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Abstract. Spherically symmetric global solutions are shown to exist for the
relativistic Vlasov-Maxwell system of plasma physics. In view of a conjectured
perturbation result concerning in particular "nearly" symmetric global
solutions, we investigate the asymptotic properties of the symmetric solutions.
In the case of only one particle species (say ions but no electrons) we get
satisfactory decay estimates; in the general case (ions and electrons) we have
preliminary results.

0. Introduction

The relativistic Vlasov-Maxwell system (RVMS) consists of Vlasov's equations for
the ion distribution / + and the electron distribution / "

dtf
±+ύdxf

±±(E(t,x) + dUΛB(t9x))duf
±=0,

Maxwell's equations for the electric and magnetic fields

ddtE = cur\xB - dγ4πj(t, x),

ddtB= — curl^E,

divxE = γ4πρ(t,x),

(1)

(2)

(3)

(4)

(5)

and the equations for charge and current that couple Vlasov's and Maxwell's
equations

(6)

(7)Q(t,x)= l(f+(t,x,u)-f-(t,x,u))du.

* Parts of this paper were written during a stay at Indiana University, Bloomington. The author
gratefully acknowledges many pleasant conversations with R. Glassey
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Here d^O denotes the inverse of the speed of light, d = cΰ \ the ion and electron
densities f+(t,x,u) and f~(t,x,u) are functions of time ί^O, position x e R 3 , and
momentum u e R 3 . The relativistic velocity ύ is given by ύ = (1 + d2u2)~ 1/2u. E(t, x)
and B(t, x) are the electric and magnetic fields; we assume that for fixed time t these
fields are square-integrable over R 3 . ρ(t,x) and j(t,x) are the charge and current
densities, respectively.

If the parameter γ is chosen as γ = + 1 , the equations describe a plasma, while
for γ = — 1 they model the evolution of a galaxy.

In the present paper we consider the initial-value problem and, therefore, we
prescribe initial data /(f = / ±(0, ), Eo = E(0, ),B0 = B(0, ). We assume that Eqs.
(4) and (5) are satisfied for ί = 0 and that /0

+ and /0~ are continuously
differentiate, nonnegative and have compact support. We are only interested in
global (-in-time) solutions of the equations, since we study their asymptotic
properties.

If ύ is replaced by u wherever it appears, the resulting system is called the
Vlasov-Maxwell System (VMS). If d is replaced by zero in Maxwell's equations
(and only there), we get the relativistic Vlasov-Poisson System (RVPS). If d = 0 in
all equations (which implies u = ύ), we get the Vlasov-Poisson System (VPS).

If d=0, Maxwell's equations degenerate into the following system:

c u r L . ^ 0 , curlx£ = 0, divJC£ = y4πρ, di\xB = O.

Since curlxE(ί, x) = 0, E(t, ) is a gradient field, E(t, x) = — grad^ C/(ί, x). U satisfies
Poisson's equation

AxU=-γ4πρ9

and hence we have .
ϋ f c ) f

(plus a harmonic function that must be constant in order to achieve the square-
integrability of E(t, •)= — grad(7(ί, )), which in turn implies

^ (8)

An analogous argument proves that

B(t,x) = 0. (9)

Thus in the degenerate case d = 0, Maxwell's equations can be replaced by Eqs. (8)
and (9). In this situation no initial data can be prescribed for E and B: B(0, ) = 0
and E(0, ) is computed from f^.

During the last dozen years much work has been done on these equations, but
usually the authors considered only special choices of the parameters d and γ. We
use a unified approach that covers all cases simultaneously. This is reflected in the
following definition of a solution of RVMS etc., which is easy to handle but
perhaps more restrictive than necessary.

(0.1) Definition, (a) We say that continuously differentiable functions / + ,
/~:[0,oo[xR 3 xR 3 ->[0,oo[; £,B:[0,oo[xR 3 ->R 3 constitute a solution of
RVMS, if
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(i) For every T^O there exists a compact subset of R 3 x R 3 containing the
supports of f+(t, ) and /~(ί, ) for all te [0, T\.

(ii) The differential equations (l)-(5) are satisfied everywhere with ρ and j
being defined by (6) and (7). (The integrations involved in the definition of ρ and;
pose no problems because of (i).)

(iii) For every T^.0 the fields E and B together with all their derivatives are
uniformly bounded on [0, T] x RA

(iv) E(t, •) and B(t, •) are square integrable for all ί^O.

(b) A solution of VMS, RVPS or VPS is defined the same way, but with d
replaced by zero in the appropriate places.

