dimensional Lebesgue
measure such that for every point Ω in this set one has a quasi-periodic solution with
frequency vector Ω.

Remark. Although Theorem 2.3 gives one many periodic solutions, one has no
information about whether or not they occur in smooth families, or even whether
there is one corresponding to each value of the energy as is the case when one has
only finitely many degrees of freedom. One also has nothing like the results of
Weinstein and Moser [W,M], which guarantee (again in the case of finitely many
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degrees of freedom) one periodic orbit in the non-linear problem corresponding
to each periodic orbit in the linear problem.

III. Reduction to a Hamiltonian System with Countably Many Degrees
of Freedom

In the present section we show how the results of the previous section can be
reduced to questions about a hamiltonian system with countably many degrees of
freedom. To this end, we will need to know the eigenvalues and eigenvectors of
the differential operators

*,-£-» 3.»
dx

acting on L2[0,1], with Dirichlet boundary conditions at x = 0 and x = 1. The
spectral theory of such operators has been extensively studied and is reviewed in
a form particularly useful for our purposes in [PT].

Suppose we restrict ourselves to the set of potentials, Eo, defined in the previous
section. Then combining Theorems 4 and 7 of Chap. 2 of [PT] we obtain

Theorem 3.1. The eigenfunctions {φn}n^ι of Lv form a complete, orthogonal, set in
L2 [0,1]. The eigenvalues {μn}„^ 1 form a decreasing sequence and obey the asymptotic
estimate

μn= — n2π2 + I2(n), n—\,2,..., (3.2)

where I2(n) denotes the nth component of an element in I2.
More remarkably, any decreasing sequence of the form (3.2) arises as the

spectrum of Lv, for some veE0. Let S be the set of all such sequences. Let μ:E0^S
be the map which associates to each element, v, of Eo, the spectrum of Lv. Then
Theorem 2 of Chapter 6 of [PT] gives

Theorem 3.2. μ is a real analytic isomorphism between E and S.
Let us now fix v, and take {φn} to be the normalized eigenvectors of Lv. Since

{φn} are complete, we can write the solution of (1.1) as

Inserting this expansion into (1.1), and assuming that we can interchange
summation and differentiation at will, we find that (1.1) is equivalent to the infinite
system of coupled, ordinary differential equations

JLJ2,J3

Here ( , ) is the inner product in L2[0,1].
These are the equations of motion for a hamiltonian system with hamiltonian

H(p,q)=fjUpj-μjqj)-j Σ Ίj^Ίj^jλΦ^Φ^Ψ4)- (3-4)
7 = 1 ** J1J2J3J4
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This is the hamiltonian of an infinite set of harmonic oscillators, coupled
together through the non-linear terms. Note that unlike the models studied in
[FSW or VB], the nonlinear terms in (3.4) do not have a short range property.
This introduces significant new difficulties into the analysis of these models. These
difficulties are partially off-set, however, by the fact that the unperturbed frequencies
in this model—namely the μ/s, do not form a dense set as they did in previously
studied models.

If we look at the ε = 0 case of (3.4) we find that it possesses two types of
solutions. If μ7 < O,Pj(t) and qs(t) are periodic with frequency y/\μ^\. If, on the other
hand, μ̂  > 0, the corresponding mode grows or decays exponentially. From the
asymptotic formula (3.2) we see that at most finitely many of the μ/s are positive.
If we consider perturbing an ΛΓ-dimensional invariant torus corresponding to a
quasi-periodic solution of ΛΓ-modes with negative eigenvalues, the modes with
positive eigenvalues will mean that some of the directions normal to the torus will
be unstable. Experience with finite dimensional hamiltonian systems has shown
that such "unstable," or "hyperbolic" invariant tori are easier to treat than "stable"
tori [G,Z,E], which in our terminology are those with μ j<0. However, their
presence complicates the construction below, so we exclude potentials, υ9 from (1.1)
which have μ1 = 0. It is relatively easy to derive sufficient conditions to ensure that
this is satisfied. In particular, we have:

Proposition 3.3. // | |u | |Li < 1, then Lv has strictly negative spectrum.
The proof of this proposition is straightforward, but not particularly relevant

to what follows, so we omit it.
The hamiltonian (3.4) has infinitely many periodic and quasi-periodic solutions

when ε = 0. We will use KAM methods to show that these solutions continue to
exist for ε small and non-zero, provided the eigenvalues μn satisfy certain
non-resonance conditions.

Suppose that we wish to study the quasi-periodic (or periodic) solution
corresponding to the modes j l 9 . . . 9 j N of the hamiltonian (3.4). (In the periodic case
we just have N = 1.) We can assume, without loss of generality, that {jl9..., jN} =
{1,..., N}, since we can always relabel finitely many of the eigenfunctions {φJ} to
make this so, and the asymptotic estimates on the {φj}9s and the eigenvalues {μ,}
that we need below will not be affected by shuffling finitely many of the modes.

The relevant quantities for the non-resonance conditions are square roots of

the eigenvalues μ, , so we define ω7- = y/\μj\9 7 = 1,2,

Non-resonance Conditions. Let Ω=(ωl9...9ωN). We then require

(D.I) \n Ω±jπ\^D#)[\n\ + jYτ

9 for n^O, neZN, j ^O,

(D.2) \nΏ±ωj\ = Di

o

ί)Un\ + jy\ for j^ΛΓ + 1, weZ",

(D.3) \n-Ω±{ωJ±ωι)\^D%)l\n\+\j-l\y4\ for jJ^N+1, neZ",

for some constants D{Q\D(Q\ and τ. (Given any vector x, |x | = £\xj\.)
j

We can now state our principal technical result.
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Theorem 3.4. Suppose the frequencies in the hamiltonian (3.4) satisfy (D.1)-(D.3).
Suppose further that certain non-linear relationships between ωί9...,ωN and
φ1,...,^ (which are analogous to the "anisochronicity" requirements of the usual
KAM theorems) are non-zero. (In Sect. 4 we define these relationships explicitly
and show that they are always satisfied if N = 1,2 or 3, and for arbitrary finite N
they are satisfied for almost every set of frequencies, with respect to the probability
measure introduced in Theorem 2.1.) Then there exists ε0 > 0, such that if\ε\<εθ9

the hamiltonian (3.4) has either a periodic, or quasi-periodic trajectory. (Depending
on whether JV=1, or N > 1.) The frequency, Ω, of the periodic orbit, or the
independent frequencies, Ω, in the quasi-periodic case, satisfy \Ω— Ω\~ Θ(ε). What

is more, the functions qft) satisfy s\xp\qj(t)\SK2/j(3/2)~η, where K2>0, and η is
t

a small positive constant, which we will choose to be 1/10. (η can be made arbitrarily
small by shrinking ε0).

Remark. One may wonder if there are any potentials, v, whose spectrum satisfies
(D.1)-(D.4). In Sect. 9 we will show that there is a natural probability measure on
the space of potentials with negative spectrum such that with probability one, a
given potential gives rise to a set of frequencies that satisfy the non-resonance
conditions.

We conclude this section by showing how Theorem 3.4 implies Theorems 2.1
and 2.2. We have already remarked that the hypotheses of Theorem 3.4 apply to
almost every potential with purely negative spectrum, v, so Theorems 2.1 and 2.2
will follow if we show how to construct periodic, or quasi-periodic solutions u(x, t)
for (1.1), from the solutions q(t), found in Theorem 3.4.

Set uM(x, ί) = Σ ΐ/W^'M Since | φj(x) | is uniformly bounded in j and x (assume
j = l

φj is normalized so that || ψj \\ L2 = 1), the estimates on qs imply that uM(x, t) converges
uniformly to a continuous function u(x, t) which is either periodic, or quasi-periodic
in t, depending on whether or not q(t) is periodic or quasi-periodic.

In fact we have even better estimates on u(x, t). Recall that φj(x) is C 1, and in
fact, by Theorem 4 of Chap. 2 of [PT],

With this estimate we see that

u(x + ε, ί) - u(x, t) = £ qj(t)iφj(x + ε) - ^ '
7 = 1

M

= Σ ̂
The second of these terms is bounded by C/M1/2~η, using the estimate on q^t) in
Theorem 3.4. The first sum is bounded by noting that \φj(x + ε) - ψj(x)\ ^C-j-s,
which when combined with the bound on q^ implies the first sum is bounded by
C'S'Mί/2~η. If we take M = integer part of [ ε " 1 ] , we see that u(x,t) is Holder in
x, with exponent ({ — η). A similar calculation shows that if one fixes x, u(x, t) is
Holder in t.
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With this information, we can estimate the amount by which uM(x, t) fails to
satisfy (1.1).

I df uM(x, t) - (d2

x - υ)uM(x, t) + ε(uM(x9 ί))31

(3.5)

In this step we have expanded (uM)3 in its Fourier series with respect to {φj}. We
used, and will reuse below.

Lemma 3.5. The expansions of (uM(x, t))3 and (u(x, t))3 with respect to {φj} converge
uniformly.

This lemma is a corollary of Proposition 4.2, so we delay its proof until the
next section.

If we now use the fact that {^} satisfies (3.3) we can rewrite (3.5) as

((uM(x,t))3-(u(x,t))3 + f
j M+

= ε ((uM(χ,ή)3-(u(x,t))3)+
= M+

By Lemma 3.5, this last sum converges uniformly to zero as M -• oo, so we have

Proposition 3.6. \dfuM(x,ή-{dl - v)uM(x,ή +ε(uM(x,t))3\ goes uniformly to zero
as M-> oo. Thus, u(x,t) is a distributional solution of (1.1).

Proposition (3.6) immediately implies Theorem 2.1 or Theorem 2.2 depending
on whether we are in the periodic, or quasi-periodic case.

IV. The Iterative Scheme

In the present section we introduce new canonical variables for the hamiltonian
(3.4). We also prove bounds on the interaction terms in the hamiltonian. For this
task, we must introduce the domains on which we work, and norms for functions
analytic on these domains.

We begin with some terminology. Let γ be a small positive constant. Define
integers Nk = 0, for k ^ 0, and Nk an increasing sequence defined in Sect. 5 for
fc^l, which increases like c(1 + γ)k. We now partition the positive integers into
subsets 0fc defined by

Now take L(k) a (possibly empty) set of positive integers.

Definition 4.1. The set L(fc) is k-admissίble if

), for 7 = 0,1,2,. . . ,
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where

l)-fc] if j>k-M

if j£k-M.

(In this definition, M is a large positive integer whose value, like that of the constant
γ will be fixed in the course of the proof, and | | denotes the cardinality of the
set enclosed.) A /c-admissible set of integers is a "sparse" set of integers whose
"sparseness" increases as k increases, and also as one gets farther from the origin.

Now let I and T, be elements of IRZ , whose components are all positive. Let
L(0) be a zero admissible set. We define the domain

V(t; l ( 0 ), T) = {qeCz+ \ \qj\ < Tj if j e l ( 0 ) ; \q,\ < t 3 otherwise}.

The motivation for choosing these rather peculiar domains is discussed later in
this section. For the moment, however, we wish to concentrate on showing why,
for a particular choice of I and T9 the interaction terms of (3.4) are bounded on V.

Proposition 4.2. Let L(0) be a O-admissible set, tj = c(t)/j9110 and Tj= C(T)/j1/12.
(Here c(t) and C(T) are arbitrary large constants.) Then there is a constant K>0
(independent of L(0)) such that

Σ SUP I^JI^ J I ^ I I ^ M ( ^ ^ 2 ^ 3 ^ 4 ) I < ^ (4.1)
ji,J2,J3,J4^ 1 γ(tl(0) Γ )

The convergence of the sum in (4.1) depends on estimating (φj\ιl/j2ιl/j3φj4). To
estimate this inner product we use

Lemma 4.3. Let φ"(x) = χ/
/2sin(ππx), (the normalized eigenfunctions of the v = 0

problem). Then there is a constant c, depending only on υ9 such that

1 0 K φ " ) l ^ 1 + | . 2 n 2 | , f o r a 1 1 hn= 1,2,3,....

Proof μj(ψ{φn) = (Lvψ{φn) = (ψ\Lvφ")= -n2π2(ψ{φn) + (ψ{vφn). Using the
asymptotic estimate - μ} ~ (jπ)2, the desired estimate follows immediately.

