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Abstract. We discuss a new class of spectral problems discovered recently which
occupies an intermediate position between the exactly-solvable problems (e.g.,
harmonic oscillator) and all others. The problems belonging to this class are
distinguished by the fact that a part of the eigenvalues and eigenfunctions can be
found algebraically, but not the whole spectrum. The reason explaining the
existence of the quasi-exactly-solvable problems is a hidden dynamical sym-
metry present in the hamiltonian. For one-dimensional motion this hidden
symmetry is SL(2, R). It is shown that other groups lead to a partial algebrai-
zation in multidimensional quantal problems. In particular, SL(2, R) x SL(2, R\
SO(3) and SX(3, R) are relevant to two-dimensional motion inducing a class of
quasi-exactly-solvable two-dimensional hamiltonians. Typically they corre-
spond to systems in a curved space, but sometimes the curvature turns out to be
zero. Graded algebras open the possibility of constructing quasi-exactly-
solvable hamiltonians acting on multicomponent wave functions. For example,
with a (non-minimal) superextension of SL(2,R) we get a hamiltonian
describing the motion of a spinor particle.

1. Introduction

Recent investigations [1-7] of the spectral problem of Schrόdinger type have led to a
surprising finding: a new type of problem has been discovered in which a part of the
spectrum can be found by purely algebraic methods (quasi-exactly-solvable
problems according to terminology of [4]). In the present paper we develop the
approach proposed in [2, 3, 6]. The main idea lying in the basis of this approach is
the existence of a hidden dynamical symmetry inherent to the hamiltonians of quasi-
exactly-solvable type.

Any hamiltonian H can obviously be represented as an infinite-dimensional
hermitian matrix,

"hn hί2 . . . hln . . .

h22 . . . h2n

Ki Ki

(1)
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To this end choose an arbitrary complete set of orthonormal functions \jjt satisfying
the boundary conditions then define

hij = (\l/ί\H\ψjy . (2)

Generally speaking, all /ιi7 's will be non-vanishing.
In this language the solution of the spectral problem reduces to a diagonali-

zation of the infinite-dimensional matrix {h^}. The eigenfunctions of the hamil-
tonian are the eigenvectors of the matrix {h^}. Unfortunately, unlike the case of the
finite matrices, there are no general algebraic rules which would allow one to
diagonalize the infinite-dimensional matrix {htj}. (The exactly solvable problems
are distinguished by the fact that in these problems the matrix {htj} is very specific
and is reducible to the diagonal form with the aid of an algebraic procedure. The
most well-known example is, of course, the harmonic oscillator.)

Assume, however, that the matrix {hu} has a block structure:

(3)

An

h21

hN1

0

0

*12

h22

0

0

. . . h1N

. . . h2N

• "NN

. . . 0

. . . 0

0

0

0

0 0 . . .

0 0 . . .

0 0 . . .

Non-vanishing

Vs

where TV is some fixed integer. The block in the upper left corner is an TV by TV matrix
while the second non-vanishing block (in the lower right corner) is an infinite-
dimensional matrix. Then, quite obviously, one can immediately diagonalize the
finite block without touching the infinite one. The operation is performed just in the
same way as for any finite matrix and is purely algebraic. In other words, in the case
(3) we analytically determine a part of the spectrum - N eigenvalues and the
corresponding eigenfunctions of the hamiltonian H — by algebraic manipulations.

There is a regular method which allows one to guarantee the block structure (3).
Consider a finite-dimensional group G possessing finite-dimensional representa-
tions Rj. Let us denote the generators of the group G by Ta. If we are able to reduce
the hamiltonian Hto a combination of the generators Ta with constant coefficients,
say,

H=>ΣCabT
aTb + ΣCaT

a (4)
a,b a

(Cab, Ca are numerical coefficients) then this hamiltonian will automatically have
the desired form (3), provided that the basis in Eq. (2) is chosen as follows:

= {elements of Rj + arbitrary set from orthogonal space} (5)

The reason is obvious: the action of the generators Ta on the elements of {Rj} leaves
us inside the same representation. The dimension of the finite block in Eq. (3)
coincides with that of Rj.