In order to fix notation we describe how the method of characteristics is
applied to the construction of the solutions / + and / " of Vlasov's equations (cf.
[8]): Consider the system of ordinary differential equations

x± = ϋ±

9

U± = ±(E(t,X±) + dϋ±
 ΛB^X*)).

For every τ^O and every pair (x,w)eR 3xR 3 we denote by X±(t,τ,x,u\
U ± (ί, τ, x, u) the solution of (10) with (X ± (τ, τ, x9 u\ U ± (τ, τ, x, u)) = (x, u). With this
definition we have

Moreover, for fixed t the mapping R 6->R 6,

(x, u) h-KA ί̂O, ί, x, II), 1/ ±(0, ί, x, u)) (11)

is a diffeomorphism with determinant of the Jacobian equal to unity (which is
extremely useful for computing integrals). The inverse of the mapping (11) is given
b y

(x, u)^{XHU0,x9 u), U^t,0,x, II)) .

Using the substitution (11) we get that all ί/-norms (1 ̂ p^oo) of f±{U ) are
independent of ίeR. If p = ί, this is conservation of total charge.

An important tool in some of the known existence results is conservation of
energy. This means that the total energy

is conserved. The first term is the kinetic energy and the second one the field energy.
If y= + 1 ? both energies are nonnegative and an a-priori estimate is obtained
easily. (But energy also has its uses if y= — 1, d = 0, cf. [7].)

Recent work by Schaeffer and others (cf. [12, 3, 5,11]) suggests the following

Conjecture. Assume that (f+,f~,E,B) is a solution of RVMS such that for all
(x,u)esupp/+(ί, )usupp/"(ί , •)>

\E(t,x)\,\B(t,x)\£g(t), (12)

(13)
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with continuous decreasing functions g,h: [0, oo[->[0, oo[ satisfying

f (g(ί) + ίΛ(0)dί<oo.
o

Then a global solution of RVMS exists for all initial data near (in some suitable
norm) (fo

+,fo~,Eo,Bo).
Moreover, the perturbed solution satisfies estimates similar to (12) and (13) (and

many more that follow from them).

In the present paper we are not concerned with proving the conjecture, but we
prove global existence for a class of symmetric solutions of RVMS with B = 0 and
investigate their behaviour for large times. In the case that only ions are present
(/o~ =0) we can show decay like

( i+O 3 •

If, however, /0~ ΦO, we have only preliminary results. (Of course, the conjecture
implies that there is still decay if fo~ φ 0 but is small enough.)

Additional Remarks

(i) In [4] we investigated a related but different problem for RVMS with dΦO.
The initial conditions for E and B were replaced by the condition that the field
energy tend to zero as f->oo. Numerous pre-1986 references can be found in this
paper.

(ii) We do not consider weak solutions of RVMS (cf. e.g. [1] and [9]), since an
estimate like (12) guarantees the existence of classical solutions anyway (cf. [4] and
[6]).

(iii) Our treatment of the cases d = 0 and d>0 at the same time may look
somewhat artificial. It is, however, economical to treat VPS as a borderline case of
RVMS, since many results for the case d>0 (but not all) remain true for d = 0.
Moreover, as we will soon see, a symmetric solution of RVPS is also a solution of
RVMS. Since so far the Poisson case is much better understood than the Maxwell
case, this is a very helpful observation.

(iv) If y = — 1, the equations describe models from stellar dynamics. Since there
is only one type of mass (positive) in contrast to two types of electric charge
(positive and negative), we may assume /0" = 0 in this case.

1. Symmetry and Global Existence

(l.i) Definition and Lemma. Consider continuous functions

(p:R3χ]R3->IR,

σ:R 3->R,

K:IR3->]R3.
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We say that φ, σ or K, respectively, is spherically symmetric, if for all proper
rotations R of R 3 (equivalently for all rotations) and all x,weR3,

φ(Rx, Ru) = φ(x, u), σ(Rx) = σ(x), K(Rx) = RK(x),

respectively.
The functions, φ, σ, K are spherically symmetric, if and only if there exist scalar

functions φ, σ, K, respectively, such that

φ(x, u) = φ(x2, xu, u2), (14)

σ(x) = σ(|x|), (15)

respectively. ^ '

Proof Assume that φ, σ, and K are invariant under proper rotations. (14) follows
from the fact that, given x, u, y, w G R 3 with |x| = \y\, \u\ = | w|, xu = yw, there exists a
proper rotation R with y = Rx9 w = Ru.

