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Abstract. Bounds for large-mass behaviour in renormalized perturbation
expansions at zero temperature, which were previously obtained by Manoukian
and Caswell-Kennedy in momentum space, are rederived in the parametric
representation. A very simple unified proof of the BPHZ theorem and the
decoupling theorem is also given. A new technique for asymptotic analysis,
based on a generalized Kontorovich-Lebedev integral transform, is introduced.
This method is applied to find the leading high-temperature behaviour of
perturbative field theories in the imaginary-time formalism. We prove that
diagrams containing nonstatic modes, which at high temperature behave like
particles with a large mass, are suppressed relative to purely static diagrams.
This rigorously proves a limited form of dimensional reduction at infinite
temperature.

1. Introduction

In the early eighties it has been suggested that at very high temperatures field
theories in the imaginary-time (Matsubara) formalism would undergo a form of
dimensional reduction [5, 14,16]. The presence of a nonzero temperature Γcan be
incorporated in quantum field theory by compactifying the Euclidean time axis to a
circle with radius β = T~x [18], and this obviously motivates the idea of a
dimensional reduction from d to d—\ dimensions.

In perturbation theory in momentum space the temperature enters in the guise
of a mass m = 2πnT,neZ, which is present in each (bosonic) propagator [18]. The
analogy with the decoupling theorem for heavy particles [4, 2, 20, 9] then suggests
that at high temperatures the nonzero modes («φθ) decouple at low momenta,
leaving an effective three-dimensional theory, consisting of the zero modes only,
behind. In contradistinction to the ordinary decoupling theorem, it is here supposed
that an infinite tower of massive particles decouples.

In order to prove that such a dimensional reduction mechanism indeed applies,
one ought to state a renormalization scheme in which the nonstatic modes decouple
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[17] (note that the zero-temperature Appelquist-Carazzone theorem [4] heavily
depends on the renormalization scheme). A good candidate scheme necessarily
involves temperature-dependent subtractions, as one can see by computing one-
loop diagrams in the high-temperature limit [17]. The renormalization scheme
which turns out to be optimal for dimensional reduction is a finite-temperature
generalization of the BPHZ-scheme: one performs zero-momentum subtractions at
the actual temperature T.

The principal goal of this paper is to derive high-temperature bounds on Green
functions renormalized by this scheme, which is also useful outside the context of
dimensional reduction. As we shall see, the derivation of these estimates is rather
nontrivial, because one has to deal with an infinite number of particles which
supposedly decouple. This fact prohibits a direct application of standard techniques
for proving such bounds. Indeed, we have found it necessary to use an involved
integral transform which thus far has only been used in the study of boundary-value
problems [10].

To acquaint the reader with our methods we start by rederiving well-known
large-mass estimates in vacuum field theory in Sect. 2. These estimates have been
obtained previously by heuristic [9] as well as rigorous [20] momentum-space
techniques, which are very hard to generalize to the thermal case. Instead, we rely on
the parametric representation [28,26] throughout this paper. We use, in particular,
the extremely effective method given by Anikin et al. [3] to incorporate the BPHZ
subtractions explicitly, without the need for a forest decomposition or a recursive
structure (also cf. [6]). Their technique heavily depends on the use of zero-
momentum subtractions (certain additional and superfluous subtractions are
made, which have to cancel out in the end), but fortunately it is precisely that scheme
which is optimal for the decoupling theorem.

To introduce the notation, as well as some technical results that are needed
anyway, we first prove the BPHZ theorem and the decoupling theorem at one
stroke, thus simplifying previous proofs of these separate theorems [28, 3, 2]. We
then (Sect. 3) derive the known large-mass bounds, firstly employing a Mellin
transform a la Bergere-Lam (who employed this technique to obtain large-
momentum expansions [7]), and secondly, once again, using a generalized
Kontorovich-Lebedev transform. For technical reasons the former integral
transform cannot be used to obtain high-temperature expansions, but the latter
can it is complicated enough, however, to justify its introduction in a familiar
context.

In Sect. 4 we pass to the finite-temperature case, and state our thermal
renormalization scheme. In the course of proving the convergence of our
subtraction method we demonstrate a number of technical lemmata which are
essential for the high-temperature estimates as well.