Since the {φn} are complete we can write

where

and the Fourier series converges uniformly since
Thus, to estimate the sum in Proposition 4.2 we need to estimate

Σ \^' ^jM^\ή-ni\)''^ + \jl-n2\)TΊ(φn\φn2φn2φn4)l (4.2)
j l , - ,J4

m , . . . , f i 4

The issue is further complicated by the fact that the size of \qj\ depends on
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whether or not jeL(0). However, (4.2) may be rewritten as
4 /4\ / \

Σ I I V"1 I I I II V I I I I / / i i / iΛ\ I

( = ( 1 1 Σ L ( 0 ) I ^ Ί I I ^ ,I( Σ l9Λ+.l l«ί4l(^ ι . » ^ 4 ) )

Σ

Σ i f 0 )

t ^ ' - ^ ( i + |j;-ni|)...(i + |j»-H||)J- ( 4 3 )

We b o u n d the sums over jφliθ) by inserting the definitions of tj and then
estimating the resulting sums with the aid of the integrals

fl7x dx_ <

 c , ^
J ^9/10 I χ 2 _ β 2 | = (a— n9/10 vβ > 1>'

and
00 J - -

ί
Thus the term in parentheses is bounded by

C X ^ 72 2~

(If / = 0, then no factors of (1 + \jf — nf\) appear, while if / = 4, no factors of
nf/10 appear.) We will show that this sum is bounded by a constant by first showing
that

m+ I ΠA '

is uniformly bounded, since one has immediately that

^ 1
< constant.

Because of the orthogonality of the trigonometric functions, (φn\..., φnΛ) vanishes
unless n4_±n3±n2±n1=0 for some combination of plus and minus signs. We
will estimate the sum in the case where n4 —(n3 + n2 + n1) = 0. The other five
choices of signs are handled in exactly the same fashion. Since n4 = n3 + n2 + n1

(and all n/s are positive),

so the sum over nι + ί --n4 is bounded by

1
M12/10 =< const.

(as usual, the sum is set equal to one if / + 1 > 3).
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Returning now to (4.3) we see that it is bounded by

Σ τh...Tjι.
jι~ jιeU°)

We bound the sums over jelί0) by,
oo oo

V T< Y 7-i/i2_ y y ri/i2< y
0 θ (

23

( N . iu/12
jeήθ)nln „ = () ^VM + l j

Thus (4.3) is bounded independent of L(0) and the proof of Proposition 4.2 is
complete.

Note that as a rather straightforward extension of the proof of this proposition
we have

Corollary 4.4. (Lemma 3.5.) Let uM(x,t) and u(x,t) be the approximate, and
distributional solutions of (1.1), constructed in the previous section. Then the
expansions of (uM)3 and w3, with respect to {ψj}, converge uniformly.

Proof We will write out the details for u3(x, t)—(uM(x, ί))3 follows in like fashion.
The expansion of u3(x,t) is

We will show that this sum converges uniformly. Since we know it converges to
u3 in L2, and since u3(x,t) is cont, this implies the sum converges uniformly to u3.

Bounding \qj\<K/j3/2~η with the help of Theorem 3.4, and inserting the
expansion for the ψps that comes from Lemma 4.3 we have

sup

\(φn

9φ
nιφΛ2φn3

n,ni,n2,ti3

so the expansion converges uniformly. Note that the last inequality used the
orthogonality of the trigonometric functions to eliminate the sum over n.

It is clear from the foregoing discussion that if one had chosen in Eq. (1.1) not a
cubic non-linearity but rather some more complicated polynomial, one would get
a hamiltonian consisting of infinitely many harmonic oscillators coupled by a more
complicated polynomial interaction. Nonetheless, one can bound the interaction
terms on domains like those above (although one may have to choose the vectors
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i and T to decay at slightly different rates) and the remainder of the proof goes
through very much as in the present case. It is not clear, however, how one would
deal with a general analytic interaction term in (1.1).

Having now gotten some control over the interaction terms in the hamiltonian
we make a canonical change of variables which simplifies the perturbative argument
used to prove Theorem 3.4. Recall that we wish to construct a quasi-periodic (or
periodic) orbit for the hamiltonian corresponding to the unperturbed motion of
(Pi > <h > > PN> <1N)' If w e l°°k a t th e equations of motion for ε = 0 we see that we
get a quasi-periodic solution by taking Pj(t) = q^i) = 0 if j;^i N + 1. Thus we treat
these two groups of variables somewhat differently. Define

qj = y/lj/cojcosφj9 pj = -Λ/ΪJ(D~j s i n φ j 9 j=l,...,N. (4.4)

and

This differentiation between the coordinates we wish to perturb, and the remaining
degrees of freedom for the system, has been used in [G, Z, and E] to construct
low dimensional invariant tori for nearly integrable hamiltonian systems with
finitely many degrees of freedom. Note that this is not quite a canonical
transformation since dz} A dzj = idpj Λ dqj9 but as noted in [E], this factor of yf--ϊ
causes no problems.

In terms of these new variables, the hamiltonian (3.4) takes the form

N oo g

77(7, φ; z,z)= X ωjlj + X COJZJZJ + -g{I, φ; z, z).
j= l j=N+ί ^

We will look more closely at the exact form of g in a moment, but let us first note
that we are interested in perturbing around the torus / = 7°, z = z = 0. Defining
J = 7 — 7°, the hamiltonian becomes

N oo g

77(J, φ; z, z) = const. + ^ ωsJj + £ COJZJZJ + τ/(7°, J , φ; z, z), (4.5)
j = l j=N+l 4

with /(7°, J, φ; z, z) = ̂ (7° + J, φ; z, z). This is a convenient set of variables with
which to work since we are then perturbing around the point J = z = z = 0.

The equations of motion for the hamiltonian (4.5) are

f εdf . εdf . Λ

J ^ ( U ^ J 1 N

έ^tofi + iίϊL jZN+l. (4.6)

We will show below that / admits a power series expansion in J, z, and z. If
that expansion contained only terms of quadratic or higher powers of these
variables, J = z = z = 0 would still be an invariant torus for (4.6). It is this



Nonlinear Wave Equations 491

observation which motivates our approach to the problem. Instead of attempting
to construct a canonical transformation which "kills" the term, /, in (4.5) completely,
we will show that there is such a transformation which eliminates the low order
terms in the power series for / . This is sufficient to conclude the existence of an
invariant torus and it has the important consequence that the frequencies {ω7}
need to satisfy far fewer non-resonance conditions than would be needed if we
tried to eliminate / entirely. It is not at all clear that the frequencies {ω7} arising
in this problem could be forced to satisfy these additional conditions. We remark
that Nikolenko [N] does transform to linear equations of motion when he applies
similar ideas to evolution equations and thus he is required to impose these more
stringent non-resonance conditions on the linear part of his systems.

We now look somewhat closer at the function /(7°, J, φ; z, z), in (4.5). If we
insert the change of variables into the interaction term in (3.4) we find

(4.7)

N

The multi-index notation is standard, except for (cosφ) yΞ ]~] (cos q>j)yj

9 and

(φa+β + y) = (φj\ φj2φhφu\ where we use the fact that the restrictions on £ ' insure
that φ<x+β + y = γ\(φψ+β + γ)j is a product of four φj\ The restrictions on £ ' are

for all i,<χi,βi = 0 if i ^N, γt = 0 if i^ N + 1, and

If we fix some value of 7° then Proposition 4.2 implies that for 7 near 7°, J
near 0, and Zj and Zj going to zero quickly enough with), the sum in (4.7) converges.
We now define some domains, related to the domains, V, defined earlier, that allow
us to discuss this convergence.

Definition 4.5. Let L(k) be a /c-admissible set of integers with k ^ 0. Let τ and 2Γ be
infinite dimensional vectors with positive components, let v, p, and σ be positive
real numbers, and let 7°e(IR+yv. We define the domain

7)(7°, v; p, σ, τ; l(k\ / ) = {(7, J, φ; z, z)eCN x C ^ x C ^ x C z + x Cz+1

\I<j -Ij\< v, \Jj\ < p, and |Im φ}\ < σ for j = 1,..., N;

N < τi9 \zt\ < τt if iφl(k);\zt\ < ft. \zt\ < ^ if iel™}.

Let /(7,J,φ;z,z) be a function analytic on the domain 7)(7°,v,p,σ,τ;IL(fc),^"),
which is 2π-periodic in φ. Then we can expand / in a Laurent-Fourier series

/(7, J, φ; z, z) = £ ' /(/, fe, n; oc, β)JkeinVzβ, (4.8)

where Σ' means we restrict the sum to keZN, kt ^ 0, neZN, u9βe(Zf+, ai,βi ^ 0.
Define

VΛ if ίφL^ fα if iettJ^
S ι (0 otherwise | 0 otherwise
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Clearly, α = α s + αβ. Define βs and βB analogously. We then define the norm of
the function /, on the domain D to be

S U P
j-ή\<

These norms are modeled after those used by Vittot and Bellisard ([V, VB]).
Note that one property of these norms that we will use repeatedly is that if/

and g are analytic on D, then

The proof of this simple fact follows [V].
Note that as a corollary of Proposition 4.2, we can find positive constants v°, p°

and σ°, such that if we take τ? =j~{2/5\ and ZΓ] =j5/12, we have

Corollary 4.6. The function /(/, J, φ; z, z) is analytic on D(J°, v°, p°, σ°, τ°; L(0), ^Γ°),
for every O-admissible set D_(0). Furthermore there is a constant K>0 (independent
of L(0)) such that

The corollary follows, because if we take any point (/, J, φ; z, z) in the domain
D, and untangle the various canonical change of variables, we find that the
corresponding points qh,..., qJ4 lie inside the domain V(t, L(0), 7), of Proposition 4.2
if we choose c(t) and C(T) large enough. We can allow the variables zj and z7- to
go to zero more slowly with j than the variables qj did, because of the factors of
1/y/cθj that appear in (4.4), since asymptotically, (\/sfωJ) ~ (1/^Jπj).

The reason for choosing these rather unusual domains and norms is the
following. If we write out explicitly the Taylor-Laurent series for the interaction
term /(/°, J, φ; z, z) in (4.7) we find that each factor of Zj or zj has a coefficient
proportional to 1/^/ωJ, again because of the transformation (4.4). Thus, df/dzj or
df/dzj can be bounded by c \\ f \\/y/j, and these factors of 1/y/J are very useful in
making the sums one encounters in the iterative process converge. The domains,
D, and their attendent norms are constructed in an attempt to preserve as much
of this decay as possible. To see how this occurs suppose that / is a function,
analytic, and uniformly bounded on all domains D(I°, v, p, σ, τ; L(k\ £Γ\ for L(fc) any
fe-admissible set. If we shrink ^~, say to έΓ = \ZΓ then df/dzj is analytic on any
domain D(I°,v,p,σ,τ; £ ( f e ),#) such that L(fc) = {j}uί ( k ), and Cauchy's Theorem
implies that

w
\dz,

. 2 1 1 / I I D I l / L
5112

Note that we may choose L(fe) to be any set of integers satisfying || L(fc) n ij || ^
max (O,JSf(fcj*) — 1). Thus, as the iterative process proceeds, we preserve most of the
decay of derivatives with respect to j , but the number of points in D_(k) decreases.

Let us now look again at the hamiltonian (4.5). At the moment, the frequencies
o)j, corresponding to motion on the invariant torus are constants. As is typically
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the case in KAM type arguments, we will need to adjust these frequencies slightly
as the iteration proceeds. We extract a term from the interaction, /, which does
not depend on the angle variables, that allows us to do that.

We begin by defining the order of terms in a power series like (4.8). The order
of a term /(/, k9 n; α, β) Jkein'φzazβ is

7 = 1

As usual in KAM arguments, the "unperturbed" hamiltonian (in (4.5) the
ε = 0 case) will be altered by the accumulation of terms that cannot be eliminated
by the successive changes of variables. In the present case these terms are what
allow us to adjust the frequencies of the (quasi-)periodic motion, so we compute
them explicitly to lowest order in ε. As can be seen from the inductive argument
in Sects. 6-8, (see in particular (8.4)), the terms which are not eliminated from / :

(i) are quadratic with respect to the ordering defined above,
(ii) are independent of φ9

(iii) involve Zj and Zj only as the product (ZjZj).

