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The BRS Method and Geometric Quantization:
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Abstract. We recall the method of quantization of constraints as outlined by
Kostant and Sternberg. We discuss various examples to test compatibility
between geometric quantization and this procedure. In almost all cases
reduction and quantization commute.

0. Introduction

Kostant and Sternberg have proposed in their paper [KS] a very general scheme
to quantize a reduced system by using BRS symmetry. However they make no
choice of a specific quantization method. In this paper we test in some examples
their procedure using geometric quantization.

Although the procedure itself can be stated in quite simple terms, we
nevertheless give a lengthy theoretical survey because it contains a non
trivial-modification of the Dirac quantization of constraints [Dir]. Moreover in
the first part of our paper we point out a series of technical problems which can
be related to the KS method.

Our motivation in dealing with this procedure is to see whether some problems
and difficulties encountered in geometric quantization can be solved in this
way-notably the problems found in the quantization of spin-spin interaction
Hamiltonians and those related to the quantization of the geodesic flow. We should
mention that our examples (and the "theory") treat only the special case in which
the reduction from the original (finite dimensional) phase space to the reduced
one is given by a free action of a Lie group and in which the constrained manifold
is coisotropic (only first class constraints). Our examples do not comply with the
conditions found in Gotay's paper [Got] where sufficient conditions are given for
geometric quantization and reduction to commute. In particular we do not require
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the group to admit a bi-invariant metric nor the action to be a lifted cotangent
action.

The paper is organized as follows:
— I n the first two chapters we give a theoretical background which can be found

in more detail in [KS]. See also [Dub, FHST, HT, Lol, Sta] for a review of the
classical BRS symmetry.

—The next four chapters give different examples. In the first three the reduced
symplectic manifold is T*Sn and we quantize linear momentum and observables
related to the geodesic flow. In the last example we discuss the spin phase space
S2. Especially we (re)consider a problem encountered in the geometric quantization
of the spin-spin interaction (fine structure) Hamiltonian [DET].

— I n the last chapter we discuss the results and make some final remarks.

1. The Classical BRS Symmetry

Let (M, ω) be a symplectic manifold, G a connected Lie group with Lie algebra ^
and let φ: G -> Diff (M) be a symplectic action of G admitting a momentum mapping
lSoxxϊ]Ψ:M^&* (or J^-^C^M) with J(ξ){x) = Ψ{x)(ξ)). We assume that Ψ is
Ad-equivariant, or equivalently that J is a Lie algebra morphism from ^ to the
Poisson algebra (C^iM), { , }). We furthermore assume that the origin Oe^* is
a weakly regular value of Ψ, in particular that the constraint set C = Ψ~1(0) is a
(closed) submanifold of M. Finally we assume that the quotient B = C/G is a
manifold for which the canonical projection π: C -» B is smooth. We then can apply
the Marsden-Weinstein reduction theorem [MW] to affirm that B carries a unique
symplectic structure ωB such that ω\c = π*ωB.

What we are interested in is the relation between the Poisson algebras C™(M)
and C°°(5). Define / as the ideal (with respect to the pointwise multiplicative
structure) of C™(M) generated by the functions J{ξ) with ξe%, i.e. / = J{%).C™{M\
Since Oe^* is (supposed to be) a weakly regular value of Ψ, I can be identified with
those functions on M which vanish on C. By definition of B as C/G, C°°(5) is the
space of functions on C which are invariant under the G-action. Using that G is
connected and J a morphism, we then can make the following identifications:

(1.1)

(1.2)

Again, because J is a morphism, the Poisson bracket (from now on abbreviated
as PB) in ^(M) induces a bracket in the right-hand side of (1.2) which coincides
with the PB in C°°(£) under the identification (1.2). In particular, let/eC°°(M) be
a representative of fBeC^{B) according to (1.2), then the Hamiltonian vector field
of / on (M,ω) is tangent to C and its restriction to C projects down to the
Hamiltonian vector field oΐ fB on (B,ωB).

We can summarize this discussion by saying that, under some regularity
conditions (Oe^* weakly regular value, π smooth) and the assumptions that J be a
morphism and G connected, we can solve a dynamical equation xB = {HB, xB} on
B with initial conditions xB(0) — yB just by choosing representatives H and y in
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for HB and yB according to (1.2) and then solving the dynamical equation
x = {H,x} on M with initial conditions x(0) = y. One might hope to find
representatives for which the corresponding equation on M is easier to solve than
the original one on B.

We now proceed, following closely [KS], to translate the relation (1.2) between
C^iM) and C°°(5) in (co)homological terms. First of all, we consider the vector
space K = Λ$®CCO(M) with the multiplication (ξ®f).(η®g) = ξ Λ η®f .g and
the grading induced by the natural grading of the exterior algebra Λ<&. This turns
K9 which is called the Koszul complex, into a graded super-commutative super
algebra. We then consider the boundary operator δ:K->K defined by

= 0, δ(ξ®f) = l®f.J(ξ) (feC^(M) ξen (1.3)

δ(k.k') = δ(k).k' + ( - l)degik)k.δ(kf) (k,k'eK). (1.4)

In this way, δ is a super-derivation of degree — 1 and one easily verifies that δ2 = 0.
Hence we can define the homology groups Hq(K) = ker (<))7im (δ)q and especially

H0(K) = (1® C°°(M))/(1 ® J(&).C°{M)) * C°(M)/I £ C^C). (1.5)

In order to obtain C°°(JB) in a cohomological way, we need some basic definitions.
Let £ be a ̂ -module, i.e. a vector space with a Lie algebra morphism p: ̂  -• End (£).
The cohomology i/*(^, E) of ̂  with values in E is then defined as follows. Consider
the vector space L = Λ^* ® E with the natural grading of Λ^* and choose a basis
{ξu ξ2,"-> ζn} f° r ^ with its dual basis {α1, α 2 , . . . , αw} for ̂ * . Define the coboundary
operator d:L-+L by

d(μ(x)/c) = ̂ (x)/c + (-l) d e g (^ )ΣμΛα /(x)p(^)/c, (1.6)

where dμ is the exterior derivative of μeΛ^* (seen as an invariant form on the
group G), or defined in an algebraic way by

^ Λ O * , Λ = 0, (1.7)

d(μ Λ/ί') = dμΛ/ί' + ( - l)d e 8 ( μ )μ Λ dμ' (1.8)

with [ξj9 ξk~] = Σ Cι

jkξι. It is elementary to verify that d2 = 0 and that d raises the
i

degree by 1. Hence we can consider the cohomology groups Hq(^, E) = ker (d)q/im (d)q

and in particular

H°(&, E) = ker (d)° = f] ker (p(ξ)) = ̂ -invariants of E. (1.9)

