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Abstract. We investigate the structure of the Fock modules over Aψ introduced
by Wakimoto. We show that irreducible highest weight modules arise as degree
zero cohomology groups in a BRST-like complex of Fock modules. Chiral
primary fields are constructed as BRST invariant operators acting on Fock
modules. As a result, we obtain a free field representation of correlation functions
of the SU(2) WZW model on the plane and on the torus. We also consider
representations of fractional level arising in Polyakov's ID quantum gravity.
Finally, we give a geometrical, Borel-Weil-like interpretation of the Wakimoto
construction.

1. Introduction

Kac-Moody Lie algebras play a central role in two-dimensional conformal field
theory [1]: it appears that most known examples of conformal field theory models
can be understood in terms of WZW models [2,3] (by a coset construction [4])
whose symmetry algebra is a Kac-Moody algebra. It is therefore important to
understand the structure of their representations, and of chiral primary fields, which
are tensor operators for these algebras. In this paper we focus on the algebra Aγ\
the central extension of the Lie algebra of loops in sl(2, C).

A very powerful method for explicitly constructing representations, chiral
primary fields and their correlation functions in conformal field theory is the
Feigin-Fuchs construction [5] in terms of free fields, first considered in the case
of the Virasoro algebra. It was recently shown [6] that this construction relies on
a hidden BRST-like symmetry, which realizes the space of physical states as a
subquotient of the free field Fock space. This observation led to an integral
expression for correlation functions of minimal models on the torus.

Here we extend these results to the Aγ} Lie algebra. The free field representation
spaces (Fock modules) for this algebra were introduced by Wakimoto [7]. They
are labeled by a spin J and a level K, which can be arbitrary complex
numbers. The corresponding Feigin-Fuchs-like construction was proposed by
Zamolodchikov [8]. The case of interest to us is the case where K + 2 = pjp' is a
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positive rational number, and the spin is related to the level by the formula

2J + l=n-n'p/p\ l^n^p-1, O^rc'gp'-l. (1.1)

Let us first discuss the Verma modules and the irreducible highest weight
representations with spin and level given by (1.1). This class of representations has
both mathematical and physical significance. Specifically, the Verma modules
with highest weight J and level K contain infinitely many singular vectors, as can
be seen from the Kac-Kazhdan determinant formula [9], and they present many
striking similarities with the completely degenerate representations of the Virasoro
algebra [10]. As shown by Kac and Wakimoto [11], the characters of the
corresponding irreducible representations form, for each fixed level, a (finite
dimensional) representation of the modular group. An important special case is
p' = 1. The irreducible representations (1.1) are then unitary and integrable. In
physics they arise as the representations appearing in the Hubert space of the
SU(2) WZW model [12]. The representations with p' > 1 are needed for the coset
construction of non-unitary minimal models [13]. They also arise in Polyakov's
two-dimensional quantum gravity [14,15] coupled to minimal models with central
charge 1 —6(p — p')2/pp\ as representations "dual" to the representations of Aγ]

(in the s/(2, R) real form) appearing in the model.
In free field representations of conformal field theory, one must understand the

relation between Fock modules, on which free fields act, and irreducible highest
weight modules, which are the spaces of physical states of the models. In this paper
we show that, for each pair J,K in (1.1), the corresponding Fock module is the
degree zero element of a graded complex of Fock modules whose differential
(the BRST operator) can be constructed out of free field operators. The cohomology
of this complex vanishes except in degree zero, where it coincides with the irreducible
highest weight module with the same highest weight. Chiral primary fields are
represented as BRST invariant combinations of free field operators acting on Fock
modules. These results give integral representations of conformal blocks on the
plane and, by a Lefshetz formula, on the torus. In the case of the plane and
for p' = 1, these integral representations have been first given by Fateev and
Zamolodchikov [12], who also solved for the structure constants.

As the free field representation of Aγ} chiral primary fields are very closely
related to the one of Virasoro chiral primary fields, many calculations done in the
Virasoro case can be carried over to this case. In particular the calculation of the
representation of the braid group describing the analytic continuation of conformal
blocks [16] could be extended to this case, with almost identical details. One could
also extend to the WZW case the result [17] that one-point functions of scaling
fields of minimal models on the torus are modular covariant. This property is
important if one wants to consider the WZW model on higher genus Riemann
surfaces [18]. Indeed, it has been shown [19] that modular covariance of one-point
functions on the torus and crossing symmetry on the sphere are sufficient conditions
for a theory to have a consistent extension to arbitrary genus. As a last application
of our results we mention the "quantum hamiltonian reduction" [20,21]. It is
shown in [21] that completely degenerate representations of the Virasoro algebra
can be obtained from irreducible Aγ] representations with weights (1.1) (and rϊ > 0),
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by imposing the constraint J + (z)=l in a (conventional gauge theory) BRST
manner. The proof of this relies on the fact that the BRST operator considered in
this paper is BRST equivalent (with respect to the conventional BRST operator)
to the Virasoro BRST operator of [6].

This paper is organized as follows: In Sect. 2 we introduce the Fock modules
over A[1} following Wakimoto, and we describe the BRST complex and its structure.
In Sect. 3 we introduce the free field representation of the chiral primary fields and
of their correlation functions for genus zero and one. We also discuss the fusion
rules. The structure of Fock modules and the computation of the BRST cohomology
is done in Sect. 4. We conclude the paper with a Borel-Weil-like construction of
the Wakimoto modules. This construction provides a natural setting for the
extension of Wakimoto modules to arbitrary groups, and naturally leads to
representations of highest weight with respect to an "infinite gradation." The
meaning of these representations remains obscure.

In the notation of this paper, the algebra Λ^ is given by generators J£,rceZ,
a= +, 0, —, and K with non-vanishing commutators,

rro Γ±-I _ τ±
LJ rnJm J ~ Jn + m >

ΓJO JOΊ - n K Z
\JJn'>υmΛ ry un,-mr>

lJ:,J;-] = 2J°n + m + nKδn^m. (2.1)

It is customary to adjoin to the algebra a derivation d with [d, Ja

n~] = — nJa

n and
[d, K] = 0. Throughout this paper, N denotes the set of positive integers.

During the completion of this paper, we have learned of results obtained by
other authors on related subjects. In particular Feigin and Frenkel [22] have
obtained a generalization of the Wakimoto construction to more general Kac-
Moody algebras. Their results on the structure of Fock modules overlap with ours.
Gawedzki [23] has recently derived an integral representation for Gc/G correlation
functions, which are "dual" to WZW correlation functions, by manipulating the
functional integral. The precise relation with our results is not completely clear
yet. Similar constructions have been proposed in [24]. The SU(2) WZW model
and related models have also been studied from a BRST point of view in [25,26].

2. Free Field Representations

A free field representation of Λγ] valid for any value of the central charge was first
introduced by Wakimoto [7]. For any (untwisted) affine Kac-Moody algebra g{1)

the field content of the free field representation can be extracted from the value of
the central charge of the Sugawara operators: c = K dim g/(K + /ι*). Here K is the
level of the representation and ft* is the dual Coxeter number of g. Thanks to the
Freudenthal-de Vries strange formula, dimg/24 = \ρ\2/2h* with p the Weyl vector
of #, the Sugawara central charge admits the following decomposition:

(2.1)
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To represent such a Virasoro algebra, we are naturally led to introduce a free
field Φ taking values in a Cartan subalgebra of g and a pair of spin 0-spin 1 bosonic
fields, ωα,ω£, for each positive roots. The stress-tensor of the ω — α>f system,
T(z) = ]Γ Ta(z\ Ta — — ω\dωa, has a central charge equal to the number of roots

α>0

of g. The stress-tensor of the field Φ is given by a Chodos-Thorn construction,

T = i(idΦ)2 - (i/Qκ + h*))p d2Φ. It gives the second bracket in the decom-

position (2.1) of the central charge.
To be precise in the case of Aγ] we introduce a free bosonic field Φ{z) and an

ω(z) — ω\z) system,

= Σanz-n-\ ω(z) = Σωnz~n

9 ω\z) = Yjω\z-n~\ (2.2)
n n n

They satisfy the following commutation relations:

\βn^Δ = nδH+nttθ9 |> M ,<4J = δn+mt0. (2.3)

Other commutators vanish.
The ω — ω 1 system admits infinitely many non-equivalent Fock representations.