The final section states and proves our principal result (Theorem 4) on the high-
temperature behaviour of Green functions in the renormalization scheme given.
Since the main technical prerequisites are introduced in the preceding sections, the
proof of the final theorem is comparatively easy. The extent to which this theorem
actually leads to dimensional reduction is briefly alluded to, but is discussed
exhaustively in another publication [17].
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2. BPHZ- and Decoupling Theorem United

As a warmup-exercise we will prove the Euclidean BPHZ theorem as well as the
Appelquist-Carazzone decoupling theorem [4,2,20,9] at one stroke. For simplicity
we restrict ourselves to massive scalar theories without derivative coupling. The
inclusion of spin would mainly present notational complications [28,2], whereas the
extension to the case where some of the masses vanish, while the external momenta
remain off-shell and nonexceptional, presents some technical obstacles
irrelevant for our purpose. In any case, these can be surmounted using results in
[30, 20].

Initially our proof closely follows the already quite simple proof of the
Minkowskian BPHZ theorem by Anikin et al. [3]. We then adjust and simplify their
finale to arrive at a bound on the renormalized Feynman integral which is finite, and
proportional to a negative power of the heavy mass, thus establishing the
decoupling theorem. Since all estimates we use are trivial, our proof is technically
considerably simpler than the demonstration of the Appelquist-Carazzone theorem
given by AmbJΘrn [2].

Our starting point is the following expression for a generic c/-dimensional
(d even) Euclidean Feynman integral renormalized according to the BPHZ pre-
scription :

dΐ ίc) V ι + 1 Ί Γ L ddk 1 Ί
a(si (\ r\*A \ ί π ι

° \ C ( J J
V-C L

v = l 1 = 1

This formula is equivalent to (2.2) below, which is given by [3], and can itself be
derived from the formalism of Bergere and Zuber [6]. The integral F corresponds to
a Feynman diagram Γ containing L lines, V vertices, / loops, and C connected
components. Γ contains superficially divergent subdiagrams {A};, labeled by an
index / in an index set A, with degree of divergence δt = dlt; — 2Lt. Neither Γ nor the
D{ are necessarily connected [3], and D0 = Γ. For the incidence matrix ε to be well
defined it is necessary to assume that Γ contains no tadpole diagrams this entails no
loss of generality, for tadpoles vanish in the BPHZ scheme as well as in its
generalization to finite temperature (cf. Sect. 4). The role of the structure involving
ζι is to implement the subtractions at zero external momentum of the subdiagram
Du as required by the BPHZ prescription. The ultimate ^-integration produces the
finite remainder of the Taylor expansion of Z)ί around zero momentum according
to the Schlόmilch formula [23]. Hence π,(0 = Π ' (/> where the product is over all i

for which kx is an external momentum of Dt. If Γ has no divergences then the
C-structure is to be omitted. Finally, Pv is the total external momentum at the
vertex v.

Introducing Feynman parameters [28, 26] one finds the parametric representa-
tion of F:

1 Γ dί id V i + 1 1 °° / L

F=l i ϊ ϊ & ( 1 ~ζi)δt W ζί J ί ( ί i d"ιβ~βt

(2.2)
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Here βι = αz(πz(O)2, where πt(ζ) = Π " C, , in which the product is over those ie Δ for
i

which leDt. The ζ-derivatives are understood to act on ζ as well as on β. In the
L

derivation of (2.2) one encounters the matrix d(β)vw= Π εvι
εwi/βι> *n terms of

which ι = 1

U(β) = detd(β) Ylβι = ΣUβι (2-3)
1 = 1 T iφT

The sum is over all 1-trees T in Γ, a 1-tree being a set of V—C = L—I lines
connecting all vertices in Γ without including a loop1. Conversely, any set of L — I
lines not including a loop connects all vertices and must be a 1-tree. A closed
expression for E(β, P) is known as well [26,28], but here we only need the fact that it
is analytic, non-negative, homogeneous of degree one in the βu and quadratic in the
set of external momenta P.

We now pass from oct to βι as integration variables (with Jacobian Π ίΓ2 L fX
i

and then decompose the β-integration region into L! sectors [15], in each of which
j?ix = î i2 = = βiL - F ° r notational simplicity, take the sector (il9..., iL) = (1,. . . , L).
We introduce the Speer variables [29]

A = Ί Ί + i » Λ h = βι/βι+i (2.4)

L

with Jacobian \dβ/dt\ = Π t\~x- I n e a c n sector one has tte [0,1] for / φ L , whereas
1 = 1

tLe [0, oo[. It follows from (2.3) that [28, 29]

where u(t) is independent of ίL, and has the form u(t) = 1 +f(t), with/(0 analytic. IL

is the number of loops in the diagram Γt composed of the lines 1,...,/ (in an arbitrary
sector this is to be replaced by ix,..., /,). The integral (2.2) decomposes as a sum of
integrals Fs over a given sector.