Thus, the central point is the possibility of reducing the hamiltonian to a
combination of the generators. Normally the quantal hamiltonian is a hermitian
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differential operator of the second order. For instance, for the standard Schrό-
dinger equation Hφ (xt ) = Eφ (xt),

H=-1ϊ(d/dxi)
2 + V(xi) . (6)

Here the cartesian coordinates xt are used for definiteness1, V{xi) is the potential
energy, φ(x^) is the wave function. The normalizability condition is implied

)l2Π^=i . (7)
i

On the other hand the Lie groups also admit differential realizations on the
space of the inhomogeneous polynomials. The simplest group, SL(2,R), can be
realized on the space of polynomials of one variable. In this case one arrives at a
class of hamiltonians (3) describing one-dimensional motion. Exhaustive analysis
of 1-dim quasi-exactly-solvable problems has been given previously [6]. Here we
generalize the approach and consider two-dimensional problems of the type (3).
The following three groups are relevant in this case: SL(2, R) x SL(2, R\ SO(3)
and SX(3, R). The corresponding generators can be written as follows (ξ and η are
two independent variables).

(i) SL(2,R)xSL(2,R)
This group is isomorphic to SO (4), with six generators,

τ°=-j+ξdξ, T°=-j+ηdη, (8)

τ~ = -dt, τ~ = -dη.

(ii) SO (3)

τ3 = -d.-ξ2d.-ξηd.+jξ . ( 9 )

These three generators can be obtained as linear combinations of some of the
SL(3, R) generators [see below, Eq. (10)]. Thus, the differential realization of SO(3)
presented here forms a subgroup of SL(3,R).

(iii) SL(3,R)
There are eight generators, six off diagonal ones are conveniently numbered by two
indices,

n=n2dη+ξηdξ -m , τ\=ξ2dξ+ξηdη -jξ ,

τi=-ηdξ, τ?=-dξ, J ? = - a , , ! ? = - # „ , (10)

[For the case of SL(3,R) Eq. (10) does not give the most general differential
realization the latter needs three, not two variables. The realization presented here

1 We reserve the notation xt for the coordinates in the flat space the coordinates in the curved
space will be denoted by ξ*
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is sufficient, however, for our present purposes - analysis of two-dimensional quasi-
exactly solvable systems.]

Now, the task is to find connection between the quantal hamiltonians and the
generators (8)—(10).

To this end it is necessary to make one further step. The point is that the
hamiltonian (6) can not be equal, by itself, to the combination of generators (4).
[Notice that there is no equality sign in Eq. (4).] The equality becomes valid only
after a certain transformation of H and φ which we will call the "gauge"
transformation keeping in mind, however, that actually it belongs to a class of non-
unitary transformations and, thus, is not a genuine gauge transformation. The
quotation marks are to remind us about this fact.

Consider the Schrόdinger equation. Substitute the original wave function φ by a
transformed wave function φ,

φ(x) = φ(x)e-
aix) . (11)

If the phase a(x) were purely imaginary we would have the standard gauge
transformation. Here we will deal, however, with the real phase.

Of course, Eq. (6) is non-invariant under the local transformation (11). The
wave function φ obeys a new spectral equation,

Hia)φ = Eφ , H ( α ) = - H ^ / ^ - ^ W ) 2 + F ( x ) , s/^daldxt . (12)

The hamiltonian H{a) can be considered as a "gauge"-transformed version of the
original hamiltonian H, while sί(x) is an analogue of the vector potential in
electrodynamics. Instead of the Schrόdinger wave function φ(x^) two functions
φ(Xi) and a{x^) are introduced in Eq. (11), but to compensate for this the gauge
freedom is present now. Equation (12), substituting the original Eq. (6), is obviously
invariant under further "gauge" transformations,

Any "gauge" is suitable; having solved Eq. (12) for the arbitrary "gauge" one can
always return back to the Schrodinger equation which corresponds to the gauge

The information on the probability amplitude is now coded in two functions,
\J/(x) and a(x), and can be arbitrarily redistributed between them. The "gauge"
freedom allows one to realize the most convenient choice of a(x). The standard
possibility is a(x) = Q. Then φ(x) = φ{x) is the Schrodinger wave function. On the
contrary, one can trivialize φ(x) = l referring all dynamical information to the
"imaginary phase" a(x). The well-known Ricatti equation emerges in this way for
one degree of freedom.