To apply this construction to K and H0(K), they have to be ̂ -modules. We define
the representation p of ̂  on K by

= 1 ® {./(&/}, (1.10)

®{J(ί),/} (feC°°(M);ξ,ηen
p(ξ)(k.k') = (p(ξ)k).kf + /c.p(ξ)/c' (fe, fe'eK). (1.11)
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In this way K becomes a ^-module, and since J is a morphism, the action ρ(ξ)
commutes with <5, hence H0(K) inherits in a natural way a ^-module structure. In
particular

H°{%, H0(K)) = ^-invariants of H0(K)

£ ^-invariants of C™{C) ̂  C°°(£). (1.12)

Now the theory of spectral sequences tells us that under certain circumstances
one can obtain H0(&,H0(K)) as a single cohomology space from the complex
L = Λ%*®K = Λ<$*®Λ<g®C™(M) = XΛ p 9*®A q <§®C^M). On this complex

p,q

with the double grading (/?, q) the two operators d and 1 ® δ commute because δ
commutes with all p(ξ). Then define the operator D on L by * D = d -f 2( — l)p(l ® δ%
i.e.

(1.13)

If we reshuffle the double grading (/?, q) of L to

L = Σ L ' = Σ Σ Λpg*®Λqg®Cco(M\ (1.14)

then D raises the "total degree" t (ghost number) by 1 and moreover, it is easy to
show that D2 = 0. With respect to this total degree one then has the cohomology
groups Hι

D(L) = ker (Df/im (£>)' and the proof of the following proposition
concerning the relation between the (co)homology of d, δ and D is an elementary
exercise in diagram chasing.

(1.15) Proposition. //Hq{K) = 0for allq>0 then

C"(B) * H°{9, H0(K)) * H°D(L) (1.16)

the identification Hl(L)^C°°(B) being given by [A~] -* [yl ( 0 '0 )], where Aeker(D)° is
a representative of the class \_A~]eH°D{L\ ^ ( 0 ' 0 ) its component in Λ0(g*®Λ0g®Cco(M) ^
1 0 1 ® C™{M) and [^l(0'0)] the element in C°°(J5) according to formula (1.2).

Remark. This proposition gives us C°°(#) as a single cohomology group of the
complex L. It should be noted that if 0 e ^ * is a regular value, not only a weakly
regular value (i.e. dJ(ξ1) Λ Λ dJ(ξn) ^ O o n C c M , where {ξl9...,ξn} is a basis
of ^ ) , then a partition of unity argument together with some algebraic
considerations show that the condition of the proposition is satisfied. Hence in
the regular case the identification C°°(5) £ H°D{L) is valid. We refer the interested
reader to [Dub, FHST, HT, Sta] to see what can be done if the condition of the
proposition is not satisfied.

1 The factor 2 in the definition of D is purely conventional and has no particular significance for the
present discussion
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The next step in the KS program is to equip L = Λ<$* ®AS® C^iM) with the
structure of a (super) Poisson algebra in which D and the "total degree" can be
represented as taking PB's with elements (9, TdeL. First of all one identifies
AS* ® AS with Λ(<S* © <S) as vector spaces in the most natural way: α ® ξ = α Λ ξ,
together with the canonical injections ^ ( * } -• a = Ή* © ̂ . Next we can turn Aa,
with its natural grading in a super Poisson algebra as follows. Its super commutative
product is the wedge product in Aa and the super PB is defined on generators by

{1,1} = {l,α'} = {l,ξj = {αV} = {ξhξj}=0, (1.17)

{zί,ξj} = 2δi

j9 (1.18)

where {<x1,...,oin,ξu...,ξn} is a basis of ^ = ^ * © ^ , and by the fact that it is
compatible with the super commutative product structure, i.e.

{A9B} = (- l ) 1 + d e «ω de«W{Jϊ,4}, (1.19)

{A9{B9B
f}} = {{A9B}9B

r} + ( - l ) d e g ( ^ d e 8 ( β ){5,{^F}}, (1.20)

μ , 5 Λ B1} = {A,B} A Bf + ( - l ) d e g μ ) d e g ( β ) β Λ {A,Bf}. (1.21)

Having defined a super PB on Λ», one can define a super Poisson bracket on L by

}, (1.22)

where {f,g} is the PB in C°°(M). This, together with the "usual" product
(A®f).(B®g) = A ΛB®f.g, makes L a super Poisson algebra. Finally we define
the elements <9, TdeL by

® = - - Σ cijk^ Λ αfe Λ ^ ® 1 + X α̂  ® J(6), (1.23)
4

Γί/ = j Σ α i Λ ^ ® l , (1.24)

where the Cj7c's are the structure constants of ^ relative to the basis {ξj and where
1 represents the constant function: 1 on M. Using the adjoint representation of L
on itself given by ad(α)(b) = {α,fe}, we can state the following theorem whose proof
can be found in [KS].

Theorem.

i) Center(L)^l®RcA 0 a®C™{M\
ii) ad(β) = A

iii) aeL has total degree t iff ad (Td){a) = ta. (1.25)

Corollary 1.

ad(Θ)2 = 0 and {Θ,Θ} = 0. (1.26)

Corollary 2.

H°D(L) = (ker ad (Td) n ker ad (Θ ))/(ker ad (Γd) n im ad (Θ)) (1.27)
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and H°D(L) inherits a [super) PBfrom L. Moreover, if the conditions of the proposition

are satisfied, then this induced PB coincides with the PB of C 0 0 ^) .

Corollary 2 motivates in retrospect this whole reformulation of formula (1.2)
which gives a relation between C^iM), & and C™(B). In fact, this corollary tells
us that all information of the Poisson algebra C°°(5) is contained in the super
Poisson algebra L and that their relation can be expressed purely in mechanical
terms. More precisely, C°°(£) is the subalgebra of Lconsisting of those Hamiltonians
H for which Θ and Td are conserved quantities, i.e. {Θ,H} = {Td,H} = 0, all
modulo trivial elements of the form {(9, L}.

Remark. In the beginning we assumed that Ψ is Ad-equivariant, although this is
not always needed. Associated to a general momentum mapping Ψ is an affine
action of G on ^* [Soul]. If we denote by ^ 0 the Lie algebra of the stabilizer
subgroup Go of 0e^* for this action, then by replacing G (respectively ^)-invariance
by Go (respectively ^0)-invariance, the cohomological construction remains valid,
in particular C°°(5) = {feC™{M)\Vξe<$0:{J{ξ\f}eI}II * H°($0,H0(K)) *
H°D(A^®A(^®C"O{M)). However, as soon as one wants to introduce Poisson
brackets the construction breaks down if ^ 0 φ <$. Depending upon the context,
the condition ^ 0 = ̂  is formulated as "Ψ is ad-equivariant," " C = Ψ~X{Q) is
coisotropic" or "the constraints J(ξ) are all first class."