As explained in more detail in [3] and [2], in the sector defined above, (2.2) can
be written as

^ s = ί { π ̂ f (1 -WCΓ1 j ί dtL) (LΠ dt) (
0 iίeΔ °i> JO 0 \l = ί / \l

Π JS?i)ίΓl* l ϊ ( t J V0~* d Π t^dh . (2.6)
ieΔ ) 1 = 1

Here E is independent of ίL, which has been explicitly factorized. The differential

1 This generalizes the standard definition for a connected graph [26]. The expression given in [3]
[their Eq. (7)] is not correct for disconnected graphs. Our generalized form will appear in Sect. 4
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operators jS?f act on everything to their right, and are defined by

*,= ft W-s+l Σ (', |~ί,-i /
s = 0 L leDi \ Cll Oll

We define δι as the degree of divergence of Γt. For a given / there are two
possibilities:

1. δ z < 0 ; the structure of (2.6) and (2.7) then implies that the integrand of (2.6)
depends on tι as tf1'*01 times an analytic function (note that δι must be even in
even-dimensional scalar theories; in the general case an extra factor t\12 could
occur).

2. <5j^0; then rt = Di for some ίeΔ, in which case the divergent subdiagram Dt is
called subordinate to the given sector [3]. Then, however, j£?f assumes the simple
form

&i = Π s + llΛ-^ — . (2.8)

s=o L dtιJ

Each term in (2.8) annihilates the corresponding term tj~ι~^s in the Laurent
expansion of a function f(t\ί2). I f/=/(/ z ), as in (2.6), then the most singular term
that survives is t\ ~ι, which combines with the t\~ι already present in (2.6), so that
the remainder is analytic in tt. (If d is odd, or if there is spin, then one could have
extra square roots, which lead to the replacement of 1 by \ in the max-function in
(2.9) below.) If D0 = Γ is divergent, then i ? 0 = i?ou b by acting on e~tLEt[^dI

generates a factor E1 + ̂ δo. More factors of E and its derivatives E(n) are generated by
(2.8) for /Φ 0, but these extra factors all occur in the combination (tLEin)yne~tLE and
thence are irrelevant (see below).

Collecting these remarks, Fs is found to have the structure

1 ί Ήi δ -Λ °° 1 (L~l

0 [ieά ^t J O 0 \l = l

(2.9)

where w is analytic in each tu exponentially bounded in tL, and of order
ρ = 2max{0,1 +jδ0} in P for ίL-^0. Using the explicit form of E [28, 26] and the
compactness of the tι (iφL) integration region, we may estimate J?(ί, P)^cί(P),
with q quadratic in P. Also t^e"tLX^ (exm)~x, so that (tLE{n))me~t]bE ^ 4"}(?) which
is of order ρ in P. Furthermore, t^X trivially for /ΦL.

We now transform back to the jSΓvariables, with Jacobian

1=2 1=1

SLsβ1^β2^...^βLin the sector under study. After this estimate has been made, we
extend the /^-integration domain from βι+ι to infinity (giving a further bound by
positivity of the integrand). We then pass from βι to at as integration variables, and
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L

use Π π z(£)= Π Ct*- This gives the estimate (<5L = <50)
1 = 1 ieA

1 / \ oo
Γ I T~Γ si? r-l+2Li/L\ f J., _,max{l,-ido}-2+l/L
I I I I ULiLj I I CiUCr (Λr

J 1 X X ** Ί I J Li L,
0 \ i / 0

oo L - l

0 ϊ = l

L - l
- m a x 2 Π m i j (2.10)

where K is a finite constant which is trivially calculable from (2.10).
Let us divide the set of masses {mι}ι into two disjoint subsets {μι}ι and {Mt}l9 of

light and heavy masses, respectively. The latter is supposed to be nonempty. We
write (symbolically) F=F(P2, μ2, Λf2), and scale the heavy masses by λ*. Dimen-
sionality then gives F(P2, μ2, λM2) = λ*δoF(P2/λ, μ2/λ, M2). Recalling that c(P2/λ)
= λ~el2c(P2\ it follows from (2.10) and the above that

F (p2n2

9λM2)^λ^δΌ~max{OΛ+*δo]+mΛX{ί'~^δo]~i + NIL (2.11)

with/independent of λ, and N the total number of light masses. Since at least one
mass is heavy, one has N<L, so that (2.11) leads to the estimate Fs(λ)^fλ~\ with
ε = ί-N/L>0.

