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Abstract. We generalize the Kodaira Embedding Theorem and Chow's Theorem
to the context of families of complex supermanifolds. In particular, we
show that every family of super Riemann surfaces is a family of projective
superalgebraic varieties.

1. Introduction

In the past few years there has been a great deal of mathematical activity concerning
supermanifolds, both real and complex. While much of this work may seem
unrelated to the physical motivations of the field, it must be remembered that the
subject came into being when physicists realized that it is perfectly consistent to
introduce spaces with anti-commuting coordinates [2]; their original train of
thought was inextricably linked with the Fermi statistics of quantum field
theory, and soon resulted in the formulation of supersymmetric field theories
(e.g. [16,20,26]). It is therefore perhaps not surprising that the deformation theory
of complex supermanifolds has now, with the growing prominence of superstring
theory [9,12], proved to be germane to current physics.

The calculation of amplitudes in superstring theory [9] is supposed to involve
integration over the moduli space [6,15] of super Riemann surfaces. Unfortunately,
this is a rather unruly object, and, in particular, its non-compactness tends to make
such integrals ill-defined [23]. On the other hand Mumford [18] has given us a
beautiful compactification of the moduli space of Riemann surfaces by treating
them as algebraic curves, and Deligne [4] has announced that the same can be
done for super Riemann surfaces. In order to carry out such a program, it is first
necessary to show that families of complex supermanifolds of dimension 111 can
always be thought of as families of projective superalgebraic varieties. In this paper,
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we will explain why this is so, while at the same time deriving results of much
greater generality.

A famous result of Whitney [25] asserts that any smooth compact manifold
Mn can be realized as a submanifold of Euclidean space of (R2w; indeed, there is a
canonical embedding of M into the infinite dimensional vector space (C°°(M))* of
distributions on M, given by

where δx is the Dirac delta measure centered at x, and this gives rise to a
finite-dimensional embedding M ς V* by restricting to almost any subspace
V cz C°°(M) of dimension > 2n, or by restricting to a somewhat more carefully
chosen subspace V of dimension In. There is even an easy extension of this to the
setting of supermanifolds: a smooth supermanifold Mw | m can be always be smoothly
embedded in |R2nlm+n. But for complex manifolds, life is not so simple, because a
holomorphic function on a compact complex manifold is necessarily constant
(by the maximum principle). A way around this is to look for projective embeddings,
for which purpose sections of a line bundle over our complex manifold may be
used in place of holomorphic functions. In 1953, using this idea and a powerful
cohomological vanishing theorem he had recently proved by Hodge theory and
the Bochner method, Kodaira [13] gave an intrinsic characterization of those
complex manifolds which can be holomorphically embedded in complex projective
space. But several years earlier Chow [3] had proved that the only compact complex
submanifolds of complex projective space are those defined by a finite number of
polynomial equations; thus the image of Kodaira's embedding map is always
perforce an algebraic variety! Thus in many contexts it can be deduced that a
given compact complex manifold—globally defined in some transcendental terms,
for instance by a collection of holomorphic transition functions—is actually
something completely describable in terms of elementary algebra, and algebraic
geometric methods can then be brought to bear on further understanding the given
space, often with stunning consequences. One might hope that, wherever this
remarkable reduction from analysis to algebra is echoed in physics, there will be
a strong tendency for the corresponding theory to be both better behaved and
more full analyzable than one would otherwise be wont to expect.

In this paper we will discuss the projective embedding problem for complex
supermanifolds. We begin, in Sect. 2, by giving a characterization, in terms of
positive rank one locally free sheaves, of those complex supermanifolds admitting
superholomorphic embeddings into complex superprojective space. In Sect. 3,
this is translated into an obstruction theory involving classical cohomological
invariants, which are then computed for some concrete examples. In Sect. 4, we
give a supermanifold generalization of Chow's theorem and an analogue of the
Segre embedding theorem. Finally, in Sect. 5, we prove a projective embedding
theorem for families. In particular, we show that a family of complex supermanifolds
of dimension 1 \m is necessarily a family of projective algebraic varieties. From the
standpoint of physical applications, the last is perhaps the most important result
proved in this article, since it applies, in particular, to families of super Riemann
surfaces.
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2. The Kodaira Embedding Theorem for Supermanifolds

We shall use Manin's book [17] as a general reference for the theory of
supermanifolds, and we shall summarize the most important definitions here in
order to establish terminology and notation. A complex supermanίfold is a ringed
space (M, s/)9 where M is a topological space, and si is ? sheaf of supercommutative
rings on M such that, if we let Jί be the ideal of nilpotents in si, the following
conditions are satisfied:

1. (M,Θ) is a complex manifold, where Θ\= sijJί\
2. δ:= JT/jr2 is locally free over Θ;
3. si is locally isomorphic to the Z2-graded exterior algebra Λm

ΘS.

We denote the complex supermanifold (M9s/) simply by M when there is no
confusion with the underlying topological space—just as one does in classical
complex manifold theory. Similarly, the sheaf si is called the structure sheaf of
the complex supermanifold M, and will be denoted, when necessary, by s/M. The
complex manifold underlying the supermanifold M is its so-called reduction, defined
as (M,0), where 0 = sijJf, and denoted by M r d . The next classical object that
naturally arises in the theory of complex supermanifolds is a holomorphic vector
bundle over M r d whose sheaf of sections is the locally free sheaf 8\=JίlJί2 of
^-modules. We call $ the characteristic sheaf of the complex supermanifold M. A
split complex supermanifold {M9si) is defined by the property that s/^Λ'δ, i.e.
the supercommutative sheaf of rings is simply given by an exterior algebra
(Z2-graded and supercommutative in the obvious manner) over a locally free sheaf
on the underlying complex manifold; the latter sheaf then becomes the characteristic
sheaf of the split supermanifold. Note that not every complex supermanifold is
split (cf. [5,17,22]). A family of simple but important examples of complex
supermanifolds is given by the superprojective spaces.