Thus, using (4.7), we can write an explicit representation of them to lowest
order; namely

jψi

ω

We first note that this will change the frequencies of the quasi-periodic motion:

j->ίij(I) = ω, + εQ\(^j(ψψ9 ψψ) + ε ^ Q ^ i ^ ψ ψ V ) - (4-10)

Define the right-hand side of this equality to be fγ\l).
A very important quantity in KAM arguments is the matrix

As we shall see in Sect. 9, it is necessary for this matrix to be invertible in order
to control the small denominators which arise in the iteration. In the case N = 1
(periodic motion) this matrix is always invertible. For N = 2, we must invert
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The determinant of this matrix is

o2

This quantity never vanishes, however, since

I0A V 1 , Φ 2Φ2)\2 ^ \(Φ λΦ\Φ 2Ψ\Ψ2Ψ2)l
Similarly, for N = 3, the matrix dΩ/dl is always invertible. I have not yet found
an argument guaranteeing (dΩ/dl) is always invertible for arbitrary JV, but one can
make the following observations. If the potential v = 0, the terms in dΩ/dl can all
be explicitly computed and we have

Δ ίdΩ .
d e t ( - | =

N

41 Π
det

ί/1,φ1φ1\ (φ1φ1,φ φ ),..., (φ1φ1,φNφN)\
(φ2φ\ φψ), 3(φ2φ\ φ2φ2\..., (φV2, ΦNΦN)

3(φNφN,φNφN)J

rdet
1,9,1,...,!

4Nπ2N(N\)2

l l 1/

We now make two observations:

(1) Since φj and ωj are analytic functions of the potential, v, (Chap. 2. [PT])
det (dΩ/dl) will be non-zero for all v near zero.
(2) Since the (^J's) are analytic functions of the frequencies, {ωj, this determinant
will vanish only for a set of frequencies of zero measure with respect to the
probability measure defined in Sect. 9. This in turn implies that it vanishes for a
set of potentials of zero measure. I am indebted to J. Poschel for this remark.

Combining these remarks we have

Lemma 4.7. The matrix (dΩ/dl) is always invertible if N = 1,2, or 3. For arbitrary
positive, N9 it is invertible for all except a set of potentials of measure zero. Furthermore
we have det (dΩ/dl) = cεN.

Note that from (4.9) we can also compute the change in the frequencies ωj9

Ί> N + 1. It is

Define the right-hand side of this quantity to be gγ\I). (We will need this formula
in Sects. 5 and 9.)

V. The Inductive Step

In the present section we state an iterative proposition that allows us to prove
Theorem 3.4. We begin by defining a sequence of inductive constants.
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1. Define ε0 = Kε3l\ ε± = ε5/2, ε2 = ε9/2, ε3 = ε 1 7 / 2 and εk+1= εk

1 + y) for k ^ 3, with
γ a positive constant, smaller than 1, defined implicitly in the course of the proof.
(We could take it to be (1/8), for instance.) These constants govern the size of the
interaction term in the hamiltonian after fc-steps in the iteration. The constant
K is that which appears in Corollary 4.6.
2. A sequence of length scales (which were used in Sect. 4),

Nk = 0;k^0 and Nk = [β^1]; k^ 1,

(Here, [...] refers to the integer part of the number enclosed.)
3. The size of the analyticity domain in the action variables, J, is determined by

p ί 0 ) = fi1/4/24, pW = ε19/3\ and p<*+1> = p<*>/25 for fe = 0,l and fc^3.

4. The size of the analyticity domain in the variables, /, used to adjust the
frequencies of the quasi-periodic motion is given by v(k) = 4p(k); k ^ 0. We choose
7° = (1, . . . , l)ε1 / 4, which determines the torus around which we perturb.
5. Similarly we set σ (0) = 1, δik) = σ(0)/26(/c + I) 2, k ^ 0, and define σ{k) = σ(k) - Sδ{k\
The constant σ(k) will determine the size of the domain in the angle variables.
6. At each iterative step we will consider only finitely many Fourier coefficients,
that number being determined by

The next two definitions determine the size of the domains in the variables z ; and z y

7. Define τ(fe) by

τf = τf-1)/(l+
T ( 0 ) _ p l / 8 , -(2/5)Tj — fc J

8. Define Co = 5/12, and ζk = (1 +2~ 1 1 /c- 2 )~ 2 C f c _ 1 , k^ 1. Then define ^(k) by

(/+I)" 2 ) 4 .
1 = 0

(In particular yψ = ε1/8/0.)

Remark. The powers with which τψ and ^ f c ) decay and grow in definitions 6 and
7 are not uniquely determined. One could set τJ0) ~7~α, ^ 0 ) ^7^ and attempt to
optimize the estimates with respect to α and /?, but this would further burden the
notation, and so we have chosen one set of constants that works. We remark that
the choice of α and β will change if we choose a different non-linearity in (1.1)—say
u5 instead of u3.

9. The constants [D[ υ] and [D[2)] determine the size of the "small denominators"
at each step of the iteration. D^ and D(

0

2) are large constants defined in Sect. 3.
For k > 1 set:

for /c=l,2; D^ = D(

0

1)(v(0)ε)-1/c2|logε|2 for fe^
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and

ί)<2) = £ (

0

2 )fc4 |logε|4 for Jk=l,2; D{;

2) = D(

0

2)(v(0)β)-1Jfc4|loge|4, fc£3.

We can now state our inductive proposition.

Proposition 5.1. Consider the family of hamiltonians, H(0\ Ha\..., H(k\ with

Hik\I, J, φ; z, z) = β(fe)(J, J; z, z) + S(k)(/, J, φ; z, z) + #*>(/, J, φ; z, z) + const.,

αnrf suppose that there is a set £(k) a B(v(0\l°) = {IeUN\\I -1°\ < v0} such that Hik)

is analytic on D(7,v{k\p{k\σ{k\τik); L(k\^{k))for every k-admissible sequence L(k) and
every 7e^(fe).

The terms β(fc) in Hik) are all of second order with respect to the notion of order
of terms in a power series defined at the end of the previous section. All terms in S(fc)

are of third order or higher.
Suppose further that the following inductive hypotheses hold: Recall that

Ω = (ωx,..., <%). Then

The functions fik\l) and gf{I) are defined for all /ef/'eC^distί/',^) < v(fc)}. We
assume that

ff\l) = gf(I) = 0 while if fc=l,

sup| fγ\l) -fγ\I)\ < ε7/6, 7 = 1 JV,

sup|^>(/) -^^(7)1 < ε7'*/j2ζk, J^N+L

(Recall that/(1) and g(1) were defined in Eqs. (4.10) and (4.12)) Ifk>\ we require

ff (/)= Σ (ffW-fΓ1^)) and gf\I)= £ (gf-gΓ'Kl)), with
1 = 2 1 = 2

sup|/}'>(/)-/j'""(7
II

svφ\gf(I)-gf-^ty <eεf3/^, j^N+ί,

for 1 = 2,...,k.

Suppose further that for any k-admissible set lSk) one has the estimates

(k.2)

(k.3)
fc+1

on the domain D(lv(k\p(k\σ(k\τik); l(fc),«f(fc)), with Ck = f\ (1 + Γ 2 )
7 = 1

Γ/iβn ifε0 is sufficiently small, (this smallness conditions is independent ofk) there
exists a set J ( / c + 1 ) c J ^ with meas(^ ( k + 1 ))^(l - 0(1/(1+ l)2|logε0|))meas(J(fe))
such that if ΐel(k + ί\ there exists a canonical transformation, C(k\ analytic on
D(lv(k+1\p(k+1\σ(k+1\τ(k + 1); l(k+ί\^(k+1))( = Dk + ί)for any (k + l)-admissible set
lik+1\ and mapping this domain into D(Iiv

{k\pik\σik\τ{k);l(k+i\^ik))( = Dk).
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(Note that any (k + l)-admissible domain is automatically k-admissible.) Further,
the hamiltonian H(k+ί) = H(k)oC(k) = β(fc + 1 ) + S(k + 1) + R{k+1) + const, satisfies

Finally, we note that ifzj and z } are sequences in the domain Dk+ι, which satisfy
max(|zj|, |z, |) ^ Q//9 / l c\ with Ck the constants defined above, then the transformation
C(k) maps them into points in the domain Dk, obeying a similar estimate, but with the
numerator replaced by Ck + ί .

The proof of this rather long proposition is given in the following sections. We
conclude the present section by showing how it implies Theorem 3.4.

If we take the hamiltonian (4.5) to be H(0), and set &0) = B(v(0\I°), then
Corollary 4.6, plus the definitions of v(0), p(0), τ ( 0 ) and ^ ( 0 ) show that the induction
hypotheses (0.1)-(0.3) are satisfied.

The estimates on the set &k) imply that J ( o o ) = f] l(k) satisfies meas (J ( o o )) ^

(1 -0(l/|logε o | )meas(£(v ( O ),/ 0)). If JeJ ( o o ) , the induction step may be repeated
infinitely many times. This has the effect of "killing" the remainder term R{k\ In
particular, if we look at the hamiltonian vector field associated with H(k), we see
that in the limit fc-» oo, the point J = z = z = 0 is left invariant by the associated
flow. Thus, we get a quasi-periodic trajectory given by φ(ή = Ω°°t + φ(0) for some
JV-vector ί2°°.

That this gives a quasi-periodic orbit for our original hamiltonian, H{0\ follows
from Sect. 7 (see the discussion following Corollary 7.5) where we prove that the
lim C(0)° C(1)° o C(n)(0, Ω °°ί + φ(0); 0,0) exists. Furthermore, the last statement of

rt->oo

Proposition 5.1 implies that the zj9 or Zj component of this limit must satisfy
max(|Zj (ί)|, |z/(i)|) ^ c/j9/10. If we now reexpress this quasi-periodic orbit in terms
of qj(t) = (i/y/2(Oj)(Zj — Zj) we see that | ^ (ί)l ^ c//14/1°, verifying the final claim of
Theorem 3.4.

In order to prove Theorem 2.3, we note that we get a quasi-periodic orbit for
each point IG1(CO), whose frequency vector is Ω(co\I) = lim Ω{k)(l). (The existence

k->oo

of this limit follows from Proposition 5.1). In Sect. 9 we prove that the set
{Ω\Ω = Ω(co\l),Iel(co)} has large Lebesgue measure, which completes the proof
of Theorem 2.3.