Equation (15) is trivial. Equation (16) follows e.g. from the Hedgehog (aka
Haired-Sphere) Theorem (a continuous tangential field on a sphere must vanish
somewhere): For any r > 0 there exists a point on the sphere |x| = r where the field K
is normal and, because of the symmetry, K is therefore normal everywhere on the
sphere.

Since the conditions (14), (15), and (16) are invariant under all rotations, it is
clear that we do not have to restrict R to the group of proper rotations. •

We remark that, if φ is spherically symmetric, there exists a function φ such
that for all x, u e R 3, x Φ 0 we have that φ(x, u) = φ(\x\, \x\ ~ ιxu, x2u2 — (xw)2). This
choice of coordinates will be quite convenient in a later calculation. The reason is
the following

(1.2) Lemma (Integration Lemma). Assume that φ :]0, oo[ x R x [0, oo[-^[0, oo[
is measurable and that φ(x, u) = φ(|x|, |x| ~ 1xu, x2u2 — (xw)2) for all X,UG R 3, x φ 0.
Then

oo oo oo

$φ(x,u)dxdu = 4π2 $ $ $ φ(a,b,c)dadbdc.

Proof Let x be fixed. We first integrate φ(x,u) over weR3. Rotating w-space, if
necessary, we may assume that x is a multiple of the first unit vector. Thus

j φ(x, u)du = J J J <p(|x|, Mi, X2(M| + M3))dMx dw2dM3.

Now we rename uu calling it b, and use polar coordinates for the (w2, w3)-integral.
This gives

oo oo jξ oo oo

Jφ(x,M)dM = 2π J J rφ(\x\,b,x2r2)drdb= —^ J J φ(\x\,b,c)dcdb,
-oo 0 X - oo 0

if we substitute c = x2r2. Integration over x e R 3 now yields the claimed result. •

The importance of spherical symmetry for the present investigation is that it is
preserved in time, i.e., if the initial data are symmetric, then the solution will remain
symmetric. Moreover, global existence poses no problem in the plasma case with
symmetry:
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(1.3) Theorem. Assume that /0

+ and /0~ are spherically symmetric, nonnegative,
continuously differentiable and have compact support. If y= +1, there exists a
unique global solution of RVPS. It has the following properties:

(i) f±(t, •), ρ(ί, •), j(t, •), E(t, •) are spherically symmetric for all t^O more
specifically we have

E(t,x)=A J Q{Uy)άy (17)

(ii) (Conservation of Angular Momentum): For all ί,τ^0, x,we]R3,

X±(t, τ, x,ύ)AU±(t,τ,x,u) — χAu.

(iii) There exists a constant C, such that for all ί,τ^0; x,weR3,

^ (18)

(19)

(20)

\E(t,x)\£C, (21)

\3JE(t9x)\ύC9 (22)

/±(ί,x,w) = 0, if \u\ZC. (23)

Sketch of the proof We will not give a complete proof of this result, since this proof
is easily carried out, using the Frankenstein method. Nearly all parts of the
argument are already available, but they have to be assembled in a different
manner to form a new entity. If d = 0, the proof is exactly the same as that of
Theorem (7.3) of [7]. This is a result for a single distribution function, but can be
generalized to a system immediately. The case d > 0 with only a single distribution
function was investigated in [2]. In order to generalize Theorem II of this paper to
the case of a system, it is only necessary to find a substitute for Lemma IV and
Lemma V of [6]. This will be the purpose of our next lemma. But we want to clarify
the following point: Theorem II of [2] contains the assumption that fo{x,u)
vanishes if the angular momentum XΛU vanishes. This assumption is only an
artefact due to the choice of coordinate system. If the computations are carried out
in cartesian coordinates as in [7], this becomes immediately evident.

The statement of the theorem contains two claims that cannot be found in [2],
nor in [7]. The spherical symmetry of j(t9 •) follows at once from the spherical
symmetry of /±(ί, •) and integration. The estimate (22) follows from (19) and
Lemma (2.2), infra. •

(1.4) Lemma. Assume that T>0 and that £ : [ 0 , 7 ] x l R 3 ^ R 3 is a continuous
function of the form E(t,x) = xE(t,x) with a scalar function E. Assume that E
satisfies an estimate

\E(t,xUg(\x\)

00

with g: [0, oo[-»[(), oo[ decreasing and \\g\\1:= J g(r)άr< oo.
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Assume further that the functions X, U: [0, T] ->R3 are continuously differen-
tiate and satisfy the differential equation

±

with some fixed d>0. Then we have

Iglli (24)

Remark. This lemma is completely independent from the rest of the paper, but we
use a suggestive notation. Thus the letters X, U, E, and d have a similar meaning
when the lemma is applied in the RVMS situation.