Definition 1. Complex superprojective n\mspace is the supermanifold

where Θ{— 1) is the sheaf of sections of the tautological (c1 = — 1) line bundle over
complex projective space Pn.

The motivation for this definition is as follows: a "holomorphic function" on
PM |m should surely be a function of total homogeneity 0 in n + 1 even variables
(z°, zn) and m odd variables (0\.. . ,0 m ). Such a function could be uniquely
represented as

Σ Σ fh...ik{z°,...,2»)^-e\
k = 0 l ^ ϊ i ^ <ik^m

where fh...ik has homogeneity — k. But this is precisely what is meant by a section
of the Grassmann bundle Λ'(Cm®Θ(— 1)).

Notice that Pnlm is a split complex supermanifold. The characteristic sheaf of
Pn]m is, of course, Cm®Θ(- 1).

Let us also recall that a (superholomorphic) mapping
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between complex supermanifold is a pair consisting of a holomorphic mapping

frd:(Mu&i)->(M2,Θ2)

and a pull-back morphism

of sheaves of Z2-graded rings extending the pull-back morphism for holomorphic
functions. Such a map is called an embedding if, in addition:

1. frd is an embedding, and
2. / * is a sheaf epimorphism.

In the presence of 1,2 is equivalent to:
3. the induced vector bundle morphism

is surjective, where Et -> Mt is the holomorphic characteristic vector bundle of Mt

defined by

This latter formulation is easier to verify in practice, and will be the one we
will really use.

Let us now recall the statement of the usual Kodaira embedding theorem
[13,24]; this states that a compact complex manifold M can be holomorphically
embedded in some complex projective space if and only if it admits a positive
holomorphic line bundle L-+M. Here a holomorphic line bundle is called positive
if and only if it has a Hermitian structure for which the curvature is a Kahler form;
for M a Riemann surface, this amounts to requiring that J cx(L) > 0. A locally free

M

rank one sheaf JSf is of the form Θ(L\ where L is a holomorphic line bundle. We
say that such an $£ is positive if L is a positive line bundle. The correct analog of
this notion in the Z2-graded case is as follows.

Definition 2. A locally free rank one sheaf of si-modules on a supermanifold (M, si)
is said to be positive if its restriction J£?rd to the underlying complex manifold is a
positive rank one sheaf.

Here, the restriction of a s h e a f s of ̂ /-modules from the supermanifold (M, si)
to the underlying complex manifold (M,Θ) means the sheaf ^rd:=^/J^^ of
^-modules.

Using the definition we have the following result.

Theorem 1. A complex supermanifold M with compact reduction can be embedded
in some superprojective space Pn\m if and only if it admits a positive rank one sheaf
of si M-modules.

Proof. One direction is trivial. If f:M c; P π ) m is an embedding, then

<£ = /*(0(1) ®ΘΛ (Cm ® &( - 1)))

is a positive rank one sheaf on M. The converse will be proved by showing that
some power of any positive line bundle is precisely of this form for some /.
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Thus, we now assume that there exists a positive rank one sheaf if 0

 o n ^rd
which extends as a rank one locally free sheaf if of j/-modules. Let L^>Mrd be
the positive line bundle defined by if 0 = Θ(L\ and let E -+M be the characteristic
vector bundle defined by Θ{E) = δ. For feeN, let if*:= if ® ^ ®^if be the fe-fold
tensor product of Se with itself, and let S£\y= ̂ k/Jίι+1^k. Thus

ί/Λ\ —- ots (Q\

More generally, we have the exact sequence

O^if^Λ^if^if'.^O. (1)

Lemma 1. The restriction map Γ(M, Z£k) -> Γ(M, ££*1}) is surjective ifk is sufficiently
large.

Proof. From 1 we have exact sequences

But by Grauert's vanishing theorem [8], the positivity of L implies that
H^M, J£k

o®Λι$) = 0 for any fixed /, provided that k is sufficiently large. For k
sufficiently large we therefore have

) = 0, for /=l ,2, . . . , rank£.

It then follows by induction that Γ(M, &k) -> Γ(M, £f\X)) is onto. •

Let yx^Θ denote the ideal sheaf of xeM. Then«/ is a coherent analytic sheaf,
and we can again conclude by the Grauert vanishing theorem that, for k sufficiently
large,

and

for all x9yeM. But we also have the short exact sequences (where JιF is the vector
bundle of 1-jets of any vector bundle F)

so the evaluation maps
k k k (2)

(3)

Γ(M, £®U)-*EX® Lk, (4)

are all onto. Let s0,s l 9...,sn be a basis for Γ(M,5£k\ and let tί9..., tm be a basis
for Γ(M, £ ® I}). By Lemma 1, these may be respectively extended as even sections
σ0,σ l 9..., σneΓ(M,Λk

yen) and odd sections τl9...,τmeΓ(M9 ^k

odd) of &k.
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To obtain our embedding, let us first define frd:M ->PΠ by

where ex is any basis for (L*)* ̂  C. The surjectivity (2) guarantees that at least
one component of our expression for /Γd(x) is non-zero, so that / r d is a well-defined
holomorphic map. The surjectivity (3) also says that ex and ey define linearly
independent functional Γ(M,j^(L fc))->C, so that / r d : M - > P M = P(Γ(M,Θ(Lk))*)
is injective. Finally, the surjectivity (4) guarantees that / r d is an immersion.

To extend this (usual Kodaira embedding) map to a map of supermanifolds,
we simply need to specify / * on a set of generators. We may do this by defining

and

f*( 1 — *
V ~* / '

where z°,...,z" and θ1 ,...,&" are the usual homogeneous coordinates on P w ) m ,
that is to say the standard basis for Γ(Pn9Θ(l)®ΘΛ'(Cm<g)Θ(- 1))).

