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Abstract. We extend, refine and give simple proofs of some recent results on
the validity of global Markov properties for classical spin systems. One of the
new results is that there is a global Markov property that is satisfied by
equilibrium states in general. The proof of this establishes formulas for the
entropy and free energy that show that these quantities are, for d-dimensional
systems, given in terms of (d — l)-dimensional systems. Furthermore, we show
that global Markov properties imply the absence of some types of symmetry
breaking.

1. Introduction

Consider a classical spin system on I* with a translation invariant interaction-
round-faces potential Φ = {Φx} on the configuration space Ω = Ω ζd,

X <=aunitd-cube

where Ωo is a finite set and ΦX:ΩX = Ω%^>M are real functions. A state μ is a
Gibbs state for the potential Φ if it satisfies the DLR equations,

1
μlσΛ σΛc) = — exp [ - HΛ(σΛ) - WΛ(σΛ, σΛC)]

for each finite A a Zd, where Ac is the complement of Λ, PFΛ is the function on
ΩΛ x ΩΛc defined by

WA{σΛ,σΛc)= Σ φx(σx\
X .XCΛΛΦΦ

XnAcΦφ

and where Z σ is determined by the normalisation

/_^ r*\ ΛI Ac)
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The DLR equations for Gibbs states immediately imply

E(fΛ\Λc) = E(fΛ\dΛ) (1)

for every finite A c= Zd, where

dΛ = \xeZd\mϊ sup |JC» — j^ί| =
t yeΛi=l,...,d

and £(. | A) is the conditional expectation given the spins in A a ΊLd and fΛ is a
function that depends only on spins in A.

Property (1) expresses that Gibbs states satisfy the Markov property for every
finite A <= Zd. If (1) holds for a specific infinite A, then we say that the state satisfies
the global Markov property for A.

The state is said to satisfy the global Markov property if (1) holds for any,
possibly infinite, A. The global Markov property has been established for Gibbs
states when the Dobrushin uniqueness criterion applies and also for the ± states
for attractive potentials [1,2,3].

Since Gibbs states have local Markov properties, one is naturally inclined to
establish global Markov properties by "continuity" arguments: letting (finite) Λ, s
grow to an infinite volume while keeping control of (1). However, in general, this
turns out to be a subtle procedure and indeed it has to to be subtle since several
examples of the failure of global Markov properties exist [2,4]. In [4] Israel shows
that the global Markov property may fail even for extremal Gibbs states which
are translation-invariant.

On the other hand, it is shown in [5] that for equilibrium states, i.e.,
translation-invariant Gibbs states, under conditions of much greater generality
than those in previous work, one has the global Markov property for
Λ+ = {x1 >0}. Note that this Markov property is naturally equivalent to these
Gibbs states as defining stationary Markov chains on Ωτd-u The argument for
the above Markov property is not based directly on local Markov properties but
uses the variational principle which states that equilibrium states minimise the
free energy. This argument goes roughly as follows:

Let μ be an equilibrium state for Φ and let μ2 be its projection onto (the
configurations on) the double layer {x1=0,1}. Using μ2, one now constructs
another translation-invariant state μ on Ω such that
(1) the projection of μ onto {x1 = 0,1} equals μ2,
(2) μ has the global Markov property for A + .
In fact μ, which is just the Markov chain on Ωza-i arising from μ2, is the unique
translation-invariant state with the properties (1) and (2). Thus the state μ can be
thought of as a "Markovization" of μ. The important observation at this point is
that the entropy density of μ, s(μ), is not smaller than the entropy density of μ,
s(μ), i.e.

(2)

Since the energy densities of the states μ and μ are the same, the variational
principle now implies that μ is also an equilibrium state. Thus we have an
equilibrium state with a global Markov property. So, once (2) has been noted, one
immediately has the following result, which is essentially the main result in [5].
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Theorem 0. Let μ be an equilibrium state for Φ and consider Condition C(μ),

Ifμ' is an equilibrium state for Φ that

C(μ) has the same projection onto {xx = 0,1}

as μ, then μ = μ'.