Proof 1° Without loss of generality we may assume d = ί, the case dφ 1 can be
proved by applying this case to dX and dU instead of X and U. Moreover, we may
assume ||g| |i>0, since otherwise U is constant and (24) is trivial.

2° Angular momentum is conserved:

— (X A U)= U A U + X AE(t,X) = 0.
dί

In particular, the square of X A U is a constant:

(We sometimes write < , > for the scalar product of R3.)
3° Now we assume that [τ, θ] is a subinterval of [0, T] and that (X, U} has no

zero in ]τ,5[. Let us call this the simple case for [τ,#]. Then

X(s)
g(\X(s)\)ds

\X(s)\
\X(s)\E(s,X(s))ds

\X(s)\ι

(Remember: <£/,X> does not change sign in

](^\X(s)\\g(\X(s)\)ds

This shows that in the simple case for [τ, θ],

\X(»)\

ί g(r)dr
\X(τ)\

ί g(r)dr
l*(τ)|

4° If <X, C/> has no zero in ]0, T[, then (24) follows immediately from the
simple case for [0, T].
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Let us now consider the case that <X, ί/> does have zeroes in ]0, Γ[. For the
time being we assume c φ 0. This implies X(t) φ 0 and U(t) φ 0 for all t e [0, T]. We
will only show that

the other half of (24) is proved with the same method, but "going backward in
time."

The set

is not empty. Let f_=infZ, ί+=supZ. Then ί+eZu{0, T} and
<X(ί±), U(t±)} = 0. The continuous function |X(ί)|2 attains its maximum at some
point t0 of the compact interval [ί_,ί+]. Clearly <X(ί0), t/(ίo)> = 0. (If

= 0, if ίoe{ί_,ί+}, we already know it.)t0 e ] t _, ί + [, this follows from — X:

= t0

We first claim that for all t e [ί0, t+],

'ϊ'g(#. (25)

In order to prove this we will show that the set

S: = {se[ίo,ί+]|(25) is true for all te[to,s]}

is nonempty, and open and closed in the interval [ίo> *+]• This implies S = [ί0, t+].
S is nonempty, since toeS: We have

( 2 6 )

^J/1 + |C/(0)|2 + ||g||! = J/1 + |C/(0)|2 + ||g||! + ' T '
\X(fo)\

(If ί_ =0, this is trivial, otherwise it follows from the simple case for the interval
[0,ί_].)

S is clearly closed in [ίo^+l To show that S is open in [ίo>£+] assume teS,
t<t+. We consider the three possible cases.

First Case. There exists ε>0, ε ^ ί + — ί, such that

(X2 is decreasing to the right of t this is the easy case.) Assume 5 e ]ί, t + ε[. Then,
using the fact that teS and the simple case for [t,s], we get that

\X(t)\

ί g(r)dr

ί g(r)dr+ J g(r)dr
|X(ί)| |X(s)|

l^(ίo)l

ί g(r)dr.

This shows [ί,ί + ε[C-S.
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Second Case. There exists ε>0, ε^t+ — t such that

(X2 is increasing to the right of t; this is the hard case.) Assume se]ί, ί + ε[. Let

d
Thus s + is the smallest zero of <X, U} = W1 + U2 — X2 to the right of ί + ε. Since

dί
dί

X2 is strictly increasing on [ί,s+], we have that

\X(t)\<\X(s)\<\X(s+)\.

Since |X(ίo)|^|X(s+)| and |X(ί)|<|X(s+)l, there exists (Intermediate-Value
Theorem!) ans_e [ί0, ί[ such that

Using the simple case for [s,s+] we get

T'gWdr (27)

lg(r)dr

- \X(s-)\
ι + Js g(r)dr

\X(to)\ \X(s-)\

+ llglli+ J g(r)άr+ J g(r)dr

-i-||glli+ ί g(r)dr.
\X(s)\

[Here we have used the fact that s_ < t and therefore (25) is true for s_.] Again this
shows [ί, ϊThird Case. For every δ>0 the function <X, C7> changes sign on ]ί, ί + (5[. Then
there exists a sequence (ίπ)C]ί, ί+] with <X, t/> {tn) = 0 and ίπ->ί. Rolle's Theorem
implies that there exists a sequence (sπ)C]ί, ί+] with <X, [/>'(sn) = 0 and sn-^t.
Thus
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This shows that
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+ \U(t)\2

1 + |l/(t)|2

:j/l + |t/(0)|2 + J g(|Z(ί)l)d;

ί g(r)dr,
0

since g is decreasing,

J g(r)dr.
*WI

We conclude that (25) is satisfied with " < " instead of" ^ " and thus is also satisfied
for some right neighborhood [ί, t -h ε[ of ί.