To conclude, we need to check that / * is an epimorphism, or, equivalently,
that the induced map

f*:Cm®Θ(-l)-+Θ{E)

is surjective. But this is precisely the surjectivity assertion (4). •

Corollary 2. Any split complex supermanifold M whose reduction Mrd is projective
algebraic is superprojective.

Proof. A split supermanifold M is of the form (M, AS) where S is the characteristic
sheaf. Since Θ injectively embeds in sίM = AS we have a natural projection
π:M-> MΓ d. Thus, if i f is a positive rank one locally free sheaf on M r d , then π*if
is a locally free sheaf of rank one on M with the property that (π*if) r d = if, and
hence is positive on M. By Theorem 1, M is superprojective. •

We shall see less trivial applications in later sections.
We note at this point that the embedding provided by the proof of the theorem

is not typically optimal, in the sense that if a complex supermanifold of dimension
r\s admits an embedding into some P n | m , it always embeds in P2^+i|r+s One can
do this by dropping a certain number of odd and even coordinates after a linear
transformation. To see, for instance, that one can always eliminate an odd variable
if m > r + 5, notice that the pull-back map Cm®Θ(— \)-*S induced by an
embedding gives rise to a map E*(— l)-»Cm whose image is a complex cone. The
total space of £*( — 1) -> M has complex dimension r + s, so if r + s < m the image
of E*(— l)-»Cm has measure 0, and consequently there exists a one-dimensional
subspace C c C m which meets the image of £*(— 1) only at 0; projecting to a
complementary Cm~1 then gives rise to a map (M, tβ/)->P r t j m_ 1, which is, by
construction, an embedding. Reducing n to 2r + 1 is similar and completely
standard.
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We close this section by mentioning a result of Penkov [19] which gives
a necessary and sufficient condition that a complex super Grassmannian is
embeddable in complex superprojective space. Following Manin [17], we let
G(r\s;n + r\m + s) denote the super Grassmannian manifold of free regular sub-
modules of C π + r | m + s of rankr|s. This set can be endowed with a topology and
with a structure sheaf to make it a complex supermanifold of dimension rn\sm. In
general a super Grassmannian is not a split complex supermanifold [17], and more
generally, Penkov shows that the super Grassmannian manifold G(r\s;n + r\m + 5)
can be embedded in superprojective space if and only if r = 0 or 5 = 0 or n = U or
m = 0. In particular the simplest example of such a nonembeddable manifold is of
the form G(l 11;2|2). As we see above (2), all split supermanifolds admit projective
embeddings, and thus for example G(l 11; 2|2) is not split. Nonetheless, as we shall
see in the next section, many interesting non-split supermanifolds do embed in
super projective space.

3. Classical Invariants and the Embedding Problem

According to Theorem 1, a supermanifold is projective iff there is a line bundle
on the supermanifold M such that its restriction to the reduced space is a positive
line bundle in the classical sense, i.e. iff there is a positive invertible 0-module
which can be extended to be an invertible j/M-module on M. In this section, we
will therefore be able to describe the obstruction to embedding M in superprojective
space in two different, albeit equivalent, ways.

Suppose that M is a supermanifold with projective algebraic reduced space
M r d and characteristic vector bundle £->M r d . Thus, there is, by assumption, a
very ample invertible sheaf if(0) of 0-modules on M r d . In fact, by passing to a
tensor power of a given positive line bundle, we can take i f ( 0 ) to be sufficiently
ample so that S£n

{0)®Ak$ is generated by its global sections for all n ^ 1, fc^O
and Hr(M,g>n

iO)®Λk£) = 0 for all n^ 1, fc^O, and r ^ 1. Let φo:Mrd^Pn be the
embedding defined by the sections of <Sf{0)'9 we will call such an embedding very
ample. Then φ*Θ{\) = ^(0), where we let Θ(l) be the sheaf of holomorphic sections
of the hyperplane line bundle on Pn (so that ^(0(1)) = 1). As J£{0)®$ is generated
by global sections, one has a surjection:

where & = ®mΘ{- 1), because Θ(- 1)|M = φξΘ(- 1) = JS?^1.

Theorem 3. Let (M.srf) be a complex supermanifold with compact reduction M r d ,
and let φo:Mrd <^Pnbe a very ample projective embedding. Then the obstructions to
extending φ0 to an embedding φ:M ^Pn\m are elements of if2(M r d,/l2 k<ί), for
k= 1,2,..., [rank E/2].

First Proof. Up to isomorphism, a line bundle on (M9s/) is given by an
element of H1(M, ^*eVen)> where <stf%evQn is the multiplicative sheaf of even
invertibles. Let ^2k be the normal subgroup of elements of the form 1 + α, where
aejV2k\ we define j/Hs2fc = ^*even/^2(fc+ D Then <$/%0 = Θ%9 the sheaf of non-zero
holomorphic functions, and sέ\2k

 = ^*even if 2fc > q. We have exact sequences
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s o a n element of H1(Ml9Θilι) extends to an
element of f/1(M, tc/J | ίeveπ) if and only if a sequence of obstructions vanish, where
these obstructions are elements of H2(Mτd,Λ

2k$). •

Second Proof. Let M ( k ) = (M,s//Jfk) be the kih neighborhood of M r d in M. One
then has a natural sequence of embeddings of ringed spaces:

M r d = M ( 0 ) q; M ( 1 ) c> q; Miq~1} q; M ω = M.

