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Abstract. We consider the 4-dimensional g-state pure gauge Potts model. For
q large enough, we give a new proof of the existence of a unique coupling
constant βt, where a first order phase transition occurs. Moreover we prove the
following new results: The string tension is discontinuous at βt, the Wilson
parameter exhibits at βt a direct transition from an area law decay (quark
confinement) to a perimeter law decay (quark deconfinement).

1. Introduction

The g-state Potts lattice gauge model was introduced by Kogut [8], according to
Wilson's formulation of gauge theories on a lattice [9]. This model was considered
as a natural extension of the Ising lattice gauge model, treated by several authors
(see [10] and references therein). Still now there exist a great deal of rigorous
results on the deconfining phase transition for the pure gauge Ising model in
dimension d^3[ll,12] and for the £7(1) model defined with the Wilson's action in
[14-16]. Also Monte-Carlo experiments were proposed for the Ising gauge model
in [17,18].

Concerning the 4-dimensional Potts pure gauge model there were some
previous results on its phase diagram in [8]. An improvement of the results
obtained in [8] was suggested in [19] by using a perturbative cluster expansion.
However topological problems inherent to the 4-d Potts gauge model were not
elucidated, this was emphasized by Aizenman and Frόhlich in [20].

In both its scalar and gauge formulations the Potts model gives rise to great
investigations. For q large enough it exhibits a first order phase transition either in
dimension d^2 for the scalar model or for the gauge model in dimension d^3.
Namely, there exists a transition point where ordered phases coexist with a
"disordered" one as proved in [1] by using Reflexion positivity [2]. Later a
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generalization of the Pirogov-Sinaϊ theory [4] contains - in particular - similar
results for the scalar model. Using the approach proposed in [5] Martirosian [6]
proved that there exist only (g + 1) phases at the transition point for the scalar
model in dimension d ̂  2. Using quite a different method the phase coexistence
and the surface tensions between coexisting phases were analysed for d = 2 in [3].

In this article we derive previous results about the existence of a first order
phase transition between the ordered phase and the disordered one. Moreover the
approach we use enables us to study the behaviour of the Wilson loop with respect
to boundary conditions.

This approach is based on the method used in [3]. It consists of observing that
a partition function, at coupling constant /?, in a finite lattice with the "free"
boundary condition is transformed by the duality, up to a factor, into a partition
function, at coupling constant β* dual of β, in the dual lattice with the "ordered"
boundary condition. At the self dual point determined by the equation β = β* this
duality operation reduces to transform the "free" boundary condition into the
"ordered" one of the same model, by paying a factor proportional to the boundary.
More precisely the duality transformation will be used to verify the Peierls-type
condition [4] for ordered boundary conditions in both original and dual lattices.
This first enables us to prove that the ordered phase and the disordered one

coexist, at the transition point βt = log(\/q +1) determined by the equation β = /?*,
as conjectured in [8]. Secondly we prove that the Wilson parameter satisfies the
two following behaviours:
- For β^βtit exhibits an area law decay with a strictly positive string tension.
- For β>βtit exhibits a perimeter law decay with a bounded self energy.

This way of using the duality transformation as a "symmetry" of the partition
function allows us to treat the self dual models (2-d spin model and 4-d gauge
model). However, combined with the standard Pirogov-Sinaϊ theory the non-self
dual model as the 3-d ones can be studied. This is the subject of [7], where in
particular the direct transition from perimeter law to area law for the 3-d gauge
model is shown. This kind of transition was previously studied in a system of
random surface by Aizenman et al. [29] who showed that the two phases of the 3-d
plaquettes system are in precise correspondence with the two phases of the dual
system of random bonds; thus under the hypothesis that this last transition is
sharp, then the former will also be sharp; the sharpness of the transition of the
random bonds model was previously known in two dimensions [30, 31], and
recently proved in d^l [32].

The paper is organized as follows: In Sect. 2, we give the definitions and state
our main results, and in Sect. 3 we introduce the duality transformation of the
model; we use the cell complex formalism which is very useful in our case; it is
summarized for the convenience of the reader in Appendix A.I and A.2. The proof
of the first theorem (discontinuity of the free energy) is given in Sect. 4. It is based
on contour estimates; to prove the "Peierls condition" we need also a geometric
technical lemma whose proof is given in the Appendix B. This proof needs
topological estimates, so we added further topological definitions on cell
complexes in the Appendix A.3. In Sect. 5 we give a contour expansion for the
partition function. The proof of the second theorem (behaviour of the Wilson
parameter) which is based on contour expansions, is given in the Sect. 6.
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2. Definitions and Results

2.1. Definition of the Model

A G- valued 1-cochain σeCl(K,G) on a complex K may be interpreted as a
configuration of a lattive gauge model (cf. Appendix A). Considering in particular
Zβ-valued cochains (we shall represent 7ίq as a set of integers {0, 1, . . . , q — 1 } with
addition modulo q as a group law), we introduce the gauge Potts model on a finite
cell complex K with partition function and Hamiltonian defined by 1

(2.1)

), (2.2)
peK

where δ is the Kronecker symbol: <5[α] = 1 if α = 0 in Zq and (5[α] = 0 otherwise. The
sum in (2.2) is only over positively oriented 2-cells (plaquettes). Let us remark that
(2.2) is used in (2.1) with φ = dσ, where dσ(p) = σ(dp). Here the differential operator d
and the boundary operator d are restricted to the complex K (a cell subcomplex of
the cell complex associated with the lattice Z4 and denoted by 1L); this is actually a
way of introducing certain boundary conditions. In particular if K is closed
(respectively open) Z(K,β) is a partition function with the free (respectively
ordered "0") boundary condition. We introduce as usual the free energy:

(2.3)

where NP(K) is the number of positively oriented p-cells in K.

Remark. The Hamiltonian H(dσ) in (2.1) is invariant under the gauge transforma-
tion

σ-+σ' = σ + dω, ωeC°(K).

Namely H(dσ) is constant on the group of Z^-valued cocycles Zl(K] and may be
expressed as function on the Z^-valued coboundary group B2(K). Let |G| denote
the cardinality of G, we introduce the gauge fixed (g.f.) partition function:

= Σ
beB2(K)

where

\B2(K)\ \B2(K)\'

since C*(K) is the direct sum of Zl(K) and a group isomorphic to B2(K).