We choose one of them by imposing the following condition on the vacuum:

(2.4)

ωn + 1\J) = 0

with 2y2 = K + 2. We denote by Fj this Fock space.
In the Fock spaces Fs the affϊne algebra Λ^ is represented by

J°(z) =:ω{z)ω\z):+ yidΦ(z\

J-(z)= ~:ω2{z)ω\z):- 2γiδΦ(z)ω(z) - Kdω(z). (2.5)

K is the level of the representation. By hypothesis, K + 2 Φ 0. Note that α0 is in
the center of this representation. Hence each Fock space F3 carries a representation
of Aγ\ The vacuum |J> is a highest weight vector with weight Λj = 2JΛx +
(K - 2J)Λ0. Λo and Λ1 are the fundamental weights of A^\

If no positive integers n and n' exist such that 2J + 1 = + [n — ή{K + 2)] and
2J + 1<£N the representation (2.5) is irreducible.

On the contrary if 25 + 1 = ± [n - n'(K + 2)] for some n, n'eN or if 23 + 1 e N
the representation (2.5) is reducible. For n,n'eZ we set 2Jnn, + 1 = n — n'(K + 2)
and we denote the corresponding weight by Λnn, and the Fock space Fj by

As for the representation of the Virasoro algebra the analysis of the structure
of the Fock modules is greatly simplified if one introduces a BRST-like operator.
As we will soon explain, the irreducible representations arise as cohomology groups
of this BRST operator. Let V(z) be the operator defined by:

V(z) = ω\z): exp ( - - Φ(z) j : . (2.6)
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V(z) maps Fj into FJ_1. It is a screening operator; i.e. its OPE with the currents
(2.5) are total derivatives. Acting on F(Λn^) the BRST charge is defined by

£ ^ A * ' ™ v < ' l ) - F ω <27)

Qn maps F(Λnn,) to F(Λ_„,„'). The integration contours # form a set of non-
intersecting curves going counterclockwise from z to zei2π and are localized in the
neighborhood of the circle of radius \z\ centered at the origin (as in [6]). When

acting on F(ΛntΛ.) the BRST current % ) = j f[ dziV{z)V{z2)--V{zn) is single

valued around the origin. Thus the z-contour can be closed and the BRST charge
commutes with the currents (2.5):

[ « C Q J = 0 onF(ΛHtH.). (2.8)

At this point two cases have to be distinguished according to the rationality
of K + 2.

i) Let us first consider F(yl_π _„.), with n,n'eN. We first describe the structure of
the Fock space as an A^ module and then solve the BRST cohomology. The
Kac-Kazdhan determinant (see Sect. 4) tells us that F(/l_„,_„,) possesses one and
only one vector w_π_n, which is either singular or cosingular. (The definitions of
singular and cosingular vectors are given in Sect. 4.) The weight of w _„,_„, is
ΛWj_Π'inodC<5. We claim that w_n_n ' is singular. More precisely we prove that:

*_„,_„, = βJJ Π i _ n ,>. (2.9)

To prove Eq. (2.9) we only need to show that Qn\ J„,-„>} does not vanish, because
\Jny-n>)> is singular in F{An^n) and so is β π | / w ,_ π > in F(Λ-Λt-H.) if it is not zero.
This is proved in Appendix A. The structure of F(Λ_Mj _„,) can be pictured as follows:

\J-n,-n'>

(2.10)

Let us now introduce the following complex,

(2.11)

Obviously it is a complex. By convention, the numbers in parentheses are the
degrees. Because the BRST operator commutes with the currents (2.5), its
cohomology groups are A(

1

1) modules. Hence to solve the BRST cohomology we
only have to look at the singular or cosingular vectors. From what has been
deduced previously it follows that a non-trivial cohomology group exists only in
degree zero. It is isomorphic to the irreducible representation of A^ with weight
Λ_M.-M,:

„,-,-

,
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Here and henceforth, L(Λ) denotes the irreducible highest weight representation
of Λ^ with highest weight Λ.

ii) Consider now F(Λnn,\ neN, n'eNuO. As above, F(Λn^>) possesses a vector WM X

of weight yi_ππrmodC(5 which is either singular or cosingular. This follows from
the Kac-Kazdhan determinant. We prove by contradiction that wnn, is cosingular.
Indeed if wn n, is not cosingular there exists u in the universal enveloping algebra,
such that wnn> = u\Jnn,}. In Appendix A we show that Qnwnn> φΰ. Thus βnwM X

is proportional to | J _ w X > . Therefore, if wnn' is not cosingular, | J _ w X > =
uQn\Jnn.y = 0. Hence wnn. is cosingular. The structure oϊF(Λnn>) is represented as
follows:

(2.13)

In this case the complex is the following:

As above non-trivial cohomology classes exist only in degree zero. We have:

._ (j) (._1} JO if iφO
\L(Annl) if ί = 0'

b)(K + 2)eQ

In the rational case, the structure of the Fock modules is more involved. In this
section we only report the result, the proofs are given in Sect. 4.

Let (K -f 2) = pip' with p and p' coprime positive integers. Suppose that n and
n' are two integers satisfying 0 < n ̂  p — 1 and 0 ̂  ή ^ p' — 1. Then we have the
following proposition.

Proposition 2.1. The following infinite sequence

is a complex; i.e. QnQp-n = Qp-nQn = 0.
The proof of this proposition follows from the Bernstein-Gelfand resolutions

of the Fock spaces.
Let us assign a degree to the Fock spaces involved in the above complex by

setting that degree (F(Λπ_2fcίMJ/)) = 2fc and degree(F(Λ_π_2kp>B0) = 2 f c + L τ h e

following theorem gives the cohomology groups of the complex introduced in
Prop. 2.1:

Theorem 2.2.

W = Ker nW/lrn Π^~^ — \
\L(Λn<n) if i = 0
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Theorem 2.2 allows us to derive the character formula for the irreducible highest
weight representation L(Λntn). Let us denote this character by Ch L(ΛnX)(τ, z). It
is given by the trace of a homomorphism 0 of the BRST complex over the
cohomology group H°. The homomorphism 0 is Θ = exp (ilπτd) exp (ilπz JQ), where
in physical notation the derivation d is d = L o — c/24. Because H° is the unique
nontrivial cohomology group in the complex, this trace is equal to the alternated
sum of the traces over the Fock spaces:

ChL(ΛπJ(τ,z) = X ChF(Λn-2iPtΛ.){τ,z) - £ ChF(Λ_M_2ί/vι,)(τ,z). (2.16)
leZ leZ

The character of the Fock spaces and of the Verma modules are the same

exp (i2πτ(mpf - m'p)2/4pp') exp (ίπzjmp' - m'p)/p')
m,)(τ,z) = (2.1 /)

l l Z )

with, q = exp (ΐ2πτ), Im τ > 0,

f j (1 -qnei2πz)(l -qn

e-
ilnz){\ - qn).

H = l

Gathering formulas (2.16) and (2.17) we obtain [11]:

ChLfri. ,)(τ,,) - ^ - ^ ' ^ : ^ - » ' ^ ' > (2.18)
77(τ,z)

with
βj(τ,z)= Σ exp(i2πα(τ/2 + z/)).

In the irrational cases the characters can be easily deduced from Eqs. (2.12) and
(2.15).

3. Conformal Blocks of the WZW Models on the Sphere and on the Torus

In the section we use the free field representation of the previous section to deduce
explicit expression for the conformal blocks on the sphere and on the torus. Unless
otherwise specified we suppose in what follows that (K + 2)eQ, 2y2 = K + 2 = p/p'.