We extend the embedding

to

by induction. Thus, assume that we have an embedding for / = k — 1. Locally, there
is no obstruction to extending this map to a map for / = fe, but there are
many ways of making such an extension, the choices being parametrized by
(φ*ί^(χ)/i f c#)e v e n, where 3t denotes the sheaf of derivations of the sheaf of algebras
Λ ^ Ί M o n fV Hence the obstruction to making a consistent global choice is an
element of H1(Mτd9(φ*@®Λk£)eycn) On the other hand,

where F is the tangent sheaf of Pn. Therefore, when k is even, the obstruc-
tion is in H1(Mτd,φ*$r®Λk$>); and when k is odd, the obstruction ris in

However, φ*^* is a finite (direct) sum of the very ample invertible sheaf JS?(O).
By our choice of JPi0)9 the last cohomology group vanishes. Therefore, there is no
obstruction when k is odd.

On the other hand, one has the Euler sequence on Pn:

Pulled back by φ onto M and then tensored by AkS, this yields

0->Λkg^>Λk£<g)

or, in other words,

By our choice of &{0)9 this exact sequence induces an isomorphism:

H\Mtά9 AkS (x) φ*&-) ̂  H 2(M, AkS).

Therefore, the only obstruction of extension is in this second cohomology when
k is even. •

Remarks.

• Classical analogues of the above proofs arise when one attempts to extend
analytic objects off a complex submanifold MrdeM by power series. For example,
the standard obstruction theory of Griffiths [10] then tells us that the obstructions
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to the extension of a map are in the first cohomology with values in the tensor
product of the tangent sheaf and the symmetric powers of the conormal bundle
&*9 while the obstructions to extending a line bundle are in the second cohomology
with values in the symmetric powers of the conormal bundle. In the category of
supermanifolds, we have simply remarked that these principles still work, with the
proviso that symmetric products are to be replaced with alternating ones. On the
other hand, since the resulting obstructions now terminate after a finite number
of steps, one is not confronted with the delicate convergence problems arising in
the classical case.

• Notice that the first proof actually gives a criterion for extending any line bundle,
not just a poisitive one.
• The obstruction theory of the second argument is sufficiently general to also,
for example, show that one can always embed a supermanifold with Stein reduction
in C π | m as a closed submanifold; the generality of the method stems from the fact
that it is more closely tied to the idea of a map. As another example of this same
method in another setting, consider what happens if one replaces the superprojective
space D=D

n|m by the space M r d and the map φ0 by the identity map; one rediscovers
in this the obstructions to splitting the supermanifold M, which are elements in
H1(MTd9^~rd®AkS). The classical analogues are the obstructions to finding a
holomorphic foliation transverse to a complex submanifold [10].

• These arguments also work in the #°° category, as all vanishing theorems can
be replaced by the more elementary fact that ΐ?00 sheaves are fine. Of course, all
smooth supermanifolds admit not only superprojective embeddings, but as
previously noted, affine embeddings as well.

Corollary 4. Any supermanifold of dimension l\m is superprojective.

This follows from the fact that H2(M, # ) = 0 for any coherent analytic sheaf &
on any Riemann surface M simply because 2 > dim cM.; cf. [11]. By contrast, for
the super Grassmannian G(l | l ;2 |2) the obstructions are not trivial.

We close this section by giving some higher dimensional examples of complex
supermanifolds which do not split, but which admit a superprojective embedding.

Example. Suppose that S is a rank 2 locally free sheaf of ^-modules with
determinant bundle Jδf(0). Let (M,A'S) be a split supermanifold. A theorem of
Rothstein [22] states that, for any k ^ 2, if H2(M, Der ( 2 k ) A'S) = {0}, then there is an
analytic family of supermanifolds parametrized by H1(M,ΌQTik) A'S/Dετi2k) A'S),
where

and Y is an element in Derz A'S if locally with coordinates (z 1,..., zm, 0 1,..., θn\

where fj and gk are ^-sections of A'S with degree / and / + 1 respectively.

Now, since $ has rank 2 and the highest degree of A'S is 2,
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and

where βΓ is the tangent sheaf of the manifold (M, Θ).
Therefore, every class in H1(Mi£?{0)®έF) determines an isomorphism class of

supermanifolds with characteristic sheaf <ί. An isomorphism class consists of split
manifolds iff its orbit under the action of

contains the origin. Thus, for example, there certainly would exist non-split
deformations if,

and

Yet all such deformations would be superprojectivity embeddable if, at the same

time,

To find such example, let's take Mrd = P1 x Px. Let i ? ( 0 ) = Θ(p,q) be the line
bundle of bidegree (p,q), and assume that p^q. Since ZΓ ̂  0(2,O)Θ$(O,2), the
Kϋnneth formula yields

= h\MτA, 0(2 + p, q)) + h\Mτd, Θ(p, 2 + q))

= h°(Pl9O(2 + p))hί(PuΘ(q)) + h1(PuΘ(2 + p))h°(PuΘ(q))

+ h°(Pl9Θ(p))h1(Pl9O(2 + q)) + h\Pu Θ(p))h°(PuΘ(2 + q))

= h°(PuΘ(2 + p))h°(P1,Θ(--2-q))+h0(Pu&(-4-p))h0(Pu&(q))

ΦO if p^-2^q.

Meanwhile, if p> —2^q, Serre duality then implies that

Therefore, given the above constraint on the bidegree, one can deform the split
manifold to a projective non-split manifold.

Example. In this paragraph, we shall study the borderline case of the last example.
M is again the P1xPuδ'γ& the sheaf Θ( - 1, - 1) φ G( - 1, - 1). The space M has
a covering {l/yij = 1,2,3,4} given by the product of the standard affine coordinates
on the projective line. Let (Xj9 Yj) be such coordinates on Uy, then

Rothstein's deformation theory (cf. also [5]) then tells us that the deformation space
of the split supermanifold (Px x ΨuΛ'δ) is a two dimensional linear space. In fact,
if one uses super coordinate (xp yp ζj9 η3) over Uj such that xjtTd = Xj9 yhrd = Yp
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then a supermanifold can be defined by the following coordinate change:

= (x4~
1 +sx4

2y4

1ζ4η4,y4

1 -tx4

1y4

2ζ4η4, -X41yi1C*> " ^ V ί 1 ^

for (s, ήeC2. We shall denote by M(s,t) the supermanifold defined by the
deformation with parameter value (s, t). Thus M(0,0) is the split model, and M(l, 1)
is the supergrassmannian G(l | l,2 |2).