1 Since we shall only consider Zq-valued cochains, to simplify the notations we drop hereafter the
corresponding specification and denote CP(K) instead of Cp(K,Zq) and analogously for its
subgroups
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For every g we introduce its expectation value with respect to the conditional
Gibbs measure:

^ Σ
σeCl(K)

Let < >° (β) and < yf (β) denote respectively the infinite volume limits of < >£ (β)
and < >£ (β) when K f 1L. These limits exist by correlation inequalities. Among the
interesting expectations we shall consider the expectation of a plaquette obse-
rvable <(5[dσ(p)]>£c (β\ and the expectation of the Wilson loop defined as follows:
Let R be a rectangle of size of length L and T and £f0 be the integral 2-chain which
takes value 1 on the positively oriented plaquettes of .R and zero otherwise. We let
<& denote the integral 1 -cycle (loop) boundary of 5̂ 0 : X = d^0. It satisfies for any

beK peK

where b denote a 1-cell (bond) of K. We successively define the Wilson parameter
[20], the Wilson string tension and the self-energy [10] by:

s(β)=-

(2.6)

LT] aoL,'

τ(β)=- Um-^—logW&β).
LTt oo^+ 1

2.2. Results

Our main results are contained in the following theorems:

Theorem 2.1. The 4-dimensional pure gauge model exhibits., whenever q is large

enough, a first order phase transition at βt(q) = log(]/q + 1), where the derivative of
the free energy with respect to β is discontinuous:

with Λ = ι + -
yq

Theorem 2.2. The Wilson parameter exhibits at β, a direct transition from an area
law decay (quark confinement) to a perimeter law decay (quark deconfinement) :
a) WiG8)ge-*toM-">1-1 if
b) WXft^e-*™ if β^
c) Wm^e~k'(T+L) if
where k and k' are strictly positive constants and μ is a positive geometric constant.
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Hence the Wilson string tension is discontinuous at βt and the self-energy is bounded,
above βt:
d) s(β)>k if βίβt(q) and s(β) = 0 if β>βt(q),
e)τ(0)=oo if β<βt(q) and τ(β)^k' if β^βjq).

3. Duality Transformation

The duality transformation takes into account the homological properties of the
complex on which the system is defined. Let us define the following partition
functions:

(3.1)

β). (3.2)

Proposition 3.1. a) The partitions functions in a complex Kc^L and in its dual
K*ClL* satisfy:

where the dual coupling β* is given by:

l) = q. (3.3)

b) Whenever the Zq-valued 2-homology group of K is trivial, H2(K) = {0}, and P is
a subcomplex of K, then:

P6PL 2 J / X \ p e P *

where )Sί = log(]/^H-l) is the self -dual coupling obtained by letting β = β* in (3.3).

Proof. We consider the Fourier expansion of eβδ(Λ} (the dual group of Zq is
identified with Zq):q

* - 1) φ) = V δ(n) +

.e q =
We insert this formula for every 2-cell in (2.2). Considering the scalar product (φ, ψ)
= Σ(+}φ(sp)ψ(sp); for every two Zq-valued p-cochains φ and ψ on K we get

Z(K,β)= - gW-»NW Σ ,
\ q / φeC2(K) σeC^K)

Observing that ((/>, dσ) = (d*φ, σ) the summation over σ gives the condition d*φ = Q.
Namely,

Z(K,j8) =
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We then use the isomorphism between Z2(K) and Z2(K*) and the mapping (A.4), to
derive the statement a).

To prove the statement b) we use δ(oί)eβ(δ(a}~1} = <5(α) for α eZq and proceed as
for the proof of the statement a).

Notice that at βt the Fourier transform of δ(ά)— - eβtδ(ct} is up to a constant

given by its own negative. Π

Remark. Let us notice that if K is open (respectively closed) then K* is closed
(respectively open) and thus the duality transform free boundary conditions into
ordered ones and conversely.

4. Contour Estimates and Proof of Theorem 2.1

4.i. Definition of Contours

To introduce contours we shall use the concepts of the envelope and of the fringe of
a set Qp of lattice p-cells contained in I/, Qp el/. We will denote by Qp the closure
of Qp and we define:
- the envelope E(QP) of Qp as the maximal closed subcomplex of 1L whose set of
r-cells, r^p coincides with Qp, E(Qp)nΊLp = Qp. An explicit expression is E(QP)

= (j E\Qp)vQp, with EP(QP) = QP and Eq(Qp) = {s«elL«|all s^1 of dsq belongs
q = p+ί

to Eq~l(Qp)} whenever q^p + 1.
- the fringe F(QP) of Qp by F(QP) = JL\{E(Qp)vE(JL°\L°nE(Qp)}.
- the boundary B(K) of a cell complex K by B(K) = JL\K^K.

Consider now a configuration σeC^lL) such that the set of disordered
plaquettes M2(σ) = {peJL2\σ(dp)^0} is finite. Denoting by Q2(σ) the unique
infinite component (connected subcomplex) of the complex IL2\M2(σ), we shall
denote by F(σ) the fringe of Q2(σ): F(σ) = F(Q2(σ)\ Clearly if peF(σ) implies

A pair γ = {y, σy}, where 7 is a component of F(σ) and σy the restriction of σ on
the complex y, will be called an external contour of σ. A pair y = {y, σγ} with y a
subcomplex of 1L and σ a configuration on it, σe Cl(y\ will be called a contour if
there exists a configuration σe CX(IL) with |M2(σ)| < oo such that γ is its external
contour.

Fig. 1. The open complex γ (black bonds and hatched plaquettes) and the closed complexes Inty
and Exty; the vertice belongs to Inty or Ext y
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Whenever y is a contour, we call the complex y its support, y = suppy, and
introduce the complexes: Exty as the unique infinite component of !L\y, V(y)
=]L\Exty, and Inty = V(γ)\γ. It is easy to show that ynExty = V(γ)\V(γ). Let us
also mention that the complexes y and V(y) are open whereas the complexes Inty
and Exty are closed.

Two contours y^2 with disjoint supports are called mutually compatible; they
are called mutually compatible external contours if F(y1)cExty2 and F(y2)CExty1.
It is easy to show that whenever 8= {y 1,72,739 • ••,)>,,} is a family of mutually
external contours, there exists a configuration σ with the same set of external
contours. For such a family S of external contours we shall use the notation:
0 = supp£=Uy* V(θ)=\JV(γύ, Intθ=V(θ)\θ, Ext0=lL\7(0), and Extκθ

i i

= KnExtθ whenever KcJL.
For contours on the dual lattice 1L* defined in the same way as above with 1L

replaced by 1L* we shall use the notation y ̂  = {y^, o^yj. Notice that y^ is a support
of a contour and hence an open subcomplex of 1L*, while y* is the dual of the
complex y and it is thus a closed subcomplex of JL* for every y = {y, σy}.

