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Abstract. We give examples of finite gap Schrόdinger operators in the two-
dimensional case.

The problem of characterizing rings of commuting ordinary differential operators
(ODO) was introduced and investigated by Burchnal and Chaundy [1]. Modern
investigations begin with the work of Novikov [2], who noticed that a Schrόdinger
operator with periodic potential L = —d2/dx2 + u(x), which has a commuting
ODO of odd order, possesses "good spectral properties," namely: its spectrum has
only a finite number of gaps (see also [3,4]). Subsequently, Krichever [5]
completed the classification of all commutative rings of ODO with scalar
coefficients. The generalization of this classification on the case of matrix
coefficients was made by Grinevich [6].

The attempts to understand the many-dimensional case, for instance, the case
of the two-dimensional Schrόdinger operator L, lead B.A. Dubrovin, I.M.
Krichever, and S. P. Novikov to the formulation of a new problem [7,8]. Now one
wants to characterize the operators L, which are ,,fmite-gap on one energy level."
Such operators can be included in the rings of differential operators, commutative
mod L: [L, A] = BL (see [7]). In the general case the change of energy level violates
the finite-gap property. This paper presents in particular the attempt to answer the
question posed by S.P. Novikov in 1976 about the operators L, which are finite-
gap in every energy level, and the corresponding deformations of curves and
divisors. Up to now actually only the separable case L = d2 + d2 + u(x) + υ{y)
with u(x) and υ(y) being the finite gap potentials, was known where this
phenomenon occurred. We will show here that there are new examples of this type
and conjecture that there are no other operators with analogous properties.

We say that the commutative ring 01 of differential operators in RM is complete

if there exist n operators Lt ί x, ^ - ] e & (i= 1,...,«) with algebraically indepen-

dent highest symbols Pi(k). A complete commutative ring 01 is called a
super complete ΊΪ01 is not contained in any commutative ring, which is generated by
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only n operators. For n = 1 all supercomplete commutative rings are described by
the Burchnal-Chaundy-Krichever theory.

Problem. Describe all supercomplete commutative rings of differential operators
in R", containing some Schrόdinger operator L = — Δ + u(x).

In other words we want the corresponding quantum problem with
H = p2 + u(q) to have at least {n + 1) commuting integrals instead of the usual n
integrals. The precise formulation of the last property is due to I.M. Krichever,
who called such operators algebraic [9].

Now we describe some Schrόdinger operators, which are conjectured to have
this property.

Let G be a simple complex Lie algebra of rank n, R be its root system in R", R+

be the set of positive roots, the brackets denote some scalar product in R",
invariant under the action of Weyl group W (see [10]).

Consider the following Schrόdinger operator

1. HG = — Δ+ Σ Sa^((a^x))^ where 3P{z) is Weierstrass elliptic function,
<xeR +

and its degenerations;

2. HG = -Δ+ Σ gαω2sin"2ω(α,x);

2'. HG = -Δ+ Σ gao)2 sinh~2ω(cc,x)

When G = An such quantum systems for (3) were considered by Calogero [11], in
the trigonometric case (2) it was considered by Sutherland [12]. After the paper of
Moser [13] where Lax representation for the corresponding classical systems was
found, F. Calogero proposed the generalization of Moser's matrix, which led to
solving some functional equation [14]. The general solution of that equation is
expressed in elliptic function and leads to the potential & (x)* M. A. Olshanetsky
and A.M. Perelomov were the first to propose a generalization using the other
root systems [15,16] (see also the review [17]). They succeeded in proving in some
cases the complete integrability of these systems, in the sense of the existence of n
commutative integrals / ! . . . / „ .

The main goal of this paper is to give some motivation for the following
conjectures, belonging to one of the authors (A.P.V.).

Conjecture 1. If ga in (l)-(3) has a formga = m(m + 1) (α, α), meZ, then the rings
of all quantum integrals of this problem are supercomplete.