VI. The Hamilton-Jacobi Equation

We construct the canonical transformation, C{k\ of Proposition 5.1 as the time
one map of the hamiltonian flow whose hamiltonian, χ, approximately solves the
linearized Hamilton-Jacobi equation

(6.1)

As mentioned in Sect. 4, we need only kill those terms in H(k) of low order.
For this reason, we only have to retain terms of order two or less in the power
series for χ. Thus, we write χ as

where χ{ contains terms of order i.
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Note that if Fm and Gn are two terms of a power series with orders m and n,
respectively, then {Fm, Gn) has order m + n - 2. Thus, if we write R{k) = R^ + R^ +
R2

k\ and S(fe) as Sik) = S™ + S?> + S%\ with Sf = £ Sf\ we can study Eq. (6.1)
order by order. j~5

Looking just at the zero th order terms gives

W + {χ0, Qik)} + {Xo,m + {Zi,«f}} + {Xi,m = Λ? +1}- (6.2)

We expect χ to be of the same order of magnitude as Rik\ i.e. (9(εk), and furthermore
expect Rik + 1) ~Θ(εl). Thus, without worsening the approximation made in
linearizing the Hamilton-Jacobi equation we may ignore the last three terms
on the left-hand side of this equation, and the term on the right-hand side, and
choose χ 0 to satisfy

• U o > β w } = 0 (6.3)

If we repeat this process for terms of first and second order, we find that χγ and
χ2 should solve the equations

R(k) + {χ0, S(k)} + {χ1, Q(k)} = 0 (6.4)

and

R2

k) + {Xo,*?} + {χ1, Sf) + {Z2, Qf} = Q2

k+ ^ - β<2

fc>. (6.5)

We now expand all the functions in (6.3)-(6.5) in Fourier-Laurent series and
(formally) solve for the coefficients of χ. Note that χ0 must be a function of φ alone
and an easy calculation shows

Rik){I,09nΆ0)einφ

where Ω(k)(I) = Ω +/ ( f c )(/). We will suppress the dependence of χ on / to slightly
simplify the notation. (Note that we have omitted the term ^ ( 7 , 0 , 0 ; 0,0)—this
is absorbed in the constant term in the hamiltonian.) We return in a moment to
discuss the convergence of this sum, but first we write down similar expressions
for χx and χ2. The function χx will depend linearly on z or z but must be independent
of J . If we define v1^, φ; z, z) = {χ0, S^} we find

, 0, n; δj9 0) + v\I, 0, n; δj9 0)]z j g

f a '«

i(nΏ(k\I) + ωf{I)) ]' K }

In this expression δj = (0,...,0, l r0,...), with a one in the j t h component and zeros
elsewhere, and ω(k){I) = ω^ + g{k\I\

Finally, defining v2(7, J, φ; z, z) = {χθ9S^} and v3(/, J, φ; z, z) = {χ1, Sf}, we can
write down the (formal) expression for χ2- To slightly simplify the results we note
that χ2 will consist of two pieces—one of which is linear in J and independent of
z and z, which we denote by χJ

2, and a second which is quadratic in z and z, but
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independent of /, which we denote by χz

2. Then

[£(fc)(J, /, n; 0,0) + v2(J, /, n; 0,0) + v3(/, I n; 0,0)] Jιein'φ

while

_ [^(fe)(/,O,π;α,jS) + v2(/,O,M;α,jS) + v3(/,O,n;α,i8)] β .
χ | ( φ ; z , z ) = y, : πΓ) ϊϊύ X z zpeιn'φ.

ai5/?fe{O,l,2}

N+ι«-fl#o (6.9)

As a first step in bounding the various terms in the generating function we
discuss the denominators of these expressions. We first remark that we can restrict
the sums somewhat by noting that the numerators are the Fourier coefficients of
analytic functions. Cauchy's theorem then allows us to estimate these coefficients
by ce~σ\n\ where σ is the width of the analyticity domain in the φ variables. Thus,
terms with | n \ > Mk ~ Θ( \ In εk \) will be of the same order of magnitude as things we
have already discarded, so we will restrict all the sums to \n\ f^Mk. This reduces
the number of small denominator conditions that we have to impose at each step.

We then have the following sequence of lemmas, bounding the various terms
in the generating function.

Lemma 6.1. Ifle£{k) and l(k) is any k-admissίble set, then on D(J, v(fc), p(k\ σ(k) - δ(k\

with E0(εk) = Dί^ilτ/δ^Yil - e-
δίk)/2)-N.

Proof. By the estimates of Lemma 9.2 on the small denominators which appear
in (6.6), and a Cauchy estimate which bounds |^(Λ)(/,O,n;O,O)| ̂  εke~σ(k)H, we can
bound || χ0 \\ by

Σ
M j i nψO

S D\t\(2τlδ™)\l - e

We now turn our attention to a bound for χ1. We see from (6.7), that in order
to bound Xl we need estimates on v1 = {χ0, S™} = -ψ- ^ ί = - f

oφ όJ \ 1
f 1 oψ oJ Jr

ι

We can easily bound the terms in this sum on domains D(7, v(fc), p(fc)/2, σ(fc) — 2δik\ τ(k);
lik\^k)) with a pair of dimensional estimates and we find || v11| ^ 2CkNε0E0(εk)/
p(k)δ{k\ (We use the terms "Cauchy estimate" and "dimensional estimate" inter-
changeably.)

Let £ be a set of positive integers satisfying | £ n 07 | ^ max (0, J?(kJ) — 1). Then
Lu{7*} is fc-admissible for al\ j>Nk_M, and we can bound \R{k\I,0,n;0,δj)\ +
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v\lAnΛδj)\ by

on D(lvik\p{k)/2,σ(k)-2δik\τik)'X^r{% where ί, = τf tiJ
otherwise. The estimates of Corollary 9.4 imply that

C. E. Wayne

k-M and 0 =

where c is some constant. Thus, we immediately have the bound

dZj\
Ϊ Σ

4τ V ^

(6.10)

i. Note that the sum over \n\on the domain D ^ v ^ ^ ^ A σ ^
was bounded in the same way as in Lemma 6.1.

Remark. One may think of the various constants Ej(εk) that we have defined (and
will define below) as being roughly of order εk.

We bound \\χt || on these same domains, by bounding the factor of z} or z, in
the numerator by ^ if jet and τ, otherwise. We must then sum both over
0<\n\^Mk and j^iN+l. The sum over n goes exactly as before—we don't
comment further on that and we are left with

jei

(6.11)

The first of these sums is bounded by

Σ Σ 7 * Σ
^ 25M, for ε0 sufficiently small.

The second sum is immediately bounded by noting that

Combining (6.10) and (6.11) we have

Lemma 6.2. Ifΐe£{k\ I is as defined in the previous paragraph and ε0 is sufficiently
small, we have
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and

o n D ( ΐ , v i k \ p m / 2 , σ i k ) 3 < S , τ ; I , 3 ) .

We now turn our attention to χJ

2 and χ\. To bound these two functions we

must first bound

and

v - \ χ l 9 * 3 ) - t L δφι dJι + \ [

We bound v2 on D(I, v(k), p(k)/2, σik) - 2δik\ τ{k); l(k\ 3T(k)) with the help of Lemma 6.1
and a pair of dimensional estimates and find \\v2\\ ^2NCkεoEo(εk)/p(k)δik\ The
terms in the first sum in the definition of v3 are bounded in the same way as v2.
To bound the terms in the second sum we use the estimates of Lemma 6.2 to control
the factors of dχ1/dzj and dχ1/dzj. By the induction hypothesis, combined with a
dimensional estimate we have ||δS?Vδzz|| + WdS^/dz^ ^22Ckε0(Nk^M-\-l)/th on
any domain D{1 v(k\ p(fc)/2, σ(k) - 3<5(fc), τ(fc); L, SΓ(fc)/(l + (k + 1)" 2)\ where £ and tx are
defined as they were in Lemma 6.2. (We emphasize once again that we are using the
fact that if l^Nk_M this domain is contained in D(lvik\pik)/2,σik)- 3δik\τ{k);ίv
{/}, F(fe)/(l + (k + 1Γ 2 )) and then estimating dSξ)/dzι and dS^/dzΊ on this domain.)
Since l/ltf S 28ε"1 / 4// ( 9 / 8 ), we have

) + 2 8 ] , (6.12)

on D(I9v
ik\pik)/2,σik)-3δik\τ(k)'X^ik)/(l +(/c+ I)" 2 )) .

With these estimates in hand it is easy to bound χJ

2. We bound

!#*>(/,/,*; 0,0)| + |v 2 (/,U; 0,0) | + v3(/,U;050)[

by dimensional estimates, \Jι\ by p(fc)/2, and the denominator by the estimates of
Sect. 9. We find

Lemma 6.3. // ΐe J(fe), £ is as in the paragraph preceding Lemma 6.2, and ε0 is
sufficiently small then,

S 24{εk + 2 7 C f c ε " ^ i ^ C W / W ) + 2 8 ] + 2JVQε 0£ 0

on D(/, v(Λ),p()tV4,σ(ί[) -45 W ,τ ( k \ I,rw/(l +(k + I)'2)).

The most difficult piece of the generating function to control is χ\ which we
now study. We will estimate d2χz

2/dzιdzj, dχl/dzj, and χ | . Other derivatives are
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handled in an analogous fashion. First note that

%= Σ
, 0, n; δt, δj) + *2(J, 0, n; δ» δj) + v3(J, 0, n; δh δ})\ ein«

The estimates of Corollary 9.4 imply that if Je l { k ) ; the denominator in this
expression may be bounded by

(6.13)

with C a fixed constant. On the other hand, dimensional estimates allow us to
bound the numerator by

26k2\_εk + | |v2 | | + | |v3 | |]e- ( σ ( I t )-3*'0>l' iy t. ί.,

where

fτj« if lίiίNk_M
h \ if i > J v t _ M

Suppose we define L to be a set of integers such that | L n D7-| ̂  max (if(/c, j) — 3,0).
Then the estimate in (6.13) holds on all domains D(7, v(fc), p(fc)/2, σ(fc) - 3(5(k), τ(fc)/
(1 + 2"5(/c+ l )- 2 ) 2 ; ϊ ? e r ( f c ) /( l +(fc + I ) " 2 ) 2 ) . Using estimate (6.13) and our previous
estimate on || v21| and || v31| we immediately obtain

dzidzj

^ 26k2{εk +2NCkεoEo(εk)/pikΨ»}

δ ( k ))4 τ(l - e-δ{k)l2yN/titj(l + \i- j \ ) . (6.14)

For convenience we define the right-hand side of this expression to be Ez

2(εk)/

Turning now to

" = Σ

we find

, 0, n; δ, + δp 0) + v2(1,0,»; δt + ̂ , 0) + v3(/, 0, n; δt + δ},

dz,

The first term is, with the exception of the factor of z}, precisely the quantity we
considered in deriving (6.14). We bound the factor of \z}\ by τf' iΐ jφί and 2Γψ
otherwise. Here, §Γf = $-f/f2~iHk+ί)~2). The second term is bounded in like
fashion (the estimate on the denominator again follows from Sect. 9) and we find
that on

2 " 5(/c I)'2)2),

^ (6-15)
dzt

The first of these sums is bounded by taking into account the fact that points in
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L are very sparse. Thus, we have

1 Γ <?-(k) Ί 1 oo 1 oo
V A ^ J < V V ;-(l/2 1 2(fc+l)2)<.i Y gPίh- 7\ΛJ-(l/2i2(fc+i)2)

tι ι=o ^(i + y)

if ε0 is sufficiently small.

We bound the second sum in (6.15) by noting that if j ύNk_M,τ(k)/tj = 1 =

(1 + Nk_M)/j3/\ while if j > JVfc_M and τf/tj = xf/Ff ^ c/j3'4. Thus, this sum is

bounded by c ((l + Nk.M)/tt)Σ 1/(1 + | i - ; Ί ) J 3 / 4 ^ ( 1 +Nk-M)/tty/ϊ, using the

elementary estimate J] l/73 / 4(l + \i — j\) ̂  c/y/i. This completes our estimate of

It remains for us to estimate χz

2. Reconsidering the expression for χz

2 we see
that all terms in the sum over α and β must satisfy |α| + \β\ = 2. This means that
oc + β= ±δi±δj9 for some choice of i and j9 which when combined with a pair of
Cauchy estimates allows us to bound

\R«\I, 0, n; α, β) + v2(J, 0, n; α, β) + v3(/, 0, n; α, β)\

Similarly, the factor of |zα | \zβ\ is bounded by τfhf if ijφί, τfSΓf if jeί,
iφί,τf)&'¥ί) if ίel and jφί, and 3Tf>3tf if ijel.