IfC(μ) holds then μ has the global Markov property for Λ + . Moreover, if C(μ) fails,
then there are equilibrium states with the same projection on {xί = 0,1} as μ, for
which the global Markov property for Λ+ fails.

The last assertion of the theorem is a consequence of the uniqueness of μ.
The crucial entropy inequality (2) was noted in [6]. Below, we present a simple

proof of it. We also study a "Markovization" different from that sketched above
and proposed in the appendix to [6], to derive, along analogous lines, some further
Markov properties which are general in that each equilibrium states satisfies them.
As a related result we establish a formula for the entropy density of
equilibrium states. One consequence of this formula is that one can formulate a
variational principle for d-dimensional systems in terms of (d — l)-dimensional
systems. In the final section we show that Markov properties sometimes allow
one to conclude that periodic states are invariant under ZjJv, where

Zev = {neZ\n is even}.

The results and proofs are given for arbitrary dimension d but it may be
instructive to have d = 2 in mind when reading the next sections.

2β Preliminaries

In this section we present the variational principle and a formula for the entropy
which is needed in the next section.

We begin by introducing some notation. For A a l_ά we denote a configuration
on A by σΛ, i.e., σΛeΩΛ. We write σZd = σeΩ. Whenever we refer to two
configurations σΛ on A and σΛ on A' at the same time it will be understood that
these configurations agree on An A'. The set of continuous functions
on Ω which depend only on spins in A is denoted by CΛ. Furthermore, we denote
the σ-algebra generated by the spins in A by BΛ.

A state is a probability measure and the set of translation-invariant states on Ω
is denoted by /. When A c Zd, a state vΛ on Ω Λ will be called (locally) translation
invariant if/, #eCΛand μ(/) = μ(g) for all μel imply that vΛ{f) = vΛ(g). Here μ(/)
stands for j/dμ, etc. When μ is a state on Ω we denote its projection on ΩΛ by
μΛ and we will sometimes refer to μ as an extension of μΛ. For A finite we
define the entropy of a state μ, SΛ(μ), by

sΛ(μ)=- Σ M ^ i n μ Λ M
σΛeΩΛ

For μel the entropy density, s(μ), is defined by

s(μ)= lim —SΛ(μ),
\Λ\

where the limit is taken in the van Hove sense. The Hamiltonian for a finite volume
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Λ, HΛ, is the function on ΩΛ defined by

HΛ(σΛ)= Σ φχ(°x)>
ϊcyi

and the free energy for the volume Λ9 FΦ(Λ) is defined by

Fφ(Λ)=-ln( Σ exp(-iί>Λ)Λ

\ J
Here we adopt the convention that the inverse temperature is set equal to 1. The
free energy density, / φ , is given by

fφ= lim —FΦ{Λ).

Define the function eφ by

eφ(σ) =
X qeX

where £ * means that the sum runs over those subsets that have o = (0,..., 0) as
their last element in the lexicographic order of Zd. The expectation value μ(eφ) of
eφ in a translation-invariant state μ is the energy density of this state.

We denote the conditional measure for a state μ given the configuration σΛeΩΛ

by μ( \σA) a n ( i the projection of this measure on A by μΛ>(.\σΛ). The following
theorem shows that translation-invariant Gibbs states are characterised by a
variational principle.

Theorem 1 (Variational Principle). For any μel

and equality holds if and only if the state μ is a Gibbs state for Φ.
For a proof of this theorem see e.g. [9].

For A finite we define the conditional entropy given Λ' a ΊLd of a state μ by

[S/ilψCμ) = SΛ(/") ] Note that for A and A both finite

SΛ[Λ (μ) = SΛuΛ,(μ)-SΛ,(μ).

Lemma 1, see e.g. [9]. Conditional entropy has the monotonicity property

A'cA^SMΛ,.{μ)^SMΛ.{μ).

Moreover, equality of these conditional entropies holds if and only if

^ > Λ ' ) = /U l<v)(μ almost surely).