To write down expressions for the conformal blocks we have to introduce the
chiral primary fields. A chiral primary field Φk

n*n>uv(z) maps a highest weight
representation with highest weight Auv into a highest weight representation with
highest weight Λky.

Φk^uM:L{Auι)^L{Aκk). (3.1)

It takes values in the highest weight s/(2)-representation ρ3 , of spin 3nn> and it
behaves like an affine primary field of spin Jn n,\ i.e. it satisfies the following
commutation relations:

id, φ% u'W] = ( ^ + /" " ^ " + " 2

+ 1 ) ) φ U : ! ; : ,.r(4 (3.2)

By s/(2) invariance this field exists only if Jnn, + Juv — J ^
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The chiral primary operators can be explicitly constructed by using the screening
charge (2.6) and vertex operators denoted by μVj(z) for (J — μ)eN u 0 and defined by:

μVj(z) = :ω J-^)::exp^γΦ(z)Y . (3.3)

Then the μ-spin component of Φjj jj!M(z), which we denote by μΦ
k

n*n>ιj>(z)9 is (up
to a normalization constant):

μΦ
kά ι.Λz) = J j ί dzt μVJn (z)V(z2) • • • V{zr). (3.4)

Here r = JntΛ. + Juv-Jkmk..
The vertex operator (3.4) is defined on the Fock module F(ΛU>). To be a chiral

primary field it must project to an operator acting on the irreducible highest weight
module L(ΛU>); i.e. on the non-trivial cohomology classes of the complex introduced
in Sect. 2. In other words, it must be BRST invariant. Following the method used
by one of the authors in the case of the Virasoro algebra [6], one can check that
the chiral vertex operator (3.4) commutes (up to a phase) with the BRST charge.
Namely, on F(ΛU>) we have:

β*Φί:: i.r(z) = e x p ( - iπkJn,n.y-2)φ-y _w,(z)&. (3.5)

This property can alternatively be illustrated by the following (up to a phase)
commutative diagram.

F(ΛU.) ^

) -^ F(Λ-kχ).

By definition, a non-vanishing chiral primary field exists only and only if the
fusion rules are fulfilled. The chiral primary field does not vanish identically if and
only if it can be normalized. By sl(2) invariance all the fields μΦ*'%> w {z) are
normalizable if the field 3 ,Φk

n'
k

n Lr(z) is. The normalization constant is:

^ ; ^ . r ( ' " t ; m ; ) = <Λ. k . ;m, | 7 n n ,Φ«: u , ( l ) | J u , ;m ) >, (3.6)

where | J ; m ) are states with spin m in the s/(2) representation of spin J. This
constant can be explicitly calculated:

n,n' ml mk

' (1 - exp(- iπy-2(s-Jn,n. - ! ) ) ) ( ! -e^**'2') ' Γ(s/2γ2)

M (1-e-'*"-2) Mr(l/2y2)

- (s - 2JH,n,)/2y2)Γ((S - 2J,,,,)/2y2)

(s - 1 - J,,.. - JlΛ. - Λ,* )/2y2) ' [ ' '

Here the first bracket denotes a Clebsh-Gordan coefficient and r = Jnn + JltV —
Jkχ. From this explicit expression we deduce the fusion rules among the BRST
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invariant operators:

*) ifO^n' + Z ' ^ p ' - l :

*) if ri + Γ^.p': There is no physical chiral vertex operator among the highest
weight representations.

At this point it is better to distinguish between the unitary case (KeN,pf = 1)
and the non-unitary one (KeQ — N,p' φ 1).

In the unitary case, because all the spin J are half-integers, all the chiral primary
fields are described by the physical vertex operators (3.4) and (3.8):

On the plane the conformal block functions are expectation values of the chiral
primary fields. For | z j > \z2\ > ••• > \zN\,

with kί = kn + 1 = 1. Because they all vanish in the unitary case, all the primed
indices have been erased. The expectation values (3.9) can be explicitly evaluated
by using the well known formula for the expectation values of vertex operators

μVj(z). They yield integral representations of the conformal block functions.
The integration contours # can be deformed in a way that F[£j] becomes a linear
combination of integrals of the Dotsenko-Fateev type, with integration contours
going from a point zt to a different point Zj. In our approach, the relation between
the integration contours and the intermediate states [fcy] becomes transport. This
completes the free field representation of the correlation functions on the sphere
in the unitary case.

On the torus we have to worry about the non-physical states which should
not propagate along the cycles. On the torus the conformal block functions are
traces of product of primary fields:

l9...,zN\τ,v) = c o n s t . Ί r L { Λ n ) ^ - ^ e i 2 ^ Π φ ^ j + ̂  (3.10)

with ki = kN+1 =n and \q\ < \zN\ < ••• < \zx\ < I,# = exp(i2πτ).
The trick used to insure the non-propagation of the unphysical states consists

in expressing the trace over the irreducible representation L(Λn) as an alternated
sum of traces over the Fock spaces F{Λ±n_2lp). To formulate it we have to extend
the action of the product of the chiral primary fields involved in Eq. (3.10) to a
homomorphism acting on the BRST complex introduced in Prop. 2.1. We
introduce two family of operators, Ξ2ί and S 2 / + 1 , acting on the Fock spaces of
even and odd degree, F(Λn_2ιP) and F(Λ_n_ 2 / p) respectively:

rt ft Φ*>-2l>kj+ι-2lp(zj), (3.11a)
7 = 1

Π
7 = 1
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We introduced a phase in the definition (3.11) in order to get rid of the phase
present in Eq. (3.5). With all these definitions we can write the following
commutative diagram:

>F(Λn)^F(Λ_n)-^

Ξoϊ S i i ••• (3.12)

The free field representation of the conformal block functions on the torus are
then given by:

n lnj\- Σ T l > U n - 2 1 ^ ) 0 ^ 2 / ) - Σ T r F(Λ- n - 2 Zp)(^2/+l) (3.13)
leZ leZ

Equation (3.13) gives the integral representation of the conformal blocks on
the torus. The integrands are traces of vertex operators. We give the expressions
of the traces that are needed to compute the conformal blocks (3.13):

N N M

Yl ω(Zi) Π °>f(Wj) Π :

i = l j=l « = 1

π(mp' - m'p)2/4pp' Λπ\{mp' - m'p)/p' M
_<ί ^ ΓT

Π(τ9v) M

, g / β ^ \ ^ χ Σ ήG(ZίjWσ(o|τ?v)? ( 3 . 1 4 )
n<m\ ^ l v - M v / σperm. i = l

where z = Qxp(i2πξ\ i7(τ, v) is defined in Eq. (2.17) and

c(z * v )=.δl^77^Λ^/ (3 '5)

In the rational case the situation is more subtle. Some of the spins Jnn> are no
more half integers. Therefore not all the highest weight primary fields are self
conjugated. The conjugated field of a primary field associated to a highest weight
representation of 5/(2) is a lowest weight primary field. In other words tensor
products of two highest weight s/(2)-representations of spins 3nn, with n' φ 0 never
reduce to the scalar representation of sl(2). Thus as a consequence of the sl(2)
invariance it is not possible to write non-vanishing two-point functions involving
only the fields Φ£;5'IfI'(z). Therefore constructing the non-unitary WZW models
requires considering primary fields associated to both highest and lowest weight
representations. This can also be seen in two different ways in the fusion algebra:
i) as stated in Eq. (3.8), if n' + /' ̂  /?' there is no physical vertex operator among
the highest weight primary fields; or ii) the fusion rules deduced from the 5-matrix
of the characters (2.18) involve minus signs in them; these signs have actually to
be reinterpreted as coming from the lowest weight representations.

Lowest weight primary fields can be constructed from a free field representation
which is deduced from Eq. (2.5) by exchanging the positive and the negative roots
of sZ(2). But then the relations between the free fields involved in the two
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representations are non-polynomial. The correlation functions mixing the highest
and lowest weight primary fields are no longer computable in terms of free field
expectation values. Nevertheless the operators defined in Eqs. (3.4) and (3.8) form
a closed operator algebra and the correlation functions of these operators can be
evaluated as in the unitary case.