In all three cases it follows that [ί, t + ε[ c S. This shows that S is open in [ί0, t+]
and therefore S = [ ί 0 , ί + ] . In particular (25) is satisfied for t = t+:

\X(to)\

-Hlglli+ ί g(r)dr

Now either T=t+i or we can use the simple case for [ί+, T] to conclude that

as claimed.
5° Now let us consider the case c = 0. The preceding argument remains valid

except for three places where we used that X(t) φ 0 and U(t) Φ 0. The first place is
line (26). Here we have to show that

|2. (28)

In the present situation we have that

and by the definition of t0

\X(to)\2^\X(t)\2

for all ίe[ί_,ί+]. If ίo = ί_, then (28) is true, so we assume ί o φί_.
We claim that \U(to)\ =0 which implies (28). In order to get a contradiction let



Symmetric Plasmas 623

\U(to)\ + 0. Then \X(to)\ = 0 and therefore \X(t)\ = 0 on [ί_, ί0]. This implies — X(t)
= t/(ί) = 0 on [ί _, ί0] and therefore 0 = U(t0) + 0. d ί

The second place is after line (27). Here we have to show that

\U(s+)\2S\U(s.)\2, (29)

but this is easy. We know that

0 = c = \U(s+)\2\X(s+)\2

and

\X(s+)\>\X(sU0.

This shows that \U(s+)\2 = 0 which implies (29).
The third modification necessary is in the third case considered in 4°. If

U(t) = 0 = (7(0), the old argument breaks down, but ||g|| i Φ 0 and we still have strict
inequality in (25). •

(1.5) Theorem, (i) Every spherically symmetric solution (f±,E,B = 0) of RVPS is
also a solution of RVMS.

(ii) // (f±,E,B) is a spherically symmetric solution of RVMS, then B = 0 and
{f±,E,B) is also a solution of RVPS.

Proof (i) The reader may easily convince herself that there is nothing to prove
except (2) and (3). Because of the symmetry we have curl£ = 0. This implies (3). This
leaves only Eq. (2) which in this case (B = 0) is

dtE=-y4πj(t,x).

We know that

E{t,x) = yA ί Q(t,y)dy = y-^ f (f+(t,y,w)-Γ(t,y,w))d(y,w).

We may compute dtE by differentiation under the integral sign, since f± is
continuously differentiate and has compact support in (y,w). Using Vlasov's
equation we get that

cf. [8, (1.3)]. The integral of the second term vanishes and we conclude

dtE(t,x)=-7ri3 ί divy(ύ(f+(t,y,w)-f-(t,y,w)))d(y,w)
\x\ \y\ύ\χ\

X
= ~y—T ί divyj(t, y)dy

X

= — y —-j 4π<xj'(ί, x)y = — y4πj(t, x)

because of Gauss' Theorem and the spherical symmetry of;(ί, •).
(ii) This follows with the same argument we used to derive Eq. (8). •
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Additional Remarks

(i) We have once seen the coordinates (a,b,c) from Lemma (1.2) in the
astronomical literature of the 1950's or 1960's, but lost the reference.

(ii) The coordinate c = x2u2 — (xu)2 is the square of the angular momentum.
Since this is a conserved quantity, this choice of coordinate system is particularly
simple. Even so, we avoid non-cartesian coordinates. The only exception is the
Integration Lemma (1.2) since this makes a later computation quite transparent.

(iii) There are two differences between the relativistic case {d φ 0) and the non-
relativistic case (d = 0). The first difference is that the non-relativistic "ODE
Lemma" (cf. [7, (6.5)]) is much stronger than the relativistic version (1.4). This
makes it necessary to use energy estimates in the relativistic case which can be
avoided if d = 0. Unfortunately the relativistic energy estimates are again not as
good as the non-relativistic versions that work even for y = — 1. In the relativistic
case with y = — 1 there exist counterexamples to global existence, cf. [2] and
Sect. 3.

(iv) The main difficulty in the proof of Lemma (1.4) is that we make no
assumption concerning the sign of E. This enables us to apply the result in a
situation where we do not know the sign of ρ.