Remark. If Ψ is any momentum mapping and μe^* a weakly regular value of Ψ,
then Ψ' = Ψ — μ is a momentum mapping for which 0e^* is weakly regular. If
Ψ is Ad-equivariant, then Ψ' is Ad-equivariant iffμ([^,^]) = 0.

2. BRS Quantization

In this section we consider the quantization of the (super) Poisson algebras C0 0^)
and L. Usually one means by quantization of a symplectic manifold (M, ώ) a linear
map τ 0 from some subspace of the Poisson algebra C^iM) to (skew) self-adjoint
operators on a Hubert space Jf M which is as far as possible a Lie algebra
morphism2 τo({/,#}) = [τo(/),τo(^)]. We have to say "as far as possible" because
the fact that τ 0 should be a morphism conflicts with an irreducibility condition
one usually imposes. Finally one requires that the function constant 1 on M should
be mapped to (i/h) times the identity operator 1. In our case we have a super
Poisson algebra L, so it is natural to require that a quantization of L is a linear
map τ from some subspace of L to (skew) self-adjoint operators on some Hubert
space Jf L which is as far as possible a super Lie algebra morphism.

The general idea to find a quantization of C°°(£), i.e. the Poisson algebra of
the reduced space, is the following. Assuming that the condition of Proposition
(1.15) is satisfied, C°°(β) is given by formulas (1.16) and (1.27) with the induced
PB, and one defines the quantization of the reduced problem by a quantized

2 This approach differs by a factor 1/ι/i from the usual approach in order to obtain a normal Lie algebra
morphism
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version of this formula

^red = (kerτ(Γd)nker τ(<9))/(ker τ(7W)nimτ(<9)), (2.1)

τ r e d([i/]) = the operator on Jf r e d induced by τ(H% (2.2)

where HeLis any representative of the class [H~\eH°D(L) representing an observable
HBGCCO(B) according to formulas (1.16) and (1.27). If τ is a super Lie algebra
morphism for the observables involved, then it is not hard to show the following:

τ(<9)2 = 0, (2.3)

({Θ, Θ } = 0 and on odd-degree elements use the anti-commutator)

(2.4)

H = {<9, /}&{Td, H} = 0 =>τ(i/)(ker τ(Td)nker τ(Θ)) c ker τ(Td) n im τ(6>),
(2.5)

and these facts prove that P^ r e d ,τ r e d ) is a well defined quantization of
C°°(£)-modulo the fact that τ should be a morphism.

We now give the KS approach to the quantization of L, while we will point
out in due course the remaining open problems. The vector space a = ̂ * © ̂  has
a natural symmetric bilinear form < , > defined by

= <{,£'> = 0 ( o c α ' ε ^ &f 'e*) . (2.6)

With this non-degenerate bilinear form one can construct the Clifford algebra C(^)
and there is an isomorphism of vector spaces ψ:C(a)^>Λa defined by3

^ (α 1 Λα 2 Λ Λflk) = fl[l fl2 flfc] (ajEa). (2.7)

If we equip C(^) with the super commutator, it becomes a super Poisson algebra
and, moreover, φ becomes to some extent a super Poisson algebra morphism.
More precisely

Va,foE^:min(deg(4deg(fo))^2^^-H{«,fo}) = [^-V)^" 1 (fc)] s u p e r . (2.8)

Inside C{a) one can consider the ideal N generated by &, i.e. N = C(a).y. The
quotient C(a)/N can be canonically identified with Λ&*9 which then becomes a
C(^)-module. In this identification, the action of C(a) on Λ^* is defined by

= 2ί(ξ)A, (ae%*,ξeg,AeΛg*l (2.9)

where ί(ξ)A denotes the contraction of the form A with the vector ξ.
The idea given in [KS] is that one should quantize L as operators on

^ L = (Λ^*)C® JfM, where τ 0 :C°°(M)-> End (^fM) is an "ordinary" quantization
of C°°(M). In fact, with the above construction, we have φ~γ\Λa->End((/l^*)c) c
End(JfL) and in the same way τ 0 :C°°(M)-> End (^fL). Unfortunately there is in
general no hope that the combination ^ " 1 ( χ ) τ 0 : L ^ E n d ( J f L ) is a quantization,
due to the fact that the PB on L depends upon (super) commutative structures

The square brackets denote skew-symmetrization
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(see formula (1.22)!), a structure which is present neither in End((/l^*)c) nor in

In order to make fflL a Hubert space for a quantization of L, we need an inner
product on (Λ^*) c. In [KS, Sect. 11] it is shown that there exists a unique (up to
a real factor) non-singular sesquilinear form < , > on (/l^*) c with the property
that the adjoint of the operator a1'a2"-'CikeC(a) on (Λ^*) c (with a^a) is given
by CLk-ak_ x av In the finite dimensional case it is easy to give an explicit formula
for such a form. One starts by choosing a non-zero element vole/1"^* c (Λ"^*)c,
where n — dim (^) and one defines an involution 'f on (Λ^*) c by

-ΛOί 1 (λeC, <xje$*). (2.10)

With this definition one defines the sesquilinear form < , > by

7 ^ ^ (A9Be(Λ9*)c), (2.11)(A^Byi
vol

where πn(Af Λ B) is the component of Af A B in
With these preparations, the elements Θ and Td and only these are quantized

in [KS] by the following operators:

and

^ Σ ^ ( 1 Q Σ ί ) ^ ) l . (2.13)

I f τ 0 : C 0 0 ( M ) - > E n d ( ^ ¥ ) i s a m o r p h i s m o n t h e J ( £ ) ' s , i . e . [ o ^ o

τo({J(ξj), J(ζk)}) = ΣCljkτo(J(ζi))> then this τ(Θ) has the following properties:
i

i) τ((9) is skew self-adjoint,
ii) τ(Θ)2 = 0,

iii) [τ(<9), τ(Γd)] = τ(Θ). (2.14)

Since the eigenspaces of τ(Td) are exactly the spaces (Λfe^*)c(χ) JfM,kerτ(Trf) is
isomorphic (as vector space) to f̂M and formula (2.1) gives

(2.15)

This seems a very nice result, but some questions must be raised.

—First, τ(Td) is not skew self-adjoint, so τ(Td) does not fit our general ideas

on quantization. One might notice that ^"M £ V Λ <̂  j(x) 1 is skew self-adjoint,

but using this operator for τ(Td) poses another problem: its spectrum is
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{ — (n/2),...,(n/2)} which does not contain 0 for odd n; this would imply that

^red = ί°} f o r odd-dimensional ^ .