In order to bound the denominators we again note that the restrictions on the
sum over α and β imply

In Ωik)(/) - (α - β)-ωik){I)\~1 = \n-Ω{k)(I) ± (ωj.k)(/) ± ωf ( / ) ) \ ~ \

The discussion of Sect. 9 shows that this quantity is largest for the case ω(k) — ωf\
and allows us to bound

\nΏ(k)(I) - (α - βyω^W1 ^ cD^2) |n|4τ+2/(l + \i - j\),

if IeCN and dist(/,^ ( f c ))< v(k\ Combining these remarks we see that | | χ | | | can be
bounded on D(J, v(k\ p(k)/2, σ{k) -4δ{k\ τik)/(l + 2" 5{k + 1 ) " 2 ) ; L, #-(fe)/(l + (k + 1 ) " 2 ) 2 )
by

jel jφl

The first of these sums is bounded by (2 1 8M(/c+1) 2/(1+y)) 2, as we see by
comparing it with

qr{k)\2 / 00 \2

y g 1 < [ y y , -(i/2i2(fe+i)2) \
ι—t + / — 1 /La l—έ I '
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and then proceeding exactly as in (6.16). The second sum is bounded by
8 7 # l 2 2^

y
( 1 / 2 l 2 ( f c + 1 ) 2 )(218M{k +1)7(1 + γ))(CNk.M). To see this, note that for i

while if jφL, τψ/tj^. C (l + N t _ M )/j 3 / 4 , as we saw above. Thus, this sum is
bounded by

(1+7)

The last inequality follows just as in (6.16). Note that the third sum in (6.17) is
bounded in precisely the same fashion—it differs only in that the roles of i and j
are interchanged. The final sum in (6.17) is bounded by

71-^(C(1+ Nk_M)f,
iφl

where the first of these expressions used our now familiar bound on
Combining these estimates we have

Lemma 6.4. Ifΐe£{k\L is as defined following Eq. (6.13), and ε0 is sufficiently small,
then on !)(/, v(fe\
have:

, σ ( k ) - ^ ^ we

dzt

21 8M(fc+l)2 C (l + JVt_M)

(1+7) J\

/21 8M(/c+l

218M(/c+l)

VII. The Canonical Change of Variables

We now consider the canonical change of variables given by the time one map of the
flow of the hamiltonian vector field, whose hamiltonian is the generating function
constructed in the previous section. We must show that this transformation maps
D{ΐ, v(k+ *>, p i k + 1 ) , σ(k+1\ τ_(k+1); L ( ( I + 1 ( , 3[ik+υ) into D(ΐ, vik\ p<k), σ(k\ τm; L ( k + 1 ) , ^ ( k ) ) .
This task is simplified by the special form of the generating function. The equations
of motion are:



Nonlinear Wave Equations 505

= _H_ . = H = Hi
J dφ/

 ψj dj dj;

Note that the φ equation is easy to deal with. We estimate the right-hand side
of that equation using Lemma 6.3, and a dimensional estimate. Just as important
is to note that dχJ

2/dJj is a function only of φ—it has no dependence on J,z, or
z. (It does depend on /, but / is not one of the dynamical variables.) Thus,

which implies φs(t = 1) = <pj(t = 0) + Φj (φ(t = 0)), with

, (7.2)

on D(I, vik\p(fe)/8,σ(k) - 5δ{k\τ(k); L,^ ( k )/(l + (k + I ) " 2 ) ) . This implies φft = 1) is in
D(lvik\pik)β,σik)-4δik\τ{k)'X^k)/(l + (jfc + I)" 2 )), provided

24EJ

2(εk)/pik) < δ(k\ (7.3)

We now look at the equations of motion for z and z,

i = ί = idXl i g χ 2

(The factors of i in this equation result from the fact the change of variables (4.4)
is not canonical.) Note that dχ1/dzj is a function only of φ, while dχz

2/δzj is a linear
function of z and z, in addition to its dependence on φ. Analogous remarks hold
for the equation for zp which is Zj = i(dχ1/dzj) + i(dχz

2/dzj). Thus, the equations of

motion for d/dtl I are linear, (but non-autonomous) and have the form

i-ίZ\ = V(φ(ή) + M(φ(t))(Z\ (7.4)

where V(φ(ή) is an infinite dimensional vector, and M(φ(t)) is an oo x oo
dimensional matrix. Lemmas 6.2 and 6.4 provide strong control on sup || Vj(φ(ή) ||
and sup | |M l 7(^(i))| | which we exploit by using the following: '

Lemma 7.1. Suppose x(t) satisfies the first order system o/ODE's

x = V(t) + M(t)x.

Suppose further that V 3 > sup | Vj(ή \ and M y ^ sup |M y (ί) | , for all ij. Then if
t t

yj= sup \xj(t)\,

(7.5)

provided (1 — M ) " 1 exists.
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Proof. We have

x,(ί) - x,.(0) = j Vj(τ)dτ + j £ Mjk(τ)xk(τ)dτ.

Thus

Taking the supremum of both sides for ίe[0,1] gives

|x,(t)| ^ |x, (0)| + ί/sup I F, (ί)l) + ί Σ fsup IM^W! Y s u p ( \xk(τ)\\

which immediately yields (7.5) if (1 — M ) " 1 is invertible.

Remark. If the vectors x(ή and y are infinite dimensional, as they are in the situation
we are interested in, we assume that Xj(t) exists for all 7 = 1,2,... and ίe[0,1]. This
is easy to check in our example.

We now turn to the estimation of V and M in our particular case. There is a
slight notational complication which arises from the fact that V(t) is in our case
a concatenation of two infinite dimensional vectors ί(dχ1/dzj) and i(dχΐ/dzj).

ίVι(t)\
We will write V(t) = ί y ), where V) = - i(dχjdzj) and V) = Hdχjdzj), and

ίvx\
similarly V = l - 2 J. Then Lemma 6.2 implies that we can pick Vι

j = 4Eί(εk)/jtp

1=1,2 and j = N +1,N + 2,.... A similar notational problem arises with the

(M 1 1 ^ ) M 1 2 ( ί )\
21/ 22/ )' Witk

M. (t) M. \t) J
Ml/ = -i(d2xz

2/dzidzjl and similarly for Mi2,M2\ and M22. Lemma 6.4 then
implies that we can take

Since we wish to estimate our change of variables by comparing it with
(1 — My1, we note that this matrix will also have a block form, namely

/ I _μ J l l J 1 2 \

which because of the form of M, satisfies A11 = A12 = A21 = A22. The key step in
estimating Aιj is

Lemma 7.2. There exists a constant c, such that for n = 1,2,...,

(M%™ = [_cε-^Ez

2(εk)(l + iVk_M)]"/(l + \i - j\)tttj9

for l,m=l,2, andiJ = N+l,N + 29... .

Proof. The case n = 1 is certainly true. We now check it for n + 1. (We will verify
the case l = m= 1—the other three cases are identical.)
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, ._

This last inequality used two facts—first, if /giVfc_M, then 1/ίf = (l/τjfc))2 ^
2((1 + iVfc_M)/ε1/4/4/5), and second, if / > Λίfc_M, ί/tf = (l/^ί*>)2 ̂  2/ε1/4/4/5. Since
£ ( 1 + |i-7' |)/(l + | ί - / | ) ( l + | 7 - Z | ) / 4 / 5 < c , (as one readily sees by bounding the

i

sum by the corresponding integral), the lemma follows. An immediate corollary
of the lemma is

Corollary 7.3. //cε~ 1 / 4 £|(ε k )( l + Nk_M) < 1/2, then the matrices Λlm defined in (7.6)
satisfy | 4 7 | ̂  2cε-1/4E|(ε fc)(l + Nk.M)/(l + \i - j\)tttj.

Proof. This follows immediately from the Neumann series for (1 — M ) " 1 .
We can now derive bounds on the canonical transformation.

Proposition 7.4. Suppose (J(0), φ(0), z(0), z(0))eί)(/, v(fe), p(fc)/4, σ(k)-6δ(k\ τ(k)/
(1 + 2 " 5 ( / c + l)-2)2;L,#- ( f e )/(l + ( * + I ) " 2 ) 2 ) , ( Ξ D , ) . (Here, L is as in Lemma 6.4).
Let (J(t)9 φ{t\ z(t\ z(ή) be solutions ofEqs. (7.7), defining the canonical transformation,
(with initial conditions (J(0),φ(0),z(0),z(0))). Then

« <*> *<*>/(l + 2"5(/c + I ) " 2 ) ,

( = D / ) provided

(i) 2 3£^(εJ
(ii) cε"1 / 4£5(ε f c)(l + Nk_M) < 1/2

2~ 6ε 1 / 4

(iii) [£ 0 (εJ + EJ

2(εk) + 2 6£ 1(ε,)(M + 1) + £|(ε k )]

are satisfied.

(Remark. Using the inductive definitions of Sect. 5, it is easy to check that these
conditions can all be satisfied if ε0 is sufficiently small.)

Proof. That φ(l) is in Df follows immediately from (7.2),' (7.3), and (i).
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That z(l) and z(l) are in Df follows from Corollary 7.3 (which is applicable
becase of (ii)) and the following argument: By Lemma 7.1 and (7.6) we have

sup 1 * ^ ) 1 ^ + ^(0)1+ Σ
O^ί^l k=N+l

f Σ 4 ^ Σ Ajk

2\zk(0)\.
k=N+l k=N+l

(7.6')

Lemma 6.2 implies P/ ^2£1(εt)/7'tJ . Thus,

+ Nk-M)/tjj.

T h e last inequal i ty followed from t h e fact t h a t tk

ι < φ + i \Γ t _ M )ε~ 1 / 4 /c~ 4 / 1 ° , a n d
00

the elementary estimate £ 1/(1 + | j - k\)k18/10 < c/j.

The last two sums are bounded in a similar way. Since z(0) is in Dh we have

±Nk_M)

τ(k)

•iv ^J + γ τ-i
U(i+ \i-j\)t,tj

The second of these sums is bounded by

I « c ( l + J V ) c(

while the first is bounded by

«
<

ίΐ ί/i + 1 ; - Ί) W V = (i + y)Hogβolί/
the last inequality coming from (6.16). The sum over Ajt

2\zt(0)\ is bounded in an
identical fashion. Putting this altogether with (7.6') we have

•7/10sup I
ίe[O,l]

f (7.7)

If the right-hand side of this inequality is bounded by

τf/(l + 2"5(/c + lΓ2)-τf/(l + 2"5(/c + I)"2)2 = ( Γ ^ ^ Ί j ^ ^ ) '
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then zj(ί) will be in Df. Since {\jτf^f )<ε~1/4, for all j , this condition will be
satisfied if

which is the second half of hypothesis (ii).
Finally, we bound the change in the variable J(t). We know J f =

(J9φ;z9z). Lemmas 6.1-6.4 allow us to bound dχ/dψi on Df so we have

^ {E0(εk) + EJ

2(εk) + 26E1{εk)(M + 1) + Ez

2(εk)}/δδ«\

Thus, if J(0) is in Di9J(t) will remain in Df for all ίe[0,1] provided the right-hand
side of this inequality is bounded by p(k)/4. This is insured by (iii), and the proof
of the proposition is complete.

Note that we have actually proved more than stated in Proposition 7.4. Denote
the canonical transformation constructed above by C(k). The analyticity and
invertibility of C(k) come for free in this method because of the analytic dependence
of solutions on initial conditions for differential equations with analytic vector fields.

Furthermore, if we write (J, φ9z9z) = C(k)(J, φ9z9z)9 then since all the estimates
on the vector field whose flow defines C(k) were in terms of the norm || || on Df,
we have actually proved bonds on (J, φ9 z, I) as functions of (J, φ9 z, z). We collect
these results in the following.

Corollary 7.5. The transformation C(k) is analytic and inυertible on Dt. Furthermore,
if we regard (J, φ, z, I) = C{k)(J, φ9 z, z), as functions of J, φ9 z, z, we have

|| Jt -JΛS 2{E0(εk) + EJ

2(εk) + 2 6£ 1(ε k)(M + 1) + Ez

2(εk)}/δ«\

Proof This follows by using GronwalΓs inequality plus the estimates above.
Note that from these estimates it follows easily that lim C(0)° ° C(w)(0, β 0 0 1 +

n-* oo

φ(0); 0,0) exists, and this gives a quasiperiodic orbit for our original hamiltonian
as discussed in Sect. 5.

We will need one more estimate on this change of variables. Suppose the
variables (J,φ,z,z) satisfy \zj\ + \zj\ < l/j14/10. Then from Lemma 7.1, Corollary
7.3, Eq. (7.6) and the estimates following it, we can estimate the decay of z7- and
Zj. Thus we have
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Lemma 7.6. Assume that the hypotheses of Proposition 7.4 hold and that in addition
\zj\ + \zj\<Ck/j1Al10. Then if (J,φ,zJ) = (?>(J,φ,z,z) we have

maχ(\zJ\-\zj\,\zj\-\zj\)^{2E1(εk) + cE^EUε^ε-1'2^ + Nk_M)

+ ce- 1 / 4£z

2(ε,)(l + Nk-.

Thus, the transformed variables decay as fast as original ones, and this verifies the
last claim in Proposition 5.1.