2. On the Decay of a Symmetric Single-Species Plasma

In this section we only consider the case that fo~ =0 (and therefore / " =0) and
y= + 1 . We drop the superscript " + ." Moreover, we only consider symmetric
solutions. (Using the perturbation conjecture, however, we could also prove
similar results in the case of "nearly symmetric" /0

+ with fo~ "small".)

(2.1) Theorem. Assume that f0 ^ 0 is continuously differentίable, symmetric and has
compact support. Then there exist constants Cγ > 0, C ̂  0 such that the solution (f E)
ofRVMS with /(0, )=/o satisfies

(i)

for all ί^O, (x,w)esupp/0,

(π)

for αi/t^0,xeR 3 ,

(iii) |<?(ί, x)| ̂  C(l + ή- 3(1 + log(l + ί))3

(iv)

for αIi

Proof (i) We consider the case d = 0 first. Take any pair (x,t/)eR 3xR 3. We
abbreviate

: = X(t,09x,u)9
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By conservation of angular momentum

\X(t)\2\U(t)\2-(X(t\U(φ2 = x2u2-(x,u>2 = :c = const

for all t^0. We assume c>0. (If c = 0, the statement is trivial.) This shows that X
and U have no zeroes. Moreover

(30)

^-1 U(t)\2 = 2 < U(ή, £(ί, X(t))} = 2 < C7(ί), X(ί)> | * ( ί ) l " 3 ί Q(U y)dy.
dί bl^|jc(ί)|

Since ρ is nonnegative, this implies that \U\ is increasing (or decreasing,
respectively) on an interval / if |X| is increasing (decreasing) on /. Differentiating
(30) we get

ή2

2^i\ττ(t\\2 + 2(X(t\E(t,X(t))>
(31)

+ 2\X(t)\~1 J ρ(ί,j;)d};^2|ί/(ί)|2>0.

Therefore X2 is strictly convex on [0, oo[. At most three cases are possible:

First case. X2 is decreasing on [0, oo [. Then

This implies that X2 is finally increasing, a contradiction that shows that this case
is impossible.

Second case. X2 is increasing on [0, oo[. Then U2 is increasing, too. We have

d

and * '

for all ί^0. Thus

^ϊ\X(t)\2^2\U(t)\2^2u2,

and after integrating this twice we get

Third case. (This is the interesting case.) There exists ίH ί>0 such that X2 is
decreasing on [0, ί j and increasing on [ί^, oo[. We let xWt = X(t4)9 u^ = Uit^) and
note that

w2 = min|l/(ί)|2

ί > 0
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and

dί

which in turn implies

As in the second case we conclude by integrating the second derivative

For later use we note that this implies for t = 0,

*2^** + Φ 4 . (32)
Because of the above estimate we have

t2 ~ t2

Using freshperson calculus one can show that the minimum of the right-hand side
over £>0 is

c ^ c

(The last inequality follows from (32).) Thus

as we have claimed (with C1 = \).
Now let d>0. A straightforward calculation gives

dί2

χ((i +d2\u(t)\2)\x(tτ1-d2<x(t)9 u(t)>2\x(tτ3)

x j ρ(t,y)dy

^2(1 + d2\U(t)\2y ί/2\U(t)\2. (33)

Assume (finally!) that (x,M)esupp/0.
We use the fact that supp/0 is bounded and estimate (18) to conclude that

\U(t)\ ^ const

uniformly for all (x, u) e supp/0 and that the estimate ending on line (33) therefore
implies that

with a positive constant Cv
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This estimate now replaces (31) and we can proceed exactly as in the case d = 0.
(ii) Let \x\ = R. Then

\E(t,x)\ = R~2 J ρ(t,y)dy = R-2 f f(t,y9w)d{y,w)
\y\2^R2 \y\2^R2

= R~2 J /o(X(0,ί,y,w), 17(0, t,y,

|X(ί,0,y,w

Using (i) we conclude that this is

f /0(αΛc)d(αΛc).
2 2 g R 2

Here we have defined

fo(y, w) =: /o(bl, bl" x <Λ w>, 3̂ 2w2 - <y, w>2)

and used the Integration Lemma (1.2). Since f0 has compact support, the
integration is over a set of the form

Since / 0 and therefore f0 is bounded, it follows that

\E(t,x)\SR~2CR2Γ2 = CΓ2

Together with (21) this proves (ii).
(iii) Let (x,w)esupp/(ί, •); ί,τ^0 and abbreviate

X = X(t9τ,x,u)9

U=U(t,τ,x,u)9

E = E(t,X(t,τ,x,u)).