This bound holds in each sector βil^βh^...^ βiL, as the proof above can be

trivially modified by permuting the indices /= 1,...,L. Since F=Σ Fs, which is a
s

sum over L! sectors, we have proved the following decoupling theorem:

Theorem 1. Let F(P2, μ2, M2) be a Feynman amplitude renormalizedaccording to the
BP HZ subtraction scheme\ depending on a set of external momenta {P}, a set of heavy
masses {MJ (collectively denoted by M), and possibly a set of light masses {μj. For
large λ, F satisfies the bound

F ( P 2 , μ2, λM2)Sλ'εf(P2, μ2, M2) (2.12)

for some ε > 0 and some finite function f

This proves the BPHZ theorem, which merely states that F is finite, as well.

3. Leading Large-Mass Behaviour

To improve the bound (2.12), we wish to determine the leading term in the
asymptotic expansion of F i n 1/M. Following the paradigm set by Bergere et al. in
their study of the large-P behaviour of Feynman amplitudes [7,8] we take the
Mellin-transform of .F(P2, μ2, λM2) with respect to λ, and deduce the asymptotic
expansion coefficients from the analytic structure of the transformed function.

For the Mellin transform to be of any use in this context we need the existence of
lim F(P2, μ2, λM2). This limit actually exists if the external momenta are non-

exceptional and off-shell [30, 20], so we will assume that this condition is satisfied.
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For μ Φ 0 the final result may then trivially be continued to any value of the external
momenta. Thus we define the Mellin transform

Φ(z) = ] dλλz-γF{λ) , (3.1)
o

where the dependence on P2, μ2, and M2 is suppressed. By the usual theory [10] and
the bound (2.12) in combination with the existence of F(0), it follows that Φ(z) is
analytic at least in the strip 0 < 9ϊz<ε. We then have the inversion formula [10]

F(λ) = C f ^λ~zΦ(z) , (3.2)

where 0 < c < ε for some real c. An asymptotic expansion of F in A"1 can now
be obtained by shifting the contour to the right, and picking up the poles [11].
A pole Φ(z)~cpq(z—p)~q for z-+p then obviously corresponds to a term

We write Fas a sum over sectors, and study the asymptotic expansion of Fs(λ) in
the sector β1<zβ2<....^βL, the generalization to arbitrary sectors being a trivial
notational matter. We denote the set of "heavy" lines by //(i.e. leHiΐmμs heavy)
and the set of "light" lines by S (for "small"). We now scale each heavy mass in (2.9)
according to m2->λm2 for leH, and take the Mellin transform with respect to λ.
Interchanging the A- and ί-integration order is allowed by absolute convergence,
and the result is

1 Λ " 1 \ / L

Φs(z)=S dtL f Π dtx Π if *+-"< 1 -**>-
0 0 \I = A / \l = λ

with

0 \l = l J 0 lieΔ °i

fl Pλπl

We have defined λ to be the largest element of H in the given sector (that is, βt ̂  βλ

for all leH), while βt is defined by (2.4) and π,(C) is given below (2.2). The structure
of h is determined by the following

Lemma 1. The function h defined in (3.4) is:

1. analytic in z for 9 ϊz>0;

2. C 0 0 in each ^ > 0 , and exponentially bounded for ίL->oo;
L

3. given by h= Π Qogtι)
nιf(tλ9...9tL9z)for ^->0, where f is C 0 0, and the positive

l = λ

integer nt is smaller than or equal to the total number of divergent diagrams containing
the line L

Proof By (2.12), h is analytic for 0 < 9 ϊ z < ε . In this region we write Γ{z)x~z

oo

= j dρρz~1e~ex, where x is the expression between square brackets in (3.4). We
o
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c+ico dz
also write e~Xι = j -— : xfZιΓ(zι) for 0 < c < 1/L, where xι is any suitable quantity

c-ioo 2nι
appearing in (3.4) after the first-mentioned substitution has been made. Using

L

Π π\zχ = Π CΓ ̂  z\ a n d estimating 1 — ζt ̂  1, the ζ-integrations can be done to give
1 = 1 ieΔ l e D i

(omitting a few trivial constants)

1 /λ-l \ oo c + ioo

(Udtλw{t,P)\
0 \ / = l / 0

c + ioo / L β \

c-ίoo V = l L Ί ί l )

Π (A*?AΓXI) ( π
efl

Σ
ieJ /eΰ,

The small-/ behaviour of the integrand may be inferred by moving the z rcontours
consecutively to the left, picking up the residue of the pole at zι = 0. The claims 2 and
3 then easily follow. The exponential decay in tL follows from the structure of
w(t,P), cf. Sect. 2. Analyticity in z for 9iz>l/L is immediate from the above
representation: the zΓintegrands have no singularity in the right-hand halfplane, so
that according to a standard theorem in asymptotic theory [11] the ρ-integrand
decreases faster than any power for ρ-^ oo. The analyticity in the strip 0 < 9lz :§ 1/L
is a consequence of the analyticity of Φs(z) [cf. (3.3)] in this strip, and follows from
the existence of the zero-mass limit, as. explained before. •

