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Some Comments on Chern-Simons Gauge Theory
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Abstract. Following M. F. Atiyah and R. Bott [AB] and E. Witten [W], we
consider the space of flat connections on the trivial SU(2) bundle over a
surface M, modulo the space of gauge transformations. We describe on this
quotient space a natural hermitian line-bundle with connection and prove
that if the surface M is now endowed with a complex structure, this line
bundle is isomorphic to the determinant bundle. We show heuristically how
path-integral quantisation of the Chern-Simons action yields holomorphic
sections of this bundle.

1. Introduction

In [W], Witten studied a 2+1 dimensional quantum Yang-Mills theory, with an
action consisting purely of the Chern-Simons term,

i / 2 \
CS(A)=— J7r AΛA+-AAA .

4π \ 3 )

He obtained the Jones polynomials of knots on S3 and their extensions to other
3-manifolds as expectation values of Wilson loop functionals. A key point was the
identification of the quantum state space as the space of holomorphic sections of a
line bundle.

We first describe this line bundle from an algebraic point of view. Let M denote
a compact 2-manifold without boundary (with genus g ̂  3 - the other cases can be
treated with analogous results), si the space of connections on the trivial SU(2)
bundle on M, s/F the space of flat connections, s/s

F the space of irreducible flat
connections, and ̂  the group of gauge transformations. Then it is well-known that
siyy is in a natural way a symplectic manifold. A choice of conformal structure
Mc on M endows sty^ with a compatible Kahler structure, and it can be
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identified with the moduli space £f of stable vector bundles on Mc of rank 2 and
trivial determinant [NS, AB]. The Kahler structure on <9*, suitably normalised,
comes from an ample class on P, the moduli space of semistable vector bundles,
(which in turn can be identified with the quotient sίFj^\ In fact, by recent results of
Narasimhan and Drezet [ND] there is a unique line bundle Jδf in this class.

The state-space of relevance for the quantum field theory is the space of global
sections H°(P, 5£k\ where the integer k multiplies the Chern-Simons action in
functional integrals. Witten obtains this finite-dimensional space via holomorphic
quantization of a classically constrained phase space. On physical grounds he
concludes that the vector bundle ΊV over Teichmuller space with fibre H°(S?, J£k)
is projectively flat, i.e., has a natural connection such that the curvature is a form
with values in scalar endomorphisms. (Equivalently, parallel transport in the
associated projective bundle has trivial holonomy.) Moreover, every 3-manifold N
such that dN = M determines via the functional integral

a state vector vNeH°(Sf,&k), and, given two such 3-manifolds Nt and N2 one

where the integral is over connections A on the 3-manifold JV obtained by
identifying iV\ and N2 along M.2

This paper was motivated in part by trying to understand the existence of the
projectively flat connection in terms of differential geometry. Some progress can be
found in Sect. 2 where we prove

Theorem 1. There exists a natural hermitian line bundle ££ on ja/F/^. Restricted to
stfp/y, this line bundle carries a natural connection whose curvature is (up to a factor
of i) the standard symplectic form.

This theorem does not require a choice of conformal structure on M. However
given a conformal structure, we can consider the determinant line bundle of the
family of elliptic operators {d^Aes/p}. If further a choice of compatible
Riemannian metric on M is made, the construction of Quillen [Q] yields a
hermitian structure and connection on this bundle, and one can show that it
descends to Sf as holomorphic hermitian line bundle <£Ώ with connection. We then
have

Theorem 2. 5£ is isomorphic to the determinant bundle ϊ£Ώ, as a hermitian line
bundle with connection on £f.

Theorems 1 and 2 show that the fibres of the holomorphic bundle ΊV imbed
naturally into C°°(^, if).

In Sect. 3 we sketch a heuristic path-integral approach which yields the
quantum state-space H°{P,££k) affirming Witten's geometric quantization. In
Sect. 4 we point out some subtleties when the gauge group is 1/(1) so that slpjφ is
the Jacobian. We conclude with some speculations concerning the correspondence

2 The functional integrals can be defined only after a choice of metric on JV. A suitably modified
integral depending on a choice of framing of N turns out to only depend on the homotopy class of
the framing. We will not consider the metric dependence in this paper
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Witten considered gauge groups SU(ή), with n^2. For simplicity we have
limited our attention to the case n = 2.

For a recent study of Chern-Simons gauge theory from the Schrόdinger
viewpoint see [DJT].

One of us (T.R.R.) would like to thank M.S. Narasimhan for very useful
conversations.