Conjecture 2. There are no other supercomplete and nonseparable commutative
rings of differential operators, containing some Schrόdinger operator

1 It was proven approximately simultaneously and independently by H. Airault, F. Calogero, M.
Olshanetsky and A. Perelomov, A. Stepin, and S. Pidkuiko
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We call such a ring separable if it contains an operator in a smaller number of
variables. For example, the ring of quantum integrals of the Calogero system is
separable, because it contains the operator

but after reducing we come to a nonseparable ring on the hyperplane

In this paper we will prove conjecture 1 in some special cases: case (3) for all Lie
algebras of rank 2 and for the series An\ case (2), (2') for Lie algebras or rank 2.
Concerning conjecture 2 we have only some intuition, which we will present now.

1. Motivations: Commutative Mappings and Lie Algebras

Here we follow the papers of one of the authors [18,19]. Let's consider another
problem, which seems to be simpler. Let P{z) be a polynomial
P(z) = anz

n + . . . + a0. It determines the mapping z-^P(z).

Problem. Describe all P(z), such that there exists commuting polynomial
mapping z-+Q(z): PoQ — QoP and the sets of iterations of P and Q do not
intersect.

This problem was solved independently and almost simultaneously by Julia
[20], Fatou [21], and Ritt [22]. The proof turned out to be complicated, but the
answer very simple: every such mapping up to linear transformations and change
of sign must be determined by the Tchebycheff polynomials Tk (z) = cos k arccos z
or by the formula z-+zk.

For example, when P(z) = z2 + c, the commuting polynomial without com-
mon iterates will exist only in two cases: c = 0 or c = — 2. The commuting
polynomial has a form Q = z3 or correspondingly Q = z3 — 3z. In 1985 one of the
authors discovered the unexpected deep analogy between this problem and the
problem about commuting differential operators (see [18,19]). It is very natural to
hope for such analogy in the many-dimensional case and to see the commuting
polynomial mappings R"->1RM or (Cn->Cn. In the paper [18] the following
construction of such mappings, which generalize the construction of Tchebycheff
mappings and connected with Lie algebras, was proposed.

Let G be a simple complex Lie algebra of rank n, Hits Cartan subalgebra, H*
its dual space, J5? a lattice of weights in H*, generated by the fundamental weights
ω1,..., ωn, L the dual lattice in H (see [10]). Let's consider the mapping

Q G : H/L^(En> Q G = ( 0 1 , . . . , 0 Λ ) , φk= Σ exp(2πzw(ω fc)),
weW

where W is the Weyl group, acting on the space H*. According to the Chevalley
theorem [10], the algebra of exponential invariants of W is freely generated by
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φί9...,φn. Therefore there exist the polynomial mappings PG, which are
determined by the relation

From the definition Pk

GoPι

G = PG

ι = Pι

GoPG.
Dynamical properties of this mapping were investigated by the authors in

[18,19, 22,24]. In particular, it was proven that nonisomorphic Lie algebras
determine nonequivalent commutative families of mappings PG.

If we consider the abelian variety MG = (Cn/L + τL9 which is isomorphic to the
product of elliptic curves with parameter τ (Imτ > 0, τeC), then one can use the
corresponding analogue of Chevalley's theorem, proved by Looijenga [25],
Bernstein and Schwarzman [26]. According to this theorem the quotient of this
variety by the natural action of the Weyl group Wis the weighted projective space
(CPn. Using this theorem one can define the commuting mapping (EPn-+iCPn

9

corresponding to any endomorphism MG, for example Z^>mZ.
This construction [18] can be considered as the generalization of a result of Ritt

[22], who proved that all rational mappings/: <Ci>1->Ci>1, which possess the
appropriate commuting mappings, must be the "multiplication law" for some
elliptic functions or its degenerations (see [22]).