Proof. By Jensen's inequality

I σΛ») = - \^ΛdσA' I σΛ")(μ>Λl <rΛ')
ln VA(°A\VA'))'

Summing this inequality over σΛeΩΛ and integrating it with respect to μΛ,,(dσΛ,,)
yields the inequality of the lemma. If the inequality of the lemma is an equality,
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then the above inequality (*) has to be an equality too (μ almost surely). Hence
μΛ{σΛ\σΛ,) is constant (almost surely) with respect to μΛ,(dσΛ,\σΛ,,) and therefore
equal to its expectation value for this measure which is μA(σΛ\σΛ")- '

We order the lattice Zd lexicographically and x < y for x, yeZd will mean

(χi < >;i) o r (*i = ^i a n d X2 <yi) or or (x1 = yγ and and xd_2 = yd_2 and
xd-i < ya-i) o r (*i = yi and x ^ = yd_x and xd<yd).

The following well-known proposition, see e.g. [7], states that the entropy
density of a translation-invariant state on Ω can be expressed as a conditional
entropy. For completeness, we provide a proof.

Theorem 2. Consider μel. Then

with q = (0,...,0)eZd and {x<q} a notational abbreviation for {xeZd\x<q}.

Proof. Set Vn = {|χf| ^n;i=l,...,d} for neN and set Vn(y) =Vnn{x< y). Define

Since μ{oj(.\σVn{q))-^^{o}( lσ{x<o}) f° r ^^°o> by monotonicity of the conditional
entropy, s = mϊS^Vn{q)(μ) and, moreover, since μ is translation-invariant,

Now

Therefore

s(μ) = lim SVn(μ) ^ s.
n-+co I Vn\

On the other hand take NeN and consider

Wn = {yeVn\3 translation τ such that τVn(y) =3 1

Nownotethat lim \Wn\/\VH\ = 1 and Sw | K n ( y )(μ) ^ S{ρ}|Fw(ρ)(μ) for j eP^. Thus s(μ) =

lim (l/|Fn |)5Fn(μ) ^ iS^^^^μ). Hence s(μ) ^ s, and we conclude s(μ) = s. •

3. Markov Properties and Entropy

Theorem 2 in the previous section states that entropy density equals a conditional
entropy. Conditional entropy gives information on conditional measures and thus
can give information on Markov properties. Therefore, one may try to establish
Markov properties by using entropy considerations. The following lemma shows
how entropy considerations and the variational principle can be put in tandem to
establish Markov properties of equilibrium states.
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Lemma 2. Let μ be a translation-invariant Gibbs state for Φ and let v be a
translation-invariant state with the same energy density as μ, i.e.

v(eφ) = μ(eφ).

Furthermore, let A c {x < q] be such that

( a ) VΛu{o} = ^ u { o } '

(b) v{o}(Ίσ{x<o}) = V{O}('\°A) (V almost surely).
Then
(A) v is an equilibrium state for Φ ,

(B) /*{<?}(• Iσ{*<?}) = /*{<,}(• I °"Λ) (μ almost surely).

Proof By the variational principle

v(eφ) - s(v) ̂  μ(eφ) - s(μ) = fφ.

Therefore s(v) ^ s(μ). Hence

s(v) S s(μ) = S{q}]{x<0}(μ) ^ S{q}lΛ(μ) = S { o } , » = S { g } | { x < ? } (v) = s(v\

where we used Theorem 2 (twice) and the monotinicity of conditional entropy.
Therefore, we obtain s(v) = s(μ), which by the variational principle implies that v
is an equilibrium state, and we obtain S^^^(μ) = S^Λ(μ), which by Lemma 1
implies that

Lemma 2 provides the tool for deriving results in this section. To apply it, for an
equilibrium state μ, we have to supply a state v with properties as listed in the
lemma.

We now construct states v to which we can apply Lemma 2. To this end, we
present a new Markovization using a refinement of the method presented in the
introductory section. A first step toward this new Markovization is in the next
lemma, but first we introduce some special subsets of Zd. Denote the translation
over one lattice spacing in the kίh direction by τk. Define

d*Λ = d{Λc}

for A c Zd.
For k = d,..., 1, let pk be the "projection" pk:Z

d-*Zk given by defining pkxeZk

for xeZd by

pkX = ( x l 5 . . . ,Xfc),

and define pox = 0e{0} = Z°.
In the following we use for yeZd the notation [ ] as

ίPk* < Pky] = {xeZd\pkx < pky)

and

Now, the set Ak

y c Zd is for k = d,..., 0 and yeZd defined as
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Δk

y = d*[pkx < pky~] u [pky].