2. The Line Bundle

2.L As in the introduction, let si be the space of su(2)-valued 1-forms on M, siF

the subspace of flat connections, siF the submanifold of irreducible flat connec-
tions, ^ the space of gauge transformations. Also let N be a 3-manifold with
dN = M; in fact we assume given a diffeomorphism of a neighbourhood of M in N
with M x [0,1).

Consider the following [/(l)-valued function o n r f x f :

Θ(A, g) = exp i(CS( A*) - CS( A)),

where A and g are extensions of A and g into N and A9 is the gauge transform of A
by g. Such an extension of g into N is always possible in the case when the structure
group is SU(2) because π1(Sl7(2)) = π2(Sl7(2)) = 0. We shall choose the extensions
such that on M x [0,1), A and g are the pull-backs of A and g respectively by the
projection to M. Now Θ is independent of N and the extensions A and g. In fact
extensions (Al5 gx) and (A2, g2) as above into JV± and N2 give a connection B and
gauge transformation h on N = NX (J — AΓ2 so that

M

β(A l5 gx) β(A2, g 2)" x = exp i(CS(B*) - CS(B))

= 1

because CS(Bh) — CS(B) is 2π times an integer.
The function Θ is a cocycle:

We define
^ = tWf X β^ ,

where on the right we mean the quotient by the equivalence relation:

It is clear that J£? is a complex line bundle on s/s

F/&, and since Θ is (7(1)-valued, it is
a hermitian line bundle. One can also define the corresponding principal C/(l)
bundle % in a similar fashion.

One can easily check that Θ is C00 on si x ^ in the appropriate Sobolev norms.
Integration by parts shows that its differential dΘ(a, φ) at {A, g) equals

±- Θ x ί f Tr(g"1 dgg" ^ g ) - J Tr(i^ Λ f
4π [M M M

where α is a tangent vector to si [i.e., an sw(2)-valued 1-form on M] and φ is an
infinitesimal gauge transformation [i.e., an sw(2)-valued 0-form].
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We recall next the definition of the symplectic structure on stfpjy. On the space
j / of all connections, the two-form

(where a and β are tangent vectors at Aesf) is closed. Restricted to st% it is
singular in the direction of gauge transformations:

M M

if dAβ = 0 (the condition that β be tangent to <$#%). In fact the restricted form
descends to a form Ω on sίs

F/^S which is symplectic (modulo a factor of i) [AB].
Note that on s/,0 = dώ, where the l-form ώ is defined by

We now check that ώ, restricted to st\ is the pull-back [via the map
siF-*stF x 1 c> si¥ x \J{ϊ)-+s$ x Θ 1/(1)-^] of a unitary connection on % whose
curvature is Ω. First, ώ defines a connection one-form ώP on the principal U(l)
bundle srfF x (7(1). We have a twisted action of ^ on this bundle, and % is the
quotient. Let X be a vertical vector field for this action. Using the earlier formula
for dΘ one verifies that ώP vanishes on X and

LxώP = ix dώP = ix0 = 0,

where Lx is the Lie derivative. This completes the proof of Theorem 1.

Remarks. 1. In fact the above construction defines a continuous line bundle over
stfl^. One needs to check the following: if g fixes Aes/, then Θ(Ά, g) = 1. This is
trivially true when L̂ = 0 or when g= ± Identity. When that is not the case and g
fixes A, there exists h e & such that

\o -a
where α*is a l-form, and

0

for some constw with |w| = l. It is easy to check that Θ(Ah,h~1gh) = l and this
implies Θ(A,g) = \.
2. The cocycle Θ was first considered, in a slightly different form, by Jackiw
[J]. A construction similar to the above, of a line bundle over a loop group, (using
the Wess-Zumino-Novikov-Witten term) appears in Mickelsson [M]. We thank
one of the referees for pointing out the latter reference.
3. It is worth pointing out the naturality of 5£\ Introducing subscripts in an
obvious way, a map of surfaces σ: M1 ->M2 induces a map σ: sίFt 2 /^ 2 ~*<^F, I / ^ I

such that σ*Ωx = (degree σ)Ω2. We also have a morphism of hermitian line bundles
jS?2e8ree*->jS? i "over" σ which preserves connections.
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To identify Jδf with the determinant bundle we will need to know π/ fl/jj/^),
7 = 0,1,2. We will use:

stF/<& = {conjugacy classes of representations of πx(M)} = St(π^).