Following Ref. 6 we will use the "gauge" freedom and try to fix the "gauge" in
such a way that the gauge-transformed hamiltonian Hia),

{) ΣaT
a . (13)

a,b a

This point is the last (but not the least) conceptual element of the method allowing
one to construct quasi-exactly-solvable hamiltonians on a regular basis.
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Having established the relation (13) we may be sure that the original
hamiltonian H will have N eigenvalues and eigenfunctions which can be found
algebraically (recall that N is the dimension of the representation Rj). These N
levels, of course, do not exhaust the whole spectrum. Apart from the algebraized
sector there exists, as a rule, an infinite sequence of discrete levels of conventional
(non-algebraic) nature.

Since the transformation (11) is not a real gauge transformation due to its non-
unitary nature, the boundary conditions and the normalization condition for the
original wave function φ and for \j) differ. This trivial fact should always be taken
into account.

We have found interesting families of quasi-exactly-solvable problems typically
referring to the motion in two-dimensional curved space. Unfortunately, the
analysis we have carried out is not exhaustive, and we are planning to continue it
further, and also consider the motion in three and more dimensions. Notice that
some multidimensional problems in curved spaces are discussed in works [8] within
another approach.

The organization of the paper is as follows. In Sect. 2 we give a general pattern
for consideration of the multidimensional quantal problems. Section 3 demon-
strates how the groups SU(2)xSU(2), SO(3) and SL(3,R) can be used for
constructing two-dimensional hamiltonians with the algebraized part of the
spectrum. Section 4 is devoted to graded algebras and the multicomponent
Schrόdinger-type equations. In Sect. 5 we give a brief summary of results and list
unsolved questions.

2. Generalities

Partial algebraization of the spectrum observed in [1,4,5] in one-dimensional
problems is not specific for d= 1. The idea bears a general character, and if there are
appropriate differential realizations of the finite groups involving more than one
variable [see Eqs. (8)—(10)] it is obviously possible to construct a multidimensional
differential operator of the second order, quadratic in the generators of the group.
Unfortunately, unlike the one-dimensional case, this operator does not always have
the form relevant to the Schrodinger-type equation (see the constraint (23) and the
discussion following this relation).

Let us explain the point in more detail. From the explicit expression for the
generators Ta given in Eqs. (8)—(10) it is clear that the combination

a,b a

does not always contain the second derivatives

with the unit coefficient. In the general case, for arbitrary choice of C's, the
derivatives dtdj enter being multiplied by functions oίξ\ Thus, the expression of the
type gijdidj naturally appears where gij plays the role of a metric. In other words, the
straightforward generalization of the one-dimensional procedure of [6] leads us (in
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two, three, etc. dimensions) to consideration of motion in a gravitational
background,

-\ \η= dί(/ggίkdkφ)\+Vψ = Eφ , (14)

where the term in the square bracket is the covariant laplacian substituting the
ordinary laplacian of the flat space. As usual,

. (15)

Moreover, after the phase transformation φ = xj/exp( — a) we, evidently,
arrive at

(16)
where

s/i = dt a = da/dξi , (17)

It is convenient to introduce a new auxiliary "vector potential"

a ίαn|/0-2α) . (19)

Then the spectral Eq. (16) takes the form

j : i k $ (20)

Now, let us compare the left-hand side of Eq. (20) with the combination (13) where
the generators Ta are taken in the differential form [see e.g. Eqs. (8)—(10)]. Assume
that the coefficients Cab are chosen in a certain way. First of all, Cab T

a Tb contains
the term dtdk with the coefficient depending on the set of Cabs. We identify the latter
coefficient with the metric gik. Thus, the set of the coefficients Cab uniquely fixes the
metric gίk. The bilinear piece Cab T

a Tb produces some terms linear in dk as well. Next,
we add the terms Ca T

a and demand the linear in dk part of Cab T
a Tb + Ca T

a to be
equal to

[see Eq. (20)]. Since gik is already fixed this requirement gives us n equations on J/~

M* , fc=l,2,...,τi , (21)

where Mk are the coefficients in front of dk in Cab T
a Tb + Ca T

a, n is the number of
variables ξ\

Finally, the terms in CabT
aTb + CaT

a with no derivatives should be identified,
according to Eq. (20), with -2ΔV.