—Second, the T O ( J ( ^ ) ) ' S are skew self-adjoint (otherwise τ(<9) 2/0) and the

structure constants are real, so Jfrcd = {0} if £ Cj

n φ 0 for some I See however

example 3. j

—Third, the natural scalar product on J f r e d induced by the scalar product of

J f L is identically zero I this explains why the skew self-adjoint operator

Λ ξι J(x)l can have real eigenvalues I and hence does not coincide with
J J

the inner product induced by J f M .
Apart from these questions, we do not have a general quantization τ for L, so

how should we quantize i/eker ad (Td) n ker ad (6>), a result we need in our formula
(2.2) for τ red([H])? If we assume that there exists a function HoeC™(M) which is
globally invariant under the G-action and which induces [fί] ^/fβeC°°(2?), then
[ 1 ® H O ] = [H] in H°D{L). One then might "guess" that τ(l®H0)= 1 ®τo(Ho).
However, since we do not have a general τ, it remains to show that this τ(l®H0)
induces a well-defined operator on ffl r e d . A sufficient condition for this to be the
case is that τo(Ho) commutes with τo(J(^)).

This finishes our discussion of the [KS] approach to BRS-quantization. To
summarize, modulo some natural assumptions which are not motivated by this
theory, the quantization of the constrained system C 0 0 ^) via a quantization of

is given by the following

BRS-KS Quantization Procedure.

1. Quantize the constrained functions J(ξ) by τo(J(ξ)) on J f M and hope that τ 0

is a morphism on the <f s in ^ .
2. Define ^ r e d = {/eJf M\Vξe%:τo(J(ξ))f = - £Tr(ad(£))/} with an inner product
induced by #fM (if it exists).
3. To quantize HBeC°°(B)9 find if possible a globally G-invariant representative
//oeC°°(M); quantize Ho by τo(Ho) on J f M and hope that τo(Ho) commutes with
τo(J(ξ)) (\fξen

4. Define τ red(HJI) =

In the next sections we will see how this procedure works in practice. We will
use the geometric quantization procedure to provide the quantization τ 0 for ^(M)
and also to provide a direct quantization τβ:C

00(2?)->End(Jlfβ) which can be
compared with the BRS-quantization ( ^ r e d , τ r e d).

3. The Geodesic Flow and Boosts On Spheres

Reduction by Dilations. The cotangent bundle B= T*S" with canonical 1-form ΘB

can be viewed as a R*-reduction for the symplectic manifold (M,ω), where
M = T * ( R " + 1\{0}), ω = dθ and 0 = <P,dβ>. We denote by < , > the standard
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Euclidean metric of Rw + 1 and by || || the induced norm. The group R* of dilations4

acts symplectically on (M,ω) according to (P, β)-• (P/α, βα) (aeR*_) and the
associated momentum mapping Ψ.M^R reads

) = <P,β>. (3.1)

The 2 n + 1 dimensional submanifold C = Ψ~1(0) is the coisotropic constrained
manifold we are interested in. Note that 0 is a regular value of Ψ. We have

B = C/R* £ T*Sn (3.2)

and the projection C-+B is given by (P,Q)->(p9q) = {P\\Q\lQ/\\Q\\) where we
have identified T*S" with {(p ?^)eT*R"+ 1 | | | 9 | | = 1, {p,q) = 0}. The Marsden-
Weinstein reduction theorem then tells us that B is endowed with a symplectic
structure: here, the canonical one since the induced 1-form θ\c descends to B as

Geodesic Flow and Boosts. There are two Hamiltonians we would like to quantize
as a first test of the method of Kostant and Sternberg, namely hx = ^ | | p | | 2 (the
kinetic energy of a free particle moving on a sphere) and h2 = (p,β} (the projection
of the linear momentum in the direction of βeRn+1). These two functions in C°°(J5)
can be represented by the following globally R*-invariant functions in C

H2 = \\Q\\(PJ). (3.3)

The geodesic flow on T*SΠ corresponds to the projection of the Hamiltonian flow
of H1 restricted to the constrained manifold C. See [Mos2] for a discussion of
other choices of Hamiltonians. The flow of H1 is given explicitly by

(3.4)

where Ω = Vl l^PllGII 2 - < Λ β > 2 Let us emphasize that Hι can be interpreted
as the kinetic energy corresponding to the geodesic flow on the configuration space
Rπ+1\{0} endowed with the conformally flat metric | | β | | ~ 2 < > >• As for the
so-called boost-Hamiltonian /i2, we will show in Sect. 5 that it is indeed related
to a Lorentz boost in the orthogonal group O(n + 1,1).

Prequantization and Polarizations. We briefly introduce the main ingredients that
we need to quantize observables in the framework of geometric quantization [Soul,
Kos, Sni, Woo]. Our symplectic manifold is a cotangent bundle, hence
prequantization is trivial: the prequantum bundle over (M, ω) is the circle-bundle
M x (7(1) with connection form α = θ + (dz/iz) (ze U(l)). We assume n > 1 (M simply
connected) to insure uniqueness of prequantization. In order to undertake the
program of geometric quantization, we have to choose a polarization F of our

4 A subgroup of S1(2,R)—see below
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symplectic manifold. The most natural choice at hand is the vertical polarization
of contangent bundles: β = const. Associated to this choice, we have a natural
Hubert space structure given by the square integrable half-densities of the
configuration space M/F = Rπ+1\{0}. This Hubert space J^M can identified with
L2(R" + 1,dβ), where " d β " is the Lebesgue measure. The inner product of JfM is

given by <f,g> = Sf(Q)g(Q)dQ

Quantum Reduction by Dilations. Since R* preserves the polarization F, the
momentum mapping Ψ can be quantized directly without the Blattner-Kostant-
Sternberg (BKS) pairing procedure [Blal, GS]. The operator τ(Ψ) is thus merely
given by the generator of the natural unitary representation of R* on

^ M : / # - > α * / # (αeR*), wheref# = f®^\dQl hence

^ ^ (3.5)
oQ 2

The quantum constraint τ( Ψ)f = 0 thus implies

/(β)=ιιeιr<"+ 1 ) / 2/(j~l) (3.6)

with / a function on Sn. If we now (arbitrarily) endow functions on Sn with the
standard inner product given by the SO(n + l)-invariant measure on Sn, we are
able to identify the reduced Hubert space Jtred with L2(S"). Now L2(Sn) is exactly the
Hubert space we would have obtained by quantizing B = T*Sn directly using the
vertical polarization, i.e. we have found an identification J^B^L2(Sn). There is
only one problem: if we start with functions/eL2(Rn + 1) then Jfreά = {0} because
for any non-zero element feL2(Sn) the function / given by (3.6) is not in L2(R" + 1).
In order to get the desired result, we have first to enlarge L2(RW + 1) to all functions
(in other examples even to distributions) on RM + 1, then to apply the quantum
constraint (3.5) and finally restricting to L2 functions (but now on a different
measure space). Obviously we will do this and we will identify ^fred on the one
hand as a subspace of L2(RM+^-enlarged and on the other hand with L2{Sn).