VIII. The Transformed Hamiltonian

In the present section we study the transformed hamiltonian H{k + 1) = H{k)°C{k)

and show that it satisfies the estimates (k + 1.1) — (k + 1.3) of Proposition 5.1. Recall
that C{k) is the time one map of a hamiltonian flow (which we denote F*) with
hamiltonian χ. Thus,

H(k+ 1) = H(k)oFt= 1 = H(k) + H(k)oFl _ g(k)op0

out

(8.1)

In order to bound this quantity we will need several further pieces of information.
In particular we will need to know how to bound the Poisson bracket of functions
with χ—the generating function constructed in Sect. 6, and we will need to know
how to bound the composition of functions with the flow, F\ We address these
questions with the following series of lemmas.

Lemma 8.1. Suppose G is a function analytic and uniformly bounded on D(7, v(fc), p(fe),
σik\ τ{k); Lk, 5"(fc)),/or every k-admissible sequence l(k\ and ΐel(k). Let X = X0 + Xi+X2
be the generating function defined in Sect. 6. Then on the smaller domain
D(I9v

(k\pik)/4,σ(k)-7δik\τik)/(l +2~ 5 (/c+1)" 2 ) 2 ; 1/,jf (fe)/(l +2~5(/c+1)~2)2) one has

(i) | | { χ o ^ } | | ^ (
(ii) \\{χl9G}\\ M

and

(iii) || {χ2, G) || ^ l22(EJ

2(εk))/p(kΨ» + c(l + fc2)2(l + Λ ί k _ M ) 3 M ε - 1 / 4£ z

2(ε f c)] || G ||,

provided ε0 is sufficiently small
Here, Π_' is any sequence of integers satisfying 11! n D2| ̂  max (0, if(/c, /) — 4), for

/ = 0,l,2,. . . .
Note that combining (i), (ii), and (iii) we have || {χ, G) \\ S K(εJ \\G\\, where K(εk)

is obtained by summing the right-hand sides of the above inequalities.

Proof Since {χo,G} = - ]Γ -Z^-ΓΊ-, a pair of dimensional estimates, combined
j^xdipjdlj

with Lemma 6.1 yields (i).
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dimensional estimates again bounds the first sum by 28iV(M + 1) || G ||£1(ε/c)//)(/c)c)(fc).
To bound the second sum we bound the derivatives of G using dimensional
estimates as \\dG/dzj\\ ^ 2 | | G | | / ί ^ 2 2 | | G | | ( l + iVfc_M)/ε1/8/4/10, and similarly for
\\dG/dZj\\. Lemma 6.2 bounds \\dχ1/dzj\\ and \\dχ1/dzj\\, and one can then
perform the sum over j , so that the second sum in {χι,G} is bounded by
25(1 + 7V^_M)2ε~1/41| G || E^βjJ. Combining this with the previous estimate gives (ii).

Finally, we bound

1 X 2 ' * ιh\_8J, dφ, δφ, δJt] ι
zι δzt δz, δz

Using Lemmas 6.3 and 6.4, and a pair of Cauchy estimates the first sum is
easily bounded by

To bound the second sum over / we first note that if we define I as we did in the
paragraph preceding (6.10), then on D(I, v(k\pik)/4, σ(k) - 7<5<fc),τ(fc)/(l + 2"5(fc+1)"2);
I, F(fc)/(l + 2" 5(k + I)" 2 )) one can bound || dG/dzt || and || dG/dzt || by 26(1 + k)21| G ||/
tx ^ 26(1 + k)2 || G || (1 + Nk-M)/&f\ using the fact that 1/ί, g (1 + ATfc_M)/,rife). (The
quantity ίj was defined in the paragraph preceding (6.10).) We must bound the
factors of \\dχ2/dzι\\ and \\dχ2/dzι\\ by using (6.15), rather than Lemma 6.3, as this
estimate is quite delicate. Inserting the bounds from (6.15) we have:

- • dzι dzx dzi dzi

Here, L is as defined in the paragraph following (6.13). We now use the fact that
(l/^tJSicil + Nk_M)ε-1/4/l3/% and τflt^cQ +Nk_M)/j3/4, whereby we see
that the first of these two sums is bounded by

S 0(1 + *.-J.-"' x

S C(l + W,-«)e" " 4 x Σ ίff/^Π S C(l + N,_M)M(1 + ( ) V "4/(l + v),

(8.3)

where the sum over / was bounded by comparing it to an integral, and the sum
over; was bounded exactly as in (6.16).

We bound the second sum in (8.2) by

J ( / + | . ί | ) S 4 » + «.-,,)V * ,8.4)
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Here, the double sum over / and j was bounded by comparing it with the double
integral

dy \ dx °°f dy \dx

The integral over y can now be performed exactly and it is bounded by c/(x — 1)1/3

when x ̂  2, so the integral over x is also bounded by a constant. Combining (8.3)
and (8.4) gives (iii).

A further fact we will need in bounding the hamiltonian is the following. Suppose
R(J, φ; z, z) is analytic on D(I°, v, p, σ, τ; L, &~) = Dt. Define

R+(J,φ;z,z) = £ R(l,n;a,β)eίnφJιz«zβ.
nsZN

\n\>M
le(Z + f

R+ is obtained from R just by omitting those Fourier coefficients with small indices.
Define R~ =R-R + . We then have

Lemma 8.2. On Df = D(/°, v, p, σ - (5, τ; I, ̂ ) we have

(i) HIT 1 1 ^ ||KB*,,
(ii) \\R+\\Dfύe-δM\\R\\Dt.

Proof. The first inequality is immediate. The second follows by noting that

\\R+\\D= Σ
neZN

\n\>M

neZN

\n\>M
le(Z + f

<x,β

We remark that when we apply this lemma below we will choose the constant M
in the definition of R+ to equal Mk9 the constant defined in Sect. 5.

The last ingredient we will need is a way of bounding quantities like
\\{χ,R(k)}°Ft\\ in terms of || {χ,R(k)} ||. The key ingredient in this estimate is
Corollary 7.5. The basic requirement is that the difference between the transformed
variables and the new variables should be small with respect to the norm in which
we wish to measure iKχ,^} 0 ^! ! .

Lemma 8.3. Let (J(t\ φ(ή, z(y\ z(ή) = F\J, φ, z, z\ Let Dt = D(7, v, p/2, σ-δ, τjc; L,
and Df = D(7, v,p,σ,τ; L,^"). (We assume c and d are greater than 1.) Suppose

\\Jι(t)-Jι\\Diύp/2; \\zι(t)-zι\\DiMc-l)τι/c if Iφl,

\\φι(t)-ψι\\Dι^δ; | |z l(ί)-z I | | l ) |^(c /-l)^/c' if lei,

and

| | z ^ - z , \\Dι ̂ (c-l)τ,/c if iφK

WzM-^U^id-lWJd if lei.
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Then if G is analytic on Df,

\\GoF\\Di£\\G\\Dr

Proof. We can simply the notation slightly by combining the variables (/, z; z) into
a single variable x. We then wish to consider functions /(φ, x), analytic on a domain
Df = { ( φ 9 x ) \ \ ϊ m φ i \ < σ 9 i=l9...9N9 \Xi\<ri9 ί = l , . . . } . I f w e e x p a n d / i n a
Taylor-Fourier series as f(φ,x)= YJf{n,m)einφxm, then the norm of/ becomes

n,m

11/11 = Σl/(«,/n)|e""r", with rm = ]Jr?'. Suppose D, = {(φ,x)\\hnφt\ < σ and
n,m ^ i

\Xi\<fi), and let (φ,x) = (φ + Φ(φ),x(φ,x)) be an analytic change of variables
mapping Dt -+ Df and satisfying || xt(φ9 x) - xt \\Di ̂  (rt - ft) and || Φ(φ) \\Di <(σ-σ)
(These are just the translation of the hypotheses of the lemma into the (φ,x)
variables.) Let g(φ9x)=f(φ + Φ(φ),x(φ,x)). Since f,g,Φ9 and x are all analytic
functions we can expand them all in Taylor-Fourier series as

0(φ, x) = Σ ^(n, m^x" 1 , f(φ9 x)=Σ ?(n> m)ein*xm,
n,m n,m

Φein-φ, and x(<|),x)

with the usual multi-index notation. (Note that φ(φ) and χ(n, m) are vectors.) Since

g=f°(φ,x) we have

",m"

Y Y ϊ{n",m")ein"«xm"X.
J

Thus, we can express g(n, m) as a sum of f(n, m), ι̂ («) and χ(n, m) which we express
symbolically as g(n, m) = Σ{n'm)fψχ. (We will note need the explicit form of this
sum.) Thus,

II f°(Φ,x)\\Dί= \\g\\Di = Σ \ά(n,m)\emrm

ύ Σ \f(n,

s^rm"I \i(n",m")\e°ίnΨ
m"

The last of these inequalities here just "undid" the expansions of

(Σ(Vk*)(Σn'Φ(ri)ein''φyT a n d ( Σ i{n\m"yn"φxm")m that we made to express g
k n' ^ ^ n",m"

in terms of /, φ and χ. We note that

Σ ^ ( p " I I ^ O I ^
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Similarly,

( Σ lz(^^oι/ | n'Ίr''T = Πll^(^^)llS:^rm.
\n",m" ) I

Thus,
II foίίfί γ\\\ < V I f ( n m \ \ p d ^ v p ^ σ ~ d ^ r m — I I f \ \

which completes the proof of the lemma.
We now return to Eq. (8.1), and further examine the transformed hamiltonian.

We begin by writing

J {χ, {χ, β<*> + S<*>} }oWs + {χ,

We now recall that χ was chosen so that

All of these terms with the exception of (Q(fe + 1 ) — Q(k\ can be bounded with the
aid of Lemma 8.1, so we now look at this quadratic term in more detail. The terms
contributing to Q ( f c + 1 ) — Q{k) arise in Eq. (6.5), from which we obtain an explicit
formula for them:

1=1

,0;δhδι) + v2(I,0Λδhδι) + v3(IΛ0;δhδιnZιzι. (8.5)

The quantities in this expression are precisely those that appeared in the numerators
of χJ

2 and χz

2. We bound them in the same way we did in Lemmas 6.3 and 6.4 and
we find

Lemma 8.4. If Ie&k) and L is as in the paragraph preceding 6.2 then

on D(ϊ,vik\pm/4,σ(k)

Note that in addition we can read off from (8.5) expressions for the quantities
ff (I) and gf\I) defined in Proposition 5.1. One has, for k 10,

/, δh 0; 0,0) + v2(I, δh0; 0,0) + ί>3(/, δh 0; 0,0)] |

^ 2{εk + 2NCkεoEo(εk)/p«Ψ» + 2η
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and

\gΐ+1\i)-gΐ\i)\

= I [#*>(/, 0,0; δl9 δt) + v2(/,0,0; δl9 δj + ί>3(/, 0,0; <5,, <5,)|

£ 2 6(1 + fc)2(l + Nk.M)2{εk

We have bounded these expressions by once again noting that they appeared in
the numerators of χJ

2 and χz

2 and using the estimates derived in Lemmas 6.3 and
6.4. Using the definitions of the inductive constants from Sect. 5 it is easy to verify
that if ε0 is sufficiently small (this smallness condition does not depend on k\ the
quantities on the right-hand side of these inequalities are bounded by εΛ ε~1/3, and
εk ε~ 1 / 3//2 ζ k respectively, when k ̂  1. Next note that the quantities ff\I) and gγ\I)
defined in Eqs. (4.10) and (4.12) are JR(O)(/,^,0;0,0) and R^XlAO δ^δj) respect-
ively. Thus,

\fγ\I)-fγ\I)\ S |v2(/,(S,,0;0,0)| + |v3(/,<5,,0;0,0)| ^ε7 '6,

using the estimates derived in Sect. 6 for v2 and v3. One bounds \gf\I)— $γ\T)\
in a similar fashion, and this completes the verification of induction hypothesis
(/c+1.1).