For non-degenerate metrics2 Eq. (21) can always be solved,

i = l,2,...,n . (22)

' In this paper we limit ourselves only to this case
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This solution is not the end of the story, however. Certainly, Eq. (22) ensures the
desired form ofH(a), Eq. (13), but we must remember that actually at our disposal is
only one gauge freedom, one phase a. The functions st{ must be pure gauge [Eq.
(19)]. This requirement imposes the following constraints on s£[\

dks/ϊ-dis/t = 0 , (23)

to be considered as self-consistency condition. If and only if the functions j /~gi v e n

in Eq. (22) are pure gauge can we speak of the quasi-exactly-solvable problem of the
Schrόdinger type.

At present no general solution of the constraints (23) are known (at least, we are
aware of no such solution). For some specific choices of the coefficients C the result
for <s/~ turns out to be pure gauge automatically. Several such examples will be
discussed below.

In this respect the situations in one dimension and in two (or three, etc.)
dimensions are drastically different. The one-dimensional case could be described in
the same terms as here, but in one-dimensional problems we deal with only one
potential si9 and the metric {gik} degenerates to a single function g11. Hence:

- There is no self-consistency condition like (23), and si is always pure gauge
(modulo the issue of normalizabihty of the resulting wave functions, which should
be analysed separately);

- The metric g11 is always reducible to the flat space by a change of variables.
These remarks explain why in Ref. 6 devoted to one-dimensional motion it

turned out possible to get the flat space Schrόdinger equation for an arbitrary set of
the coefficients C (again, leaving aside the issue of normalizabihty). Already in two
dimensions, first of all, not every choice of C's is admissible from the point of view
of the constraints (23). Second, even if C's are such that j^7gi v e n by Eq. (22) satisfy
the consistency conditions (pure gauge) the metric {gιk} is not necessarily flat.
Generally speaking, the corresponding curvature will be non-vanishing. (Certainly,
there may exist some variants which correspond to the flat space, see below.) The
best one can do in two dimensions with the general metric {gίk} is to transform it into
a conformally flat one.

Passing to higher dimensions we increase the number of constraints (23) and the
general analysis becomes more and more difficult.

3. Two Dimensional Motion

As has been already noted, three groups provide us with the differential realizations
built on two variables, ξ and η, the realizations suitable for the program outlined
above. There are no other possibilities (higher groups require more than two
variables). Let us denote that we adopt the following convention: ξ and η will be
treated as the variables with the upper indices, ξ1 = ξ, ξ2 = η then, according to the
general rules the corresponding derivatives dξ = d/dξ, dη = d/dη are to be interpreted
as dί and d2 with the lower indices.

The most obvious choice is the SL(2, R) x SL(2, R) group. Moreover, the fun-
damental representations of the SO(3) and SL(3, R) groups are three-dimensional.
This means that one can construct differential realizations of these groups built on
two variables. For SL(3, R) not all representations are accessible in this way, but
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only those which are symmetrized products of the fundamental representation
(such representations are marked by one integer number, see below). The
realization covering all possible representations require in SL(3,R) at least three
variables.

(i) SL(2,R)xSL(2,R)
Six generators of this group are quoted in Eq. (8) in order to have finite

dimensional representations it is necessary to require the parameters j and J,
figuring in Eq. (8) to be semi-integer. The dimension of the representation Rjj is
N=(2j+l)(2j+ί). (This is also the multiplicity of the "algebraized" levels.)

Now, the combination (13) should obviously contain the coupling of the tilded
and untilded generators, because otherwise we get separated variables from the very
beginning, a trivial situation which we would like to avoid. The desired "mixing"
can take place only in the bilinear part CabT

aTh.
One of the possibilities is

cT--cf- , (24)

where c and c are arbitrary parameters. Comparing Eqs. (8), (24), and (20) we
readily find the metric

and then, using the standard definitions, calculate the curvature

η

At the next stage we collect in Eq. (24) all terms linear in dk and using Eq. (20)
determine JSfh,

c+2(2j+l)ξ 0 + 2 ( 2 7 + 1 ) ,

**χ- ί+ξ2 ' ^ 2 " ί+η2 •

It is quite obvious that the consistency conditions (23) are satisfied. Using the
definition (19) we find the phase