It can be shown that all similar generalizations lead to the root systems.
The following step is to understand which commutative rings of differential

operators can be considered as the analogue of our mappings. Attempting to find
such quantum systems, one of the authors came to the previous conjectures. The
quantum Toda lattice and its generalization found by Bogoyavlensky [27] and also
connected with Lie algebras do not fit for our purpose. It follows from the
consideration of the simplest case of two particles, because the potential u = exp x
is not finite-gap. If we try to find the integrable quantum system with finite-gap
potential, we will come to the systems (1-3).

Notice that the operator (1) with ga = (α, α) m (m +1) can be considered as the
generalization of the well-known Lame operator.2

2. The Analytic Properties of the Eigenfunction ψ
of the Operators HG for ga = m (m + 1 ) (α, α)

We begin with the rational case:

HS=-A+m(m+ί) £ (α,α)(α,x)"2. (4)
<xeR +

Following [28], let us consider the function ψ (k, x), k,xeRn (CM), of the form

ψ = P(k,x)exp(k9x)9 (5)

where P(k, x) is a polynomial in k with the highest term A(k)= Y[ (α, k).

2 One should observe that all these operators are singular on the reals. Only for Al9 i.e. in one-
dimensional case is it possible to make the potential m(m-\-\)0>{x) nonsingular by a half-period
shift
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Theorem 1. Let the function ψ be of the form (5) and have the following property:

when (oc,k) = 0 for all oceR+. Then ψ is the eigenfunctίon of a super complete
commutative ring, which contains the operator (4) form— 1 and is isomorphic to the
ring K of all polynomials f{k) with the property (6). This isomorphism is given by the
formula /-» L r ,

Lfψ=f(k)ψ. (7)

Proof The following lemma will be very useful.

Lemma. If the function φ = Q(k,x) exp(k,x), where Q is a polynomial in k,
satisfies condition (6), then

1. the highest term of Q is divisible by A (k);

2. there exists a differential operator L(X, W-), such that φ = Lψ under the

assumption that the function ψ with prescribed properties does exist.

Proof of the lemma. The first statement is evident, because the highest term must
be zero on all hyperplanes (α, k) = 0 as follows immediately from (6). Notice that
the uniqueness of the ^-function now follows. Consider the highest term of
Q- Q = QN + 9 QN = B(k,x)A(k) and the differential operator

LN = Bί ^—,x). It's easy to see that the function φN = LNψ has the same highest
\ox )

term QN and also satisfies condition (6). Consider the difference φ = (φ — LNψ)
and repeat the same procedure to prove the lemma.

In order to deduce the theorem from the lemma it is sufficient to notice that the
functions φ =f(k)ψ with feK satisfy the condition (6).

Notice that the procedure of finding the operators Lf (x, d/dx) is absolutely
effective if the explicit formula for ψ is given. For example, every PP-invariant
polynomial satisfies the condition (6), therefore one can find the operators
Lt(x,d/dx), corresponding to the generators Pt{k), z'=l, ...,n of the ring of
W-invariant polynomials.

It's easy to calculate from (6) the second term of P(k,x) in (5):

P(k,x) = A(k)- X (ocαMα,*)- 1 Π ( £ * ) + • • •

<xeR+ βeR + \ot

Using this fact one can find the operator, corresponding to

P1(k) = ~k2:L1 = -A-2 X (α,α)(α,x)"2, LlΨ = ~k2ψ.
aeR +

Notice that the completeness of our ring now follows. It's easy to check that

for every polynomial Q(k) satisfies the condition (6), but is generally not
expressible as a polynomial in Pγ (k), ..., Pn(k) because it is is not invariant under
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the Weyl group. So the commutative ring in our case is much richer than in the
general case, where only the operators Lt (x, d/dx) can be constructed (see [15,16]).