Proposition 5. The locally free sheaf Θ(p,q) on Pί x P1 can be extended to be a
locally free sheaf on M(s, t) if and only if sp + tq = O.

Note that this proposition gives us a complete picture of the Picard group of
the supermanifold M(s, ί). As a consequence, one can easily find supermanifolds
that are not split but embeddable, e.g. when (s, t) — (1, — 1), or that are not split and
not embeddable, e.g. when (s, ί) = (1,1).

The proof of this proposition is simply a standard computation of Cech
cohomology; cf. [17]. For example, one may begin with the extension defined by

gl4(Xu YJ = xp

iylg23(X2, Y2) = x

l, Y2) = *5, 034(*3, Y3) = Ά

The obstruction to extension as a locally free sheaf is an element of
H2(Mτd9^~(S)Λ2S>) = C and is represented by the number sp + tq. In fact, when
this obstruction is equal to zero, there is a unique way to write down the extension,
namely,

, Y2) = *IΆ + tqxΓ'yl- K2

r3) = Λ

4. Chow's Theorem and the Segre Embedding Theorem

The complement to the classical Kodaira embedding theorem is the celebrated
result of Chow which asserts that any embedded submanifold of projective space
is defined by algebraic equations [3], We now want to show that the image of a
super projective embedding is a superalgebraic variety.

Let us begin by recalling that a homogeneous polynomial of degree d in n + 1
even variables z°,...,zw and in m odd variables θι,...,θm is, by definition, an
element of

0 l(OpCn+1)®(ΛqCm)l
p + q = d

Thus, such a polynomial has a unique representation as

p(zo,...,z",θ1,...,θm)=t X P[il ω(z°,...,z«)0"...0\ (5)
q = O ί^iι< <iq^m
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where p{iUmmmt iq}{z°,..., zn) is a homogeneous polynomial of degree d — q (in the usual
sense); the polynomial p0(z°,...,zn) corresponding to q = 0 is, in particular, a
homogeneous polynomial of degree d, and we will henceforth refer to it as the
reduction prd of p.

Such a polynomial has another incarnation, which is central for our purposes.
Consider the line bundle

s/(d):= Θ(d)®GΛ\Cm®Θ{- 1))

over P n | m . Then every global section of stf(d) is given by a unique homogeneous
polynomial p(z°,..., zn, θ1,..., θm) of degree d, and every such polynomial conversely
defines a global section of s/(d). The importance of this result stems from the fact
that every line bundle over P π ) m , n ̂  2, is necessarily isomorphic to s/(d) for some d.

Remark. By contrast, here are non-trivial continuous deformations of any line
bundle over P 1 | m , w ^ 2 . Indeed, as noted in the first proof of Theorem 3, rank
one locally free sheaves of any supermanifold are classified by i / H ^ e v e J As
before, this may be analyzed via the exact sequences

where s/*2k
= ^ * e v e n / e x P ^ 2 ( f c + 1 ) a n d & *s the characteristic sheaf of M:=

The claim follows from the fact that

H 1 ( P 1 , / l * ( C " l ® ( P ( - l ) ) ) # 0 if m ^ f e ^ l

In a similar vein, using standard obstruction theory (cf. [5]), one may easily
see that P w j m is rigid for n ̂  2, while P X | m has nontrivial deformations for m ̂  3.
These examples should serve as a warning to those who naively expect every result
to remain true whenever the word "super" is inserted in all appropriate places.
Nonetheless, enough does continue to be true so that this naive faith needn't be
considered imbecilic.

Now suppose that we have a collection p1,...,pN, depending o n n + 1 even
variables z°,..., zn and in odd variables 0 1,..., θm. Assume, moreover, that each of
the given polynomials is of definite parity, meaning that, when represented as in
(5), nonzero coefficients occur either only for q even or only for q odd. We can
then produce an ideal J = ( p 1 , . . .,/?"> c= si = s/(0) by taking J to be generated,
for zj Φ 0, by pk/(zj)dk. Such an ideal will be called a super algebraic ideal. Associated
to this ideal is the graded ringed space {X,(^jJ)\^ where X a Pn is the algebraic
variety on which $tj£ is supported. Such a graded ringed space will be called a
complex superalgebraic variety.

Theorem 6. Let (M, st) be a complex supermanifold such that the underlying complex
manifold Mrd is compact. Suppose thatf:(M,stf)^>Pn\m is an embedding. Then the
image of f is a complex superalgebraic variety. More precisely, the kernel of
fΐd:f~1^pnm^J^ ί S of the form f'1*/, where tfas/Pnm is a superalgebraic
ideal, and f therefore induces an isomorphism between (M, stf) and the complex
superalgebraic variety defined by J.

Proof. Suppose that we are given an embedding f:(M, s/M) c> P n ) m . In particular,
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we have an embedding / Γ d : M ς Pn, and the classical Chow Theorem [3] says that
there are a finite number of homogeneous polynomials Prd5 ?pίd of (z°,...,z"),
whose common zeros locus is / r d(M) and which generate the ideal / of/ rd(M) c: Pn.
Notice, moreover, that we may choose the degrees of these polynomials to be
larger than any given integer / by replacing pk

d with (zj)ιpk

d as necessary.

