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Abstract. We prove global existence and optimal decay estimates for classical
solutions with small initial data for nonlinear nonlocal Schrodinger equations.
The Laplacian in the Schrodinger equation can be replaced by an operator
corresponding to a non-degenerate quadratic form of arbitrary signature. In
particular, the Davey-Stewartson system is included in the the class of equations
we discuss.

Introduction

Nonlinear Schrδdinger systems arise naturally as envelope equations in the study
of water waves ([N,D-S,Z-K]). Their form is

i — u + L1u = a\u\2u + vu, (0.1)

ct

L2v = L3(\u\2), (0.2)

where a is real and LlfL2,L3 are quadratic differential operators

for / = 1,2,3. The constant real n by n matrices (g{k) are invertible but otherwise
general. In this paper we assume L 2 to be elliptic; in this case one can solve for v
in (0.2) and write the system (0.1), (0.2) as a single equation:

i^u + LiU = L(\u\2)u, (0.4)

where L = al + (L2)~ίL3 is a linear operator which commutes with translations,
is real and it is bounded as an operator from Lp(ίRn) to itself for 1 <p < oo. The
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initial values of u are given by:

iφc,0) = uo(x). (0.5)

If the initial datum u0 is localized enough then the solution of the free (L = 0)
initial value problem decays in time like t~n/2. In this paper we prove that, if u0

is sufficiently small, smooth and localized then the initial value problem (0.4), (0.5)
has a solution which is small, smooth, exists for all t and decays like t~n/2. The
method of proof is based by the one employed by Klainerman in his study of
nonlinear wave equations ([K]). The basic idea due to him is to measure decay
in terms of adapted Sobolev spaces in which the usual derivatives are replaced by
vector fields which commute with the free equation and are dictated by the geometry
of the problem. In the case of the Schrodinger equation the key operators are not
derivations but they are conjugated to derivations. More precisely, these operators
denoted Λj satisfy

where φ is a real function of x and t which appears in the propagator of the free
equation. These operators are familiar objects, both in quantum mechanics
(Λj = 2ίpt-ίx) and in the mathematical literature ([H-N-T,G-V,Ka]). They
represent the infinitesimal generators of a certain group of symmetries of Schrodinger
equation (see, for instance [W]).

In the first section we introduce the Sobolev spaces based on the Lie algebra
generated by the Λj — s and prove a Klainerman Sobolev lemma. As a direct
consequence we obtain the decay estimates for the free equation. In the second
section we prove the decay estimates for the nonlinear equation. A minor technical
difficulty due to the fact that, in general, L is not bounded in L00 is overcome by
a fortuitous cancellation and the use of Gagliardo-Nirenberg-type estimates.
Global existence (but not decay) of weak solutions to the Davey-Stewartson system
corresponding to (0.4) inn = 2 was proved in ([G-S]).

1. The Free Schrodinger Equation

We consider first the free Schrodinger equation

where P(D) is given by

= 0, (1.1)

u(0,x) = uo(x), (1.2)

« " » - « " * » • < 1 J >

In (1.3) we used the summation convention. The matrix

(giJ) (1.4)
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is a real nby n invertible matrix. Its inverse is denoted

(9ij) = (9ij)~^ (1.5)

We introduce the differential operators Λj defined by

Λ ' = 2 ί έ "****• (L6)

These operators commute with i(d/dt) + P{D):

= 0. (1.7)

One checks easily, via the Fourier transform that

Λj = eitP{D)(-igjkx
k)e-itP{D\ (1.8)

On the other hand, it is clear that the operators Λj verify

ite^—.e-^^Λj, (1.9)

where

ψ(Xfή = gίj*X . (1.10)

The operators Λj commute. They generate a Lie algebra denoted Λ. For any
multi-index

m = (mum2,...,mn)

the operator Λm = Λ™' •••/l̂ n satisfies

y^/Zj /I — e (j e , \Y,Y\.J

where \m\ = mί + ••• +mn. We introduce the following notation. If si is a Lie
algebra of (pseudo)differential operators we set, for any integer m

1/2

J = 0 \ | α | = j

where ^4α = A\ι 4̂fz and A1,...,A12LTG the generators of si. By means of [M(X,
we define the generalized Wm'p norms for 1 £Ξ p ^ oo by

Γ Ί 1 / p

',t)\\s,.m.P = \ l\Λx9t)Ύ^dx
LR" J

(1.13)

With these notations we can state a Klainerman Sobolev lemma:

Lemma 1.1. There exists a constant Cn depending only on the dimension n such that,
for every smooth w(x, £),

\u(x,t)\iCn\t\-'2\\u(-,t)\\A,W2]+1,2- (1-14)
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Proof. Let us consider the function υ(x9 t) defined by

v(x,ή = e-i*u(x,t)

and apply the classical scale-invariant local Sobolev lemma to it:

/
)( Σ ί \d«yυ(y,t)\2dy

which holds for any positive R and with C independent of R. Noting that
\v(xj)\ = |κ(x,ί)l and that, in view of (1.11)

the inequality (1.14) follows by choosing R = 2\t\.
The estimate (1.11) is singular at ί = 0. One can remove this singularity by

augmenting the Lie algebra we are working with. Denoting by J* the Lie algebra
generated by the operators 1, Aj and (d/dxj) for j = 1,..., n we obtain

Corollary 1.2. There exists a constant Cn depending on n only such that every smooth
u(x, t) satisfies