BRS-Quantization of Hι and H2. Unfortunately the Hamiltonian H1 does not
preserve the polarization F and this leads us to consider the Hubert space 2tft

associated with the image Ft of the original (vertical) polarization F under the
flow of Hv The BKS pairing of ^f M = Jft = 0 and JίPt is given by

<9>ft>*o.*t = (2πΓ{n+1)/2 f e~itH^g(Q)f(Qt)K(P,β,ήdPdQ,
M

where X(P,β,ί) = ^<p'Q>(M + 1 ) / 2 | | β | | π + 1 ί | s in( ί2 ί )/ ί2 | ( "- 1 ) / 2 and "dPdQ" is the
Liouville measure.

The method of the stationary phase leads to: {d,ft}^Orjtt

 = (9>f + ί τ (^ i )/) j f M

+ o(t) and the quantized anti self-adjoint Hamiltonian reads

} (3.7)
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The Hamiltonian H2 is linear in momentum, it thus leaves the vertical
polarization invariant and can be quantized directly and

ΛH2)f(Q) =\\Q\\β'—+ /(0- (3.8)

Now τ(H^) and τ(H2) commute with the quantum constraint (3.5), so they induce
well defined operators on jf r e d ^ L2(Sn). Expanding ΔRn+1 in its radial and spherical
parts, we find the induced operators:

l
 { * J (3.9)

where R = n(n — 1) is the scalar curvature of Sn and

τrjh2)f(q) = (β~ q<q,β»-y-- ^<€. /*>/(«)• (3-10)

Discussion. Had we quantized /zx and h2 by applying the methods of geometric
quantization directly on Γ*5" (using the vertical polarization and the identification
3/tred = 2tfB as described above), we would have got exactly the same result.

Note that quantization of hί is nothing but a special case of a general result
known as the quantization of the geodesic flow of Riemannian manifolds [Elh, Sni].
In fact the same is true for the calculation to obtain (3.7) if we endow Rw+1\{0}
with the modified metric | |β | |~ 2 < > > (see above).

To summarize: with the choice of the vertical polarization for M and B,
quantization and reduction do commute.

Remarks. We could have chosen a different polarization on M, e.g. the
anti-holomorphic polarization which realizes 3tfM as holomorphic functions on
C" + 1 with a Gaussian measure: the Bargmann representation. Quantizing H1 and
the constraint Ψ with this polarization and using the standard isomorphism
between the Schrodinger and Bargmann representation, we find the same result
for τ( Ψ), but a different one for T ^ ) . In fact, the operator induced on JίPred ̂  L2(Sn)
is given by.

l^ ^ j / (3.11)

which is different from our previous result.
If we had used Weyl quantization on T*(Rw + 1\{0}) instead of geometric

quantization, we would have got yet another result

4. The Kepler Manifold or the Null Geodesies of Compactified Minkowski
Space-time

Introduction. We wish to illustrate now the case of a symplectic reduction with
S/(2,R). The example we will be dealing with is related to the Kepler manifold
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TS3 of "regularized" planetary motion5 corresponding to the negative energy orbits
in the Newtonian gravitational field [Mosl,Sou2].

The manifold we are interested in is the cone B of those μ Φ 0 in the dual of
the Lie algebra o(4,2) that are nilpotent: μ2 = 0 (see [Sou2]). It turns out that B is
a co-adjoint orbit of the Lie group 0(4,2) that consists of two copies of the Kepler
manifold

B = B+vB_, B±^TS3. (4.1)

The "neutral" component B+ is endowed with the canonical 1-form and £_
(obtained by the symmetry μ-> — μ) with the opposite 1-form: ΘB± = ± (p,dq}. We
denote by < , > the Euclidean scalar product in R4. Generalization to 0(n + 1,2)
is straightforward: B± ^ TSn.

We will construct the symplectic manifold (B,ωB) by means of the
Marsden-Weinstein reduction with G = 5/(2, R) that will make a clear connection
with the description of (spinless and) massless particles living in Minkowski
space-time, more precisely in its conformal compactification SnΛ = (Sn x Sί)/Z2.

Symplectic Reduction. We start with RM + 3 which we endow with the metric
g = diag(l, 1,..., 1, - 1, - 1) and use R" + U2 as a shorthand for (Rw + 3,#). With this
metric we identify TRM + 1 ' 2 with T*R" + 1 ' 2 and define M = {(PQ)eTRn+ί2\
P Λ Q #0} endowed with the canonical symplectic form inherited from that of
Γ*R"+ 1 ' 2 . On M we define the 1-form θ =\/2{P.dQ-dP.Q\ where V=g(V9 )
denotes the covector associated to the vector V by the metric g. Note that ω = dθ
and that 5/(2, R) acts symplectically on (M, ω) according to

) (ad-bc=l). (4.2)

This right-action moreover preserves θ and hence [Soul] gives rise to a momentum

mapping Ψ:M^>sl(2,R)* that reads

There exists another obvious group of symplectomorphisms of (M, ω), namely
O(n +1,2) whose left-action reads

(PQ)^(AP ΛQ) (AεO(n+1,2)). (4.4)

The associated momentum mapping Φ:M^o(n + 1,2)* is given by

Φ(P,Q) = P.Q-Q.P. (4.5)

Note that in both (4.3) and (4.5) we have identified the Lie algebra with its dual
using the scalar product (ξ,ηy=%Tτ(ξ.η) on the Lie algebra. The actions of
5/(2, R) and O(n+ 1,2) commute (dual pairs) and Φ(M) is the cone of rank 2
matrices in o(n +1,2). The origin 0es/(2,R) is clearly a regular value for Ψ.

The constrained manifold to consider next is the In + 3 dimensional smooth

TQ is the tangent bundle of Q with the zero section deleted
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submanifold C= Ψ'x(0) defined by the equations [GS],

P.P = ρ.ρ = P.ρ = o (4.6)

which turns out to have two connected components: C = C + u C _ characterized by

0 °n C + (4.7)

l 0 on C_
/0 0 0 \

where T = 0 0 — 1 is a SO(2)-generator in o(n + 1,2). The reduced symplectic

U 1 θ)
manifold

B = C/Sl(2,R) (4.8)

is nothing but the co-adjoint orbit of O(n + 1,2),

£=φ(<p-i(0)). (4.9)

We find B = B+uB_ with β ± = Φ ( C ± ) ^ TSn. Moreover the 1-form θ\c passes
to the quotient as the 1-form ΘB given above.