4.2. Contour Estimates

Let y be the support of a contour, its probability given ordered "0" boundary is:

K is an open subcomplex union of the envelope and the coboundary of a
rectangular box A : K = E(A)\jF(A\ K D F(y), and the characteristic function of the

contour, denoting hereafter δ(X)= f] δ[dσ(p)~], is:
peX

where £ = y*nExtxy (Xκ denotes the closure of X in K) and d is restricted to K.

First step: Let us define the following partition function

We first need the following

Lemma 4.1. Let K and I be two subcomplexes of ΊL such that: the Zq-valued
2-cohomology group of K is trivial, H2(K) = {0}, / is open and ICK, then

a) (\

b) Let then /7 be a function on C2 with support in / 0C/, then:

(\Z\K)\ΓίLδ(K\I)fI(dσ)-]κ(β)=
zeZ2(I)



110 L. Laanaίt, A. Messager, and J. Ruiz

Proof. Consider the canonical extension i f: C
2(I)-+C2(K). Since / is open in K,

dκiI = iIdI (dx denoting the restriction of d to the complex X) and we get:

) = 0 if peK\I}.

Since H2(K) = {0} by assumption we have:

iIZ
2(I) = {beB2(K)\b(p) = 0 if peK\I}.

Hence

sg f (/,/?)= Σ e~"Hκ(6) Π

The proof of statement b) is analogous. Π

Remark. Taking K as a complex associated to a rectangular box, the above lemma
will also facilitate computations of partition functions on cohomologically non-
trivial complexes contained in K. We shall use it in particular in the next sections to
express partition functions in term of non-interacting contour models.

Let us now define the partition functions with disordered ("dis") boundary
condition:

Ξ*f (y, ]S,dis)= [1 ~ (4.1)
peγ

Ξ(γ, β, dis) = \Z\V(y)}\ 2*f -(y, ft dis) . (4.2)

We put E = V(y)κ\ V(y) and apply the statement b) of Lemma 4. 1 with / = K\E and

]> to show:

Z(K, β I γ) = \Zl(K)\ Ξ^ (K\Vκ(y\ β) Ξg f -(y, ft dis), (4.3)

where we have used K\E is a disjoint union of open subcomplexes in K.

Second step: We shall now need the following:

Lemma 4.2. a) £8 f *(y, ft dis) - g(y, β) D(y, β) £g f -((Int 7)*, j?*),

^(y> P)=e Ί e

\2l(V(i))\'

b)

0 Dί̂ î
Proof. We have from the above definitions:

S* f (y, /», dis) = (IZ1^))!)-1 Ξ(?, /?, dis)
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The proof of statement a) then follows from statement a) of Proposition 3.1. To
prove statement b) we sum over σeC1(y)m Ξ(y, β, dis) using 1 — δ ̂  1 , we then show
that for any /zeC2(Inty):

since the dual transform of the left-hand side of the above inequality is a
correlation function which is less than 1. Finally since Z°(X) = {0} whenever X is
open, then:

from which statement c) follows. Π

We then obtain from (4.3) and Lemma 4.2:

Z(K, βt\y) = g(y, βt) D(y, βt) \Z\K}\ Ξ^(K\ Vκ(y\ βt) Ξ* f '((Int γ)*9 βt) . (4.4)

Third step:

Proposition 4.1. At the self-dual temperature βt the probability of a contour given
ordered "0" boundary condition satisfies:

Proof. We shall compare the product of the two partition function in the right-
hand side of (4.4) with Z(K, β). Let T be the complex (Inty)* translated by \ in all
the positive directions. From statement a) of Lemma 4.1 we deduce:

Z(K, β)^

= \Z\K)\ Ξs f (T, β) Ξ* f (K\Vκ(y\ β) .

Therefore at βt the probability of a contour y is bounded above by g(y, βt) D(y, βt)
and thus the proof follows from statements b) and c) of Lemma 4.2. Π

Fourth step: We finally need the following:

Lemma 4.3. Whenever y is the support of α contour, then:

- y v - -
\H2(V(γ))\q 2 ^q 40 .

Proof. We postpone the proof to Appendix B. Π

Our main estimate follows from Proposition 4.1 and Lemma 4.3:

Proposition 4.2. At the self-dual temperature βt the probability of a contour given
ordered "0" boundary condition satisfies:

40
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4.3. Proof of Theorem 2.1

Let p be some 2-cell in K = E(Λ)vF(Λ), where A is a rectangular box, then:

<δldσ(p}]>° (β) = Prob {dσ(p) = 01 "0"} -1 - Prob (dσ(p) Φ 01 "0"} .

If one considers a configuration σeCl(K) such that p is disordered, then there
exists necessarily a contour γ in such a configuration such that γ contains or
encloses the plaquette p, hence

prob{dσ(p)Φθ|'Ό''}£ Σ JWyl'Ό").
y:peF(y)

We take into account Proposition 4.2 and we use standard arguments to prove
that, for q large enough,

2 2VT

The second formula of Theorem 2.1 is a consequence of statement b) of
Proposition 3.1. This ends the proof of Theorem 2.1 since the expectations of
δ\_dσ(p)~\ with free and ordered boundary conditions are respectively the left and
right derivative with respect to β of the free energy F(β) [21].

Remark. We think that with this method, more general boundary conditions can
be studied, and that an estimate such as those of Proposition 4.2 can be obtained
for the weight of open contours; then the set of translation invariant states should
be studied with the method of [25] and one can certainly prove that, since non-
even correlation functions are zero, every translation invariant state is at βt a linear
combination of the two extremal states < >°(j5ί) and < yf(βt)

5. Contour Expansions

In this section we will expand the partition functions in terms of external contours
in both 1L and IL* :

Lemma 5.1. Let V be an open subcomplex of ΊL then:

where the sum is over all supports of families of mutually external contours satisfying
L1 C V.

Proof. Let K be the envelope of a rectangular box Λ such that K = E(A) D V, and
let:

χβ;K = δ(K\V(θ)) Π (1 - WP)]), (5.1)
peθ

where the boundary operator is restricted to K. It is clear that we can write

fi= Σ ίXe ,κ]κ(β)
ΘCV
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From statement b) of Lemma 4.1 it follows that

and we then deduce the result. Π

From Lemmas 5.1 and 4.2 it follows for open complexes FcϊL and

ΘCV

Ξ* { (γ, β, dis) = g(y, β) D(y, β) Ξ* f ((lnty)*, β*),

Ξg f •()>*, β*, dis) = g(γv β*) D(yv β*) Ξg f -((Int 7 „)*, β).