By straightforward calculation

This implies

\~2

because of (i). Writing X as its Taylor polynomial with integral remainder

t s f|2

χ = x + (t — τ)ύ+ J J—^-X(σ,τ,x,w)dσds,
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we get the following estimate:

|X(O,ί,x,w)|^|x-ίw|-J JC(l+σΓ2dσds
0 s

= |jc-tώ|-Clog(l+t). (34)

We have assumed that f0 has compact support and so there exists an R^O such
that fo{y, w)=0 if \y\^R. Now

ρ(t, x) = J f(t, x, u)du = I /0(X(0, ί, x, u), 1/(0, ί, x, u))d«. (35)

The integration is over the set of all u with |X(0, t, x, u)\ :§ R. But, because of the
estimate ending on line (34), this set is contained in the set of all u with

or (36)

Now let us look again at Eq. (35), the definition of ρ. In the integral we substitute
v = ύ. Since /(ί,x, •) lives on some bounded subset of w-space, uniformly for all
ί^O, x e R 3 (cf.(23)), we can estimate the determinant of the Jacobian with a
constant. Now (36) implies that the i -integral is only over a ball of radius
^t~\R + Clog(l+t)) in 3-space. This shows that

and taking (19) into account, we have proved (iii).
(iv) Follows from the next lemma, applied to ψ = ρ(ί, ). •

(2.2) Lemma. Assume that ψ: [0, oo [->R is continuous, Holder continuous atx = 0
and bounded. Define

x W
ψ(r)dr, xφO

K(x) =
N 3 6

o, ; = 0.

Then K is continuously differentiable on R3 and

Proof. If xφO, we have

dK;

dx
ι-{x)

dx, |x|3 |x|5

Xi X:
(37)

This is obviously continuous for xΦO. Moreover,

dκt

δXj

3 1̂1

x|3 o '
, = 2||φ||c
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Writing (37) as

we can easily see that

Additional Remarks.
(i) The proof of Theorem (2.1) makes heavy use of the fact that ρ is nonnegative. It
would be desirable to extend the argument to the case /0~ φ 0, in which ρ can
assume both signs.

(ii) The constants in the statementυf (2.1) depend on d. This makes sense, since
for d-+ oo the speed of light tends to zero. Thus all motion freezes and decay can no
longer take place.

3. The LaGrange-Jacobi Identity

The following theorem is an analog of the LaGrange-Jacobi identity for the
iV-body problem (cf. [10]).

(3.1) Theorem. Assume that (f+,f~,E,B) is a solution of RVMS such that for
every T^O there exists a compact set X0ClR3 with

supρE(ί, )^suppJ5(ί, -)CKO

for all ί e [0, T]. Define for ί^O,

Then I is twice continuously differentiable and

Proof 1° Because of our assumptions concerning the compact support of /Q*,
E(ί, ), and B(t, ) this is a straightforward exercise in the differentiation of
integrals. The first term of/ is easily handled using the substitution (11) and the
characteristic equations (10); for the second one we use Maxwell's equations.

2° In order to facilitate the logic of a later argument we first note that for every
continuously differentiable function X:R3->IR3 with compact support we have

f <JC, (cuήK(x)) A K(x)} dx = f £\K(x)\2 - (K(x), x} divK(x))dx.

This follows at once by integrating the elementary identity
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3° We now compute the first derivative of /:

7 = 2 J(xu(/+ +f-)+d2x2ύE(f+ -f-))ά(x,u)

+ ̂ - 2 f
ony

= 2$xu(f++f-)d(x,u)+-^-\x2div(BΛE)dx

= 2Jxu(/+ + /-)d(x,u)- ^ J<x,BΛ£)dx,
as claimed.

4° Similarly, using 2°, we obtain

+ —- f (x^ίΓ1 curlβ-4πy;) Λ B-E A d~1 curl£>dx
Ί.ny

S <*> ( c u r l B)ΛB + (curl £) Λ £> dx - 2d J <x J Λ β> dx7Γ

zπy

Remarks, (i) The condition about the compact support of E(t, ) and B(t, •) is
more restrictive than necessary. It could be replaced by growth conditions if the
need would arise.