In order to check (k + 1.2) and (k + 1.3) we give explicit expressions for R(k+1}

and Sik+1). Given an analytic function G, we find it convenient to define GR to be
the sum of those terms in the power series for G of order two or less, and
GS = G- GR. Note that one has immediately that || GR\\£\\G\\ and || Gs|| ^ | |G| | .
Then we have

-{Zi .S g }--{Zo,S^}--{ Z l ,S*}- . (8.6)

While

W ] + + Γ j { χ j R ( ^ o F '

[J [ ] {X, {X, Qm + S w } } "Fas J J - {χ0,+
|_o(_o J J

+ {Xi> [*(*}]} " - {χ2> [^o}]} ~ - ίXi> ίR2}]} " - fe. [#i°]} ~ (8.7)

^Lemmas 8.1-8.4 now make it easy to verify the induction hypotheses. Let Dt =

Combining Lemmas 8.1 and 8.3, plus the induction hypothesis for R(k) we have

£ sup W&R^oFWn^KCεJWRWWn^KiεJ'S,. (8.8)
Di ίe[O,l]

Note further that

' + {xi, CMfe)]}" + {χ2, IRg*]}- + {χ2, [Λf } ]}" II ̂  II {x> ̂ (k)} II ̂  W * ,
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and

ύ \\{χ,S}\\ S

using the induction hypothesis.
These two remarks, when combined with Lemma 8.4 imply

\{χ,(. ^ εk + (EJ

2(εk) + E\{εk)) + K{εk) εk + Ckε0K(εk),

so that

[εk + (EJ

2(εk) + Ez

2{εk)) + K(εk)εk + Ckε0K(εk)l

Finally, we note that Lemma 8.2 implies

\\ίR(kψ\\Diύe-6Mk>M- and | |[{χ,S}+] ||Dί g

Combining these remarks shows that

|| S<* + J> ||D i ^ Ckε0 + K(εk)-εk + Ckε0K(εk)

+ ίK(εk)l [εk + (E{{εk) + E\(εk)) + K(εk)εk + Ckε0K(εk)l

and

II R(k + X) \\Di S e-**k)M
MHk + 2K(εkyεk +

kn [βfe + (EJ

2(εk) + E\{εk)) + K(εk)εk + Ckε0K(εk)l

Inserting the definitions of the various inductive constants it is elementary, if
somewhat tedious, to verify that the induction hypotheses (k + 1.2) and (k + 1.3)
of Proposition 5.1 are satisfied.

IX. Estimates on Small Denominators

In this section we derive the estimates necessary to bound the denominators of
the generating function in Sect. 5. This procedure takes two steps. We first show
that for a large set of potentials, v, the operator Lv has eigenvalues that satisfy
"good" small denominator conditions. We then show that if one starts with a
potential with "good" frequencies then at each stage in the iterative process we
can adjust the perturbed frequencies by moving the vector / in such a way that
we maintain control over the small denominators.

Recall that Eo = < veL2[0,1] | v(x) = v(l -x)Jv = 0. >. Given vεE0 letμ1>μ2>-

I o J
be the spectrum of Lv = (d2/dx2) — v. We assume that μx < 0. Recall that μn has
the asymptotic form

-μn = (nπ)2 + l2(n)9 (9.1)

and that furthermore any decreasing sequence of the form (9.1) is the spectrum of

some veE0. (Here, I2(ή) is the nth component of an /2-sequence.) It is ωn = y/\μn\9
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rather than μn itself which enters our estimates so it is useful to have asymptotic

formulae for the ωπ's. Define

Proposition 9.1. An increasing sequence of positive numbers {ωn} gives rise to a
sequence — μn = ω2 of the form (9.1) if and only if

ωn = (nπ)(l+xά (9.3)

with {xn}ell

Proof First suppose that ωM = v / | μ J , and μn satisfies (9.1). Then xn =

y/l + I2{ή)/(nπ)2 — 1, and, | x j < aj(nπ)2

9 for some I2 sequence {an}. Thus,

Conversely, suppose that {xn}ell and set ωn = (nπ)(l + xn) and — μn = (nn)2(l + xn)
2 =

(nπ)2 + 2(nπ)2xn + (nπ)2x2. We need only show {2(wπ)2xn + (nπ)2x2}el2. However,
{(nπ)2xn}el2 since {XΠ}G/2, and {(nπ)2x2}el2 as we see by applying the Cauchy-
Schwartz inequality. This completes the proof of the proposition.

The space \\ is a convenient one with which to work, because it has associated
with it a variety of Gaussian probability measures. For instance, we can define a
probability measure on sequences x = (xί,x2,x3,...\ by taking a product of the
probability measures with gaussian densities

on each component xn. If we denote the product measure by dPa, then \\ has full
measure with respect to dPa if α > 3. (In fact, \\ has full measure if α > 3/2, but we
want α > 3 for later purposes.)

Now set ωn = (nπ)(l + xn\ and define Ω = (ωl9...9 ωN). We will verify that for all
{xn} except for a set of measure zero with respect to dPa, these frequencies satisfy
the non-resonance conditions (D.1)-(D.3) of Sect. 3 for some choice of the constants

Fix neZN, n φ 0 and j ^ 0. Then

Prob(|n β ± 7 π | < [D^yWn] +j)~τ = | ( Π

where

fjnι{lπ){\+xι)±jπ
1=1

It is convenient to change variables in this integral to zx = l<xxι so that
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with

1=1 1=1 v

Note that S is a strip of width 2[D (

0

1 )]"1(|w| +j)~τ about the hyperplane
N in π n π n π n π \

c(ή) + n z = +7*π, where c(n) = Σ n^lπ) and n = ( -γ~, 2 , 1 , 3_ 1 , . . . , ^_χ J. The

volume of such a strip is easy to estimate, since we now have a Gaussian integral
and we find

This gives the probability that the non-resonance condition (D.I) fails for some
particular neZN and; ̂  0. We estimate the total probability that it fails by summing
over n and j . Provided τ > N + 2 we have.

Since we can make this arbitrarily small by choosing D(

o

1} large, we see that for
almost every Ω, there exists some D^ such that estimate (D.I) is satisfied for all
neZN, n ^ O a n d y ^ O .

Estimate (D.2) is proved in the same fashion so we do not reproduce the details
here. Estimate (D.3) is slightly more difficult.

We will consider in detail the estimate of

The other three choices of plus and minus signs in condition (D.3) follow in
analogous fashion. It is easy to estimate for fixed nj and /,

Probίln β+ίω - ω ^ C D ^

(9.4)

using the same methods as above. The problem is that if we now sum over n, j
and /, the sum diverges.

We avoid this problem by rewriting

\nΏ-(ωj-ωι)\ = \n Ω-π(j-l) + π(j-l)-(ωj-ωι)\

and estimating these two pieces separately. We begin by noting that

Prob(|π; - ω,| ^δ)= f j ' e - ^ 2 ^
\ j \ ^ δ

( 9 . 5 )

We now estimate the set of frequencies for which (D.3) fails as follows:
First note that (D.I) implies that there exists a constant y(D(o}), with y(D(o}) \ 0
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as D(Q] s oo such that

Prob(|n ί2-mπ|<[Z) (o 1 )]" 1[ |n| + m]" τ for some rceZ*,m>0) <y(D(

0

ί)).

For simplicity, denote this event by D.I, and its complement by D.I. Then

Σ
neZΛ

519

ZN

m>0

+
neZ"
m>0

Σ Prob(|n ί2-(ω j + w -ω 7 . ) |<[D< 0

2 η- 1 [ |n |+m]- 4 τ ^D.l)

We now estimate separately the two sums over j . To estimate the first one, note
that (9.4) implies it is less than or equal to

nsZ"
m>0

provided τ > N + 2.

To estimate the second sum over 7 we note that

\nΏ- (ωj+m - COJ)\ ^ \n Ω- πm\ - (\πj- ωs\ + \π(j + m) - ωj+m\),

so that, using the fact that (D.I) holds

provided Dφ > Wφ and (|πj - ω,| + |π(j + m ) - ωj+m\) <
On the other hand, (9.5) implies

Thus,

m > 0

m > 0

neZN

m>0

(Recall that α > 3, so all the sums converge.)
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Thus, the set of points which violate (D.3) has measure bounded by

Thus, if we choose D(

0

2) = [D (

0

υ ] 2 , the probability that (D.3) is violated goes to
zero as D (

o

υ ^ oo, so (D.1)-(D.3) are almost surely satisfied.
Note that this defines a measure on the set of potentials in Eo whose spectrum

is purely negative if we set the measure of a subset of Eo to be equal to the measure
of the set of frequencies of those potentials with respect to dPa. Thus, this argument
proves that the sets $0(j) and &Ό(N) in Theorems 2.1 and 2.2 do indeed have full
measure if we restrict ourselves to potentials whose eigenvalues are all negative.

We now complete the argument by showing that if we start with a potential
whose frequencies satisfy (D.1)-(D.3) we can maintain control of these frequencies
throughout the iterative process. Here, we follow the ideas of [E] closely.

We construct the set &k) in Proposition 5.1 by successively eliminating points
/ from B(v°9I°) which violate the small denominator conditions at each stage of
the iteration. At the initial stage of the iteration the frequencies are independent
of/, so we take l(0) = B(v°J°).

At subsequent stages of the iteration the frequencies will depend on /, but we
are able to prove:

Lemma 9.2. Suppose we have constructed a set &k) c B(v°,I°)9 such that for IeCN

and dist(J, J(fc)) < v(fc) one has

(ΌkΛ) \

(Dk.2) \

(Dk.3) |n ί2«(i) ± « ω ± ωίfc)(/))l ^ C ^ ] " 1 ί\n\ + \j- l\T4τ

neZN, \n\^Mk9 jJ^N + 1.

Then ίfε0 is sufficiently small, there exists £{k+1) c J ( f e ) with meas (J( fc)\ J ( f c + 1 } ) ^
^(l/fc2 | logε0 |)meas(J ( 0 )) such that ifIeCN and dist(/, J ( f c + 1)) < vik+1\ then Ω(k+1\
and {ωf + 1)} satisfy (D(k + l).l) - (D(k + 1).3).

Proof Note that (D0.1)-(D0.4) hold for Iel°. (In fact, since Ω(0) and ωf are
independent of /, they hold for all /.) Furthermore, if ε0 is sufficiently small,
(D1.1)-(D1.3) and (D2.1)-(D2.3) are automatically satisfied for / e J ( 1 ) = J ( 2 ) =
B(v°,/°). In order for (Dl.l) to fail, we must have \j\ ̂  0{\n\)« Θ^M^). Thus,

^ \n Ω(0)(I) ±jπ\ - \nΏ{l\I) - nΏ(0)\

τ - \n\εΊ/6 ^ ^

if 17iI and; are ^ ^ ( M J and ε0 is sufficiently small. Here, the next to last inequality
used (D0.1) and the estimate of (fc.l) of Proposition 5.1. The proofs that (D1.2),
(D1.3) and (D2.1)-(D2.3) are satisfied are similar so we omit them. In fact, using
this idea, one could show that (Dk.l)-(Dk.3) are automatically satisfied for any
finite fc, by choosing ε0 sufficiently small. Choosing k = 2 is sufficient to make the
induction argument work, but, we make no claim that is the optimal choice.
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We now show inductively that we can construct sets, J (/c + υ , for k ^ 24, on which
(Dk + l.l)-(Dk + 1.3) hold, and then finally show that these estimates hold on
complex neighborhoods of J ( f c + 1 ) of size v(/c + 1).

We will first estimate how many frequencies must be excluded in order to insure
that for Ielik+1\

This estimate is rather standard. From the estimates on dΩ/dl at the end of
Sect. 4, we see that the map I->Ω(k + 1)(I) is a difTeomorphism from &k)-+Ω{k+1\Ά{k)).
In fact, it is easy to see that one can, by interpolation, extend Ω(k+1)(I) to all of
B(v(0), 7°) in such a way that the extended function is unchanged on l(k\ but satisfies
det(dΩik+1)/dI) = CεN(l + Θ(ε1/2)) on all of B(v{0\I°). (And hence is a diffeo-
morphism on the whole ball.) Since Ω(k+1) is a diffeomorphism we may treat the
frequencies Ω as independent variables, and then at the end of the computation,
pull back our estimates on the set of frequencies that must be excluded via (Ω(k + 1))~1

to give estimates on the size of the sets lik + 1).

The estimates on Ω{k+1)(I) imply that there are positive constants c and c,
independent of fe, such that

) c β(cεv(0), ί2(fe + "(J 0 )).