Let {(α£, bi)\ i = 1,..., g} be loops on M which form a standard set of generators of
πx(M) so that we have ]Jaibiaϊ~1bf1 = ί. Then we can write
where ι

Zπ=\A1,...,ArBu...,Bf,\Aί,BieSU(2l with Π

and S£/(2) acts adjointly on Zπ. We will let Zs

πcZπ denote the irreducible
representations of π^M). It is easy to see that Zs

π = Zπ\Y, where Y is the orbit of
Γx ... x Tunder the adjoint action of SU(2), Tbeing the standard diagonal 1/(1)
subgroup of SU(2).

We now prove the

Lemma. St(π^) is connected and simply connected; π2(&(πί)) = Z.

Proof. The projection Zs

π-+Sl(π^) is a locally trivial fibration with fibre SO(3). We
show below that Zs

π has π 0 = 0, πx = 0, and π 2 = Z. Hence the same result holds for

Let Z denote the product of 2g copies of SU(2):

The set 7 is a submanifold in Z of codimension 4g —2; since g>2, Z\Y satisfies
π o = 0, π 1 = 0, and π 2 = 0. Consider the map R:(Z\Y)^>SU(2) given by

Because this (proper) map has a differential of maximal rank at every point, it is a
fibration. The space Z% is the inverse image of the identity element under R, and the
standard exact sequence in homotopy proves that πo(Z*) = 0, π1(Z*) = 0. To see
that π2(Zs

π) = Z we observe that the map π3(Z\ Y)-»π3(Sl/(2)) induced by R is zero.

2.2. Choose a conformal structure c on M. The space s/s/@ can then be
identified [NS] with the moduli space £f of stable vector bundles of rank 2 and
trivial determinant on Mc. In fact, by [S] s^Fj^ is a complete complex algebraic
variety - the moduli space Sf of (s-equivalence classes of) semistable vector bundles
- in which 9* = jtfs/$ sits as the smooth part.

The complex structure on J / S / ^ c a n a l s o be obtained [AB] via the •-operator
on 1-forms defined by the conformal structure c. The form Ω is of type (1,1) with
respect to any one of these holomorphic structures; S£ has therefore a unique
holomorphic structure such that the unitary connection ω is compatible with it.

We proceed to identify the line bundle constructed above with the determinant
bundle 5£Ώ of the family of d operators parametrised by £f. We will first define ££Ώ

as a bundle on Sf. In [Q] Quillen constructs a determinant line bundle 3?Ώ on si.
This bundle has a hermitian metric and connection invariant under a lift of the
action of 0, and its curvature is U. Restricted to siψ it descends to give 5£Ό. The
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curvatures of ££D and 5£ coincide, and using the above lemma one sees that S£Ώ and
5£ are isomorphic.

We now give the details. First, it is enough to consider 3?Ό on the
neighbourhood stfs of sίψ consisting of A9s which define stable bundles. On this set
the bundle ££Ώ is easy to describe. We have [NS] ker d\ = H°(MC9 d^) = 0 and so the
vector spaces coker d-χ = H1(MC9 d^) form a holomorphic vector bundle over s4s of
rank2(g — 1) and 3?Ώ is the determinant bundle of this vector bundle. We have, for
g e ̂  the relation Έ(χ)g = g ~ * ° δja ° g which shows that the action of ^ on s$s lifts to
the bundle of cokernels. One can check, using the definition of holomorphic
structure on this bundle, that the lifted action is by holomorphic isomorphisms.
Thus the action of ^ on s$s lifts to an action on 3?Ό by holomorphic
transformations, which, further, preserves the Quillen metric in it. This implies that
the action preserves the canonical connection on the bundle: denoting by g the lift
of g e ̂  we have

l l

for any section μ. Let us now restrict J&D, as a hermitian line bundle with
connection, to stψ> continuing to denote it as 3?Ώ. We now define JS?D as a line
bundle over ίf by taking the quotient of 3?D by the action of ^. [The isotopy
subgroup of ^ at any Ae^/p is + Identity. Since Hί(Mc, d^) has even rank this
subgroup acts trivially on 3?Ό as well.]

We need to check that the connection descends. Let μ be any covariant section
of 3?D: i.e., (g)"1 ° μ°g = μ, X a covariant vector field. The covariance of the
connection shows that Vxμ is covariant. We will now show that Vxμ = 0 if X is
vertical. Let 0 be a ̂  orbit in jtfp. On G we can write Vxμ = κ(X)μ, where K is a linear
functional on {invariant vertical vector fields on G} = Lie^, the Lie algebra of (S.
Since the curvature Ω = 0 on G, we have κ([X1,X2]) = 0. Since Lie^ is perfect,
κ=0.