Let's now consider the function ψm(k,x) of the form

ψm(k, x) = (Am(k) + lower term) exp (k, x)

and demand that ψm satisfies the following condition:

when (α,fc) = 0 for all oceR+ and s = 0, ί, ..., (m — t).
By similar methods one can prove that only one such function can exist and it

must be the eigenfunction of supercomplete commutative ring which contains the
operator (4) and is isomorphic to the ring of polynomials with the property (8).

Trigonometric Case. Let the function ψ{k,x) have the form

ψm (k, x) = (A (k) + lower terms) exp (k, x),

but instead of (6) demand that relation

ψ (k + zωα, x) = ψ(k- /ωα, x), ί = ]/^Λ , (9)

is satisfied on the hyperplane (k, α) = 0 for all α e R+. Using the previous methods
one can prove the following theorem.

Theorem 2. When such a function ψ exists, it is the eigenfunction of the
supercomplete commutative ring, which contains the operator

HG=— Δ + 2 Σ ω2(α,α) sin~2ω(α,x)

and is isomorphic to the ring of all polynomials in k with the property (9).

To construct the eigenfunction ψm of the operator

HG=-Δ+m{m+\) £ ω2(α,α) sin"2ω(α,x) (10)
<xeR +

we demand that ψm has the same form as in the rational case, but instead of (8) that
it must satisfy the relation

when (α,*) = 0 (11)

for all oceR+ and j = 0, 1, . . . , m — 1.
Here by definition

δωa Φ (k, x) -.= φ(k + iωcc, x) — φ(k — /ωα, x).

All Weyl group invariant polynomials Pi(k)9 . . . , Pn(k) obviously satisfy (11).
Another example is presented by

PΆ\(k)= Π (/c,α)((^,α)2 + ω2(α?α))((/c?α)2 + ̂ ω2(α,α)) ... ((£,α)2 + m2(α,α)).
aeR +

It's easy to check that P^\(k) satisfies the condition (11) and is antiinvariant
under the action of the Weyl group.
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To Summarize. In order to prove conjecture 1 in the rational and trigonometric
cases it's sufficient to prove the existence of ψ with property (8) or (11). If such a
function ψ is given, the commuting operators Lt can be found by an effective
procedure. In the elliptic case for m = 1 we conjecture that the variety on which the
(//-function "lives" is MG = (C"/L + τL, which also arises in the generalized
Chevalley theorem [25,26] (see Sect. 1). The precise characterization for ψ in this
case will be considered in the subsequent paper.

3. Formulas for the ^-Function of Quantum Calogero Systems

We now describe a recursive procedure, which leads to formulas for the
(//-function in the rational case (3) for the Lie algebra An-γ\ Hψ = —k2ψ,

H=-A + 4 Σ(xi-χj)~2 (iJ=U..',n)9 (14)

and prove conjecture 1 in this case. So we consider a Calogero system with special
values of the constants in the potential.

For n = 2,ψ can easily be found: ψ = [(k1 — k2) — 2(xί — x2)~*] exp(k, x). It's
easy to check that such a (//-function satisfies condition (6).

We rewrite it in the form

Ψ = Kd1-d2)-2(x1-x2y
1]exp(k,x)=@2exp(k9x), (15)

where 3)2 = dί2-2^, xtj = xt-Xj, dt = d/dxt, di} = δt-dj.
For other n the ^/-function also has the form

ψ = S)n exp (k, x), (16)

where the differential operators 3)n can be found from the following recurrence
formulas:

For Qn+'i" there also exist recurrence formulas

+ Σ 2 ^ ρ ί } - f - ί - ' QN = 1. (18)
s = l

Here i1... ik are different indices less than N, the symbol ΐs means that the index is

must be omitted.
In order to show how this procedure works let's find the (//-function for three

particles.
According to (17), ̂ 3 = Ql2@2, where 92 is determined by (15). From (18)

Now again using (18),

Ql = Q33i3-2xΪ3 Qs = d 13-2*13 because β 3 = 1.
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So we have

and after the simple calculations

d2dι 2

12xί2x13x23. (19)

Theorem 3. The function ψ, determined by the recurrence formulas (16), (17),
(18), satisfies the condition (6) and therefore is the eigenfunction of the operator
(14): Hψ = — k2 ψ and of a super complete commutative ring of quantum integrals
(14).