[ (1.15)

Applying Lemma 1.1 and Corollary 1.2 to derivatives we deduce

Corollary 1.3. For every positive integer k there exists a constant Ck such that every
smooth u(x, t) satisfies

[M(x,ί)]Λ,kgCk |ί|-<"/2>||tt( , ί ) | | Λ f M + 1 + w (1.16)

and

[ u ( x , ί ) ] Λ , ^ Q ( l + |ί|)-<"/2>||u( ,ί)IU, [ n / 2 ] + 1 +M (1-17)

A direct consequence of these considerations is

Theorem 1.3. Let u(x,t) be a solution of (1.1), {1.2). Then

where 9C is the Lie algebra generated by the operators of multiplication by
xjj = 1,..., n. More generally,

and

where @0 is the Lie algebra generated by the operators l,(d/dXj) and multiplication

by Xjfor j= l,. . .,n.

Proof. We apply Lemma 1.1 (respectively Corollary 1.3) to u{x,t). In view of (1.8)
and the fact that the Schrodinger equation (1.1) preserves L2 norms (1.18)
(respectively (1.19)) follow.

We end this section with a Gagliardo-Nirenberg lemma for the operators Λy.
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Lemma 1.4. For any pair of positive integers 0<j <m there exists a constant C
such that every smooth function u(x,t) satisfies

V/m

(1-20)

Proof The inequality (1.20) in which the differential operators Λj are replaced by
(d/δxj) is a well-known Gagliardo-Nirenberg inequality. We apply to v(x, t) =
e~iψu(x,t); the estimate (1.20) follows from (1.11) and the scale invariance of the
usual Gagliardo-Nirenberg inequality.

2. Nonlinear Nonlocal Schrδdinger Equations

The equation we investigate is

u(x, 0) = u (x\ (2.2)

where P(D) is given in (1.3) and the linear operator L is real, ί-independent and
commutes with translations:

where we denote by * the operation of taking the complex conjugate and

0. (2.4)

Moreover we assume that L is bounded in Lp(Un) for 1 < p < n:

WLfW^n^CJfW^ny (2.5)

Such equations arise in water wave theory ([D-S, Z-K, N]) and, typically, L is
a product of Riesz transforms. We start with a Leibniz rule:

Lemma 2.1. For any multi-index α the formula

A\L(\u\2)v) = X ~-^-(L(Λ^(Λ^)*)Λ^) (2.6)

holds.

Proof In (2.6) we denoted α! = α x ! •• an\. The proof is done by induction on |α|
and follows easily from the observations

and

~



106 P. Constantin

For every non-negative integer m we denote by Fm the integral

Fm= X \\Λ«u\2dx. (2.7)
\<x\=mRn

If u solves (2.1) then F m satisfies

~Fm = lm Σ J Λ*{L{\u\2)u){Λ«u)*dx. (2.8)
2. dt |α|=mRn

In view of (2.6) the right-hand side of (2.8) is a sum for |α | = m and α = /? + y + δ
of terms of the form

- 4 - I m f L{Λβu{Λyu)*)Λδu{Λ*u)*dx. (2.9)
β\y\δ\ *„

The term (2.9) corresponding to β = y = 0 equals zero. If /? = <S = 0 or γ = δ = 0
then we estimate (2.9) by

J L{u{Λ*u)*)u{Λ*u)*dx ^C j\u\2\Λ«u\2dx.

The rest of the terms (2.9) have 0 < \δ\ <m. In these terms we apply a Holder
inequality raising the last term to the second power, the term involving Λδu to the
power (2m/|<5|) and the term involving L to the power q = 2{\ —{\δ\/m))~1. Using
the boundedness of L in U spaces and the Gagliardo-Nirenberg inequality (1.20)
with j = |<5| we majorize (2.9) by

Ύ/q

\

In the integral above we use a Holder inequality with powers {2m/q \β\) and {2m/q\y\)
(their inverse add up to one) and again the Gagliardo-Nirenberg inequality (1.20).
The end product of these estimates is the fact that all terms (2.9) can be majorized by

and consequently we established the inequality

F^C\\()\\2 (2.10)

Clearly, the same argument applies to Gw, where

Gm= Σ SWdx, (2.11)
|α|=mR«

and yields the analogue of (2.10). Defining

m

Em=ΣVk + GJ (2.12)
fc = 0

we proved:

Lemma 2.2. For every non-negative integer m there exist a constant Cm such that
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every smooth solution of (2.1) satisfies

E^C (2.13)

The next thing is to observe that, in view of (1.14) and the usual Sobolev lemma

||M( , ί ) | | ^ ^ C ( l + | ί | ) - " £ [ l l / 2 ] + 1 . (2.14)

Consequently, if [n/2] + 1 ^ m then the ordinary differential equality

jtEm^CJl + \t\)-"El (2.15)

holds. If 2 S n we deduce that

E J l - K m E m ( 0 ) ) ^ E w ( 0 ) . (2.16)

Using (2.16) and standard arguments we can prove:

Theorem 2.3. For every n,2^n and m satisfying [n/2] + 1 ^ m there exist positive

numbers εm and Cm such that, if uo(x) satisfies

Σ i (2.17)
| α | ^ m jf

then the solution u(x,t) of (2.1), (2.2) exists for all t and satisfies

(2.18)

and

Wx,ί) l^(C m εJ 1 / 2 ( l + | ί | ) - ( " / 2 ) . (2.19)
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