Note that A°y = Zd and

1 = U *

for any yeZd and k = d,..., 1.
We also introduce C fe'+ and C*5" as

C f c ' + = Q τ J4j and Ck~ = (J τ\Ak

0.
n = 0 n= - 1

Then

and

Lemma 3. Take ke{l,...,d}. Let vk be a translation-invariant state on ΩΔk. Then
there exists a unique translation-invariant state vfe~ * on ΩΛ-I such that

q

2 v[Pfc?]( lσc*.-) = Vίmί^σd*ίPkχ<Pko^'

Proof. Define Xn = pk~
x {(0,..., 0, xh), Xk = n) and put

1 } = M τ f e

M (δ*[p f c

m = 0

The state vk may be extended in a "Markovian" manner from ΩAk to a measure v +

on Ωc*+ by giving the projections v+'" of v+ on ΩD» for n = 0,1,2,..., as follows.
Define recursively, starting with v+'° = (vk)δ*ίPkX<PkqV the states v+>" by

1 Λ} + ,n Λ, + , n - 1

ί* vXn-iKAσDn-ι)- vχ0{τk .\τk ^τ

n

kd*ιPkx<Pkq\)'

Informally the nth step in this recursion can be thought of as adding the spins in
Xn~x to those in Dnl using, as expressed by 2. for each n the same, up to
translation, conditional probabilities to obtain the extension v+'n of the state
V " 1 " ' " " 1 .

The extension v+Λ of v+'° is vk and therefore translation-invariant. In particular
vΐkd*[Pkχ<pko) ^s e c l u a l U P to translation, to v + '°. But then it follows inductively that
vτ"d*ιPkx<Pkq-] equals for each n, up to translation, v + '° since for each n the same
conditional probabilities, up to translation, are used in 2. Therefore v+ is translation
invariant (and no technicalities involving sets of measure 0 can arise).

Take vk~x as the translation-invariant state on ΩΔk-1 obtained from translation
of v + . It is obvious that this state v*"1 is the unique state satisfying the conditions
of the lemma. •

Note that

K = d*[pxx < pxq] u [pxo\ = {x1 = 0 , - 1 } ,
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and thus when k = 1, the state v k " 1 ( = v°) constructed in Lemma 3 from vk(= v1)
is precisely the Markov chain arising from vk.

Lemma 4. Let μ be a translation-invariant state on Ω. Then there exists a
translation-invariant state v on Ω such that

2 %}('\σ{χ<o}) = V{o}t\σd*{x<o}) (v almost surely).

Proof. Put vd = μΔd and construct, at each step using Lemma 3, the sequence of

states vk on ΩΔk for k = d — 1,..., 0.
We will show that VΞV° satisfies the condition of the lemma. The fact that v

satisfies 1. is evident and therefore we turn to proving 2. Property 2. is the following
Assertion for m = d.

Assertion (m).

VlPmQl ( ' I σίpmx < PmQl) = ^ [ p m o ] ( ' I °'d*lpmx < pmq] ) '

We will prove Assertion (m) for m = 0,..., d by induction on m. Assertion (0) is
obviously true.

Take me{l,...,d} and assume that Assertion (m — 1) is true. Then in particular
spins in

are independent of those in [pm-iX<pm-ιQ'] upon conditioning on the spins in

d*[.Pm-ιx<Pm-ιQ\ a n d therefore since

LPmX<PmQ] = lpm-1x<pm-1o]κjY™-1

and
c™ - = a * [ P m . 1 x < P m _ 1 o ] u y - 1 ,

we have from Assertion (m — 1) that

But by construction,

which finishes the proof of Assertion (m).
Since Assertion (d) is property 2. This completes the proof of this lemma. •

Theorem 3. Any translation-invariant Gibbs state μ for the potential Φ has the
Markov property

μ{o} (• I σ{X < o}) = μ>{o} (• I σδ*{X < o} )•

Hence
s(μ) = s{o}\d*{X<o}(μ)'

Proof. Let v be the state associated with μ as in Lemma 4. The theorem follows
from application of Lemma 2 with v = v and A = 3*{x < ρ}. •
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Theorem 0 is essentially an immediate consequence of Lemma 2:

Corollary 1. Let μ be the Markovίzatίon of an equilibrium state μ as in the
introductory section. Then μ is an equilibrium state.