Now each of these polynomials defines a section of Θ(dj) cz $£{d^) so that
/*(pJ d)eΓ(M, JίfJ) where 2 is the pull-back of J / ( 1 ) to M. As was observed above,
we may take dk = d for all k, where d is as large as we like. Now we are faced with
the problem of modifying pk

d by terms involving Θ1,...,θm so that the modified
homogeneous polynomials pk satisfy f*(pk) = 0 for all k. We do this by using the
following result:

Lemma 2. Let ueΓ(M,J^^fk)), where Jί astfM is the subsheaf of nilpotent
elements, and where Sf*k):= &d/J^k+1&d. Then there is some ύeΓ(Pn,(9(d)®
(J) Λq(Cm®Θ( — 1))) whose restriction is u, at least for sufficiently large d. Ifu has

q>0

definite parity, ύ may also be chosen to have definite parity.

Proof. We do this by induction on k. If k = 1, then u is an element of Γ(M, Θ(Ld®E)\
and we may consider the pair of exact sequences,

0 -+ ΘM(Ld (x) F1) -• ΘM(Ld (x) (Cm ® L" x)) -> ΘM(Ld ® E) -+ 0,

0 -* / ® ΘPn(d) ®Cm® ΘPn( - 1) -> ΘPn(

concluding that, if d is large enough so that, as predicted by Grauert's vanishing
theorem, H1(M,&(Ld®F1)) = H1(Pn,/®Cm®Θ(d- l)) = 0, then there is an
element

ύeΓ(Pn, Θ{d) ®Cm®Θ(- 1)) c Γ(Pn, Θ(d) ® A\Cm ®Θ{- 1)))

whose restriction is u.
Now suppose that the statement holds for k — 1, and that we are given an element

ueΓ{M,<Ar<£d

k)). By restricting u, we obtain an element uk^1eΓ(M,jV£ίfd

k-1))
which, by hypothesis, extends as a "nilpotent" section ύk-.1 of s/(d) on Pπ.
The restriction of ύk^1 to Γ{M,JίS£d

k^) differs from u by an element v of
Γ(M, Θ(Ld ® AkE)). We have exact sequences

and,

0 -> / ® βPn(έ0 ® Λk(Cm ® ΘPn{ - 1)) -> ΘPn(d) ® Λk{Cm ® ΘPn( - 1))

-> C^M(Ld ® Λk(Cm ® L" x)) -• 0

and, taking d large enough so that

H1(M,Θ(Ld®Fk)) = 0,

and

Hί(Pn,f®Θ(d-k)®ΛkCm) = 0,
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we conclude that v extends as an element

ϋeH°(Pn9 Θ(d) ® Λk(Cm ® 0( - 1))) = Γ(PH9 sf{d)).

Then ύ = ύk_ί + v is the desired extension.

To maintain the parity of u when extending as w, just consider either the odd
or the even projection of M, as appropriate. •

To finish our proof of Theorem 6, we will need to apply Lemma 2 twice. The
first application is to modify each pk

d so as to produce a new homogeneous
polynomial with identical reduction but whose restriction to the embedded
supermanifold (M, J / M ) vanish. We may do this by letting

/ \
rkeΓ[ Pn,Θ(d)® 0 Λ ^ [ C m ( χ ) ί P ( - 1 ) ]

be the constructed extension of /*(pjd), and letting pk' =pk

d — rk. Notice that we
may take the polynomials pk to all be even.

As our second application, let us first consider the exact sequence

0 -> JX(E ® Ld) -> ΘM(E ® Ld) -» Ex ® Ld

x^ 0

of sheaves on M, where xeM is any point, and where «/ a 0 is the ideal sheaf of
the point x. For d sufficiently large, we have that

so that elements of Γ{M, Θ(E ® Ld)) = Γ{M, JV^d

{1)) extend as odd homogeneous
polynomials if d is large. Thus we may find odd polynomials pN+1,...,pN' in the
ideal which generate the fibers of E®Ld. In conjunction with p 1 , . . . ,^^ , these
polynomials constitute generators of the ideal, showing that«/ is superalgebraic.
This then concludes the proof of Theorem 6.

Example (Segre Embedding). Consider the super projective spaces Pmln = (PmiΛ$)
and Pk{ι = (Pk, Λ&)9 where δ = ®nΘ( - 1) and & = φιΘ( - 1). Their product space
is the split manifold

Pm\n X P*|I = (Pm >< Pk,Λ(Q"Θ{- l ,0 )©^(0, " 1)),

where the bundle ^(—1,0) or Θ(0, —1) is the pullback of a bundle from the first
and second factor respectively. As it is a split manifold, according to Corollary 2,
this supermanifold is superprojective and according to Theorem 6, it is super-
algebraic. To find an embedding, let's follow the procedure in the proof of Theorem
3 and choose the 0-module 0(1,0)® 0(0,1) on the reduced space. This is a very
ample invertible sheaf. Its associated map is exactly the Segre embedding from
P m x P f c into P m k + M + k + 1 . Since

( - 1,0)0^(0, -l)) = (

this locally free sheaf is generated by global sections. In fact, one has

Θ«*+i>+κ*+i>(0(_ i,o)® 0(0, - l))-> Θ r t 0 ( - 1,0)0*0(0, - l)->0.