From the lemma one concludes easily that H\9?, Z) = Z. This, together with
the fact that Sf is simply connected, implies that two hermitian line bundles with
the same curvature 2-form are isomorphic as line bundles with connection, thus
proving Theorem 2.

Remarks. 1. One can check that H\MC, dΆ)~H°(Ma Kχ)* when A is flat, χ is the
associated representation of π1(M) in SU(2) and Kχ the canonical line bundle
twisted by χ. The latter space has a natural inner product <τ, ξ} = J (τ, Λ ξ). Hence

M

the line Lχ = A2g~2H°(Mc,Kχ) has a natural inner product. The line bundle
{Lχ}χeZsτ descends to l ^ π j as a line bundle J^* with hermitian structure. If one
follows the path of defining a complex structure on RiπJ as in [NS], one could
similarly define a holomorphic structure on j ^ * . We then have isomorphisms of
holomorphic line bundles ££ = ££D = &.

However the Quillen metric on <£D differs from the metric on ί£ described
above by the function detzlr where Λχ is the Laplacian on functions equivariant
under χ.
2. The determinant bundle is an algebraic object, and in fact exists over P. In
fact since P i c ^ ~ P i c y ~ Z [ND] every holomorphic line bundle on £f extends
uniquely as an invertible sheaf on Sf.
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3. Holomorphic Quantisation via Formal Path-Integrals

Consider again the Chern-Simons action functional

1 / 2 \
CS(A)= — jTr AdA + -AAA ,

4π \ 3 /

where A is a connection on the trivial SU(2) bundle on a 3-manifold. When the
3-manifold is diffeomorphic to M x [0,1], with M a 2-manifold, we can write

where A(t) and A0(t) are a one parameter family of sw(2)-valued one- and zero-
forms respectively on M parametrised by ίe[0,1]. The Chern-Simons action
becomes then:

Standard constraint analysis a la Dirac leads to sίp/9, with its symplectic
structure, as the reduced phase space. A conformal structure c on M determines
(via the • operator) a compatible complex structure and Kahler metric on s^s/^
and this holomorphic polarisation determines (for k = 1) the state-space of [W],
described in Sect. 1.

Our purpose in this section is to obtain the state-space H°(P, J£?fc) via the
functional integral directly. We emphasize that the arguments in this section are
not rigorous. Some of them are standard, but the one which suggests the
holomorphy of the sections of jSf obtained by functional integrals is, to our
knowledge, new.

Consider therefore the functional integral

Φ(A,Ai0>M))= J <^Aexpi*CS(A)Π WA(Q,

where A is an sw(2)-valued 1-form on M, A{0M) a su(2)-valued O-form, N is a
3-manifold such that dN = M, the subscript on 2) refers to the fact that the
functional integral is over A on N and f] WA(C) is a product of Wilson loops in N

c
not intersecting M. We will argue that Φ can be interpreted as a holomorphic
section of <£fe.

Choose a neighbourhood (not intersecting any of the loops C) of M in N
diffeomorphic to M x [0,1) and in fact fix such a diffeomorphism, letting t denote
as before the co-ordinate along [0,1). The functional integral Φ above can be
expressed as

O.M>)= f
A(0) = Ά

J ΘA{t) 9A0{t) exp ikCS(A, Ao)
A(0) = A,AO(0) = A{O,M)

x ί @NWx[0Λ)AεxpikCS(A)π WA(C)
A(1) = A(1)+Ao(l)dt C

2>A(t)®A0(ήexpikCS(A,A0) Ψ(A(1), A0(ί)),
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where the effects of the integral over the fields on the rest of the manifold are
subsumed in the functional Ψ. We will see below that the functional Φ is
independent of A(OfM) and Ψ of A0(l), s o w e c a n write

Φ(A) = J 9A(ή 9Λ0(ή expikCS(A, Ao) Ψ(Λ(ί)).
(A(O)A)

The expression

shows that the above functional integral is nonzero only for paths A(t) in s$Έ. More
precisely,

where 3>x(ί) = j/detL(ί)* L(t), and L(t) = dA{t)\kerd^(t) *
s ̂ e differential (in the normal

direction to {FA(t) = 0}) of the map A\-+FΛ of 1-forms to 2-forms. We have our first
result: Φ is supported on connections A which are flat, i.e., Φ(A) = 0 unless ^ = 0.