Proof. We will use the following two lemmas.

Lemma 1. The operator Qj +in is symmetric on the indices ί, ..., n and has the
highest term

ί = l

Lemma 2. In order to check the conditions (6) for (16) ίfs sufficient to prove that
the operator S)n is right-divisible by d^ox^1 for all i<j.

The last statement of Lemma 1 follows immediately from (18) and ensures the
prescribed highest term oΐS)n+1 and ψ. The first statement also follows from (18)
after some calculations.

To prove Lemma2 suppose that $)n has a form S)n = P^od^ox^1 for some
differential operator Ptj. Then

= (ki-kj)PίjQxp(k,x) = 0

when k{ — kj = 0, i.e. the condition (6) is satisfied.
We will prove the theorem by induction. For n = 2

and by Lemma 2, ψ possess the necessary property. Suppose now that $)n is right-
divisible by dij oxfj1, and let us prove that Q)n + x also has the analogous properties.

Because of symmetry Ql+{n (Lemma 1) it is only necessary to show that @n+ί

is divisible by dnn+1 o x^+1.
Using the relation

"^ n + 1 V^ w + 1 2^ n °^n—1

and the commutativity of dnn+1x~n

ι

+1 and 3)n-γ, we reduce the problem to the
proof that the operator Qn + {noQjι'"

n~1oxnn + 1 is right-divisible by (dn — dn+ί)
or in more convenient notation Q^ " kM o Q]^ Λo χMN is right-divisible by dMN.

The proof of this fact is long with many applications of formulas (18), so we
omit some steps.
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First of all we introduce some notation:

We have

Q = QN ° QM ° *MN = QN*MN QM +QN° [QM ' *MN\

= *MNOQN°QM + IQN,*MN]QM^QNO[QM>XMN].

Using (18) one can prove that

Substituting this commutator and using (18) one can rewrite the last expression as

k i-

— L XMN ^ N \~AXiM \IM) "I" ^XMNXiM \ίN \IM

+ terms right-divisible by dMN.

In order to prove the theorem it is sufficient to show that after the substitution
of dt for diM and diN in the last expression the new operator will be equal to zero.
Denoting the new expression by Q, QM, QN, . . . , we can write the necessary
relation as

k ΓΣ U-2xMNχrM

2 + 2xM

x

N) Mt(Q) + (4xMNχrJ - 4χrM

2) Qi

_μ V ( — lχ~3λ 9? (OΛ — 4x~J M(OJ) \ = 0
T ^ \ j L xjM)°lyi}\\C) ^-^jM ι y ± ι\\L ) \ u ?

jΦi J

where

•s?u(β)=Qsfeii + e r 2 L - e r e M - Q^&L (/Φ;)

Using (18), one can check the following relations:

M(Q) = 2x x~1x~1Qi — Ύi (4x~3Q^ — '.
jΦi

OP (ΠΛ— 9r r - l γ - l ί/mA
-ZijVSέ)— ~~ΔXMNxjM xjN mi\\l )
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Using this relation we reduce the proof to the following two identities:

Σ *;2*;(ί-«.(*)=o, (20)
σeSk

- 2 [ V 2 v - 2 v - l v - l _ v - l v - l
I % x X Λ Λσ(fc)MΛσ(fe)ΛT

+ XMNXσ(l)MXσ(k-l)σ(k) ~ XMNXσ(ί)MXσ(l)σ(2) Xσ(k)M Xσ(k)N

+ Xσ(l)M Xσ(l)σ(2) Xσ(l)σ(k)

fc-1

+ ZJ XMNXσ(ί)M Xσ(ί)σ(2) Xσ(s)σ(s+1) Xσ(s)M Xσ(s)N
s = l

X Xσ(l)σ(s+ί) Xσ(k)M Xσ(k)N

fc-1

+ 2 J XMNXσ(l)M Xσ(ί)σ(2) Xσ(s)σ(s+1) Xσ(s)M Xσ(s+1)N
s=l

X Xσ{l)σ(s+1) Xσ(k-l)σ(k) J = 0 (21)