(28)

and easily check that the eigenfunctions belonging to the algebraized part of the
spectrum are normalizable. This point is not absolutely trivial because the
logarithmic behaviour of the phase a at infinity implies the power-like, not
exponential, fall off of the wave functions. Nevertheless,

le-2a(ξ2Jη2ψ\/gdξdη<oo . (29)
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As far as the potential V is concerned, the final expression is rather cumbersome,

'- 1 Γ 1 6 /Q'

ξη(ξη-2) ξ2η2(ξ2η2-l8ζη + 8)

which entails, in turn, the following asymptotic behaviour:

, £,*/-> oo . (31)

It may be instructive to consider another problem associated with SL(2,R)
x SL(2, R) describing the motion in the domain ξ > 0, η > 0 (the potential is singular
at ξ = 0 and/or η = 0).

Let

-(c + 2j-2J)T0-(J+l/2)T- , (32)

where {...}+ denotes hereafter the anticommutator and c is an arbitrary parameter.
Then,

and the curvature

For large ξ and ̂  the curvature tends to a constant which depends, however, on the
direction in the (ξ, η) plane. We quote also the results for the phase a and the
potential V without further comments:

( 3 5 )

(ii)
The algebra of 50(3) is locally isomorphic to that of SL(2,R). The lowest-

dimension representation in SO(3), however, is triplet. Correspondingly, the
number of variables needed for the differential realization of SO (3) is not less than
two. Three generators (in the differential form) are given in Eq. (9). In the case at
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hand in order to have finite-dimensional representations the parameter j in these
formulae should be integer. The dimension of the representation Rj and, hence, the

number of the levels in the algebraized sector is N= (1 +j) ί l + - I. In the case at

hand this representation is reducible fory>l .
Equations (9) imply that the generic form of the SO (3) generators is

, (36)

where haι are polynomial functions of ξ, η, and p\ are constants,

* " = , , , h12=-ξ , pj = O ,

h21 = ξη , h22 = ί+η2 , p2 = 0 , pl=-j, (37)

h3ί=-l-ξ2 , h32=-ξη, p\=j , pl=0 .

Again, the complete analysis has not been carried out, and the class of the quasi-
exactly-solvable problems to be discussed below is a partial solution. The solution is
valid for an arbitrary set of Cab provided that Cα = 0. More general situations
satisfying the consistency conditions (23) plus Cα=t=O are not found yet.

For arbitrary Cabs and Cα = 0,

hayi , (38)

where the symmetricity of Cab has been taken into account. Notice that H(a), along
with the didk term contains also terms linear in δk. This fact is important because
otherwise we would automatically get separable variables.

From Eq. (38) it stems that

gίk = Cabh
aihbk . (39)

Moreover, comparing Eqs. (38) and (20) and using the latter expression for gik, we
arrive at the following relations for s/t:

hbk . (40)

It is easy to see that there exists a solution satisfying

sfth'^pΐξt-dih* , (41)

and, hence, valid for any set of Cab irrespective of the concrete values of these
coefficients. Specifically,

Jl=-2j^dM(\+ξ2W) • (42)

The corresponding expression for the phase a is logarithmic,

^ ( 4 3 )

a ι n ( i + ξ + η ) + ϊ n g ^
which results in a power-like fall off of the eigenfunctions from the algebraized part
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of the spectrum. Therefore, it is necessary to check the normalizability of the wave
functions.

Up to this point the coefficients Cab are unspecified. To have an idea of the
metric and the potential V let us consider several simple choices.

(a) C n = 0 , Cβb = 0ifα + ft, C22 = C33 = l.
Then

With this metric, after some algebra one gets

(45)

Moreover, the potential V turns out to be bilinear in ξ\

F = - ! ( £ 2 + ί ? 2 ) (46)

It is interesting that the parameter y is absent in the final answer for Fand, hence,
we actually deal with the exactly-solvable problem. The same is valid in all other
SO (3) examples considered below. Actually they-independence stems from the fact
the parameter j in the expression (9) for the SO (3) generators can be "gauged"
away. The variables can be separated in the polar coordinates, ξ = r cos θ,η = r sin θ.
In these coordinates the metric takes the form {#ίfc} = diag((r2 + l)2, r~2).

(b) C n = C22 = C33 = l, Cab = 0iΐa*b.

It is very interesting that this example corresponds to a constant curvature, R = 2.
The potential V vanishes,

F=0 .