We next demonstrate that the functional Φ is a section of j£?fe, i.e., A i—• (A, Φ(A))
is a section of S£k. Because of the equivalence relation defining if, we need to check
Φ(Aβ) = Θ(A, g)k Φ(A). Since ^ is connected, it suffices to verify this at the Lie
algebra level: if φ is an infinitesimal gauge transformation,

where in the second equation we have used the expression for the differential of Θ
from Sect. 2.

Extend the function φ into N so that it is supported within M x [0, δ) and
denote the extension by $. We have

Φ(Aetφ) = J @NA exp ikCS(A) Π WA(Q.
A ( 0 ) | M = > t φ C

Make a change of variables A i—• Aetφ. Assuming the integral is gauge invariant, we
conclude because the Wilson loop functionals are gauge invariant that

φ(Aetφ) = j 9NA exp ikCS(Aetφ) Π WA(Q.

We note now that

A 1

— CS{Aetφ) = — J T r ( l Λ dAφ) CS(A),

which proves the required covariance. (Note that the above argument also shows
that Φ is independent of A{OtM)9 since we can change A{0M) arbitrarily by a gauge-
transformation that is the identity on the boundary.)

We now give a heuristic argument to show that Φ is a holomorphic section of
J£k. It pretends that P is a smooth Kahler manifold or that £f is compact. Of



Chern-Simons Gauge Theory 417

course the holomorphic structure comes from a choice of metric on JV needed to
define the path integral - the metric on JV induces a metric in M and hence a
complex structure.

We will use the formal path integral expression for the heat kernel [FH]
e~TΔω\ where ωk is the connection on $£k and Δωk = d%kdωk. If ψ is a section of !£k

we have

J ®tft)exp(-]dt\dx/dt\2- J ωk)ψ(x(T)),
^<7,x(0) = x \ 0 x(t) J

and exp J ωk is the parallel transport operator from the fibre at x(0) to the fibre at
x(T).

When Γ-»oo, eTλoe TAcok projects ψ onto the eigenspace corresponding to the
smallest eigenvalue λ0. In our case we are working on a Kahler manifold and the
curvature of the line bundle is a constant multiple of the Kahler form; hence Δωk

= 2d%kdωk + kx (dim^) so that the above eigenspace is the space of holomorphic
sections. That is,

/ T \

lim eTλo j Θx{t)exp - jdt\dx/dt\2- j ωk)ψ{x{T))
Γ-> oo x:[O,T]-+S?,x(O) = x \ 0 x(t) J

is a holomorphic section. We will now regulate our path integral to be exactly this.
Let us rewrite the expression for Φ, taking into account our observation that

only paths in jtfF contribute:

Φ(Λ)= J

f SA(t) Π ®i(ί) exp ( - k f ώ) Ψ(A(ί)).
A(O) = A,A(t)€^F t \ Ait) )

Note that now Ao is out of the picture and yet the above functional integral has the
gauge freedom ^(ί)h->g~1(t),4(f)g(f)-}-g~ίdg(ί). We now argue that the above
integral descends to an integral over the space of paths on £f9

φ(x)= J 0x(ί)exp(- ί

where φ and ψ are sections of 5£ determined respectively by Φ and Ψ and ω is the
connection one-form - the only point to note being that the volume of ̂  cancels
the determinant factor:

γdet(d%t)dA{t))0 = Ϋdεtidϊnd^^it).

(The operator *dΛ gives an isomorphism between the eigenvectors with nonzero
eigenvalue.)

The last functional integral can be regulated by adding a kinetic energy term to
the action:

φτ(x) = J 9x(t)exp ( - i ί dt\dx/dt\2- j ω k) ψ(x(l)).
x:[0,11->y,x(0) = x \ 1 0 x(t) J
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If we now make a change of variables s = tT we get

T
.12 _φτ(x)= J ^c(s)exp - $ds\dx/ds\2- J ωk)ψ(x(T)).

x:[O,T]-+#>,x(O) = x \ 0 x(s) J

As T-»oo, we get the projection oft/; on the subspace of holomorphic sections,
provided we renormalise by multiplying by eTλ°.