4. Structure of Fock Modules and BRST Cohomology

In this section we derive the structure of submodules of Fock modules. The main
tools are the Kac-Kazhdan formula [9] for the determinant of the Shapovalov
form, and the Jantzen filtration [27] in the form described in [9]. The construction
of the filtration of Fock and Verma modules closely parallels the construction
done by Feigin and Fuchs [28] in the case of the Virasoro algebra, although the
definition of the Jantzen filtration differs slightly from theirs. At the end of this
section we use the results to compute the BRST cohomology.

Let » = s i ( 2 , C ) ® C [ ί , Γ 1 ] Θ C X θ C i be the Lie algebra A[1] [28]. Its root
lattice is generated by the simple roots α o , α l 9 and the set of roots is Δ =
{noαo + n1aίl9\n0 — nx\ ^ 1}. The Lie algebra ^ can be described by generators
Ja

n,K,d with commutation relations (1.2). ^ is graded by the root lattice Γ:

deg(j;) = παo + (π + φ 1 , deg (d) = deg (K) = 0, (4.1)

and it is convenient to introduce also a Z-grading (principal gradation), called depth:

depth (Ja

n) = In + a, depth (d) = depth (K) = 0. (4.2)

The Cartan decomposition ^ = ̂ _ 0 ^ © ^ _ is then a decomposition into
elements of positive, zero and negative depth. Let U(&) be the (Γ and Z-graded)
universal enveloping algebra of <$. The Verma module V(Λ) of highest weight
/leJf * is generated by a highest weight vector vo(Λ) annihilated by ̂  + , with the
property xvo(Λ) = Λ(x)vo(Λ% xeJf. The Verma module is graded by the semigroup
Γ+ generated by the positive roots:

V(Λ)= ®V(A)η. (4.3)
ηeΓ+

Vectors in V(Λ)η are called weight vectors (of degree η). Their weights differ from
the highest weight by η. They are of the form MI?0(Λ),MG17(^_), deg(w) = — η. The
Z-grading is defined by depth (uυ0) = — depth (u).

The dimension of V(Λ)η is P(η)9 the number of ways η can be written as a linear
combination of positive roots with non-negative integer coefficients. The dual
V(Λ)* is, as a graded vector space, the dual of V(Λ):

V(Λ) = ®Homc(V(Λ)ηX\ (4.4)
n

and its structure of £/(^)-module is given by

y, (4.5)

for all ωeV(Λ)*, ξeV(A\ and ueU(^), where σ is the involutive antiautomorphism

σ(J*) = JlH9 σ(J«) = J 0.Λ, σ(K) = K. (4.6)
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The module V{Λ)* is an l/(0)-module with highest weight vector υo{Λ)*9 of weight
Λ, normalized as <ι;0(/l)*,ι;0(/l)> = 1.

A singular vector in a graded £/(0)-module M is a non-zero weight vector
annihilated by 0 + . A cosingular vector ξeM is a weight vector that cannot be
written as uξf

9 ueU(&..), ξ'eM. Two cosingular vectors are equivalent if they differ
by an element of U(& _ )M. Highest weight vectors are both singular and cosingular.
There is a duality between singular vectors and equivalence classes of cosingular
vectors: Let M* be the dual of M, defined as above. Then

Ker 1/(0 + )* ^ M*/U(9 _ )M*. (4.7)

To prove this, it is sufficient to show that the duality pairing M* x M -> C projects
to a non-degenerate pairing (in every degree)

M */l/(0 _)M* x Ker E/(0+) -• C, (4.8)

i.e. that Ker t/(0 + ) = (l/(0_)M*) 1 . Let ξe(t/(^_)M*) ± . For all ω e M * and all

(4.9)

Since σ maps 1/(0 _) onto £/(# + ) this condition is equivalent to w^ = 0 for all
M'el/(0 + ), i.e. ξ is singular.

The Verma module has no cosingular vectors of positive degree. Thus V(Λ)*
does not contain any singular vector of positive degree. The kernel of the canonical
degree zero homomorphism of graded ί/(0)-modules

S{Λ):V{Λ)->V(Λ)*9 (4.10)

uniquely defined by S(Λ)vo(Λ) = vo(Λ)*, is the submodule generated by the singular
vectors of positive degree in V(Λ). Upon choosing a basis of 1/(0 _), consisting of
elements of well-defined degree, the map S(Λ)η: V(Λ)η->V(Λ)* can be viewed as a
P(η) x P(η) matrix, whose entries are polynomials in Λ. The determinant of S(Λ)η

is given in general by the Kac-Kazhdan formula

detS(Λ)η = const [ ] Π ΦΛ
α>0 n=1

n
ΦatH(Λ) = (Λ + p,<x)--(*,<*),

where ( , ) is an invariant non-degenerate bilinear form on Jf *, p is the sum of
the fundamental weights Λh and it is understood that P(0) = 1 and P(η) = 0 if
ηφΓ+. In the case of Aγ\ we parametrize weights A by the (iso-)sρin J and the
level K as

A = (K - 2J)Λ0 + 2JAX. (4.12)

Weights are considered modulo Cδ, with 5 = α0 + oc1. We have

K - r c - 2 J - l , if α = w/α0 + (n / -l)α 1 , n; ^ 1,

K, if α = n'5, n'^l, (4.13)

)n / -n + 2 J + l , if α = ήa0 + (n' + l)α l5 n '^0.
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The Kac-Kazhdan formula implies that Verma modules are irreducible outside a
set of lines Φ α n = 0. On a generic point of such a line, the Verma module contains
one singular vector of degree nα, which generates an irreducible submodule. The
structure of Fock modules was described in this case in Sect. 2. Here we are
interested in the "completely degenerate" case, where A in the intersection of
infinitely many lines Φan = 0. This corresponds to the case of rational level.
Specifically, we are interested in the case where Λ = ΛWjM> where in the para-
metrization (4.12),

K + 2 = p/p', p, p' ^ 1, gcd(p, p')=l,

2J+l = n-ri(K + 2), n.rieZ, O^n' <,p' ~U nφOmodp. (4.14)

If l ^ n ^ p — 1, the characters of the irreducible representations form a repre-
sentation of the modular group, and are invariant under a finite index subgroup
of PSL(2, Z) [11]. The structure of the Verma module corresponding to the weight
(4.12), (4.14) is described by the following diagram [29]:

••• 4 - 1?4 4 - l?3 4 - Ό2 4 - V1 <~ V0

x K iκ iκ • (4.15)

••• <- i;_4 4- 0_3 4- t?_2 •- v_1

and the v( are the only singular vectors (up to proportionality) in the Verma module.
Here and henceforth, an arrow, or a chain of arrows, goes from one vector to
another if and only if the second vector is in the (7(^)-submodule generated by
the first one. The weights of the singular vectors vt can be computed from the
Kac-Kazhdan determinant formula. If A = Ann, with l ^ n ^ p — l , 0 ^ n ' : g p ' — 1,
v2l has weight Λn+2lPfn> and v2l^1 has weight A_n+2lpn,. More generally, if
Λ = Λ±n-2ip,nr a n d n>n' a r e a s above, the Verma module is embedded in V(Ann>)
and we have the relations

weight (v±jeV(An_2lp,n)) = weighψ ± α + | 2 φ eK(Λ n ,,, ')),

weight ( ϋ ± i e F ( Λ _ n _ 2 ^ ) ) = weight (v+u+l2l+U)eV(An,n,)). ( 4 1 6 )

The fact that the module generated by any of the vectors υt contains infinitely
many singular vectors is an immediate consequence of the Kac-Kazhdan deter-
minant formula (4.11). What is non-trivial is that there is at most one singular
vector (up to proportionality) in every degree. Comparing this diagram with [10]
we note a striking similarity with the degenerate modules over the Virasoro algebra.