Proof. Set A = { {x < q) n [xί = 0} } u {A^ = — 1} and apply Lemma 2 with v = μ.
To see that condition (b) of Lemma 2 is met for this choice for A and v, note that,
upon conditioning on the spins in {xλ = — 1}, the spins in {^1=0} become
independent of those in {xλ ^ — 2} by the global Markov property for {xί ^0}
of/7. •

The following example shows how failure of the condition C(μ) leads to failure
of the global Markov property for A + for certain equilibrium states. Thus this
example illustrates the second assertion of Theorem 0.

Example. Let M = { — 1,+1}Z and for m = {mk)eM let μm be the state on
{ — 1, +1} Z 3 for which the layers {xγ = k} are independent and (μm){Xι=k} *s the
mfc-phase of the two-dimensional nearest-neighbour Ising model. Then μm is a
Gibbs state for the potential Φ, which in (y — z) planes is the interaction of the
two-dimensional Ising model and which gives no interaction between different
(y — z) planes. Thus we have a collection of independent two-dimensional Ising
models. We assume that the Ising model is in the two-phase regime in which the
( + 1) phase differs from the ( — 1) phase. For p a state on M we define the state
μ p o n { - l , + l } z 3 b y

μp=jp(dm)μm. (3)
M

Then μp is a Gibbs state for Φ and (3) is its decomposition into extremal Gibbs
states. Furthermore, μp is Zd-ergodic if p is Z-ergodic. Now let p be a
non-Markovian state on M. Then μp does not satisfy the global Markov property
for A + a Z 3 . In particular, if besides being non-Markovian, the state p is Z-ergodic,
then μp is an extremal translation-invariant Gibbs state which does not have the
global Markov property for A +.

The following consequence of Theorem 3 might be of interest when d = 2.

Corollary 2. For any pair of translation-invariant Gibbs states μ and vfor Φ, we have

Proof. Immediate from Theorem 3. •

Theorem 3 also enables one to formulate a "minimal" variational principle [6],
which is stated in terms of states on essentially (d - l)-dimensional systems, and
which enables the free energy fφ to be computed.

Theorem 4. Let v be a translation-invariant state on ΩΔd. Set sd(v) = S{q}\d*{x<o}(v)'
Then
(a) v(eφ)-sd(v)^fφ,
(b) v(eφ) — sd(v) = fφ if and only if, there is a translation-invariant Gibbs state v
onΩwίthv Λd = v.
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In particular
/φ=inf[v(έ>φ)-sa(v)],

V

where the ίnfimum is taken over the set of translation-invariant states on ΩΔd.

Proof. Let v be a translation-invariant state on Ω such that

2 ${0} (' I σ{x < o}) = \o} (' I σs*{x < o}) (v almost surely).

Such a state exists by the construction presented in the proof of Theorem 3. Then

v W - sd(v) = v(eφ) - sd(vΔd) = v(eφ) - s(v) ^ /φ,

and equality holds if, and only if, v is a Gibbs state, proving (a) and the only if
part of (b). If v is a translation-invariant Gibbs state with vΔd = v, then

s(v) = sd(v) = sd(v),

and it follows that

v(β<p) - sd (v) = v(eφ) -s(v) = fφ. •

As yet another consequence of Theorem 3 we obtain Theorem 5:

Theorem 5. Let μ be a translation-invariant Gibbs state for Φ and consider the
condition C(μ), which was introduced in Theorem 0. If C(μ) holds, then μ has the
global Markov property for {x < q}c.