Let Φbe the Segre embedding and 0(1) the hyperplane bundle on pmk + m+k + 1^ the
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above exactly sequence can be expressed as

1 ) ^ ( - 1 ) - ^ Φ H 5 ( Θ Λ ^ ( - 1 , 0 ) 0 ^ ( 0 ,

In terms of supermanifolds, we have an embedding

To express the above map in coordinates, we take homogeneous coordinates
(z09zl9...9zm;θl9θ29...,θH)on Pm]n and (wo,wu...,wk;ηuη2,...,ηι) on Pk]ι. Then
the "image" of the product in homogeneous coordinates, will be (z{wj9 Wjθa, ηβZi)
where i = 0,1,.. ., m; j = 0,1,. . . , fc; α = 1,2,..., n; β = 1,2,..., /. Obviously, this is
an embedding. However, this is not the Segre embedding which can be described
algebraically as in the classical Segre embedding by the tensor product of
submodules. In fact, given the "homogeneous" coordinates as above, they represent
rank (110) regular, i.e. nonnilpotent, submodules in C m + 1 | w and C f e + 1 | ί respectively.
Their tensor product is a regular rank (110) submodule in cim+m+ί)+nl^k+1)+l{m+1\
In coordinates, the Segre embedding sends the product to (ẑ Wj, — θaηβ; Wjθ^ηβZi).
Note that, at this level we are writing down the sheaf morphism and this is not a
point set mapping. Let us study the products of P 1 ( 1 with itself. We have

given by coordinates as

(zo,zί;θ)x(wo,w1;η)^(zowo,zowuzίwo,zίwu-θη;zoη,z1η,θwo,θw1).

From this map one sees that the reduced map is from

Pt x P 1 - ^ P 4

given by

and when (xθ9x1,x2,x3ix^'ΛiΛi^£3*^4) represent coordinates on P 4 μ , the
sheaf morphism φ* is defined by

</>*xo = zowo, φ*xί=zowl9 φ*x2 = z1w0, φ*x3 = z1wu φ*χ4=-θη;

and

Φ*ξi=Zorl> Φ*ζi = Z\% φ*ξ3 = θwOi φ*ξ4 = θw1.

As a superalgebraic variety, this product of superprojective spaces can be defined
by the equations

^ 0 ^ 3 ~~ ̂ 1 ^ 2 = "9 XQX^. — Cl S3 = 0j X1X4 — ( ^ £ 4 = 0, X2X4. — ^2^3 = 0>

^3^4-^2^4 = °9

and

- * 2 £ i = 0, XoU -Xit?> = 0, xxξ2 -x2ξx = 0, x2ξ4 - x3ξ3 = 0.

Finally, the algebraic definition of Segre embedding can be generalized to show
that the product of any super Grassmannians can be embedded into a super
Grassmannian. As any flag manifold is submanifold of the product of Grassmannians,
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any flag manifold can be embedded into a grassmannian. In view of the fact that
some super Grassmannian manifolds are not superprojective, one can raise the
issue of embedding into super Grassmannians. In the category of manifolds and
supermanifolds, one can simply say that a supermanifold can be embedded into
a supergrassmannian if and only if there is a locally free sheaf of j/-module which
is generated by global regular sections. Such a sheaf is certainly an extension of a
locally free sheaf of 0-module which is generated by global sections. However,
when we go through the same argument of the proof of Theorem 3, we find that
the obstruction to the extension for an appropriately chosen sheaf of ^-modules
from the reduced space to the ambient supermanifold consists also of elements in
cohomology analogous to those described as in Theorem 3.

5. A Superprojective Family Embedding Theorem

We have seen that, for dimensional reasons, a supermanifold with dimension 11 m
is always superprojective. However, it is more important to find out whether a
family of such supermanifolds is necessarily projective in a suitable sense, since it
is only in the context of families that the theory of super Riemann surfaces [6]
becomes interesting.

Remark. A family of super Riemann surfaces is defined as a proper regular projection
from a supermanifold (X,jtfx) onto another supermanifold (Y9s/Y) such that the
relative dimension is equal to 111 and equipped with a rank 011 locally free
subsheaf 2 of the vertical tangent sheaf ZΓxlY with the property that the map

is an isomorphism

As a result, the reduced sheaf of Of restricted to any fiber is simply a choice of the
square root of the anticanonical bundle of the underlying Riemann surface. Let
S£ be $)~n for some positive even integer, then i f is a locally free rank one sheaf
such that its restriction onto every fiber is positive.

This motivates the following definition:

Definition 3. Let (X,s/x)-^(Y,s/γ) be family of complex supermanifolds with
compact reductions—i.e. we assume that π r d is proper and that π is submersive. A
relatively positive line bundle 5£ on (X, stfx) is a locally free rank one sheaf of
sdx-modules whose restriction to each fiber Xy:= π^HjO, yeY ίsa positive line bundle.

We now establish a version of the direct image sheaf theorem of Grauert
([17]; cf. [14]).

Lemma 3. Let 5£bea relatively positive line bundle for the family (X, stfx) -
For sufficiently large /, H°(Xy9&

ι

y) is locally independent of y.
More precisely, for any y9 there is a neighborhood Uofy and an integer N such

that for l> N the natural restriction

is surjective for all yeU.
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If9 for such a neighborhood U, ζ is an element ofH0{π~ ^U), &) such that R°yζ = 0
for all yeU then ζ = 0.

Proof. We have the exact sequence of sheaves of j/x-modules:

Tensoring with if, one has

Note that the j/ x-module AkS ® i f is just the ^x-module ΛkS ® <£xd and when
k = n, the odd dimension of (X, s/x)9 then Jrn + X<£ = 0. Therefore, we have

n-l (6)

0 -> Jfn<£ -> A nS ® <£xά -> 0. (7)

For any given y, choose an / so large that for j^l and for all k,

For each fe, as the set

AjΛ = {yeY:dimHJ(Xy9Λ
k*y®(&ι

td)y) ^ 1}

is an analytic subset ([17,14]), one can choose a neighborhood U of y such that
for all yeU, and for all k,

Then one can also deduce that H°(Xy,A
k£'y®(g?ι

rd)y) is also independent of y for
all y in U. By the Riemann-Roch formula on Xy, we know that, for sufficiently
large /, such cohomology groups are independent of y and that any higher
cohomology are actually equal to zero. Restricting (6) and (7) onto any fiber Xy9

we see from the induced cohomology exact seqence that the dimension of
Hj{Xy, <£\) is independent of y.

• From now on, we shall simplify our notation by using X to denote our
suitable positive line bundle t£ι.