Here σ e Sk is any permutation of (1, . . . , k), x~ 2 = x~{\)σ{2)
xa^)σ^) **<*- D ffW

These identities can be proven by calculating the singularities of this expression
and using induction.

Theorem 3 is proven.

Remark 1. In the trigonometric case the analogous procedure can be used for
finding the ^-function. Instead of relation (18) we write

+ Yj2ω2ήn-2ωxisikQ
ir X-i*-\ QN = ί. (18')

We conjecture that the corresponding function ψ will satisfy the condition (9) and
therefore must be an eigenfunction of the Sutherland operator,

H=— A+4ω2 Σ sin~2ω(xί — Xj),

Hψ = — k2 ψ, but we do not have the complete proof of this fact. Of course the
same remark concerns also the hyperbolic case.

Remark 2. For gα = 2 (α, α) and G = An the operators (2), (3) are equivalent to the
radial parts of the Laplace-Beltrami operators on symmetric spaces of type All in
Cartan's notation [17]. So our results can be interpreted in terms of zonal spherical
functions, for which only integral representations are known. Notice that there
exists only one more such case: when ga = 12 and G = A2 the operators (2), (3) are
equivalent to the radial part of the Laplace-Beltrami operator on symmetric space
of type EIV. For all other symmetric spaces the corresponding ga do not have the
form m(m + l)(α,α) for a natural number m (see [17]).
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4. Examples: ^-Functions for the Lie Algebras of Rank 1 and 2

We begin with the case of G = Ax.

Example 1. In this case we have

0> (JCX - x2).

Introducing the new variable y = xx — x2 one can reduce the problem to the
one-dimensional

n=-jj^+m(m + l)!?{y). (22)

It is the well-known Lame operator and it was shown by Ince that H has in its
spectrum exactly m gaps. The eigenfunction ψ can be expressed by means of
elliptic σ-functions.

In the trigonometric case

H=-d2/dy2 +m{rn + \)ω2ύn-2ωy, (23)

and the ̂ -function can be presented in the form

ψ = (d — mωcotωy) (d — (rn— l)ωcotωy) . . . (d — ωcotωy)exp(k,y)9 d = d/dy.
(24)

For example, for m = 1,

ψ = (k — ω cot ωy) exp (ky).

In the rational case

2 2 Hψ=-k2ψ,

(25)

In all these cases there exists a commuting operator A: [H, A] = 0 of order
2m + 1, which can be found by a general procedure (see for example [2-4]). For
instance when m = 1,

if'(y), where f=&(y), sm~2ωy or y~2.

Example 2. G = A2\ Sutherland operator for three particles (m = 1),

H=-(d2 + d2 + d2) + 4 X sin-2ω(xi-xj).
ί^i<j^3

It can be checked that the function ψ is given by

Ψ = (^12^13^23 - 2 ω cotωx12kί3k23 - . . .

+ 4ω2 cotωx1 2 cotωx1 3^23 + •

— 8ω 3cotωx 1 2 cotωx1 2cotωx23

— 4ω3sin~ 1ωx 1 2 s i n " ^ ^ ^ sin~1ωx23)

x exp(k1 xί + k2x2 + k3x?>), (26)
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(where we omit the terms which differ only by permutation of indices), and
satisfies condition (9) and Hψ = — k2ψ.

As a limiting case we have the formula (16), (19) for the ^-function for the
corresponding Calogero system with three particles.