The structure of the dual V(Λ)* is given by "reversing the arrows." Let vf be
(cosingular) vectors in V(Λ)* such that deg(t;f) = deg(t;i) and <Λ*,^> = I;t7f can
be chosen so that <ι;i*,l7(^-.)i;_i> = 0, | i | ^ 1.

Proposition 4.1. Let A = Ann, be as in (4.12), (4.14).
(i) All vectors in V(A)* of depth ^ N are in the submodule generated by the vectors
vf with depth (vf) ^ N.
(ii) The submodule structure of V(Λ)* is given by the diagram

- > V% - > V* - > V2 - > V* ->• V*

X X X X s (4.17)
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Proof, (i) For depth = 0 the statement is trivially true. Suppose that (i) is proved
up to depth N and let UN be the submodule generated by {vf | depth (vf) ̂  N}. Now,
either V(Λ)*/UN has no vectors of depth N + 1, and the induction claim is proved,
or there exists a weight vector ω in F(Λ)* of depth N + 1 with non-zero projection
in V(Λ)*/UN. Such a vector is necessarily cosingular (by induction hypothesis),
and is thus proportional to vf modulo U(@)V(Λ)*.

(ii) Let uel/(»_) such that uv0 = vt. We have

1 = <vf9vt> = <vf,uυoy = (σ(u)vf 9v0}. (4.18)

Thus v$ = σ(u)vf. Similarly, let Vι = uVj,ueU(^^). Then by the same argument,
vf = σ(u)vf + ω, where ωe£/(^_)F(Λ)*. By induction on the depth of v p we see,
using (i), that ω is in the submodule generated by vf, and the claim is proved.

Now other arrow can be inserted in the diagram, since vf = uvj implies that

Vj = σ(u)Vi. •

Next, we introduce the Jantzen filtration [27] following [9]. We first define it
for the Verma module.

Let z = z0Λ0 + z1Λ1 with zl9z2 Φ 0, and consider the one-parameter family of
weights Λ(ί) = /l + ίz,ίeC, where A is a weight corresponding to a degenerate
representation. For ε > | ί | > 0, V(A(t)) is irreducible. We study the behavior of

S(t) = S(Λ(t)): V(A(ή) -+ V(Λ(t))*9 (4.19)

in the vicinity of t = 0. A choice of basis in £/(^_), consisting of elements of definite
degree, induces a basis in V(A(ή) and V(Λ(t))*. In this basis, the matrix elements
of S(t) and of any element of ^, are polynomials in t. Let V(V*) be the space of
one-parameter families {v(ή)teC such that v(t)eV{A(ή) (V(A(t))*) and whose com-
ponents in the given basis depend polynomially on t. The spaces V, F* are graded
ί/(^)-modules and S(ί) induces a homomorphism S: V^> V*. The map π: 7-> F(Λ),
(̂ (OXeĉ ^ ί̂O), is a surjective homomorphism. Similarly we have a surjective
homomorphism π: K* -> F(Λ)*.

Setting

Mk = {i e K|S(ίM0 is divisible by tk}, (4.20)

we define a filtration of F by (7(^)-modules:

K = M 0 = 3 M 1 I D M 2 = D . .. (4.21)

The modules Mk — n(Mk) give a filtration of V(A\

V(A) = M 0 D M 1 D M 2 D . (4.22)

The submodule generated by the singular vectors in V(Λ) is M1 # Thus V/M1 is
irreducible. The determinants of S(t) give information on the dimensions of the
modules M f:

Proposition 4.2. Lei dk = dim (Mkn V(A)η). Then

CO 00

det Sit), = c t ? * ( 1 + 0 ( ( ) ) = c t ?**"*-''(i + o(t)), (4.23)
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where c is a non-zero constant. In particular, Mk n V(Λ)η = Ofor all sufficiently large k.

Proof. W e c a n c h o o s e a bas i s (ξj) of V(Λ)η s u c h t h a t ξi,...,ξdk is a bas i s of

Mkn V(Λ)η. Let ξj = (ξj(t))teCeVη such that ξj(O) = ξp and ξl9... JdkeMk. Then the
vectors ω7 (ί) = t~kS(i)ξj{i) for dk + ί < j^dk are well defined in F* and are a basis
of V{Λ)* for small | ί | . To prove this, it is sufficient to show that ωj are linear
independent for t = 0: suppose that Ylλjωj = 0, teC. Let ί be the largest integer

such that λiΦO, and suppose that dk+1<i^dk. Multiplying by tk the equation
Σ λjCOjiή = O(t) and inserting the definition of ω7 (ί), we get

S(t) Σ λjξj(t) = O(tk+ί). (4.24)
dk + i <j^dk

Thus Σ λjξjEMk+1, a contradiction, unless all λj vanish. The order of the
dk + 1 < j ^ dk

zero in the determinant does not depend on the (ί-dependent) choice of bases in
V(Λ)V V(Λ)*. In the bases (^(OMω^λSί ί ) , is diagonal with / h entry t\ where k
is defined by dk_ 1 < j g dk. Π

Let Sfe = r * S defined on Mfc, and let Nk= F7S f c _iM f c -i . Since V i M f c ^ c
SfcMfc, there is a sequence of surjective homomorphisms

7* = iV0-^iV1-^iV2-^ , (4.25)

and, applying π, a sequence of surjective homomorphisms

V(Λ)* = N0->N1-*N2 ->•••, (4.26)

where N k = K ί / l ^ M ^ - i M ^ J . The point is that Ker(π:M k->M k) = iM f c_x is
mapped to Sk_1Mk_1 under Sfe. Thus Sfe projects to a homomorphism

Sk:Mk^Nk. (4.27)

Lemma 4.3.

(i)
(ii)

Proof (i) Let x e M k + x and x e M k + 1 such that πx = x. Then 5kx = O(ί) and projects
to zero. Thus xeKerS f c. Conversely, let xeKQvSk; there exists an xeMk, such
that πx = x and Sfcά = ίj + Sfc-iZ, for some yeV* and ίeMk-x. We have
5(x — if) = tk + 1y, and xeM fc + 1 ? since π(x — tz) = x. The first claim in (i) is proved.

Let Pvk:Nk-^Nk + 1 be the canonical projection. We have to show that
Ker(Prfe) = lmSk. Let x be a representative of a class in Ker(Prk). Thus x = πx,
x = Sky for some yeMk. Hence xe!mSk. Conversely, let x be a representative of
a class in lm(Sk:Mk->Nk). Then x = πx with

x = Sky + Sk_ιz = Sk(y + tέ), (4.28)

and the class of x is in Ker(Prfc). Part (ii) follows recursively from (i), since

The Jantzen filtration of the Verma module V(Λ) in the case we are considering
is given by the following result.
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Proposition 4.4. Let A = An%n. be given by (4.12), (4.14). Let Vk be the submodule of
V(Λ) generated by the singular vector vkeV(Λ), and Uk be the submodule of V(Λ)*
generated by v*. Then

+ U^k+1). (4.29)

Moreover Skv±k is proportional to the class ofv%k in Nk.