This lemma allows us to use the well-known [13] (and quite trivial) theorem
stating that the function, defined for SRw > 0 by

f(w) = ] dtr(\ogt)ng(t)
o

for n e N and g (t) e C °° (R + ), has a meromorphic continuation to the entire complex
plane, with simple poles in w = — 1, — 2, — 3,... Proceeding as described below (3.2),
it thus follows that the first pole of Φs(z) in (3.3) is encountered in

z= min max{l, —jδt} .
le{λ,...,L)

The minimum is determined among the graphs ΓA, Γλ+1,..., ΓL which, by definition
of A, each contain all heavy lines in Γ. The order of the pole is equal to the number of
diagrams for which this minimum is simultaneously being assumed. Given the
smallest line / (in the sense of sectors) for which the minimum is assumed by Γt, other
diagrams Γv, V > /, can possibly have the same value of max {1, —jδ^ only if one or
more loops are added to Γι (otherwise the degree of divergence obviously lowers by
adding lines). A similar result holds in any sector. We now scale M rather than M2

by a factor λ. The remarks below (3.2), combined with the above information, then
lead to
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Theorem 2. Let Fbe as in Theorem 1. The leading term in the asymptotic expansion of
F(P2, μ2, λ2M2) in λ is equal to or smaller than a λ-independent factor times

1 — m i n y max{2, — δy}

where the minimum is taken among those subdiagrams yeΓ which contain all heavy
lines. Here δγ is the superficial degree of divergence ofy, while Us the number of loops
in Γ.

For theories in odd dimensions, and/or with spin, or derivative couplings, the
bound is slightly worsened: 2 is replaced by 1 in the above result. In any case, we
trivially have

Corollary 1. Let F be a finite unrenormalized Feynman amplitude, otherwise as in
Theorem 1. Then the leading term in the sense of Theorem 2 is

where the maximum is determined among the subdiagrams yeΓ containing all heavy
lines.

It should be remarked that factors of M should be included in the determination
of the superficial degree of divergence (i.e. kμkv/M2 has degree zero). Also, the
leading terms may cancel out, so that the power of λ given is an upper bound, as is
the power of log λ.

The corollary is equivalent to a theorem of Caswell and Kennedy [9], who state
that the maximum is to be determined among diagrams which are a union of disjoint
light-particle irreducible subgraphs [9] which contain all of the heavy-particle lines.
To see the equivalence with our result, it is sufficient to remark that the degree of
divergence of the light-particle reducible graphs containing all heavy lines can
always be increased by deleting light particle lines.

The more general Theorem 2 is contained in the work of Manoukian [20], who,
like Caswell and Kennedy, relied on momentum-space considerations. To the best
of our knowledge, this section contains the first proof of a large-mass bound in the
parametric formalism.

For pedagogical reasons we will now rederive Theorem 2 using the Kontoro-
vich-Lebedev transform rather than the Mellin transform. This is a very useful
exercise preparing for the high-temperature case in which, as we shall see, the
latter is of no use. Besides, this derivation is independent of the preliminary
bound (2.12), equivalent to the decoupling theorem, which is itself a consequence of
Theorem 2.

Actually we will use a generalization of the Kontorovich-Lebedev transform
given by Davies [10]. The transform pair reads

ico dv
F(λ)= J —vIv(kλ)P(k,v) (3.5)

- l o o π Z

,v)=J ^Kv(kλ)F(λ) . (3.6)
0 A
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Here k > 0 is real, and Iv and Kv are modified Bessel functions. Using the asymptotic
forms [19]

/vW^^y ' *v(*)~>2v~1JXΦrv (3.7)

for x->0, we see that the limit &->0 may be taken in (3.5), (3.6), in which case the
transform reduces to the Mellin transform with argument — z. According to Davies
[10], the generalized transform pair is valid at the points of continuity of F(λ) if it
satisfies Dirichlet's conditions, and if F=Θ(\) for λ-^0 and o(eλ) for 1-κx) (note

that Kv(x)-+l— <r*forx->oo).