Proof Immediate from Theorem 0 and Theorem 3. •

We will now extend part of the results obtained thus far for translation-invariant
Gibbs states to periodic Gibbs states. We first need a technical lemma. When μ
is a state, we denote the set of functions in Lι(μ) that are measurable with respect

Lemma 5. Let τ be a translation and let Abe a subset of ΊLά such that for all finite
A a Zd, a keZ exists such that τkA a A. Then, if μ is a τ-invariant state, for all
feLι(μ) which are τ-invariant, i.e., τf = f, we have fel}{y',B~A\

Proof. This is an immediate consequence of τ-invariance of μ and the fact that
(J U{μ,B^) is dense in L1{μ). •

Λ finite

Lemma 6. Let τ be a translation for which, for each finite A c Zd, keZ exists such
that τkA <= {x < q). Let μ be a translation-invariant Gibbs state and let v be a
τ-invariant state. If v«μ (v is absolutely continuous with respect to μ), then

V{o}('\σ{x<o}) = V{o}(-\σd*{X<o})

Proof Note that (dv/dμ)eLί(μ) is τ-invariant. So (dv/dμ)GLί(μ;B{x<^) by the
previous lemma. Let Eω(f\Λ) be the conditional expectation for a state ω of a
function / with respect to BΛ. Since (dv/dμ)eL1(μ;B^x<0^), we have

Ev(f\{x<q}) = Eμ(f\{x<o_}).



Entropy and Global Markov Properties 479

If / is a function that depends only on the spin at q we have, by Theorem 3,

and it follows that the same property holds for the state v. This proves the
lemma. •

Theorem 6. Let v be a periodic Gibbs state for Φ, i.e. v is a Gibbs state that is
invariant under a subgroup, G, of finite index in Zd, \Zd/G\ < oo. Then

v{o}('\σ{x<o}) = v{o}Oa*{x<o}) (v a l m o s t surely).

Proof There exist NeN and translations {τ(n)}M = i,...,jv such that

1 Γ N Ί
μ = v + f τ(n)v

is a translation-invariant Gibbs state. By construction v«μ, and by choosing
τ — τ\ for some fceZ, we can invoke the previous lemma to complete the proof. •

4. Markov Properties and Invariance

In the previous section we deduced Markov properties for invariant states. It is
interesting to note that, conversely, knowledge of Markov properties can be used
to "enhance" invariances of Gibbs states. We need a few extra assumptions however.
First, we assume that the potential Φ, beside being translation-invariant, is also
0o-invariant, where θo is reflection in the layer {xί = 0}.

Furthermore, we consider condition Cφ:

c Every translation- and θ0 -invariant Gibbs state for Φ
φ satisfies the global Markov property for {xx > 0}.

Remark. By arguments analogous to those that led to Theorem 6, condition Cφ

is equivalent to the same condition with "periodic state" substituted for
"translation-invariant state." Let v, μ be two states on Ω with v « μ and let μ be
0o-invariant. If dv/dμ is measurable with respect to B{Xί=0}, then dv/dμ is
θ0 -invariant and hence v is also θ0-invariant.

Theorem 7, cf. [8]. Let G be a group of finite index and let μ be a Gibbs state
invariant under G. // Cφ holds, then μ is invariant under θk, where θk is reflection
in the layer {xx = fc}, for all keZ. In particular μ is invariant under τ\.

Proof. There exist NeH and translations {τ(/1)}π=1> >N such that

1 /
μ' = μ+ V

is translation-invariant.
Let μ = \{μr + θoμ'). Then μ is a translation- and θ0-invariant Gibbs state and

μ«μ. Since (dμ/dμ)eL1(μ) is G-invariant, it follows by applying Lemma 5 (twice)
that (dμldμ)eU{μ',B{xlύ0}) and (dμ/dμ)el}(μ;B{Xiz0)).

Hence, with conditional expectations for the state μ,
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1 \

dμ \dμ J \dμ ) \dμ )

where in the third equality we used that μ has the global Markov property for
{xγ > 0} by condition Cφ. Therefore, dμ/dμ is measurable with respect to B{xι = 0},
and it follows from remarks made just prior to this theorem that μ is θ0-invariant.
But μ is also θfc-invariant and analogous arguments therefore give that μ is
0fc-invariant for any keZ. •

Note that Theorem 7 implies that Cφ is in fact equivalent to Cφ where

^, Every translation-invariant state for Φ satisfies
φ the global Markov property for {xx > 0}.