As a consequence of the classical result of Kodaira and Grauert, the restriction
map

Ry:H
j(π''(U), AkS® <£xά)->HJ(Xy9 AkSy®(J?rd)y)

y9

~1{U)Akis surjective and if ζ is an element in Hi(π~1{U)9A
kδ® &rd) such that ^ ( ζ ) = 0

for all yeU, then ζ = 0. In particular, Hj(π~ι{V\ AkS® <£xd) = 0 for all k and j ^ 1.
It follows that Hj{π~1{U\AkS®^) = Q. Then from (7), one can deduce that

\U\jrn^) = Q for all j ^ l .

Taking the induced exact sequence of (6), we have

W{π-\U\jrk^) = 0 for all n^k^O.

Then the induced long exact sequences of (6) and (7) over π"1(C/) and over a fiber
Xy will yield the following exact sequences of cohomology:
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and

0 -> H°(Xy, (JTk +1 &)y) -> H°(Xy, {Jrk&)y) -> H°(Xy9 {Ak

y, (JT &)y) > H(Xy,

Moreover, the natural restrictions

R):H°(π-1{υiΛk£®g)-+H°{Xy,{Λk£®&)y) for all k
and

are surjective.
Again, induction will show that Ry is surjective and that if ζ is an element

in Ho(π-\ϋ)9&) such that R°yζ = Q for all yeU, then ζ = 0. The proof of the
lemma is completed. •

As a consequence, we have the following1:

Theorem 7. // (X9s/x)->(Y9ts/γ) is a family of supermanifolds such that the space
(X9stx) has relatively positive line bundle, then for any point yeY, there is a
neighborhood U of y such that the family over the patch U can be embedded into
^n\m x (U,£/Y(U)) such that the following diagram is commutative:

X\u >UxPnlm

ϊ ϊ
U - ^ U

Proof The lemma guarantees that, for a sufficiently positive power of the given
line bundle, the embedding map from a fiber to P n ) w can be extended to a
neighborhood in X. Taking the product with the projection to U gives a map
which is an embedding on some neighborhood. •

Remark. If the base manifold is superprojective, it is now not difficult to use our
generalization of Segre embedding to conclude that the total space of the family
is also superprojective.

We now outline a version of the Chow theorem which is applicable in the
present context of families. Suppose that we have a family

which is embedded in (Y,s/Y) x Pn\m in a manner consistent with the projections
so that the diagram

is commutative. We may then ask whether the image of / may be defined by a
finite number of homogeneous polynomials with coefficients which are elements

1 In the case of super Riemann surfaces, Rabin and Topiwala [21], have independently formulated a
similar result in a recent preprint
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of £#γ, i.e., by functions of the form

p(y,z,θ)= Σ fu(yWθJ,
\I\ + \J\=k

where (z,θ) are homogeneous coordinates on P w ( m , and A: is a positive integer. We
shall see that this is locally true in Y.

Definition 4. Let (X,s/X) be a complex supersubmanίfold of (Y,s/Y) x P π ( m such
that the projection (X9J^X)->(Y,S/Y) is a family of complex supermanifolds with
compact reduction. We say that (X, stfx) is projective super algebraic over stfγ if Y
has an open covering {Ua} such that on each Ua, there is a finite collection of
superfunctions {̂ /Jία} such that the ideal of (X, jtfx) <=: (Y, <$/γ) x Pn\m is generated
by the functions

Pla = Σ
IJ

where \I\ + | J\ = constant for each (/,α).

Theorem 8 (Relative Chow Theorem). Let (X,Ax)^(Y9s/γ) be a proper family of
complex supermanifolds, and letf'.(X,stfx)-*{Y,stfγ) x P π | m be an embedding of this
family so that the diagram

commutes. Then (X9s/X) is projective super algebraic over srfγ.

Proof. Let us first notice that this is true if (X, s/x) and (Y, s/γ) are just complex
manifolds. For instance, if X a Y x PMJm has codimension one and Y is Stein and
contractible, the fact that Hι(Y x Pπ, Θ) = 0 implies that the divisor line bundle of
X is a power of the hyperplane bundle; the case of higher codimension then follows
over a sufficiently small subset of Y by projecting to generic hyperplanes, and the
general case follows by covering Y with small Stein sets.

Let us now consider the general case. Let us remark that any section of Θ(d)
on Y x Pn is a homogeneous polynomial with coefficients depending on Y, and
the analogous statement is true for stf(d) on (Y,s/Y) x P w j m . By shrinking Y as
necessary we may assume that X cz Y x Pn is defined by a finite number of global
sections of Θ(d\ and we may also assume that Y is Stein. We now may consider
our sections as sections of s/(d), and seek corrections terms so that these sections
vanish on (X, s/x). As in the proof of Lemma 2, the obstructions to doing this are
in Hι(X^k®Θ(d)) for a finite number of coherent analytic sheaves £fk. Thus the
cohomology of such sheaves will vanish on a fiber Xy for d large by the Grauert
vanishing theorem, and by semicontinuity, we may take this vanishing to occur
for every fiber Xy by shrinking Y as necessary. This being done, it follows that
H^iX, Sfk® Θ(d)) = 0, as needed. We can thus extend our defining sections of Θ(d)
to even global sections of s/(d) over (Y,s/Y) xP π | f f l which vanish on (X9s/X).
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We now ask for odd polynomials to adjoin to the above generators so as to
generate the entire ideal of (X, srfx). We do this in the same manner as before.
First we need some sections of $®Θ(d\ where $ is the characteristic sheaf of
(Y,Λ/y) x Pπ | m, which define (X9sfx) to first order, and then we wish to extend
this to all orders. Again, the obstructions are in H1(X,&?

k(g)Θ(d)) for a finite
number of coherent analytic sheaves £fk. Taking d to be large and Y to be small,
these cohomology groups vanish, and we are done. •
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