The function F%(λ) = λ*Fs(λ\ where Fs(λ) is obtained by scaling the heavy
masses mf^λm* in (2.9), a n d α > 0 may be chosen at our convenience, obviously
satisfies these conditions. In order to have a convenient representation of 3Fξ(A) we
perform a calculation

oo °° dλ fk\

f dλλ^e-"λKv(kλ) = a-" J -f(-Λκv{λ)

(3.8)

with |9ίv| = 0 < c < α . Here f(x) = x~ae~llx. The second equality follows, because
the second member of (3.8) is precisely the Mellin-type convolution of Kv with/
[24], with k/a as the free variable. The Mellin-Barnes representation then follows
simply by multiplying the Mellin transforms of Kv and /. This also gives the
condition on c [24]. Using (3.8) with a= ]Γ ̂ m] together with (3.5), (3.6) then
yields the representation leH

•]dtL) f r ί dt\ ( π ίf-a+maxfl -*«-lN)A(ίΛ,...,rL, α-z) , (3.9)
0 0 \ / = Λ / \l = λ )

with h given by (3.4), and λ defined prior to (3.3).
The essence of our method is to take the limit ^ ^ 0 in a controlled way. To do so,

we interchange the v- and z-integrations (allowed, as \F{xΛ-iy)\^e~^π^\y\x~^ for
μ-xx)), and move the v-contour to the right, picking up the pole in v = z. We then
let A;-»0, using (3.7); the shifted v-integral then vanishes because Wtk Wz. The net
result is

FsW=T ^λzΦs{θi-z) , (3.10)

cf. (3.2) and (3.3). Using the analyticity properties of Φs found in Lemma 1 and
(3.3), we can move the contour to the left, and pass 9iz = 0. We then let α->0, after
which we are back to (3.3), and can complete the proof of Theorem 2 accordingly.
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As promised, the bound (2.12) has not been employed: the relevant analyticity
properties followed from a direct inspection of the integrands. We shall see in Sect. 5
that the above method can be used in a situation where the Mellin transform cannot
be used at all. Since on the other hand the Mellin transform is a special case of the
generalized Kontorovich-Lebedev transform, the latter is a more powerful, yet
more complicated technique in asymptotic analysis than the former.

4. Temperature-Dependent BPHZ Renormalization

The aim of the remainder of this paper is to probe the infinite-temperature limit of a
renormalizable relativistic thermal field theory. We will use the conventional
imaginary-time (Matsubara) formulation [18], in which the bosonic fields are
defined on a Euclidean time interval which is a circle with circumference β = l/T.
Fermionic fields are functions on the same compact interval, but rather satisfy anti-
periodic boundary conditions [18]. In momentum-space perturbation theory one
must therefore replace the continuous (Euclidean) energy &4 by a discrete frequency
ωn = 2πTn (bosons) or 2πT(n+τ) (fermions), where neZ must be summed over in
loops. We will refer to the ωn = 0 terms as static modes, all the other modes being
nonstatic. For large temperatures the nonstatic modes obviously behave like fields
with a very large mass, suggesting their decoupling in analogy with the Appelquist-
Carazzone theorem [5]. In the following we restrict ourselves to scalar fields for
simplicity.

Consider a diagram Γ, and define L, F, /, and Cas in Sect. 2. Since we eventually
wish to find out whether static diagrams can be approximated by omitting nonstatic
modes in internal loops, we assume that all external frequencies to Γ vanish. This is
just to simplify the expressions; all proofs below easily extend to the general case.
Let now M be a partial finite-temperature Feynman (-Matsubara) amplitude
corresponding to Γ. By "partial" we here mean that a given number of IN frequency
summations are carried out (omitting the zero mode), whereas in the other
IS = I—IN loops only the zero mode is taken into account, the sum over the other
modes being deleted. The total amplitude is obviously the sum over all possible
partial amplitudes. Corresponding to a given choice of energy routing in Γ, there is a
set of lines S (which may be empty, especially if the external lines are nonstatic)
whose frequency ωn vanishes whatever the choice of the frequencies in the nonstatic
loops. We now define^iVto be the diagram Γ — S, i.e. the subdiagram of Γ obtained
by deleting the lines in the set S (isolated vertices thus emerging are to be ignored, of
course). The topology of N is independent of the energy routing chosen in Γ.