(c) C22 = C33 = 2 C23 = 1, other C's zero.

The curvature corresponding to this metric is

while the potential

V=-Uξ2W-ξri) •

Comparing the results for R and V we see that there is no obvious substitution
leading to separation of the variables.

(d) 2C1 2 = 1, other C's zero,
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This example is interesting because the potential is singular,

We arrive at the quasi-exactly-solvable spectral problem for the Laplace operator in
the space with the curvature which is also singular,

R = 4ξ/η2 .
(e) 2 C 2 3 = 1, other C's zero,

-ξη(ί+η2)

The results for the curvature and the potential are:

Varying the set of the coefficients C we have come across many other non-trivial
and interesting situations. We hope to return to the issue of cataloguing the
corresponding problems elsewhere.

(iii) SL(3,R)
From all three variants relevant to two-dimensional motion - SL(2,R)

x SL(2, R\ SO(3) and SL(3, R) - the latter group seems to lead to the widest range
of problems. The reason is obvious: it has the largest number of generators and their
form is more versatile; hence, more possibilities.

Eight SL(3,R) generators are presented in Eq. (10) wherey should be considered
as an integer number. The multiplicity is the same as in the SO(3) case, N= (1 +/)

04
It is interesting to notice that in the case at hand one can construct quasi-exactly-

solvable problems referring to the flat space. Let us dwell on this point in more
detail.

Problem No. 1.

Λ-\ Td)

-jη)-iβ(ξdξ-jβ)-iy(ηdη-jβ) . (48)

The metric {gιk} = άmg(4ξ, 4η) is characterized by the zero curvature. The
following obvious change of variables ensures the transition to cartesian coordi-
nates (x, y):

ξ=χ2 , η=y2 •

Moreover, the solution of Eqs. (19), (21) is

(49)
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where r2 =x2 +y2. As far as the potential V(x,y) is concerned, with the aid of Eq.
(18) one can easily get that

F = 8 α 2 r 6 + 8αr2( i8x2 + y/) + 2( i 6
2 x 2 4-y 2 /)-8α(/ + l ) r 2 . (50)

Thus, we see that the hamiltonian (48) is a direct generalization of the problem
discussed in [4]. The analogy goes even further because in the two-dimensional
Schrόdinger Eq. (6) with the potential (49) one can actually separate the variables by
passing to the so-called generalized elliptic coordinates.

Now, let us pass to a more typical situation of curved spaces.

Problem No. 2.

T1\0; Td-±Td)}++βΊfΊ?-*(Td+Tέ)

(51)

The coefficient of dtdk in the latter expression determines the metric,

-ξη l + <

For the general values of β the expressions for the curvature and potential are
monstrous, and we will not quote them here. As far as the phase a is concerned it
does not depend on β,

{ξ2 + η2) • (53)

If β = 0 however the situation becomes trivial. The curvature has the form

R = 6/(ξ2 + η2 + l)2 (54)

and tends to zero asymptotically. It is worth noting that although the corresponding

space is non-compact, the Euler characteristic/> = -—§R(g)1/2dξdη = 2. As for the

potential, it is ̂ -independent,

where r = (ξ2 + η2)112. After simple manipulations the problem reduces to the
standard 2-dim symmetric harmonic oscillator.

Finally, the last SL($,R)-associated quasi-exactly-solvable problem to be
discussed below describes the motion in the half-plane ξ + η>a, where α is a
numerical parameter.
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Problem No. 3.

+ 2α7i3 7? + Q+JΛ (2? 2? + 2? 7?)

) . (56)

Reading the metric off Eq. (56) we find

(57)

Now the standard recipe for calculating the curvature yields

R= — =--2 <^" l"? ? + α . (58)
(ξ + η + (x)(ξ + η — α) (£H-*7 + α)(£ + *? —α)

We quote also the results for the phase a and the potential V:

(59)

5 or

4. Graded Algebras

The simple idea which forms the basis of the approach presented here allows for a
whole spectrum of generalizations. One of the promising directions is a class of
problems with the multicomponent wave functions. Up to now we have considered
the Schrόdinger-type equations on a single scalar function φ. Quite often, however,
one has to deal with the wave function with more than one component. For
instance, such is the situation in the coupled-channel problems, in the problems
describing the motion of spin-1/2 particles in magnetic fields, etc. In this section we
will demonstrate that in this case there exist quasi-exactly solvable hamiltonians as
well. The discussion below gives an idea on the possibilities of the method in
constructing multicomponent Schrόdinger-type equations with the algebraized
part of the spectrum.