Remarks. In the case n = 3, (B+,ω+) is symplectomorphic to the space of
regularized bounded Keplerian motions [Sou2]. The fact that 0(4,2) is indeed a
group of symplectomorphisms is the geometrical manifestation of an accidental
symmetry of the model. The famous 0(4) sub-symmetry was originally discovered
by Pauli in a quantum mechanical context; it is responsible for the high degeneracy
of the spectrum of the hydrogen atom.

—The orbit (B,ω) is symplectomorphic to the space of motions of a massless
(and spinless) particle in the conformally compactified Minkowski space-time SnΛ.
To justify our claim, we recall the fibration C -• S"1 :(PQ) -> Q mod R* which factors
through the null tangent bundle C-> T0S

nΛ -+SnΛ because T0S
nΛ ^ C/S, where S

is the 2-dimensional solvable subgroup of lower triangular matrices in G = S/(2, R).
Our orbit B = C/G is clearly symplectomorphic to T0S

M'VPi(R), that is to the
space of null geodesies of SnΛ, i.e. the space of motions of a massless scalar particle
dwelling in the conformally compactified Minkowski space-time. Here time is
compact: P1(R)^G/ ίS and the two components B+ correspond to the positive
(p > 0) respectively negative (p < 0) energy classical states of that particle. The
specific O(n+ 1,2) space-time conformal symmetry of the problem is obviously
recovered as a group of symplectomorphisms of the space of motions.

BRS-Quantization of the "Energy" p. As in the previous example we use the vertical
polarization (Q = const.) and identify the Hubert space of square integrable
half-densities on R" + 1 ' 2 with L2(Rπ + 1 '2,dβ). Quantization of the constraint
functions is fairly straightforward and we find:

(4.10)

τ(P.β)/(β) = QJt + ̂ / ( β ) , (4.H)
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τ(P.P)f(Q)=-iΔf(Q% (4.12)

where A is the Laplace-Beltrami operator of R M + 1 ' 2 . Conspicuously τ realizes a
homomorphism from s/(2,R) to the skew self-adjoints of L2(R" + 1 ' 2 ) ; it is derived
from the metaplectic representation restricted to the double covering of S7(2, R)
viewed as a subgroup of the metaplectic group. Using the following parametrization
ofR" + 1'2\{0},

sint

eR"+ 1xR2\{0}

ReR*

xeRn + 1 (4.13)

ίe[0,2π)

one can cast the quantum constraints into the form

,t) = 0, (4.14)

9 t ) = 09 (4.15)
2

Σ ψk - xjx%dkf - RdRf + Σ xJdj(2RδRf - f) - R2δ2

Rf - d?f = 0, (4.16)

where dj = df/dxj for j = 1 n + 1.
Writing x = ru (reR+, ueSn) we find that the conditions (4.14) and (4.15) imply

that / is a distribution of the form f(R,x, t) = R~(n + 3)/2δ(r - l)/(w, t). The form is
compatible with condition (4.16) which forces/to satisfy the PDE

; M ) = 0 (4.17)

interpreted as the "conformally invariant" wave equation [ΔsnχSl —((n — l)/4ή)R']f = 0
for massless particles (R = n(n — 1) is the scalar curvature of Sn x S1).

Unfortunately enough the solutions of this equation reduce to zero for n even
(the reduced Hubert space is trivial in this case). Nevertheless, if n is odd, one
easily checks that the solutions of (4.17) are of the form / = /+ + / _ with

f± (M) = Σ e ± ίtEkf± (u), (4.18)
keN

where the /fe

±5s are eigenfunctions of Δsn with eigenvalues — k(k + n — 1) and

Ek = k + n——, kεN. (4.19)

The reduced Hubert space thus splits as ^ r e d = ̂ r t d ® ̂ ^d a n c ^ e a c ^ subspace

J f ±d can be identified with L2(Sn) ^ ^ ® Cd{nΛ) if we drop the ί-dependence in (4.18).
feeN

The degeneracy is given by d(k, n) = \ ) — I ). Direct quantization

\ k J \ fc-2 /
of B with the vertical polarization on each component TSn would have given
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JfB = L2(Sn)0L2(Sn).TheHamiltonianh = ||p\\ oΐBadmitsanaturalrepresentative
in C™(M\ namely the SO(2) momentum mapping H = p = P.T.Q which is clearly
Sl(2, R)-invariant. The vertical polarization being O(n + l,2)-invariant, we readily
find the operator

^ (4.20)

or, in the chosen coordinate system τ(p)/ = df/dt, and thus if n is odd

(4.21)

because of (4.18) and (4.19). In doing so we recover (only in the case n odd) the
same spectrum and the same multiplicities as those found by Rawnsley [Raw]
who used the canonical Kahler polarization of TSn viewed as a complex null
cone in CM + 1.

Remark. Our procedure breaks down in the case n even because the energy is
necessarily integral in the previous Fourier decomposition. This drawback of the
quantum reduction still remains to be well understood. On the other hand, there
exists an obstruction to the pairing [Bla2] between the vertical polarization of
TSn and its images under the Hamiltonian flow of h= \\p\\. Hence, in this case,
direct quantization of h on the reduced symplectic manifold turns out to be
intractable.

5. Reduction by a Non-Unimodular Group

Classical Reduction. The cotangent bundle B = T*Sn can also be obtained by a
Marsden-Weinstein reduction from M = T(RW + l5l\{0}) by the neutral component
So of the subgroup S of lower triangular matrices of G = S7(2,R); 5 0 is a Borel
subgroup of G. We denote by o the Lie algebra of S. As a subgroup of 5/(2, R),
the non-unimodular group So acts symplectically on (M, ω) according to

) ( α G R , f c 6 ) , (5.1)
1/aJ

and the associated momentum mapping Ψ.M^ό* reads

(5.2)

where V is the co vector associated to the vector V by the standard Lorentz metric
0 = diag(l,...,l, — 1) of Rn + 1 > 1. As in Sect. 4 the canonical symplectic form on

Γ R»+i.i i s g i v e n o n τ (R" + 1 1\{0}) by ω = dθ with θ = #P.dQ -dP.Q).

The MW reduced symplectic manifold B = C/So with C = Ψ~\0) turns out to
be

(5.3)
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two copies of the (co)tangent bundle to the celestial sphere6 Sn with it canonical
symplectic structure. We note that 0 is a regular value of Ψ.