In principle, the finite temperature theory can be renormalized by subtractions
at T=0 [18]. Zero-temperature renormalization prescriptions do not lead to
decoupling of the nonstatic modes at high temperature, though [17] (in the same
sense that mass-independent renormalization prescriptions at zero temperature,
like minimal subtraction, do not lead to the decoupling of heavy particles, i.e.
violate the Appelquist-Carazzone theorem). Instead, we renormalize by means of
zero-momentum subtractions at temperature T. The superficial degree of diver-
gence of a diagram Γt containing /f static loops is given by

τi = δi-lξ = (d-l)Ii+I?-2Li , (4.1)



654 N. P. Landsman

where I* = I—/f is the number of nonstatic loops in Γt. We denote the subdiagrams of
Γ (more precisely, of a given partial contribution to Γ) for which τ, ̂  0 by Dt, / e Δ.
These diagrams are renormalized at temperature Thy subtracting all terms in their
Taylor expansion around zero spatial momentum up to order τ f. The external
frequencies in the subtracted terms are put equal to zero (for fermions one still puts
n = 0, so that one subtracts at external frequencies ω = πT). For example, the global
divergence in a bare quadratically divergent self-energy Σ(ωn, p, T) is renormalized
according to

d
ZR(ωH9 p, T) = Σ(ωn, p, T)-Σ(0,0, T) - p2 - ^ Σ )(0,0, T)

(It is also possible to subtract at the given value of ωn rather than its zero value, at the
expense of introducing ^-dependent renormalized parameters. Theorem 4 in Sect. 5
can be shown to still hold in this more general scheme.)

As in the vacuum case [cf. (2.1)] we implement these subtractions by repeatedly
using the Schlomilch formula for the remainder of a Taylor series. There is a tiny
nuisance in the present case, because we subtract at a fixed ωn = 0. The formula for
the remainder of order τ + 1 ,

can still be used, however, if we understand — to act on ζp alone. In addition there is
dζ

the seeming problem of assigning a meaning to f(ζri), where f(n) is defined for
discrete integers only. Fortunately, formula (4.2), if interpreted as we did, effectively
employs f(ζn) in ζ = 0 and ζ = 1 only. Therefore, one may assign an arbitrary
meaning to f(ζn) as long as its values for ζ = 0 and ζ = 1 reduce to /(0) and f(n),
respectively. In our application, f(n) will be δκ(n) = δn0. We now interpret δκ(ζn) as

δκ{ζri) = ) due2^" . (4.3)
0

Thus we are led to the following partial amplitude, generalizing (2.1):

/ oo \ r L dd~xk 1

• Ό 0 (2π)"-1^d-1»(ζ0P l )- X βrfπKO^^f Σ e»i»i«i(C)) , (4-4)
v = l 1 = 1 \l = ί /

where δκ(m) = δm0, and ω/ = 2π7hz (note that πz(£) is defined prior to (2.2)). The
prime on the summation sign means that the zero mode is to be omitted. Since our
renormalization scheme is rather hybrid, we cannot even appeal to heuristic results
in finite temperature renormalization theory [22,18]. We therefore start with a
convergence proof of (4.4). With more effort we could derive a bound a la (2.12) at
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the same stage, but we refrain from doing so, as we will give a much better bound in
Theorem 4. In any case, many lemmata below will be essential in the proof of our
final decoupling theorem as well.

Repeating, mutatis mutandis, the steps leading from (2.1) to (2.6), recalling that
the ζ-derivatives in (4.4) do not act on the Kronecker delta, we now obtain (in the
sector /?! ̂  ... ^βL, as always)

(
0 \ί = l

•f(t)g{t,ζ) . ( 4 5 )

Here

/(0 = (Π tr) (Π ^e-^uit)-™-" Π h-^1' , (4-6)
\Z = 1 / \ieΛ / 1 = 1

where 3?{ is given by making the replacements ^-•i; and d^d—1 in (2.7). Also

g(t,o=(n Σ e-^^λnδJΣwMo) (4.7)
\leN «i=-oo / v V = l /

with aι = tι..ΛLl(πι(ζ))2, and πt defined prior to (2.3). The final product is over
those of the original V—C vertices [cf. (4.4)] which are attached to the reduced
diagram N. We firstly have

Lemma 2.

Γ ήv?{i*ΐ*))i] (4.8)

where I* and I? are the number ofnonstatic anastatic loops in Γz, respectively. The
function φ is exponentially bounded in tL, and analytic in each th modulo a possible
factor of tf for each th which occurs if If is odd.

(Recall that Γz is the diagram composed of the lines 1,...,/.) The proof of this
lemma is entirely analogous to that of Eq. (2.9), so we omit it. •

Lemma 2 above is a piece of cake compared to

Lemma 3.

g(uζ)=in triIfl)(nζfηχ(t,o , (4.9))(

where χ is bounded and ίntegrable in each variable (If is the number ofnonstatic loops
inDO.