For θ a family of mutually external contours, we have

Ξ* ί (θ,β,diS)=ϊ\Ξ* ί (γ,β,dis). (5.2)
ye0

Proposition 5.1. We let D(V) the set of supports of families of mutually compatible
contours in V and we define:

Ξ* f (y,β,,dis)

where X = X\B(X) then:

a) S f (7,j8J= Σ YlΦ(γ}
deD(V) y e a

b) Whenever q is large enough, φ is a τ- functional:

0<φ(γ)^e~τNθ(y*\ where τ^k0\ogq, fc0>0.

Proof. To prove statement a) we use Lemma 5.1 and (5.2), and iterate on
Sg f (Inty,/?f). For statement b) we first notice:

We let T be the complex (Inty)* translated by + ̂  in all positive directions, from
statement a) of Lemma 4.1 we get:

£g f ((Inty)*,/0 lδ(K\T)-]κ(β) '

where KD T and H2(K) = {0}. We then use

γ)e-βHl^ = δ(K\T) δ(T\lnty)e-
βHτ

and lim eβ(δ~ί} = δ to obtain by correlation inequalities ([22]):
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Since we are free to choose K open this is greater than
Afc'Λr°(y*) ky Theorem 2.1. The τ-functionality then follows from statement c) of

Lemmas 4.2 and 4.3. Π

Remark. One can also obtain contours expansion at βφ/?,. We think that using
the method of [28], one can prove that for β Φ βt there is a unique Gibbs state, since
non-even correlation functions are zero: the free energy would be differentiable
with respect to β, and the free state should coincide with the ordered one.

6. Proof of Theorem 2.2

6.1. Proof of Statements b) and c) of Theorem 2.2: Perimeter Law Decay

Our proof is based on a contour expansion of [<?<5[σ(J^)] — l]£(β), where K is an
open subcomplex of 1L. We assume K = E(Λ)vF(Λ), where A is a rectangular box,
and K contains the complex { 0̂} consisting of the plaquettes, bonds and sites of
this surface. For convenience let us define the following "modified" partition
function for an open subcomplex V of K:

Ξf (V,β) = Σ eT
W"V'fl"<". (6.1)

zeZ2(F)

£f is an integral 2-chain satisfying d£f = £? and ^\v is the restriction to V of £f. Let
us remark that:

since the cohomology group H2(K) is trivial.

Lemma 6.1. Let V be an open subcomplex of K then:

θcV

where the sum is over all supports of families of mutually external contours satisfying
C V and

zeZ2(F(0))

Proof. We define χθ.κ as in (5.1) and get:

βcf

We use statement b) of Lemma 4.1 to deduce:

[δ(K\ V) e * ( * } ] κ (β) = \Zl(K)\ Ξf (V, β),

[iβ K^"^} K (β) = \Zl(K)\ Ξfl (θ, β, dis),

and we then derive the result. Π
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Now we divide the family θ of external contours into two subfamilies:

γ e θ o { F(y)n {̂ } Φ 0, or for each S
such that W = X it is F(y)n{^} Φ0} ,

7 e θ o { V(y)r\ {<£} = 0, and there exists ¥
such that: 35^ = J^ and

Proposition 6.1. Lei D(V) the set of all families of mutually compatible contours in
V and define:

Eft^dis)

then: Φ^to'

a) s» f (KA)= Σ Πvc,ω,

c) Iv ωi
Proof. The proof of statement a) is the same as in Proposition 5.1. Moreover for
any yeθ it is:

from which statement b) follows. Since Ξg f -(γ, β, dis) and Ξ* f (Inty, β) are non-
negative functions, the inequality in statement c) is a consequence of:

, β)
' l J

S f (y,jί,dis) =S«-f-

From Lemma 4.1 we deduce that (6.3) is equivalent to:

(6.4)

where χy;^ is defined in (5.1). Now we define the following measure:

y . rr eJ
σed(K) P<=κ

in terms of which we rewrite (6.4) as:

\e q

where {J'} and (J"} satisfy:

j;-»-oo if p e y ,

J'p = β if pelnty, J"p = β if pe lnty .

(6.5)
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The formula (6.5) is a consequence of Ginibre inequality [22], which thus
implies statement c). Π

Now we deduce from the relation (6.1) and Propositions 5.1 and 6.1:

,-ι Σ
i>SCS)= Σ oΣ ΐl

deD(K) yed

where the sums in the exponent are over all clusters (i.e. families of contours in
D(K) satisfying certain conditions). The truncated contour functionals </>Γand φj
may (cf. [23, 10, 24]) explicitly be defined by:

ΦT(Q= Σ (-l) |CMB|logΣ Φ(B), (6.6)
BCC dcB

and analogously for φj, where |C| denotes the number of contours in C. For a
τ-functional one has a bound

where | | denotes the absolute value and the sum is over all clusters such that some
of their contour contains a fixed cell. Referring to the explicit formula (6.6) one has
φτ(C) = ψ J(C) whenever all contours from C are in θ. If it is not the case we say that
C is incompatible with {£*} and write Ci{jS?}. Thus we finally get

6.2. Proof of Statement a) of Theorem 2.2: Area Law Decay

We consider the Wilson parameter with free boundary condition
(qδ[σ(&)~\ -1 >£ (β), where K is the envelope of a rectangular box K = E(A) D {5 }̂.
The duality transformation, taking into account H2(K) = {Q}, leads to:

(qδίσ(2>)-]-\yκ(β)= V ^fy^λ (6.7)
m = 1 /-ι{Λ , p )

where

ZmCK*,/J*) = Σ ^ m*

y is a 2-chain in K such that 55^ = δ 0̂ = JSf. The 2-chain *(£f) is dual of the
2-chain tf\ *(&*) (pj = ̂ (p) for any 2-cell p and its dual p^.

We shall expand Zm(K*, jS*) in terms of external contours.
Here a plaquette p^ is said to be ordered iί(dσ + m*(^)) (pj = 0, and disordered

otherwise. Therefore for every configuration
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- the 3-cells (cubes) c^ e {<&}* are such that plaquettes in their boundaries are not
all ordered.
- a 3-cell c^ of K*/{<^}* cannot have five ordered plaquettes and the sixth
disordered. This is a consequence of the identity dd = 0.

It follows that every configuration σ contains a family of mutually external
contours θ^. satisfying:

1. σe{σEC1(K*)/ΐor every p^ in Ext^ it is (dσ + m*(&)) (pj = 0, and for
every p^ in θ^ it is (dσ + m*(cS^))(pJΦθ}.