The Lorentz group O(n + 1,1) acts symplectically on (M,ω) and the associated
momentum mapping Φ:M-*o(n + 1,1)* is given by

Φ(P,Q) = P.Q-Q.P. (5.4)

In particular, the Hamiltonian of a boost is H = P.Λ.Q, where Λ = [

o(n + 1,1) represents the generator of the boost βeRn+1. Since the group action
commutes with So, this function H descends to B as h2 = (p,β}—see Sect. 3. This
can be seen with the help of the following parametrization of M:

Γ KeR*

(5.5)

2 = 1

(5.6)

Q = R(qr

lr i Λ ^ . + i

and thus θ\c = (p,dq} descends to the reduced manifolds B = B+vB- (see (5.3)),
the sign + corresponding to sign (R).

Quantum Reduction. Again, we use the vertical polarization, and since all
observables we want to quantize are at most linear in momentum, we can quantize
them directly without using the BKS pairing and get

Q)f(Q) = R^+"~^f(Q)> ( 5 7 )

(5.8)

(βq(q,β)).f. (5.9)
r dq

In this case the reduced Hubert space is given by the equations (see (2.15))

τ(P.Q)f(Q)=-f(Ql (5.10)

(5.11)

In the right-hand side of Eq. (5.10) we recognize the term — ^Tr(ad(^)), where
/I 0\

ξ1 = I I is the Lie algebra generator of dilations in o.

By using the same technique as in the previous section, we find that the reduced
Hubert space associated with each component (distinguished by sign (R)) of the

6 The projective null cone in Minkowski space-time ]
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reduced symplectic manifold (B, ωB) consists of (generalized) functions of the form

r- l)f(q) (/eL2(S«)). (5.12)

We thus get an identification Jf red ^ J^B £ L2(Sn) © L2(Sn). For the quantization of
the boost Hamiltonian h2 = <p,β>, we find the induced operator

i<<l,βmci\ (5.13)
oq 2

which corresponds exactly to the one we obtained by direct quantization on Γ*Sn

(see Sect. 3).

Discussion. We explicitly need the correction " — \ Tr ad" in order to get the correct
answer and to insure that quantization and reduction commute. This constitutes
the first example known to us of a non-trivial application of the BRS-KS
method applied to constrained Hamiltonian systems (see [Tuy2] for other
examples).

6. The Spin

Introduction. The idea is now to handle the spin phase space (B,ωB) — (S2,s.Surf)
by means of a MW symplectic reduction with group U(l). Here 5 is a strictly
positive real constant to be interpreted as the classical scalar spin [Soul] and
"Surf" denote the Riemannian surface element of the unit sphere S2 <= R3. To
this end we consider the "extended" manifold M = C2\{0} endowed with the
symplectic 2-form7 ω = dθ, where θ = l/2i(Z.dZ - dZ.Z). The bar " — " stands for
transposition plus complex conjugation. It is clear that (7(1) acts symplectically
on (M,ω) according to Z->Z.e1^. This action is Hamiltonian and an associated
momentum mapping Ψs:M->R^u(l)* is given by

Ψs(Z) = Z.Z-2s. (6.1)

The constrained manifold of given (classical) spin Cs:= Ψ~ 1(0) is diffeomorphic

to the 3-sρhere of radius Λ/2s and the MW reduced manifold

(6.2)

is the space of classical stationary states of spin s = const, with symplectic 2-form
ω β = s.Surf. The projection C s ->S 2 :Z-»u is given explicitly by

Z Z
() 2 1σ(u) 2 ^ 1 ,

Z.Z

where — ΐσ:R3 -> su(2) is the Lie algebra isomorphism realized by the Pauli matrices.

Prequantizatίon. Again, prequantization of (M,ω) is readily achieved with the
trivial principal bundle P = M x U(l) endowed with the connection 1-from

Twice the standard one!
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<χ = θ + (dz/iz) (zeU(l)) which can be written as a = {l/i)Z.dZ + (dz'/iz') with
z' = z.exp( — | | Z | 2 ) . A natural polarization F is given in terms of the holomorphic
complex 2-form8 φ = dZ1 A dZ2 by F = ker (φ). The Hubert space J f M associated
with F consists of those half-forms/# = / ® λ / φ , where / : P - » C is smooth and
F-covariant constant, i.e. Df A φ = 0, where Df = df — iϊoc. Straightforward
calculation then leads to/(Z,z) = z'./(Z) with /holomorphic. The inner product
of j f M is given by

<f,g> = J /(Z)^(z)exp(- |Z|2μ,

where λ denotes the Liouville 4-form of (M,ω)—see also Sect. 3.

Quantum Reduction. Quantizing the function Ψs is straightforward. The associated
skew self adjoint operator of j f M is plainly given by the ί/(l)-action lifted to the
prequantum bundle, i.e.

τ{Ψs)f = i{£-2s+\)f (6.3)

2

where S = £ Za(d/dZa) is the Euler vector field.
α = l

We now introduce the "quantum spin" sQ related to the classical spin s by

sQ = s-\ (6.4)

(see [Woo]) and it is easy to see that the reduced Hubert space J^s

red is zero except
when x

s Q e | N . (6.5)

In that case / e J f J e d iff Λf = 2sQf, so Jfs

red is the 2sQ+ 1 dimensional Hubert
space of homogeneous holomorphic polynomials of degree 2sQ.

Had we quantized (B,ωB) = (S2,s. Surf) directly using the anti-holomorphic
polarization on S2 = Pi(C), we would have obtained the same Hubert space
Jc B = Jt r e d .

The Third Component of the Spin. Let us now BRS-KS quantize the following
Hamiltonian s3 = <s,e3> of S2 (the "third component" of the spin vector s = su
pointing in the direction ueS2), represented on M by the ί/(l)-invariant function,

S3=±Z.σ3.Z. (6.6)

Being a component of the SU(2) momentum mapping, its quantization can be
readily carried out because our polarization is SU(2)-invariant and

τ(S3)f = ̂ i(σ3.ZT-?fa (6.7)
λa=1 0£

whose restriction to J^s

red yields the familiar spin representation: if sQ = n/2 we

8 Every closed complex n-form φ on a 2«-dimensional sympleςtic manifold (M, ω) defines a polarization
iff rank (φ) = n and ω A φ = 0
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readily find/(Z)= Σ ^ l β 2 . . . ( h , . Z " 1 Z " 2 - Z * with9 Ψaiβ2...<h. = ΨlM2...thύ and

i 2 π ^
^ α o = l

Note that direct quantization of s3 on J f B would have given the same result. So,
here again, geometric quantization is compatible with the BRS-KS reduction
procedure.