We conjecture that the ^-function for m > 1 can be presented in a factorized
form as in example 1 (see(25)), where instead of (d — Sx'1) one has to use a
modification of the operator 3)3 (19). The same is possibly true in the
trigonometric case (24), (26).

Example 3. G = B2πC2.

H= -(d\ + dl) + 2ω2ύn~2ωx1+2ω2ήn2

sin"2ω(x1 + x2) + 4ω2sin~2ω(x1 — x2)

Hψ= -k2ψ,

Ψ = [(^i — d2 — 2ω c o t ω ^ ! — x2)) (dt + d2 — 2ω cotω(x1-\-x2))

— 2ω2sin~2ωx1 +2ω 2sin~ 2ωx 2] (^i —cocotωx^) (d2 — ωcotωx2)

or in more explicit form,

Ψ = [(hι — k2) (k1 + k2)kίk2 — ωcotωxίk2(kί + k2) (k1 — k2)

— ωcotωx2k1 (ki + k2) (k1 — k2) — 2ωcotω^i + x2)k1k2(kί — k2)

— 2ω2colω(x1 — x2)k1k2(k1 + k2) + ω2cotωxx coiωx2(kγ + k2) {kγ — k^

+ 2ωcotω q cotω^i + x2) k2(kx — k2) + 2ω2 cotωx2 cotω(x! + x2)

x k1 (kx — k2) + 2ω2 cotωx2 cotω(xx — x2)k1 (k1 + k2)

+ 4ω2cotω(x1 — x2) coiω{x1 + x2)k1k2 — 2ω2>Qθίωxι cotωx2

x cotω^i + x2) (kx — k2) — 2ω3 cotωxx cotωx2 cotω(xγ — x2) (kί + k2)

— 4ω3cotωx1cotω(x1 — x2) colω(x1 + x2)k2 — 4ω3cotωx2

x cotω{x1 — x2) coϊω{x1 + x2)k1

+ Aω4rcotωxιcoiωx2Qθtω{x1 — x1) cotω(x! + x2)

+ 8ω4cotωx1cotωx2sin~1ω(x1H-Λ:2) sm~1ω(x1 — x2)] Qxp(k1x1-\-k2x2).

A formula for ψ in rational case

can be found from the previous one in the limit ω -+ 0. Changing ω -> iω we come
to the hyperbolic case (2').

Example 4. G = G2

The root system is shown in Fig. 1. We realize it in the plane in R 3 , so that

(α, x) = x1-x2, (β,x)=-x1 + 2x2 - x3, (α +β, x) = x2-x3,

(3α + 2β, χ) = χ1 + χ2 — 2x3, (2α +β, x) = x1 — x3, (3oc+β,x) = 2xί — x3
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12 12
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The root system G2 consists of two systems of type A2: G2 = A2vA'2. We
introduce the corresponding operators 3)Al and 2fAi, where 3)M is determined by
(19) and

a + 2β

Now we can write the formula for ψ:

In the trigonometric case the analogous formula can be written.

Remark. It can be shown that the operators in all these examples are "finite gap"
in every energy level in the sense of [7,8]. The corresponding curves are singular
and the divisor 3> is N(Pγ + P2)> where Pγ and P2 are "the infinities" (see [7,8], TV is
the number of positive roots.

Acknowledgements. We would like to thank I. M. Krichever for very useful discussions about the
analytic properties of the ^/-function. One of the authors (A.P. V.) thanks Prof. J. Moser for the
kind hospitality at the Forschungsinstitut fur Mathematik and H. Knόrrer and E. Trubowitz for
stimulating discussions.
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Note added in the proof. Recently H. Knόrrer showed one of the authors (A.P.V.) interesting
papers [29,30], in which some results for the quantum problem (2) and (3) with general
coefficients ga are found. The problem of supercomplete commutative rings is not discussed in
these papers. It would be useful to compare our methods with those of [29,30]; possibly it will help
to prove conjecture 1.
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