Proof. Define fcf to be the largest integer such that ^ e M ^ . Thus Sfciuf is a singular
vector in the quotient Nki. The determinant of S(t)η can then be computed using
Proposition 4.2 as

detS(i), = 0 ^ ( 1 + 0(0),

N(η) = ΣkJ Σ P(ηi-η)(-l)]i]-]j]. (4.30)
j \i\*\J\

The coefficient of kj is the dimension of a subspace of Vj complementary to the
proper submodules of Vj9 and f/i = degι;ί. From the Kac-Kazhdan determinant
formula we get

det S(t)η = ct ^«P{ηi~η\l + O(0). (4.31)

Comparing the coefficients of P(ηt — η) we obtain the equations

Σ (- i)MI-m t ^ ί o d d ' (4.32)
m^iii J 10, ίeven,

implying that kj=\j\, and that Vj is in M -̂, but not in M| j ) + 1 . Thus SjV±j are
non-vanishing singular vectors in Ny9 they must thus coincide with υ%j9 and v%{^ _ υ

project to zero in Nj. Π

Next, we discuss the structure of the Fock module F(Λ). This module can also
be given a /"-grading by the formulae:

deg (ωn) =-oi1+nδ9 deg (ωj) = ô  + nδ, deg (απ) = δ, (4.33)

and for a monomial u acting on the highest weight vector w0 of F(yl),deg(ww0) =
— deg(w). Let S'(Λ): V(Λ)-+F(Λ) be the canonical (degree zero) homomorphism of
L/(^)-modules mapping the highest weight vector to the highest weight vector.
Similarly, we have a canonical homomorphism S"(A):F(Λ)-+V(Λ)*9 and the
composite is

S"(A)S'(A) = S(A). (4.34)

Introducing a basis of the oscillator algebra and of U(&-)9S'(Λ)η9S"(A)η and S(A)η

are all P(η) x P(η) matrices with polynomial dependence on A, and we can
introduce, as above, S'(t)η,S"(t)η and corresponding Jantzen ίϊltrations M'n,M'^N'n
and N'ή. Thus

N; /

+ 1=CokerS; / . ( 4 3 5 )

With the same notation as in Proposition 4.4, we have
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Proposition 4.5. If A is as in (4.12), (4.14),

M'k=V.2k + u Nf

k

f = V(A)VU.2k+i = V^k.1. (4.36)

Therefore, we have the isomorphisms'.

S'o: V(Λ)/V. t -> Ker (Pr :F(A) -»JVi),

S'k:V2k+JV-2k-ί->Keτ(T>r.N'k-+N'k+1),

SJ: F(Λ)/M'{ -» Ker (Pr: F(Λ)* - F t x),

Sl .M'ί/M'U 1 -> Ker (Pr: Ffk + 1 -+ F*k_ x). (4.37)

Proof We prove first a lower bound on the order of the zero of the determinants
of S'(t), S"(t) and show that the bound is exact using the Kac-Kazhdan formula.
Let k'ι be the largest integer with the property that tyeM^, and k" be the
smallest integer such that there exists a representative of the class of vf in
π(ImS'k'«). The determinant of S'(t) is then, as in Proposition 4.4,

(4.38)

The order N"(η) of the zero of the determinant of S"(t)η is given by the same
formula, but with fc} replaced by k' . The weight A lies in the intersection of infinitely
many lines Φam(A') = 0 on which the Kac-Kazhdan determinant vanishes. For
infinitely many A' with Φam(A') = 0 and α = — ocι -f m'δ, the Fock space F(A')
contains a singular vector of the form Qmw0, where w0 is the highest weight vector
of the Fock space F(A' — ma). Similarly, for infinitely many points on 0am(Af) = 0
with a = aί 4- m'δ,F(A') contains a cosingular vector p with Qmp = w0. Since the
condition of having a singular (or a cosingular) vector of a given degree in a Fock
module is a polynomial condition on the highest weight A', it follows that for all
A' on the line Φma(Ar) = 0, F(A') contains either a singular or a cosingular vector. In
particular, F(A) contains infinitely many singular vectors χj of some degree as
v2j-iJ= 1,2,... and infinitely many cosingular vectors Pj of degree deg(ι?_2j+1),
j=U2,....

Let k be the smallest integer such that Pjβπ(lmSk). Thus pj = Skξ, for some
(non-zero) cosingular vector ξ in Mk c V(A). Since Mk is a submodule of V(A), ξ
must be a singular vector. As deg(pJ ) = deg(ι?_2j +i), ξ is proportional to v_2j+1,
k = k'-2j+ι, and v±(2j_2)φM'k. Therefore

) + l , 7 ^ 1 . (4-39)

A dual estimate of the integers kj holds: Let k be the largest integer such that
XiEMk. Thus Skχι is a singular vector in the quotient Nk. Therefore Skχι is
proportional to the class of ufj-u and V%i2j_2) project to zero in Nk^1. Hence

*5j- i^*±(2j-2)+l, J ' ^ l . (4.40)

From the relation det Sf(t)η det S"(t)η = det S(t)η and the Kac-Kazhdan determinant
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formula, we get by comparing coefficients of P ^ — η)

^ (4.4D

It is easy to see inductively that the only sequences (fc}), (k'j) such that k) ̂  fcj,
k] g fcj' whenever \j\<\i\ and with (4.39), (4.40) and (4.41) are

k f - 2 j = k f

2 j + ί = \ j l k " - 2 j = k ' L 2 j ^ = \j\, (4.42)

which is equivalent to the claim. •

By Proposition 4.4 the classes in Nk of the vectors v^ιk^1,v%2kyv^k+1

 a r e i n

\mS'k. Let w2fc_1,w±2fc,w2fe+1 be such that Sf

kWι = vf. The following proposition
gives a more complete description of the structure of F(Λ). A module is called
completely reducible if it is the direct sum of irreducible highest weight modules.

Proposition 4.6. (i) (Bernstein-GeΓfand-GeΓfand resolution of F(A)). The space of
00

singular vectors of positive degree in F(Λ) is ®Cw2k-i> They generate a completely

reducible submodule SF(Λ). The singular vectors in F [ l ] ~F(Λ)/SF(Λ) are (the
00

projection o / ) 0 C w 2 k = SF[1], They also generate a completely reducible submodule.
— oo oo

Finally, F[2] = F[1]/SF[1] is generated by the singular vectors ©Cw_ 2 f c + 1 ond is
completely reducible.
(ii) Every submodule ofF(Λ) is generated by a family of vectors belonging to the set

{Wi}ieZ
(iii) The structure of F(Λ) is described by the diagram

••• «- w 4 -» w 3 <- w 2 -» w x «- w 0

X X X X / (4.43)

-> W_4 <- W_3 -> W _ 2 <- W_!

Proof, (i) Let χ be a singular vector of positive degree in F(Λ\ and let k be the
largest integer such that χeMk. Then, by Proposition 4.5, S'k'χ is a singular vector
in Nk = V(Λ)*/U-2k+i> a n d must therefore be proportional to cKv^^^ the class
of ϋ2 f c_i. Hence χ is proportional to w2fc_1. The submodule generated by w2k-i
is irreducible since there are no singular vectors of degree deg(ι;± 2 k) in F(Λ). Let
now χ be a representative of a singular vector in F(Λ)/SF(Λ) and let k be
the largest integer with χeMk. Then the image of χ by S£:M£/M£nSF(/i)->
F(yl)*/(^2fe-i + U-2k+ί) is singular. Thus Skχ is proportional to yffc or to vt2k

and χ is proportional to w2k or w_2fc (modulo 5F(Λ)). The same argument can be
repeated for a singular vector in F[1]/5F[1], with the conclusion that χ is
proportional to (the class of) some w_2 f c + 1.

(ii) Let H be a submodule of F(Λ), and let H^ = HnKer(Pr:F(Λ)-^F[i]). The
module HJHi + 1 is a submodule of the completely reducible module 5F[i]. Thus
Hi/Hi+ί is generated by a subset of w/s. Therefore every vector in Hi can be written
as ΣUJWJ plus a vector in Hi+l9UjGU(^). Iteration of this argument concludes the
proof.
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(iii) By construction of the vectors wt we have the arrows of the diagram

vv4 -> w3 w2 ^> wx w0

/ ? / / / (4.44)

-> W_4 W_3 -* W_2 W _ χ

We can assume by induction that N'k is the quotient of F(A) by the submodule
generated by vv_2k + 2,w_ 2 k + 3,...,w2 k_2,w2 f c_1. Then the image of v2k+1 is
proportional to the class of w_ 2 k + 1 (this being the only non-zero vector of that
degree in N'k). The singular vectors S'kυ±2k generate submodules of N'k that do not
contain the class of w_2 f c + 1 = S'kv_2k+i. They must be proportional to c/(w2k+1).
Thus ImS'k is generated by the classes of w2fc-i,w±2fc,w2fe+1 in N'k, and the
induction assumption on Nf

k is extended to Nk+V We have proved the validity
of the arrows going left, but only in the quotient N'k. We have, for some

w2k = ww_2fc+1 modulo Ker(Pr:F(/l)-» JVfc). (4.45)

But since w2k — uw^2k + 1eMk_1 and Mk-ίnKer(PτF(Λ)->Nk) is generated by
W2k-3>w±2(k-i) a n d W2k-i which are all in ί/(0)w_2k + 1 , we conclude that
w2k = w'w_2k+1 for some ureU(^). Similarly, w_ 2 k el7(^)w_ 2 k + 1 . The. same
argument works for w2 f c + 1:w2 f c + 1 — u±w±2keKer(Pr:F(Λ)-+Nk)nMk'9 a sub-
module generated by w2 f c_1£t7(^)w2 k. Thus w2k + 1 eί7(^)w ± 2 k . Π

Finally, we compute the BRST cohomology of the complex of Fock modules
introduced in Sect. 1.