2. In each such family θ^. there exists a unique contour Γ^ such that {j£?}*
C V(r^.) and for every such contour Γ^ there exists an integral 2-chain £fr such that:
d&Γ, = &* and {5^} C V(ΓJ. Zm(K*,β*) is then expanded as:

zm(K*,/?*)= Σ Σ Σ
Γ* Θ^Γ* σeC

l(K*)

where

From Lemma 4.1 we get:

χm= Π δWPΪl Π (l-
peθ*

*, r ) ̂  Σ Σ \Zl(K*)\ Ξ* f (θt\Γt, j8*, dis) SS ί̂Γ ,̂ j8*, dis) , (6.8)
Γ* Θ*3Γ*

where

zeZ2(K(Γ,)) psΓ»

We then prove as in Lemma 4.2:

Ξ*m

f (Γ#, β*, dis) ̂  Dίy,,, jί*) S» f ((mtΓJ*, /?) .

Referring to the proof of Proposition 5.1 we get:

On the other hand we have:

Iterating Lemma 5.1 on S8 f (IntΓ#,jSt) and S^f ίlήtίθ^XΓ,,),^), we deduce:

Σ S"-f-(0,\j;. /f *, dis) S?;f -(Γ,, /?*, dis)

,j9,) Σ Π ^(/J^ ^iAtί^xαft)

y.sβ

*>A)) (69)
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where the £* is over all the y'φ compatible with Γ+. We use finally that H2(K*)
= H2(K) = {ϋ] and (2.4) to get:

βt) = IZ1^*)! Zg f •(*:*, βt) = Z(K*, βt). (6.10)

It then follows from (6.7)-(6.10):

β-i
<<2<5[σ(J?)]-!>£(&)<; Σ

m = l
(=5

and we deduce the area law decay at the transition point βt since the minimal
number N°((ΓJ*) is at least N2(^0). We extend the result for all values oϊβ^βt by
using Ginibre's inequalities [22].

Appendix A: Cell Complex Formalism

A.I. General Definitions

The cell complex formalism is very efficient dealing with topological problems
inherent to the g-states Potts gauge model. We shall first introduce it in an abstract
sense along the lines of [13] (cf. also [26, 27]); and then consider its particular
example a hypercubical lattice 7Ld.

A cell complex K is a set whose elements are called cells such that:
- A non-negative integer called dimension is assigned to each cell. The upper
bound of the dimensions of all cells is called the dimension of the complex.
- To each cell sp of dimension p (a p-cell) corresponds another p-cell (— sp) of the
same dimension and called the cell of opposite orientation
- An integer I(sp; sp~1) called the incidence number is assigned to all pairs of cells
(sp,sp~1) in a such way that

A cell complex is called an a-complex if

for any two cells sp and sp~2 belonging to K. Another terminology is sometimes
used: a cell space instead of a cell complex and a cell complex instead of an
α-complex; the above have been introduced in [13].

An integral p-chain cp on the complex K is an odd function on p-cells with
values in Z, the group of integers.

The set of all p-chains over K form an abelian group denoted by CP(K). The rank of
this group is denoted NP(K); 2NP(K) is the number of p-cells of K.

A monomial chain m spis& chain that takes a value m on sp and vanishes on all
p-cells different than sp. Hence any integral chain may be written as a sum of
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monomial chains:

Hereafter sp denotes either the cell sp or the monomial chain 1 sp.
On CP(K) one may introduce the scalar product,

The operator

(A.2)

i ' i j l " J J

defines a homomorphism of the group CP(K) into the group Cp~l(K) and is called
the boundary operator. The dual coboundary operator d* (the adjoint of d with
respect to the scalar product) defines a homomorphism of the group CP(K) into
the group CP+1(K):

In particular:

j+1,sp)sj + 1, and

(A.2')

Notice that

A cell complex K0 is said to be a ce// subcomplex of the complex X if every
element of K0 is an element of K, every two cells sp and sp+1 have the same
incidence number in K as they do in K0 and every pair of opposites in K0 is a pair
of opposites in K. A cell complex K0 is said to be closed (respectively open) if it
contains with every cell also the cells on its boundary (respectively coboundary).
We denote by K0 the closure oΐK0, i.e. the minimal closed cell-complex containing
K0. A complex is said to be connected if it cannot be expressed as the union of two
non-empty disjoint closed subcomplexes.

A hypercubic lattice Έά may be considered as a cell complex denoted 1L. Its
0-cells are vertices, its 1 -cells are bonds, its 2-cells are plaquettes etc. We shall
denote K/, p = 0, 1, . . . , d, the set of p-cell in IL The orientation is the usual one and
the incidence number I(sp; sp~^) takes values + 1 if sp ~ i belongs to the boundary of
sp with respect to the relative orientation and the value 0 otherwise.

Let us consider a cell subcomplex K of IL and restrict the incidence function to
K (note that the boundary operation, then, does not coincide with the same
operation in JL). K will be an α-complex if it satisfies (A.I). In particular closed and
open subcomplexes are α-complexes. Hereafter we shall only consider α-com-
plexes.
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The group CP(K) has two distinguished subgroups with respect to the operator
d: the group of p-cycles Zp(K) = {cp\dcp = U] and the group of p-boundarίes Bp(K)
= {cp\cp = dcp+ί}. Since dd = 0 as follows from (A.I), every boundary is a cycle:
Bp(K)cZp(K). The converse is not true in general. Consider for example the
2-dimensional complex shown in Fig. A.I, with an omitted plaquette. We have
dcί=0 = dc2, but neither c± or c2 is a boundary. However c2 = ct 4- 3s, where s is a
two-chain sum of the plaquette spanned between cx and c2. Two such 1-cycles are
called homologous; two cycles are called homologous if they differ by a boundary.
The factor group Hp(K) = Zp(K)/Bp(K\ whose elements are the equivalent classes
of homologous p-cycles, is called the p-homology group of the complex K. The
rank of HP(K) denoted by πp(K) is a topological invariant called the pth-Betti
number that characterizes the number of independent p-dimensional holes in K.

For 3* one defines similarly the groups of p-cocycles ZP(K) and p-coboundaries
BP(K) and the p-cohomology group HP(K) of a complex K.

The others topological invariants are the p-torsion coefficients, 0f (see
Appendix A.3): they correspond to the fact that it may exist p-chains cp which are
not boundaries of (p + l)-chains in the considered complex, while θ?cp are
boundaries. The number τp of p-torsion coefficients is also a topological invariant
called p-torsion number. A characteristic example is the Klein Bottle shown in
Fig. A.2: the 1 -cycle 2 x (04 + 43 + 30) (with obvious notations) is the boundary of
the 2-chain sum of the plaquette oriented clockwise whereas the 1-cycle
04 + 43 + 30 is not a boundary; τ1 = 1 and 01 - 2.