Thus we have,

dΩ £

{Ω\\n Ω-πj\<ίD^l^

This last inequality results from the fact that the set over which we are integrating
is contained in a strip of width 4 [ D ^ 1 ] " 1 [ | n | + 7] " τ about a hyperplane through

( 0 \ ( k + 1 ) 0

The estimates on dΩik + 1)/dI imply ( v ^ ε ^ ^ c ί Λ O m e a s ί β ^ " 1 " 1 ^ ^ 0 ^ / 0 ) ) ) , so

Since [ B ^ i ] " 1 ^ 0 ^ ) " 1 « 1, for fe ^ 2, the measure of the set of excluded points
is very small. If we now sum over n and 7, we see that the measure of the set of
points where (D(k + l).l) fails is bounded by

C(N9 T I W Ϊ J - ^ Λ ) " 1 meas (Ω{k + 1\B(v^°\ /<*>))),

provided τ > N + 2.
We now consider the set of points where hypothesis (D(k + 1).2) fails. Note

first of all that (D(k + 1).2) is automatically satisfied for k> 0 unless \n\ + j is rather
large. To see this note that

\n Ω(k+1} - ωf + υ | = \nΏi0) - ωf} + n-(Ωik +1}

It is easy to estimate (Ω(k+1) - Ω(0)) and ωf + 1) - ωj0 ) using the bounds of induction
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hypothesis (jfc+ 1.1) of Proposition 5.1, and we find \Ωik+1) - Ωi0)\ ^ cε5/4, while

\ωf+1) - ωJ0) | S cε5/4/j2ζk. Since ί2 ( 0 ), and ω}0) satisfy (D0.2) we have

which is automatically bounded below by 2 D ^ 1 [ | n | + </] τ unless |n| + j is
0(ε~ 5 / 4 ( τ + 1 ) ) . Once again we treat Ω as the independent variable. Thus, we must
estimate

ΩUnΩ ωjl<2ίDk+U C N + ; ] ) (9.6)

If (ύj were independent of Ω, this would be identical to the previous estimate. In
that case, if \nΏ— πj\ < δ, and we moved Ω by an amount δ in the direction of
n, the inequality would reverse. Here, if \n Ω— ωf+1)(Ω)\ < δ, and we move Ω in
the direction of n, (x>j(Ω) may also move in such a way that the inequality still
holds. However, if we differentiate this expression with respect to Ω, we have

Jin

Note that if

Σ >c>0, (9.7)
*V a/, A di Jlm

we can, by moving Ω a distance δ/c in the direction of n, insure that \nΏ —

By the estimates of Sect. 4 (Lemma 4.7 and Eq. (4.12)) combined with
the estimates of induction hypothesis (fc+1.1) of Proposition 5.1, we have

- 11| ^ CίΛOε"1 and \dωf +1)/dlt\ S cε/j2ζk. Thus,

Σ

By the remarks of the previous paragraph we see that we need only consider those
cases in which \n\ + j ^ . 0(ε~ 5 / 4 ( τ + 1 ) ) . In this case, the estimates in the preceding
sentence imply

for some m, so we see that the set {Ω\ \nΏ- ωf + 1\Ω)\ < 2 [D^ 1 / 1 ] " 1 [ |n | + ; ] " τ }
is contained in a strip of width at most (4/c o )[Z)^ 1 ]~ 1 [ |n | + j ] ~ τ inside
5(cv(O)ε,ί2(fe + 1 )(/0)), allowing us to bound (9.6) by (4C(Λ)/co)[l)ft J " 1 ^ ! + Ω~τ

(cv^ε)^" 1. Summing over n and j as before we find that (D(k + 1).2) fails for a set
of points Ω whose measure is at most C(iV,τ)[D^ 1]" 1(v ( 0 )ε)" 1meas(ί2 ( k + 1 )

(B(v(0\l0))), provided τ > N + 2.
Finally, we consider condition (D(k + 1).3). Just as we did in the case of (D.3)
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above, we will verify the case |n β ( * + 1 ) - ( ω $ k + 1 )--ωj* + 1 ) ) | , the other three
combinations of plus and minus signs being handled in like fashion.

We begin by showing that (D(k + 1).3) fails to hold, only under very special
circumstances. Note that Proposition 9.1 implies that there exists c>0 such that
|ω^0) — jπ\ ^ c/j for all j ^ N H-1. If we combine this with the estimates of the
induction hypothesis (fc+1.1) of Proposition 5.1 we can readily establish that
|(ω^ + 1)(/)--ωJVm

1)(/))|^cm, for all / such that dist(J, i2(fe))< v(k), provided ε is
sufficiently small. (This smallness condition does not depend on k)

If we now define Ωs = sup |β[ fc)(/)|, we see

ι-4τ

for ε sufficiently small, unless \n\Ωs > cm/2. On the other hand we see that since
(D0.3) holds we have

- (ωf - ωflm)\ - |π (fl<*+ "(J) -

Thus we see that (D(k + 1).3) is automatically satisfied unless | n | + m « Θ(ε"5/4(τ+1}),
which since \n\> cmβΩ\ implies |n| « ^ ( ε " 5 / 4 ( τ + 1 ) ) .

If we recall that (D(k + l).l) holds we obtain a second condition under which
(D(k + 1).3) is automatically satisfied. Note that

2; |n β< k + "(/) - mπ\ - \(ωf + »(I) - jπ) - (ωf£\I) - (j + m)π)|

- (c/74/5 + c/U + m)4'5)

The second of these inequalities follows from the fact that the asymptotic estimates
of Proposition 9.1, combined with the inductive estimate (k + 1.1) of Proposition
5.1 imply that there is a constant c>0 such that \ωf+ί)(I) — jπ\ <c/jA'5 for all j .

Since Dtfl,. > AD^l i, this last expression is bigger than 2(ί>[ 2ί 1)" 1( |n| + m)~Aτ,
and (D(k + 1).3) is automatically satisfied, when < {(Λc^D^l^(\n\ + m)τ}5 / 4.

Having now examined the situations in which (D(k + 1).3) is automatically
satisfied let us examine cases where it can fail. Using the methods described in
(D(k + 1).2) we can readily establish that

In deriving this estimate, one is forced to show that

^ c o > 0 .

This follows easily, since the sum over / is bounded by C(N)9 while | n \ « Θ(ε 5 / 4 ( τ + 1 } )
by our remarks above. Thus the total measure of the set of points which fail to
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satisfy (D(k + 1).3) is

Σ

5/4

|5/4

^ C(ΛΓ, τ ) L ^ L _ . ( ε / v < o ) ) meas(Ω<k+^)(B(v^,I0)).
L/Λ+lJ

In this sequence of inequalities we have assumed that τ > max (2N, 4) in order to
insure that the sum converges. Note further that the set of excluded points is very
small since DfU » [Dft 1]

5 / 4(ε/v ( 0 )).
Combining this estimate, with our estimates on the size of the set of points

where (D(k + l).l) and (D(k + 1)2) fail, we see that by removing from Ω{k+1)(&k)\
a set of measure less than or equal to

(D Ί|5/4

^ xmeas(ί2*+1)B(v<°>,/0)),

we can insure that (D(k -h l).l)-(D(k +1).4) are all satisfied. Inserting the
definitions of the inductive constants we see that this set, which is by definition
Ω{k+ 1>(5<k+ *>), removes a set of points whose measure is at most Θ(l/(k + I)21 log ε01)

We must now show that the estimates actually hold on a complex neighborhood

Consider condition (D(k + l).l). Let / be a point whose distance from
is less than v(fe + 1). Then there is a point ΐel(k + 1) such that |/ - 7| < v(fc + 1). Thus

From the construction of J ( f c + 1 ) above we have bounds on the first term on the
right-hand side of this expression. The second term is bounded by the aid of
Taylor's theorem and our estimates on the derivative dΩ(k + 1)/dL This allows us
to bound the right-hand side of the previous inequality from below by

If we now note that our remarks above show that condition (D(k+l) . l ) is
automatically satisfied unless j <c\n\ and the fact that we only consider n which
satisfy \n\ ̂  Mk+1 the definitions of the various inductive constants show that this
expression is bounded below by

completing the verification of (D(k + l).l).
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The verification of (D(k + 1).2) is very similar and so we conclude by checking
(D(k + 1).3). We choose a point /just as in the previous paragraph and write

- ( ω f + 1 )(J) -

ω%+»(ΐ)) - (ωf + "(/) - ωf+»{[))\

Once again we bound this using the bounds derived for 7el(k + 1) above and
Taylor's theorem and we find that this expression is bounded from below by

We now recall that we showed that (D(k + 1).3) was satisfied automatically
unless \n\> cm/2Ω\ and use the fact that \n\<Mk + 1 and we find that this expression
is bounded below by

This completes the verification that the small denominator estimates hold on a
complex neighborhood of J ( f c + 1).

Thus far we have derived estimates on sets in Ωik)(B(v(0\I0)) for which the
small denominator estimates fail, but this immediately yields estimates on the size
of the sets in B(v(0\l°) for which they fail. To see this note that the estimates at
the end of Sect. 4 when combined with the estimates of hypothesis (k.l) of
Proposition 5.1, and pair of dimensional estimates then imply that

Thus, we immediately conclude that

meas- meas(β(v0,/0))

ieas({ί2eί2(fc + 1)(j2(fc))l \nΏ\ < [ D & i ] " 1 ! * ! " 1 } )

~ meas(ί2 ( f c + 1 )(β(v0,/0))) '

and similarly for conditions (Dk.2)-(Dk.3).

Combining this with our previous estimate for the right-hand side of this
inequality we see that

meas (J( fc)\ J ( fc + 1 } ) ^ Θ(l/k21log ε01) meas (B(v°, 7°)). (9.8)

Since J2 ( 0 ) = B(v°J°) we see immediately that meas(^ ( f e ) )^(l - 0(l/|logεo |))
meas(£(v0,/0)) for all k9 and combining this observation with (9.8) we obtain
meas(^(fc + 1 ) )^( l-^( l/ fe 2 | logε 0 | ) )meas(J ( k ) ) . This verifies the last unproven
statement of Proposition 5.1.

Once one knows that the denominators obey condition (Dk.l)-(Dk.3) one can
replace (Dk.2) and (Dk.3) by the forms which we used in Sect. 5 and which we
denote (Dk.2)' and (Dk.3)'. Recall that ωf] - (jπ). Thus, there is some constant, c,
such that ω f (/) > cj, for all > N, k = 1,2,..., and IeCN satisfying dist (/, &k)) < v{k\
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Let Ωs = sup \Ω\k)(I)\. Then if j ^ 2\n\Ω8/c,
I,l,k

ωf)(I)\-1S
J

regardless of whether (Dk.2) holds or not. On the other hand, if (Dk.2) holds and
j < 21 n I Ωs/c, we have

n
c J J

Thus, for large, the 'small" denominators actually help the convergence of the
sum over j \ Similarly, we find

Thus we have

Corollary 9.4. Under ί/ze hypotheses of Proposition 9.2 conditions (Dk.2). and (Dk.3)
can be replaced by

\n\τ+1

(Dk.2y \ J ^± ωf

(Dk.3y

We conclude by completing the proof of Theorem 2.3. We noted in Sect. 5 that
if /eJ ( o o ) = P| ^ ( k ), one can repeat the iterative step infinitely often, and construct

a quasi-periodic orbit corresponding to this value of /. The estimates of the
induction hypothesis (k.l) of Proposition 5.1 imply that lim Ω(k)(I) = Ω(co)(I) exists

which gives the frequencies of the quasi-periodic orbit. We prove Theorem 2.3 by
showing that the set of frequencies ί2 ( o o )(^ ( c o )) has large measure. In fact, using the
estimates of (k.l), and the Whitney embedding theorem as was done in [CG]
or [P3] one can construct a diffeomorphism Ω(co) on B(v(0\I°) such that
det(dΩ(co)/dI) = C-εN(l + Θ(y/ε))9 and if /G^ ( o o ) , ί2 ( o o ) (/)-β ( o o ) (/). This allows us
to estimate

meas (ί5(oo)(j2(

(9.10)

Since we get a quasi-periodic orbit with frequency corresponding to each point in
i5 ( o o )(J ( o o )), and since (9.10) implies that this set has large Lebesgue measure the
proof of Theorem 2.3 is complete.
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