Proof of Proposition 2.1 and Theorem 2.2. Let us fix p,p\n9n\ and denote by F(l)

the Fock space of degree /. Thus F(0) is F{Λntn>). Let W\l) be the submodule generated
by the vector wi = wf)sF(l) introduced in Proposition 4.6. As shown there, all
submodules of F(l) are direct sums of W(l)'s. We claim that

ί<0,

(4.46)

from which both Proposition 2.1 and Theorem 2.2 follow. We prove (4.46) for
/ = 0. The proof in the general case is identical except for the range of ί. The singular
vectors of positive degree in F ( 0 ) are w^ + i, ί = 0,1,2,... Since there are no
singular vectors with the same weight as w(

2V+1 in F{1\Q{0)w2

0)+1 vanishes. Thus

Ker ρ ( 0 ) ZD 0 W2%!, and β ( 0 ) projects to a homomorphism F ( 0 ) / 0 Wf>+ x -+ F ( 1 ) .

By the same argument, the vectors Wξϊ, i = 0,1,2,..., which have singular projection
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in F ( 0 ) / ® W{ξ>+U are in the kernel of Qi0\ This proves that Ker Q(0) ZD 0

(recall that W<ξ}+ x a W%9 i = 0,1,2,...).

Now view Qn as a map from F ( 0 ) / @ W^ to F ( 1 ) , and let π be the canonical

projection F ( 0 ) ->F ( 0 ) / 0 W<§). To complete the proof of (4.46) it is sufficient to
show that

(4.47)

i = 0,1,2,.... The computation in Appendix A shows that πw(

1

0) is mapped to W{Q\
which proves (4.47) for i = 0. Next, suppose inductively that (4.47) is proved for
all i^2j;Wi

2%1 is a proper submodule of W%) = β ( 0 ) Wφj- 1. Thus there must
exist a submodule of nW{ξ)-1 which is mapped to W^J+i under β ( 0 ). The only
submodule of W^-i * a t c a n ^ a v e ^ s property is WfJ. This shows that
W<2% i = Q(0)πWfJ. Moreover, since πWf] c πϊ0 2

o ; + ! , there is a submodule of F ( 1 )

containing Wty+i which is equal to the image of πW{2j+i by β ( 0 ). This shows that
^ Λ = 6 ( 0 ) ^2?+1 The proof is complete. •

5. A Geometrical Interpretation

In this section we illustrate how a free field representation of Aγ] analogue to the
one given in Eq. (2.5) arises naturally in a Borel-Weil like construction. Usually
the Borel-Weil construction on a compact group G begins by considering the flag
variety Gc/B_, where £_ is a Borel subgroup of Gc. In the case we are considering
we have to twist a little bit the construction by changing the definition of the
gaussian decomposition. Usually the gaussian decomposition consists in splitting
the elements g oϊG into g = g+gog^, where g± belong to the^Borel subgroups and
g0 to the Cartan subgroup. In the case of the loop group SL(2) there are infinitely
many possible choices of Borel subgroups. To each choice is associated a gradation
of the algebra Aψ or equivalently each choice corresponds to a choice of simple
roots of Aγ\ Because the affine Weyl group is infinite there are infinitely many
possible choices of simple roots: in the notation of Sect. 4, for any positive integer
k the set of roots (*{Q\ ct%\ with oc^ = (1 + fc)α0 + feαl5 αf} = (1 - fc)αx - fcα0, form a
set of complete roots of Aγ\ Our gaussian decomposition is defined by choosing
the "gradation" which is the inductive limit of these gradations. To be precise, the
Borel subalgebra that we are considering is spanned by the elements J+,meZ and
J°,neN. Elements g+ of the borel subgroup B+ are parametrized by two infinite
set of coordinates, xm;meZ and yn;neN:

Σ χmJm ) e ^p( Σ yn

Jn \ (5.1)
meZ / \neN /

Note the normal order prescription in Eq. (5.1). This definition of the Borel
subgroup would arise if we did a gaussian decomposition on the element g(z) of
the group Gc for fixed value of z.

In an analogous way one defines the Borel subgroup 2?_. The Cartan subgroup
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H is unchanged; i.e. it is generated by J% and the central element K. The gaussian
decomposition g = g+gog- v/ithg+eB± andgoeH holds in the formal group SL{2).

A character χKJ of H is specified by two numbers: the central charge K and the
spin J. Each character of H defines a line bundle J^^^oyer SL(2)/B_. Sections of
$£κ.j can be thought of as functions f(g) defined on SL(2) with the transformation
properties:

f{gg~) = f{g\ / W = /( ί )W«o) (5.2)

for g-eB- and goeH. ^ ^
The action DK;J of the formal group SL(2) on the sections of &K;J is defined by

g) (5.3)

for any goeSL(2).
The action of the Lie algebra Aψ is the infinitesimal version of Eq. (5.3):

^«)^%j(^)| t=o. (5.4)

Sections of ifX;J are uniquely specified by their values on elements of B+.
Therefore they can be understood as functions of the variables xm; meZ and yn; neN,
see Eq. (5.1). On these functions the operators Dκ.j(Ja

n) act as differential operators.
Namely,

D*JVΪ) = - Σ * * - . / - - 0(»);Γ-+β( - n~)nτ y-»+<w>
OX θy Z

l,m OXm m > o Oym m > o

(5.5)

The representation (5.5) is a free field representation analogous to the
representation (2.5). Indeed if we set α0 = J/γ and

- 5 ω n = *- n ,

w; w>0' (5 6)

-n; n<0,

then the representation (5.5) can be written exactly as Eq. (2.5) but with 2y2 = K.
The discrepancy between the two values of γ comes from the fact that the vacua
of the ω — of system and hence the normal order prescriptions are not the same
in the two representations. In the representation (5.5) the vacuum is the constant
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function 1 and it satisfies

ωi l = 0 for all neZ. (5.7)

This choice of the vacuum has been induced by our choice of the Borel subgroup
B+. This construction can be generalized to the other affine algebras.

Appendix

A key property of the BRST operator Qn is that it is a homomorphism of
ί/(^)-modules. This property allows one to construct singular vectors as images
under Qn of highest weight vectors, and cosingular vectors as vectors that are
mapped by Qn to highest weight vectors. For this procedure to work one must
show that the vectors constructed this way do not vanish.

Lemma. Let K Φ - 2 and A = Λnn, = (K- 2Jnn>)Λ0 + 2Jnn>Λί9n,n'eZ. Denote by
\Jnn>} the highest weight vector of the Fock space F(Ann). Then

(i) Ifp-l^n^l and n' >0, then Qn\Jn^n,} ΦO.
(ii) If p— l ^ n ^ l and n ' ^ 0 , then there exists a vector \w}eF(Λnn.) such that

Here K + 2 = p/pf if KeQ and p = 00 ifKφQ.