The following notations serve to describe configurations of lattice models. A
homomorphism σp from CP(K) into an abelian group G is called a G-valued
p-cochain. The set of G-valued p-cochains of a complex K forms an abelian group
denoted CP(K,G\ in particular CP(K,Έ) = CP(K\ and the scalar product can be
considered as the product of an integral chain with an integral cochain. Any σp is
determined by its values on the chains 1 sp, i.e. on the cells sp; it thus defines an odd
function on the complex K with values in G.

Fig. A.I. Homologous non-bounding cycles

0 1 2 0

Fig. A.2. A Klein bottle: such a complex may be obtained as a subcomplex of a d-dimensional
lattice when d ̂  4 (obviously it needs more cells than these shown)
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One may define the differential

and the codifferential

d*:Cp(K,G)-+Cp-\K,G),

operators:

dσp(cp+1) = σp(dcp+1) and d*σp(cp~l) = σp(d*cp~1} . (A.3)

In particular

Whenever G is a ring with unity every G-valued p-cochain σ belonging to CP(K9 G)
has a unique decomposition on the cell basis: σ = Σ α^f? here αt belongs to G and £

I

denotes the group law of G.
We introduce

- the group of G-valued p-cycles of K ZP(K, G) = {σpe CP(K, G) | d*σp - 0} (here 0
denotes the unit element of G)
- the group of G-valued p-boundaries of K

Bp(K, G) = {σpe CP(K, G) K = d*σp + \ σp + l e Cp + \K, G)} ,

the group of G-valued p-cocycles of K ZP(K, G) = {σpeCp(K, G)\dσp = ϋ]
- the group of G-valued p-coboundaries of K

BP(K, G) = {σp e CP(K, G)| σp = dσp~ \ σp~ 1 e Cp~ \K, G)} .

The factor groups HP(K, G) = Zp(K, G)/Bp(K, G), HP(K, G) = ZP(K, G)/BP(K, G) are
respectively the G-valued p-homology and the G-valued p-cohomology groups of
K.

A.2. Dual Lattice and Dual Complex

Let K be a d-dimensional cell complex, K* is said to be the dual complex of K if
there is a one-to-one correspondence

sp-+*(sp) = !%-p (A.4)

between the p-cells, sp, of K and the (d — p)-cells, 4~ p, of K* such that the incidence
numbers satisfy the relation

The lattice (Zd)* = {xjx* = (x1 + i . . . , xl + i . . . , xd + i), xl e TL} is the dual lattice
of TLd. Let 1L* be the complex associated with (Zd)*. ]L* is the dual complex of JL.
For any cell subcomplex K of 1L there is a dual complex K* which is a subcomplex
of 1L*; if K is closed, K* is open, if K is open K* is closed. In this article we consider
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a 4-dimensional lattice cell complex; the dual of a site is an hypercube (and
conversely), the dual of a link is a cube (and conversely), and the dual of a plaquette
is a plaquette.

We introduce the operation * (Hodge operation) mapping CP(K) into Cd~p(K*)
and CP(K,G) into Cd"p(K*9G) by:

* : cp^ * (cp) = 4- p , 4~ p(s^- p) = cp(sp) ,

* : σp-+*(σp) = <Λ <~p(s^p) - σp(sp) .

It follows from (A.3) and (A.5) that

* (dσp) = d* * K), * (d*σ

p) = d* (σp) (A.6)

and for integral chains

* (dcp) = <3* * (c

p), * (d*cp) = 8* (cp) .

Therefore the mapping * determines an isomorphism between
1. The group of G-valued p-cycles of K, ZP(K, G), and the group of G-valued

d-p-cocycles of K*, Zd~p(K*9 G),
2. The group of G-valued p-boundaries of K, Bp(K, G), and the group of

G-valued (ί/-p)-coboundaries of K*,£d~%K*,G),
3. The G-valued p-homology group of K, Hp(K, G), and the G-valued (d—p)-

cohomology group of K*,Hd-p(K*,G\

A3. d-Basis and d*-Basis

A standard result of algebraic topology is that the group CP(K) admits a canonical
3-basis and 5*-basis. A 3-basis consists in five families of integral p-chains:

l...vp}, and {ίf|i = l ... τp}

satisfying,

i=\...np

θf = 0(modθf+1).

0f is the order of the element if relative to the group Bp(K) (see [13]). A <3*-basis
consists in five families of integral p-chains:

1}, and {Γf|ί=l ... τp~1}
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satisfying,

We refer to [13] and [27] for suitable examples for our purposes.
The mapping (A.4) sends a <9-basis in a d*-basis and conversely, and

NP(K) = Nd-p(K*), πp(K) = πd~p(K*) 0 ̂ p ^ d ,

Every p-cycle, z, belonging to the group ZP(K, G) has a unique decomposition on a
d-basis

τ ^f+ Σ μtW+ Σ A&f+ Σ y j ί f .

Here μί? j8ί9 y f belong to G and ̂  belongs to the group G(θf " x) = {g e G/θf " Γg = 0}.
Every p-boundary, b, belonging to the group Bp(K, G) has a unique decomposition
on a δ-basis:

b= y BM+ y ρ ίf.
i = l i = l

Here βt belong to G and ρt belongs to the group θf G = {θfg/g e G}. Every p-cocycle,
z'eZp(K, G) has a unique decomposition on a 3*-basis:

z'= Σ £*f+ Σ μ^f+ Σ /^+ Σ ytf
i = l i = l i = l i = l

Here μί, jSJ, 7; belong to G and £• belongs to the group G(#f). Every p-coboundary,
b'eBp(K,G) has a unique decomposition on a 3*-basis:

ί=l ϊ = l

Here j8J belong to G and y\ belongs to the group θf ~1G.
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For the above groups the following decomposition in direct sums holds true (cf.
[13] for details):

tP- 1 πP vP τP

Z ( ~lf /τ\ r+*j V f~^ (dP—I'i/TN X""1 Γ* /'TN X"1 /~* /T\ X""1 /"*
p(/C, Cz)= 2^ ^lyf JvB ^ (j® X Cr® 2^ ^?