In order to discuss the multicomponent equations in the present context it is
necessary to invoke extensions of the ordinary Lie algebras, namely the graded
algebras (in the physical literature they are called also supersymmetric algebras).
Here we limit ourselves to the simplest example, U(l)xSL(2,R/2).
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In this group in addition to the standard three SL(2, R) generators Ta and one
£7(1) generator / there are four odd elements of the algebra, Qa and Qa (α = 1,2)
transforming as SL(2, R) doublets. The even elements Ta, Ja.rε characterized by the
usual commutation relations,

[T+T~]=-2T° , [T±T°]=TT± , (61)

[JT«] = 0 , (62)

while the odd elements Qa and β α anticommute according to the group law,

2}+=J, (63)

expressing the fact that the product of doublet and antidoublet yields triplet plus
singlet. Finally, the commutation relations between the odd and even elements of
the algebra are also quite transparent,

[QχT-] = Q2 , etc. (64)

As far as the U(l) charge of Q and Q is concerned, it is opposite for Q and Q,

[QJ]=-JQ« , [Q*J]

so that Ta, being the bilinear product of Q and Q (Eq. (63)), is neutral, see Eq. (62).
The group structure presented in Eqs. (61)—(65) is certainly not the minimal

graded algebra associated with SL(2,R). From the point of view of the group
theory we could easily get rid of the (7(1) factor and manage with only two
"supercharges," not four as written down in Eq. (63). The minimal version, how-
ever, does not seem suitable for quasi-exactly-solvable problems, as will be
explained shortly.

Now, can one construct a differential realization of the given graded algebra?
The answer is positive, but such a realization will necessarily involve the Grassmann
variable θ along with the ordinary variable ξ. Specifically,

where dξ — djdξ and dθ = d/dθ. We recall that θ and dθ anticommute, so that
Θ2=dt=o, dθ(θf)=f-θdθf, {dθθ} = i.

It is not difficult to check that all commutation relations (61)—(65) are indeed
satisfied provided that

J=-J-jθdθ . (67)

Thus, the graded algebra generalizing SL(2, R) is at our disposal, and the next
issue to consider is that of finite dimensional representations. Inspection of the
generators (66), (67) shows that the finite-dimensional representations exist
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provided j is semiinteger, in perfect analogy with the situation considered in [6],

{ξ\ξ\...Λ2i\ξ0θ,ξ1θ, .Λ2j-1θ} (68)

the dimension of i?/,graded is (4/+1).
Before proceeding to construction of the quasi-exactly-solvable systems

associated with the given graded algebra, a remark is in order concerning the matrix
representation of the Grassmann variables. The fact that the anticommuting
variables can be represented in the matrix form is well-known. We will not go into
generalities here, and simply formulate the answer expecting that the reader can
easily convince himself/herself of the validity of all necessary properties. The recipe
is as follows: substitute θ and dθ in the generators (66), (67) by the matrices σ+ and
σ~, respectively, (σ± = (σ1 ± iσ2)/2) acting on two-component spinors moreover, in
the representation (68)

(69)
LUJ L*J

In the explicit form

; ί 0 | ΐ > , . . . , ί 2 i - 1 | T > } (70)

After this remark it should be clear that the quantal hamiltonian we will finally
arrive at will act on a two-component wave-function.

The next steps are conceptually the stages of the program outlined in Sect. 1 with
a single but important exception. Namely, we start from the Schrόdinger equation

\~\

where V(x) now is a two-by-two hermίtian matrix (the caret over Fis to remind us
about this fact) while ψ is a two-component wave function,

•-[£
After making the "gauge" transformation we obtain the transformed hamiltonian
H{a) and try to find the gauge in such a way that H{a) would reduce to a quadratic
combination of the generators (66), (67). The only peculiarity is that the class of
allowed "gauge" transformations becomes much wider: instead of a purely abelian
substitution ιl/ = exp( — a)ψ we can invoke non-abelian transformations

Ψ=Uφ 9 (72)

where U is, generally speaking, an arbitrary two-by-two matrix. Then

ά f AV , (73)
where

sf=υ-γ{dxu) , Av=υ-1vυ-\sf'-\sί1 , (74)

and the prime denotes differentiation over x.
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Now, we compare Eq. (73) with Cab T
a Tb + Ca Ta, where the set of the generators

Ta includes now all generators written down in Eqs. (66), (67). Moreover,
identifying the coefficients in front of dx we can always find stf and the
corresponding matrix £/, constructing in this way a quasi-exactly-solvable hamil-
tonian which acts on a two-component wave function.