Let v be a Gibbs state. Then v has an integral representation, or decomposition,

v = Jmv(dv')V, (5)

where mv is a measure on the space of states on Ω which is the unique measure
that is concentrated on the set of extremal states. The decomposition (5) is the
decomposition of v into extremal Gibbs states. Consider condition C&

^ Every translation-invariant Gibbs state for Φ has
φ the global Markov properties for {xt > 0}, i = 1,..., d.

Let 0(

o

fe) be reflection in the layer {xk = 0}. Assume for the next corollary that Φ is
Θ(Q}-invariant. Note that with this condition on Φ as well as condition Cφ every
periodic Gibbs state is Zd

ev-invariant (recall Zev = {neZ\n is even}).

Corollary 3. Let v be a Zd

ev-ergodic Gibbs state for Φ and let v = jmv(dv')v' be its
decomposition into extremal Gibbs states. If Cφ holds then exactly one of the
following two statements is true:

1. mv is the Dirac measure at v, i.e., v is an extremal Gibbs state,
2. mv is purely nonatomic.

If (2) is true, then we have in particular that there are uncountably many extremal
Gibbs states.

Proof. The only nonevident assertion in the Corollary is the statement that
nonextremality of v implies that mv is purely nonatomic. Therefore, assume that
v is not an extremal Gibbs state. First, we observe that the measure mv is
Z^v-invariant and is, moreover, ergodic for Zd

ev. Now let μ0 be an arbitrary state
on Ω and consider So = {τμo}τez

d Clearly So is Zd

v-invariant. Thus, by ergodicity
of mv, one of two situations may arise,
(a) mv(So) = 0,

(b) w v ( S 0 ) = l .
Assume, ad absurdum, that (b) holds. Since, by Z^v-invariance of mv, each element
in So has equal weight, the set So has to be finite and thus mv is concentrated on
a finite set. Hence
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1 ^
V =

\sc

where the states in So are mutually disjoint and extremal Gibbs states. But such
a representation of v into extremal Gibbs states implies by its uniqueness that each
of the states in So is invariant under some subgroup of finite index. By Theorem
7, applied "in each lattice direction," it follows that each element in So is
Zjv-invariant. The Zjv-ergodicity of v implies \S0\ = 1. Hence v is extremal Gibbs
contradicting the assumption that v is not an extremal Gibbs state. Therefore (b)
is false and (a) holds, i.e., mv(S0) = 0. In particular mv({μ0}) = 0. As μ0 was arbitrary,
this proves that mv is purely nonatomic. •

5. Concluding Remarks

Sections 3 and 4 contain the main results of this paper. These results, however,
can easily be generalised in several directions as we indicate briefly below:

1. Define L + c Z d by

By using Theorem 3, we can easily deduce that for each translation-invariant
Gibbs state μ,

which is a strengthening of Theorem 3.
2. By blocking spins we can reduce any finite-range potential to an
interaction-round-faces potential. In this way we can obtain results for finite-range
potentials analogous to the ones presented here.
3. Also, by using a spin-blocking technique, we can generalise the entropy formula
of Theorem 3 to include cases where the state μ is periodic.
4. The result that

for any equilibrium state μ (see the first remark in this section) can be generalised
to more general volumes, or subsets, in Zd. Rather than giving a description for
general d we describe the generalisation we have in mind for d = 2. Let
α : Z - > Z u { ± o o } be a function, such that

j +oofor>;^);m i nGZ

cίiy) =1 finite for ymin <y< ;μmaxeZ,,

[
where ymin and ymax are in Z, i.e., the set of points in Z where α is finite is an
interval (in Z). Define Fαc=Z 2 by VΛ = {φ1)^x2} and set V+ = {OL(X1) finite,
α(xx) < x 2} Then for each translation-invariant Gibbs state μ, we have

The proof of this involves steps analogous to those taken to prove Theorem 3.
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However, not all of the arguments and constructions can now be done within the
set of translation-invariant states. Instead periodic states are used. The details are
left to the reader.
5. We have assumed that Ωo is a finite set, but all results also hold when Ωo is a
compact metric space.
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