Bp(K,G)^ J G® Σ 0ΓG,

τ^ ~! π^ τί7

τ_Γ / Γ "̂ /^\ r^/ V /°//3P—1\/T\ \P /^* /T\ X"1 /^ //3P/^f

Hp(K,(j)= 2^ bψi )© 2^ G© 2^ w";^7'

τp - 1 vp - 1 πp τp V * /

c,G)^ Σ GΘ Σ G® Σ G® Σ
i = l i = l i = l i = l

τp - 1 vp - 1

Σ G>
/ = !

π^ τ^

Σ

where hereafter the symbols ^ and φ denotes respectively isomorphism and
direct sum of groups. Whenever G=Zq one has for any θ> 1 (cf. [13] t.2, p. 113):

where (ς[, θ) is the greatest common divisor of q and θ. Therefore

H,j(K,Xq) = H*(K,Zq)= * ̂ Σ^ΘΓ1)® Σ Zβθ Σ ̂ f)
i = 1 i = 1 i = 1

We finally recall the Alexander's duality theorem; we refer the reader to [13]
(Vol. 3, pp. 41-42).

Theorem A.1 Let K a closed subcomplex of the lattice cell complex IL then:
a) For p such that 1 ̂ p^d — 2 it is

)̂, and

b) For O^p^d-2 iί is

c) X and [1L\K]* are p-torsion free for p = Q and p^d — 2.

Appendix B: Proof of Lemma 4.3

We first rewrite the left-hand side of the inequality of the lemma in term of
quantities relative to the complex F(y)* dual of the complex 7(y).
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Lemma B.I.

Proof.2 From the Euler Poincare formula

and (A. 7) we get

N2(V(vϊ}
= N*(V(y)*)-Nί(V(y)*) +

Since closed complexes are 0 and 2-torsion free (by Theorem A.I) we deduce from
(A.9):

We use finally that π4(F(y)*) = 0 since V(y)* is closed, π°(F(y)*) = 1 by construction
and that π3(F(y)*) = π°(IL\F(y)) — 1 (see Theorem A.I) is therefore zero since
lL\F(y) = Exty has one connected component. Π

First step: We shall estimate the term

N
. (B.I)

For every site x of the dual lattice IL* we define the incidence number /^(x, F(y)*) as
the number of links of F(y)* (positively oriented)3 which contains x, and the
incidence number I*(x, F(y)*) as the number of plaquettes of V(γ)* (positively
oriented) which contains x.

Lemma B.2. For any contour y:

N 2 *
) - I*(x9 V(γ)*) - 8] .

2 In this appendix we use the same notations as in Sects. 1-6 and omit the specification of the
group Zq (see Footnote 1)
3 In this appendix we shall only consider positively oriented cells without specifying this in the
following. Moreover we shall say that:

a) a cell sp contains in its boundary a cell sf of lower dimension, if the minimal closed
subcomplex of IL containing as p-cells only the two p-cells sp and (—s p ) contains also the cell s'.

b) a cell sp contains in its coboundary a cell 5' of greater dimension, if the minimal open
subcomplex of IL containing as p-cells only the two p-cells sp and (— sp) contains also the cell 5'
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Proof. The complex V(y)* is closed, hence every link in F(y)* contains two sites of
V(γ)* and every plaquette in V(γ)* contains four sites of V(y)*. Therefore we have

= ΣxeV(γ)*\_ 2<

from which the lemma follows. Π

We shall now show that (B.I) is a "boundary term."

Lemma B.3.

Σ [4/'(x, F(7)*) - />(*, F(7)*) - 8] £ N V) .
xeF(y)*

Proof. A site in the lattice may contain at most 8 links and 24 plaquettes in its
coboundary. Since (Inty)* is open, the sites x of V(γ)* such that I'(x, V(y)*) = 8 and
I*(x9 V(y)*) = 24 belong to (Int 7)* these sites will be called saturated sites. The non-
saturated sites of V(y)* belong to 7*. We observe that the term [4/'(x, V(y)*)
— I*(x, V(y)*) — 8] gives no contribution for any saturated site. We shall show that
this term gives at least a contribution + 1 for each non-saturated site, i.e. for each
site in y*. Clearly this quantity can be negative if we replace V(y)* by a whatever
complex, the positivity will follow from the fact that y is a contour. In particular
V(γ)* is closed and thus all the links in the boundary of a plaquette in V(y)* belongs
to F(y)*, furthermore we have other constraints which we give in the following

Remark E.I. For any configuration σ, a cube in 1L cannot contain five ordered
plaquettes and a disordered one: this follows from dd = 0. It follows that a link in
7(7)* has in its coboundary at least two plaquettes of V(y)*.

A first consequence of Remark B.I is that I*(x, V(y)*) cannot take the value 1
and 2. Let &m(V(γ)*) = {xeV(γ)*/I'(x9 V(γ)*) = m}9 then

-«] = Σ Σ (4m-/^(x, W)-8)
xeV(y)* m = 3 xeV(y)*

/'(x,K(y)*) = m

= Σ Σ (4m-^(x,F(7)*)-8).

We now examine the values that can take I*(x9 F(y)*) whenever I*(x9 V(γ)*) is given,
more precisely when the links of V(γ)* incident to x are given. We denote
{eί9 ...9e8} the eight unit vectors of R4 in the direction of the axis, and for 3 ̂  m ̂  8
let {eil9 . . . , eirn} be m different elements of{el9...9e8}. For any contour y and for any
x in F(y)* we denote

* xl(e e }= rv* xΊ > '— to

, xj (eil9 . . . , et j L7 ,xi belongs to

Given (efl, . . . , eίn) and a couple [7*, x] in [7*, x] (eil9 . . . , eίn) we look at the possible
values of I*(x9 V(y)*). For example if m = 4 and eίl? . . . , ei4 belongs to the same plane,
the plaquettes in the coboundary of x which belongs to V(y)* are these of this plane
and only these ones (Fig. B.I). Two different values for I*(x9 V(y)*) when four
vectors eiί9 ...9ei4 are not in the same plane are also shown in Fig. B.I.
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*!