Unfortunately, the situation is less favourable than that described in [6]. For the
SL(2, R) group, any combination Cab T

a Tb + Ca T
a leads to a "reasonable" hamil-

tonian (modulo the issue of normalizability of the wave functions, of course!). In the
case at hand, however, we obtain something for H{a), and this "something" after the
reverse gauge transformation produces the potential V,

V=U(ΔV)U~ί+^(d2U)U-ί , (75)

which typically turns out to be non-hermitian. If we insist on the hermitian
hamiltonian H the requirement of hermiticity of V imposes an additional condition
on stf. The general solution of this constraint is unknown. Thus, we encounter the
obstacle perfectly similar to that discussed in Sect. 3.

In the absence of the complete solution it seems instructive to consider parti-
cular examples. One of them is presented below. [It is worth noticing in passing that
with the minimal graded algebra SL(2,R/1) no examples with the hermitian
potentials have been found thus far. That is the reason why we have turned to a non-
minimal super symmetric extension of SL(2, R).]

The starting hamiltonian is

Hw = {Ί«T-}++2jT--Q2Q1+aΊ«-iβ(-Q2T-+Q1+ 2jQt)

+^«βQ2-^βQlt (76)

where α and β are numerical parameters. Using Eqs. (67) and (70) we get after simple
substitutions,

\ ax-1- βxσλ ^-+-Λ σ3-2βjσ2+ϊ- aβx2σ~ -l- βσ
2 dx2 \2 2 I dx 4 2 2

(77)
(a constant term has been omitted here).

Comparison with Eq. (73) yields

^ ψ j i σ - , (78)

which implies, in turn, the following expression for U:

(79)



364 M. A. Shifman and A. V. Turbiner

Now we are finally able to present the potential F, a two-by-two matrix,
determining a quantal system possessing an algebraized part of the spectrum,

(80)

It is seen that the potential V is hermitian, as we intended to get, and stable
(4/+1) eigenvalues and eigenfunctions (obviously normalizable) can be found
algebraically.

5. Conclusions

The discovery of a new class of spectral problems [1-7] where a part of the spectrum
can be found algebraically seems to be an interesting and promising development in
traditional spectral theory. The sphere of applications is by no means limited to
quantum mechanics. The solution of spectral problems is a necessary step in
computing all types of functional determinants, the usual business in modern field
theory and string theory. A complete and systematic catalogue of quasi-exactly-
solvable problems, if it existed, might be of practical use. Besides that, the program
is elegant by itself and presents a challenge from the point of view of pure theory.

In the one-dimensional case an exhaustive systematization can be and has been
carried out [6]. In the present work we extend the program to include multi-
dimensional problems and those referring to the multicomponent wave functions. It
is worth noting that interesting results in this direction have been reported
previously [8]. The approach adopted in [8] is non-algebraic and is, rather,
complementary to ours. The relation between the approach we develop in the
present paper and that of [8] is not completely clear thus far.

Even in two dimensions we failed to get the most general form of the quasi-
exactly-solvable hamiltonian, only partial solutions have been found. And still, the
task does not seem hopeless. Another interesting issue we are planning to investi-
gate is a relation between the concrete structure of the quasi-exactly-solvable hamil-
tonians and the geometry of the manifolds they define through the corresponding
metric gιk (see Sect. 3). There is also a technical problem arising in the situations
where one can achieve separation of the variables. In this case we effectively get one-
dimensional quasi-exactly-solvable problems. Can they be reduced to the catalogue
given in [6] ? What group underlies algebraization of the spectrum in this case? The
answers to these questions have not been obtained thus far. Finally, the last
intriguing question is what happens with the quasi-exactly-solvable hamiltonians
when the rank of the underlying group tends to infinity.
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