The Spin Squared. The (5l/(2)-Casimir) function H = S 2 + S2

2 + S\ is given by

iί(Z)=4(Z.Z) 2 (6.9)

whose restriction to Cs descends to B as the constant function s2 + s2 + s\ = s2.
Now this H does not preserve the holomorphic polarization and thus must be
quantized with the help of the infinitesimal pairing formula10 (see e.g. [Tuyl])

(6.10)

and leads after some technical computations to τ(H) = \S2 + \S whose restriction

to Jfs

red *s th e constant operator

^red(52) = 5 Q ( 5 Q + l ) l . (6.11)

Surprisingly enough, this corresponds to what is already known from "standard"
quantum mechanics, although geometric quantization of the constant function
s2 on the reduced symplectic manifold (S2, s.surf) would yield the constant operator:
s 2l. This should be taken as a success of the BRS-KS method.

Remarks. The star product (or Weyl-Moyal) BRS-quantization of the Casimir
function H does not lead to the "correct" previous result, the reason being that
Δ2H Φ 0 (here A denotes the Laplace-De Rham operator on C2).

— I n this example we see clearly that the choice of a representative influences
the induced operator τ r e d . We could have represented the (constant) function s2

on B by the (constant) function s2 on M, instead of by H. We then would have
found (l/0τred(s2) = s2l = (sQ + (1/2))21 instead of sQ(sQ + 1)1.

The Spin-Spin Interaction (e.g. the Fine Structure of the Hydrogen Atom). We
consider now the spin phase space of a system of two particles (B,ωB) =
(S2 x S2,s1.Surf1 + s2.Surf2) which can be obtained as a MW symplectic reduction
of (M,ω) = ( M ^ ω j x (M 2,ω 2) = (C2\{0} x C2\{0}, ω± + ω2) with respect to the
torus 1/(1) x U(l) and the momentum mapping (ΨSί9 ΨS2).

The Hubert space we will deal with is obviously the one associated with the
anti-holomorphic polarization F = Fx ®F2, i.e. JfM = JfM l (x) J^M2- The reduced
Hubert space is thus Jf^J2 = ^

9 Round brackets denote symmetrization
1 0 XH denotes the Hamiltonian vector field associated with H:LXHOC = 0 & <x(XH) =
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Let us now quantize the Hamiltonian h = <s1? s2 > on B by viewing it as coming
from the following U(l) x (7(l)-invariant function H of M

H{ZUZ2) = - t ( Z 1 . σ i . Z 1 ) . ( Z 2 . ^ . Z 2 ) . (6.12)

Some technicalities are needed to prove that, despite the fact that F is not
//-invariant, the pairing formula (6.10) yields the expected result (see (6.8))

*«d(*) = Σ τred((*i);) ® * « « ) • (6.13)

Remark. In a previous paper dealing with the geometric quantization of the
hydrogen atom [DET], we found a spurious coefficient in front of the spin-spin
hyperfine Hamiltonian. This can be traced back to the fact that direct quantization
of the classical Hamiltonian h = <s 1 ?s 2> on (S2 x S2, Surfj + Surf2) gives § times
the result of (6.13). Here we have found the coefficient 1 which is felt as the correct
one by physicists. Again, the BRS-KS technique seems to overcome several
drawbacks of the geometric quantization scheme applied directly to constrained
symplectic manifolds such as the spin phase spaces.

7. Conclusion and Final Remarks

We would start the discussion by mentioning that the overall impression of the
compatibility between geometric quantization and the KS reduction procedure is
quite favourable: in all but one case (see Sect. 4) we are able to identify the reduced
Hubert space Jf r e d with a direct quantization Jf B and using this identification, the
operators τred(/z) and τB(h) coincide in most cases.

However we have to admit that there remain several problems we have no
answer for. Especially we do not have a theorem giving sufficient conditions for
the above mentioned compatibility except the theorem of Gotay [Got].
Unfortunately the conditions of his theorem are quite restrictive, i.e. the action of
the symmetry group G is the canonical lift to the cotangent bundle of a free action
on the configuration space, the group G admits a bi-invariant metric and the
observables to quantize are at most linear in the momentum variables. With the
exception of the first example, none of our examples verifies these conditions, in
particular those on the symmetry group.

In the first three examples we study T*SW as a reduced symplectic manifold.
These reductions are related to different subgroups of 5/(2, R) and exhibit different
groups of symplectomorphisms, i.e. the isometries O(n + 1) and the conformal
transformations O(n + 1,1) of Sn. Moreover we may remark that TSn is a coadjoint
orbit of O(n +1,1) and a component of a coadjoint orbit of O(n +1,2) [Sou2]. We
see that in these cases, reduction and geometric quantization commute when we
use the vertical polarization although the method seems to break down in the
second example: Γ*R n + 1 > 2 with n even (see Sect. 4). However for n odd we recover
a result of Rawnsley [Raw] who obtained the spectrum of the square root || p ||
of the kinetic energy with the help of a non-unitary pairing between a Kahler
polarization and the vertical polarization of TSn.
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It should be stressed that the third example unexpectedly justifies the seemingly
contradictory modification of the quantization of constraints by adding " | T r a d "
for skew-self adjoint operators. In the case of a lifted cotangent bundle action this
fact can be explained by a consistent identification of the Hilbert space of ^-densities
on the reduced configuration space and a subspace (i.e. J f r e d) of the Hilbert space
of ^-densities on the original configuration space [Tuy2]. The general case still
remains to be elucidated.

In the last example we deal with the problem of spin Hamiltonians and recover
the well known unitary irreducible (spin) representations of SU(2). It is worth
noticing that the method leads to a "correct" quantization of the total spin squared,
i.e. if the eigenvalue of the operator associated to the classical total spin s equals
SQ then the eigenvalue of the operator associated to s2 equals sQ(sQ + 1). This result
cannot be obtained by quantizing the classical phase space S2 directly. We also
see that there is a difference between classical and quantum values of spin
(s = sQ + \) which arises with the use of half-forms. This phenomenon is already
discussed in [Woo, Sni]. Recently the same result has been obtained by using
Feynman path integral quantization for spin [NR]. Fortunately enough reduction
and geometric quantization do not always commute as we have seen in the example
of the case of two spins (Sect. 6).

It should be mentioned that we have only considered here the very special
case in which the symmetry group G operates freely, more precisely in which Oe^*
is a regular value (not only a weakly regular value) of the momentum mapping.
Nevertheless we encountered several problems especially concerned with the
construction of the reduced Hilbert space. We solved this difficulty in each case
separately by enlarging the original Hilbert space to all functions (or even
distributions) and then imposing the "natural" inner product on the reduced space.
One might imagine that this can be justified by the spectral theorem.

Note added. After the completion of this article, we learned from M. Gotay (private communication)
that in his approach [Got], one actually only needs the group to be unimodular. It also came to our
attention that the problem we encounter in Sect. 4 for n even is directly related to the obstruction for
p + q odd encountered in [K0] in constructing representations for SO(p, q).
[K0] Kostant, B., 0rsted, B.: The orbit method for minimal nilpotent coadjoint orbits, I.' (in
preparation/private communication)
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