Proof (i) First rewrite Qn\«/„,_„'> by changing integration variables zt = zuh i ^ 2:

n '~ n n eπιy'2 — 1 ^ z

-« .Σ j 1 ^ 1 + ̂  ufjJ|/„,_„.>.
(A.1)

The wrintegrations start and end at the singularity M, = 1 . In order for the
z-integration to give a non-vanishing result, n' has to be strictly positive. We
evaluate (A.I) against the co vector <w| = <J_ n _ n Ί(ω n ' ) " :

= 2πi(n - 1 ) ! ^ - , "

fΠd« ί«Γ1 + < 1-" ) / 2 τ a(l-a ι)
1 P"2 Π (ut-uj)1'2

i = 2 2ίi<j^n

-(2πiγΓ{ί+n/2y2) Π S i n ( π j 7 2 y 2 ) (A2)

- ( 2 π i ) WTΪiΐf) M sin(π/2^)' ( A 2)

where we have used the Dotsenko-Fateev formulas (Appendix A in the second
paper in [5]) to evaluate the multiple integral. We see that if γ2 is not rational,
(A.2) does never vanish, and if K + 2 = p/p' we have the non-vanishing condition

(ii) Let |.w> = (ω_n,)
n\Jnn.}. This is a non-vanishing vector if ri is non-negative.

The same calculation as above gives that <J- n f l l ΊQJw> is equal to the right-hand
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side of (A.2) up to a factor (— 1)". For the values of n we are considering, this
expression does not vanish, so that |w> can be rescaled to give the desired
vector. •

Acknowledgements. We are grateful to the Institute for Advanced Study in Princeton, where most of

this work was done. D. B. wishes to thank the Zentrum fur Theoretische Studien in Zurich for

hospitality.

References

1. Belavin, A. A., Polyakov, A. M., Zamolodchikov, A. B.: Infinite conformal symmetry in two-

dimensional quantum field theory. Nucl. Phys. B241, 333-380 (1984)

2. Witten, E.: Non-abelian bosonization in two dimensions. Commun. Math. Phys. 92,455-472 (1984)

3. Knizhnik, V. G., Zamolodchikov, A. B.: Current algebra and Wess-Zumino model in two

dimensions. Nucl. Phys. B247, 83-103 (1984)

4. Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett. 152B,
88-92 (1985); Unitary representations of the Virasoro and super-Virasoro algebras. Commun.

Math. Phys. 103, 105-119 (1986)

5. Dotsenko, VI. S., Fateev, V. A.: Conformal algebra and multipoint correlation functions in 2ά

statistical models. Nucl. Phys. B240 [FS12], 312-348 (1984); Four-point correlation functions and

operator algebra in 2ά conformal invariant theories with central charge S 1, Nucl. Phys.

B251 [FS13], 691-734 (1985); Operator algebra of two-dimensional conformal theories with central

charge C ^ 1, Phys. Lett. 154B, 291-295 (1985)

6. Felder, G.: BRST approach to minimal models. Nucl. Phys. B317, 215-236 (1989)

7. Wakimoto, M.: Fock representations of the affine Lie algebra Aγ\ Commun. Math. Phys. 104,
605-609 (1986)

8. Zamolodchikov, A. B.: talk given in Montreal, (1988)

9. Kac, V. G., Kazhdan, D. A.: Structure of representations with highest weight of infinite dimensional

Lie algebras. Adv. Math. 34, 97-108 (1979)

10. Feigin, B. L., Fuchs, D. B.: Invariant skew-symmetric differential operators on the line and Verma

modules over the Virasoro algebra. Funct. Anal. Appl. 16, 114-126 (1982); Verma modules over

the Virasoro algebra. Funct. Anal. Appl. 17, 241-242 (1983); Representations of the Virasoro

algebra. In: Topology, Proceedings, Leningrad 1982. Faddeev, L. D., MaΓcev, A. (eds.). Lecture

Notes in Mathematics, vol. 1060. Berlin, Heidelberg, New York: Springer 1984

11. Kac, V. G., Wakimoto, M.: Modular invariant representations of infinite dimensional Lie algebras

and superalgebras. Proc. Nat'l. Acad. Sci. USA 85, 4956-4960 (1988)

12. Zamolodchikov, A. B., Fateev, V. A.: Operator algebra and correlation functions in the two-

dimensional 517(2) x 517(2) chiral Wess-Zumino model. Sov. J. Nucl. Phys. 43, 657-664 (1986)

13. Kent, A.: Ph. D Thesis, Cambridge, 1986

14. Polyakov, A. M.: Quantum gravity in two dimensions. Mod. Phys. Letters A2, 893-898 (1987)

15. Knizhnik, V. G., Polyakov, A. M., Zamolodchikov, A. B.: Fractal structure in ID quantum gravity.

Mod. Phys. Letters A3, 819-826 (1988)

16. Felder, G., Frohlich, J., Keller, G.: Braid matrices and the structure constants for the minimal

conformal models. Commun. Math. Phys. 124, 647-664 (1989)

17. Felder, G., Silvotti, R.: Modular covariance of minimal model correlation functions. Commun.

Math. Phys. 123, 1-15 (1989)

18. Bernard, D.: On the Wess-Zumino-Witten model on the torus. Nucl. Phys. B303, 77-93 (1988);

On the Wess-Zumino-Witten models on Riemann surfaces. Nucl. Phys. B309, 145-174 (1988)

19. Sonoda, H.: Sewing conformal field theories. I. Nucl. Phys. B311, 401-416 (1988/89); Sewing

conformal field theories. II. Nucl. Phys. B311, 417-432 (1988/89)

Moore, G., Seiberg, N.: Polynomial equations for rational conformal field theories. Phys. Lett. 212,
451 (1988)

20. Belavin, A. A.: KdV-type equations and W-algebras, handwritten manuscript (1988)



168 D. Bernard and G. Felder

21. Bershadsky, M., Ooguri, H.: Hidden sl(ή) symmetry in conformal field theories. Commun. Math.

Phys. (in press)

22. Feigin, B. L., Frenkel, E. V.: Representations of affine Kac-Moody algebra and bosonization,

preprint (1989); Feigin, B. L., Frenkel, E. V.: A family of representations of affine Lie algebras, Russ.

Math. Surv. 43, 221-222 (1988)

23. Gawedzki, K.: Quadrature of conformal field theories, IHES preprint (1989)

24. Gerasimov, A., Marshakov, A., Olshanetsky, M., Shatashvili, S.: Wess-Zumino-Witten model as

theory of free fields, preprint (1989)

25. Distler, J., Qiu, Z.: BRS cohomology and a Feigin-Fuchs representation of Kac-Moody and

parafermionic theories, CLNS-89/911

26. Nemeschansky, D.: Feigin-Fuchs representation of SU(2) Kac-Moody algebra, preprint (1989);

Feigin-Fuchs representation of string functions, USC-89/012

27. Jantzen, J.: Moduln mit einem hochsten Gewicht. Lecture Notes in Mathematics, vol. 750. Berlin,

Heidelberg, New York: Springer 1979

28. Feigin, B. L., Fuchs, D. B.: Representations of the Virasoro algebra. In: Seminar on supermanifolds.

Leites, D. (ed.). Reports of the Department of Mathematics Stockholm University 1986

29. Kac, V. G.: Infinite dimensional Lie algebras. Cambridge: Cambridge University Press 1985

30. Rocha-Caridi, A., Wallach, N.: Highest weight modules over graded Lie algebras: Resolutions,
fϊltrations and character formulas. Trans. Am. Math. Soc. 277, 133 (1983)

31. Jacobsen, H. P., Kac, V. G.: A new class of unitarizable highest weight representations of infinite

dimensional Lie algebras. In: Non-linear equations in quantum field theory. Lecture Notes in

Physics, vol. 226, pp. 1-20. Berlin, Heidelberg, New York: Springer 1985

Note added in proof. After having submitted the paper we learned that the representations of A^}

described in Sect. 5 have been also considered by H. P. Jacobsen and V. G. Kac in ref. [31] in special case

of vanishing central charge, K = 0.

Communicated by K. Gawedzki

Received June 22, 1989