(ii) Examples of solutions of RVMS that satisfy the assumptions of the
preceding theorem are the solutions for "nearly neutral" initial data of [3],

In the symmetric case we can discard the assumption about the compact
support of E(t, •) (B = 0 anyway) if we slightly modify the definition of I:

(3.2) Theorem. Assume that (f+,f~,E) is a spherically symmetric solution of
RVMS. Let

T(t) = f x2(l + d2uψ2(f+(U x, u) + Γ(t, x, u))d(x, u)

Then I is twice continuously differentiable and
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Proof. This is exactly the same argument as in the preceding proof. The second
integral in the definition of/exists, since according to (17)

E(t,x) = E(0,x)

if x is outside of a ball that contains the support of ρ(ί, ). •

The LaGrange-Jacobi identity has some notable consequences:

(3.3) Theorem. Assume γ = +1. Then there exist no stationary solutions of RVMS
that satisfy the assumptions of (3.1) or (3.2), apart from the zero solution.

Proof. For a stationary solution we would have 7 = 0 (or 7 = 0, respectively), but 7

(or /) is strictly positive if y = + 1 . •

More quantitative information is gained if we use the conservation of the

energy
(f+(t,x,u)+f-(t9xiu))d(x,u)

We note that

and

uύ=\

d>0

d = 0.

This shows that

and, if

Ϊ>2H = const (38)

(39)

the same estimates being true for ϊ.
In the symmetric case we can get more precise information from the LaGrange-

Jacobi identity: Let us first assume that (f+,f~,E) is a symmetric solution of
RVMS such that £(0, ) (and therefore E(ί, ) for all t ̂ 0) has compact support.
Then

1

oo / r

0 \0

J ρ(t,y)dy)2dχ

dr

= -(4π)3 J r2r2ρ{t,r) J s2ρ{t,s)dsdr
o o
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after partial integration, and we can bound this by

;£(4π)2 2fr3 |ρ(ί,r)|dr J|ρ(t,x)|dx
0

= 8πf|x||ρ(ί,x)|dx J|ρ(t,x)|dx

^ 8π(J x2 |ρ(ί, x)| dx)1'2 (f |ρ(ί, x)| dx)3'2

= C{\x2\Q{t,x)\άxfl2

ύC{\x\\ +d2u2)1'2(f+ +f-)d(x,u))1'2

for some constant C^O. (ρ is defined by ρ(ί, |x|) = ρ(ί, x) as in (1.1).)
If £(0, ) does not necessarily have compact support, the same argument shows

that

|f x2(|E(ί,x)|2-|E(0,x)|2)dx|:gC(l + (Jx2(l +Puψ2{f+ + JT)d(x,M))1 '2). (40)

Thus for a symmetric solution (f+,f~,E) of RVMS the second integral in the
definition of T(t) is essentially dominated by the square root of the first one. This
leads to the following

(3.4) Theorem. Assume that (f+,f~,E) is a symmetric solution of RVMS. If the
total energy H is positive, there exists a positive constant C, such that

+(t, 0,x, u)|2/0

+(x, u) + \X~{t, 0, x, M)|2/0-(X, u))d(x, u)

= J|x|2(/+(ί,x,u)+/-(ί,x,u))d(x,u)^Ct2.

Proof. By (23)

ίW 2 (/ + +/")d(x,u)^CJ |x | 2 ( l + ί ί
2 u 2 ) 1 / 2 (/ + +/-)d(x,u) ,

and by (38)

for large t.
Because of (40), this implies that

for large t, and therefore also

for large t. However, since J |x | 2 (/ + +f~)d(x, u) is a positive continuous function
of ί, such an estimate is also true for small t. •

Remark. The essential ingredient of the proof of Theorem (2.1) was the growth
estimate (i):

Whereas we could not prove this for a system with /0" +0, the preceding theorem
shows that at least some weaker integral version of this estimate remains true. This
gives rise to the hope that the decay results of Sect. 2 might also be valid for fo~ Φ 0.
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We end with a non-existence result:

(3.5) Theorem. If y= —\ and d > 0, there exists no spherically symmetric global
solution (f+J~,E) of RVMS with

d-2$]/l+d2u2(f0

+ +/0")d(x,u)- — J |£0(x)|2dx<0.
oπ

Proof This condition means exactly that the constant C in (39) is negative. Thus
we would have

lim 7(t)=-oo.
f->oo

On the other hand, we conclude from (40) that 7(ί) is bounded below. •

Additional Remarks
(i) Theorem (3.5) implies that for γ= —1, d>0 there exist counter-examples to
global existence, cf. [2].

(ii) A generalization of the definition of/to the non-symmetric case would be
welcome.
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