4. The 1/(1) Case; Concluding Remarks

4.1. We consider the case of 1/(1) bundles; two subtleties become more evident
from our point of view.

First, the space ^ of maps from M to G is connected in the case when G = SU(2),
but when G = 1/(1) the group of connected component of ^ is precisely H1(M, Z).
The argument in 2.1 that the functional Φ descend to sections of a line bundle on
stfFβ fails when SU(2) is replaced by 1/(1) because the gauge transformation g need
not extend into M. Also, there is no a priori reason now for the number k to be an
integer since the Chern-Simons action (on a manifold without boundary) is single-
valued modulo all gauge transformations. Let us, nevertheless see if the procedure
does define a hermitian line bundle ££ with connection on J / F / ^
= H\M, R)/H\M9 Z) [where we have identified srf¥ with H\M, R)] by sending A

to the class of -r—.A. To define the factor of automorphy for a given gauge
Δiίl

transformation g one must now choose a three manifold N such that g extends into
N. We can now evaluate Θ (we include the factor k in the definition)

We see that for this to be a factor of automorphy for all gauge transformations [i.e.,
Θk(A, gh) = Θk(A, g) Θk((A)9, h)~\ k must be an even integer. We shall assume this to
be the case. We shall denote the line bundle defined by taking k = 2 by /.

Choosing a complex structure on M yields one on f/^il^R); we can then
identify s/F/<g = H\M,R)/Hί(M,Z) with the Jacobian J.

Note that even if k is an integer, different three-manifolds N define vectors in
different infinite-dimensional vector spaces, namely, sections of lk/2 on the
(noncompact) space /ί^M, Rj/lmH 1(N, Z) with no further automorphic property
to ensure that they descend to J; the obvious guess that these are all ^-functions on
the Jacobian may not be correct. [By Imfί^iV, Z) we mean the image of ff 1(iV, Z)
in H\M, Z). We have the projection H\M, R)/lmH\N, Z)->i/1(M, R)/H\M, Z)
and can pull back lk/2 by this map.]

Since π1(J)ή=0 it is interesting that path integral considerations have enabled
us to choose a particular line bundle with connection whose curvature is the
symplectic form out of a whole family of such bundles. Conventional geometric
quantization does not do this.

4.2. When N is a handle-body, it determines [A] a Lagrangian manifold SN of
s/p/&. The line bundle Jί? is flat along SΉ\ we will show that <g\£li has a nonzero flat
section.
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Let {{ah bt) \ i ~ 1,..., g} be loops on M which form a standard set of generators
of π2(M) so that we have J] flAflf 1bj~1 = ί. Let N be such that under the inclusion

ί

of fundamental groups πι(M)-+πί(N) the at are annihilated. The subspace SΉ of
sίFiy corresponding to connections which have flat extensions into the interior of
N is a Lagrangian submanifold, i.e., a maximal submanifold on which Ω vanishes
[A]. We give the brief argument: First, given two vectors <x,β tangent to SΉ at a
point A,

JTr(αΛj8)= JdTr(αΛjB)
M N

where in the second and third line we have extended A to a flat connection A and
extended α, β to one-forms satisfying dA( ) = 0. This shows that SN is isotropic. We

next show that dim^y = \ d i m ^ / ^ ) . To see this, note that SΉ = X/SU(2), where

= SU(2)x ... xSU(2)\SU(2){Tx ... xT}SU(2 ί

g times

T is a maximal torus of SU(2) and SU(2) acts adjointly on X.
One can now also check that $ is simply connected, and this implies that there

is a nonzero flat section of of JS?|<?5 unique up to a nonzero scalar.
In fact this flat section exists even when the gauge group is (7(1). In that case we

have to consider the bundle /, defined on J = —Γ— '-— by the factor of

automorphy,

Θ x(x, u) = exp( — 2πi j x A U) .

The one-form

defines a hermitian connection ω on this bundle. The curvature is

Let W be a subgroup of Hί(M, Z) such that the subspace RW generated by it is
of dimension g and isotropic for the intersection form. Then the expression for ώ
shows: the image of RW in J is a Lagrangian submanifold for Ω, not simply
connected, such that however the holonomy of ω is trivial on it.

4.3. One would expect a close relationship between a nonzero flat section (say sN),
along δN and υN. Computations in genus 1 show that sN does not extend to a
holomorphic section of 5£ (although if it did, such an extension would be unique).
A saddle-point approximation to the functional integral shows that the sections vN

are concentrated along $N, and this is sharper as k increases. Again, computations
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in genus 1 show that υN is not the projection of sN (thought of as a distribution with
support along SΉ) onto H°(&^ ££k\ The relationship, if any, between sN and vN is
subtler than the above.
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