Fig. B.1

127

We denote

max

For a given m we observe that /£ax(eh,..., eίn) takes its maximum value when the m
vectors eil9 " ,eim are chosen such that the number of orthogonal vectors in this
family is maximal. We let

^max(m) == max ^maxfov > ^im)
teι,. .,elm)

Remark B.2. If (y*, x) e (y*, x) (e ί l5..., eίm), then

/ the plaquette p contains in its boundary)

two links of V(y)* incident to x j

(recall that (Exty)* = lL*\7(y)*).
This remark will be will be used only in the second step where we shall estimate

\HιV(γ)*)\. We now list the values of /£ax(m) and /£in(m) (/έin(m) is obviously
defined) obtained by investigating all possibilities with the constraints described
above.

m

3
4
5
6
7
8

!Ln(m

3
4
5
7
7
8

i /Um;
3
6
9

13
18
24

) 4m-/£ax(w)-8

1
2
3
3
2
0

We observe that for any γ and any x in ^m(V(γ)*) it is 4m — /*(x, F(y)*) — 8 Ξ g l ,
unless m = 8 and /^(x, F(y)*) = 24. This concludes the proof. Π

Second step: We shall now estimate the term |HΊ(F(7)*)|. This number will be
estimated below through the knowledge of a certain set of plaquettes of (Exty)*.
For any contour γ we let £f(y*) be the set of sites x in V(γ)* such that if
[y*, x] e [y*, x] (eiί9..., eJ then /^(x, F(y)*) Φ /^(e^,..., eJ.

We denote: J^(x) = /LxK, ...,ej-l*(x9 F(y)*).
If x e ̂ (y*) we let ̂ ^(x) be the set of plaquettes in (Exty)* which contains two

links of V(γ)* incident to x and ̂  = (J ^#(x). This set divide in the following
subsets (see Fig. B.2):
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χ ^ x — Ϊ x x x SiteinV(y)*
I I I I LinkιnV(y)*

Fig. B.2. The different plaquettes of &*: the indicated sites belong to S?(y*)

the set of plaquettes in (Exty)* which contain four links and four sites of
V(y)*
- SPψ be the set of plaquettes in (Exty)* which contain three links of V(γ)* one link
in (Exty)* and four sites of V(y)*
- 0>ψ be the set of plaquettes in (Ext γ)* which contain two links of V(γ)* incident
to a site of £?(y*) and two links in (Exty)*.
We denote Pn, n = 2,3,4, the cardinality of the set 0^. Under these notations we
have the following

Lemma B.4.

^ qTδ x J{y)*

Proof. We first notice that since a closed complex is p-torsion free except for 0 = 1,
then it follows from (A.8)

Next we recall that for any 1-chain of the complex V{γ)* may be written in terms of
a 3-basis

{0,11 = 1...v0}, {xf|i = l . . . τ 0 } , {Λ l | i=l...τc 1},

{ ^ | / = 1 . ..v1}, and {ίi|ί = l . . . τ 1 }

(cf. Appendix A.3), where ht and t{ are 1-cycles, nevertheless they are not boundary
of 2-chains in V(y)*.

Thus to compute π1(F(<y)*) + τ1(F(γ)*) we shall estimate the maximal number
of linearly independent cycles that are not boundaries of 2-cycles in V(y)*. Let us
denote J* = {c j i = l t _f πi + τ i the family of these cycles. Since V{γ)* is closed the family
$ can be chosen in a such way that the cycles c{ take non-vanishing values only on
the boundary of V(y)*. Each one of the cycles in ffl is the boundary of a 2-chain
constituted of plaquettes in (Ext 7)* (i.e. a 2-chain non-vanishing on these
plaquettes).

As an example we show in Fig. B.3 three kinds of 1-cycle.

x Site in V(y)*
LιnkιnV(y)*

I I i I I I Linkin (Exty)*
— 4- -~ x x — x — x x-—x m_

\ J Plαquette in (Exty)*

Fig. B.3. Non-bounding 1-cycles in V(γ)*



4-Dimensional Lattice Pure Gauge Potts Model 129

We observe that for any of these cycles 2-chain exists a necessary in (Ext 7)*
non- vanishing on 3P^. Moreover there exist sites of Sf such that the cycle is non-
vanishing on the links which are in the coboundary of these sites and in the
boundary of a plaquette of ̂ #.

Now from Theorem A.I we deduce that

This isomorphism shows that to each 1 -cycle in $ it corresponds a 2-cycle in Exty.
We shall denote ^/ = {cί } ί = 1 >..M πι+ τι the family of such linearly independent
2-cycles. Furthermore the dual of a plaquette p of S^cP* is a plaquette p' of
(̂ [*])* C (^*)* C Ext 7. This plaquette p' contains in its coboundary n cubes (n ̂  4) of
F(y), the other (4 — n) cubes belongs to Ext y. Hereafter we shall denote (^J])* as
^[π] and (^J* as 9. The 2-cycles in SI' are not boundaries of 3-chains in Exty but
boundaries of 3-chains in V(γ) and necessary non-vanishing on the set of cubes in
the coboundary of plaquettes of 9.

Since a cube of V(γ) cannot contains five plaquettes of V(y) and one plaquette of
Exty (see Remark B.I) it follows that any 2-cycle is a boundary of a 3-chain non-
vanishing on at least four cubes of V(y). Thus this 2-cycle is non- vanishing on at
least 16 plaquettes of Exty as indicated in Fig. B.4, which corresponds to a
situation where only the indicated sixteen plaquettes are ordered and all other
plaquettes are disordered. In this case the dual of each plaquette belongs to ̂ [4].
Denoting d the considered 2-cycle one observes that there exist 40 sites of if such
that c' do not vanish on plaquettes dual to plaquettes of ̂  = (J &+(x).

xef

Clearly for any 2-cycle c' at least 40 sites of Sf would exist such that e'(p') φ 0 for
dual to a plaquette, p<Ξ&*= (j &*(x).

Since each plaquette, p', of 1L contains at most four cubes in its coboundary one
may choose the family Si' in a such way that there exist at most four 2-cycles of this
family which do not vanish on a plaquette p' e 2P.

Recalling that a site x of 5̂  contains in its coboundary J*(x) plaquettes of
^*(x), 4J*(x) is therefore the maximal number of 2-cycles non-vanishing on
plaquettes in ̂  dual to plaquettes in ̂ (x). Therefore we get

which imply the first inequality in Lemma B.4.

Fig. B.4. A non-bounding 2-cycle (non-hatched plaquettes) in V(y) and its dual (grey plaquettes)
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To prove the equality of this lemma we notice that it is a simple consequence of
the definitions of J*(x) and 0*£\

To prove the second inequality in the lemma we first notice that:

)-I*(x,V(γ)*)-S]-
xeF(y)*

8

2£ Σ
m = 3

since S C V(γ)*. It follows from Remark B.2 that for x e (J ^m it is /^(x, V(γ)*)

+ J*(x)<^IPaaκ(m), and for xe^8 it is /^(x, V(y)*) + I^(x9^^~=24. Since

8

Σ Σ
m=3 «Γ "

with Sm the cardinality of £fm (see the proof of Lemma B.3), we get the desired
inequality. This ends the proof. Π

Lemma 4.3 follows from Lemmas B.I, B.2, B.4, and B.3.
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