Proof. To save writing we set T= l/2π (or absorb Γinto the α{). Recalling (4.3), we
rewrite (4.7) as

9 = ] ill du\ Π W-Σ u^π^MlΛ-lλ , (4.10)
0 \ v / leN L \ v / J

in terms of the Jacobi theta function (also denoted by θ 0 0 or θ3)

θ(z,τ)= £ e

iπτn2+2iπnz . (4.11)
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We then use the functional equation [25]

S(z,τ) = e-πiz2/τ$(z/τ, - 1 / τ ) / ] / ^ (4.12)

and the definitions of πt(ζ)9 π^Q, β/5 and d(β) [cf. text above (2.3)] to find

gJγι a?) \n βjnVίn ? du\

• Π [»(iuvεvll«ιπι,iπlaι)-\fchϊe''2^2>«>] . (4.13)
leN

Here UV = Y[ ζu where the product is over all / for which vsD^ It is understood
i

that v and w are summed over if appropriate. Since uv^Uv, by definition of πx and
εvl, we have {u^^n^^l (no sum over /). The expression in square brackets is
positive, so to obtain an upper bound on g we may replace the last exponential by
one. We then extend the w-integration ranges to the real axis, and use (2.3) and
(4.11) to obtain (omitting some factors of π)

C^Wί/*)"* Π [K^-Ϋ^ϊπ] , (4.14)
\ieΔ ) leN

and oo
Λ(α,) = l + 2 X e-π2n2/«ι+2iτn/aι . (4.15)

« = i

Here UN is defined similar to (2.3) now, however, only lines in JVparticipate (that is,
the one-trees Tmust lie within N, whereas the lines iφTmust be in N as well.

We will now analyze UN. In the following we use the trivial fact that If* is both
the number of nonstatic loops in It c Γ, and the number of loops in the graph
N^^nN. By definition of a 1-tree [cf. text below (2.3)], each term Π &

IφT

contains I* factors of the type β^ where lsNλ; adding each of the corresponding

lines to the given T would form a loop. Therefore, by (2.4), Π t(ι factorizes
1 = 1

in UN. Conversely, we can form a 1-tree in iVfor which the last-mentioned product

equals Π βι- This tree consists of the lines leN for which I? = I?_1 (/_ 1 =0).
IφT

This set obviously contains no loops, and has LN — IN lines, so it must indeed be a
1-tree. Therefore, (2.5) generalizes to

(4.16)

where u(t) satisfies the same conditions as in (2.5).
We proceed with the second factor in (4.14). We see immediately from (4.13) that

it goes to one for αz->0 (small t), so that it remains to investigate its large-α, (small ζ)
behaviour. To do so, we use [27, Eq. I. (3.13)] to give a Mellin-Barnes representation
of the sum [10]. We then insert the Mellin-Barnes integral representation [1, Eq.
(19.5.13)] for the parabolic cylinder function2 and perform one of the two contour

: Correcting two typographical errors: x-»z and "zeros"-• "poles" in the text below (19.5.13)
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integrations. This yields

with σ > 1. An asymptotic expansion for α-^ oo then follows by shifting the contour

to the left, and picking up the poles [11]. One finds that both the term 1 in (4.17)

and the term j/α/π in (4.14) are cancelled, and it follows that A(α)—j/α/π =0(1)

for α-*oo.
Combining this with (4.14) and (4.16) we thus have concluded the proof of

Lemma 3. •

Theorem 3. The renormalized partial Feynman-Matsubara amplitude defined by
(4.4) is finite.

Proof. It is sufficient to prove that the contribution (4.5) from the sector β1^...^βL

is finite: the other sectors differ by permutations of the index set {1,..., L}, and the
proof of the convergence of the analogues of (4.5) in these sectors consists of a trivial
rewriting of the proof in the present sector.

L

By Lemma 3, the ζ-integrand in (4.5) behaves like Π CΓ1 Π e~aιmι at worst for
ieΔ 1 = 1

(i->0. The reasoning in the proof of Lemma 1 (Sect. 3) then shows
that the ^-integration introduces logarithmic singularities in each tι at worst.
Lemmata 2 and 3 together imply that the rest of each ίΓintegrand is 0(ίz~*) for
^-•0, so that each ^-integration is finite. The integrability for tL->co follows from
the exponential decay of the ίL-integrand. All interchanges of integration and
summation orders are justified by the positivity of each integrand (apart from the
innocent factor (1 — Q T l :g 1). •

5. High-Temperature Behaviour

In this section we find a sharp bound on the leading term in the (asymptotic) high-
temperature expansion of the renormalized Feynman-Matsubara integral (4.4).
The main technical problem is that M(T) = 0(1) f° r T-+0 and 0 ( Γ J " y ) for T-+ oo,
for some (as yet unknown) y > 0, which means that M does not allow a Mellin-
transform with respect to T. Fortunately enough, the generalized Kontorovich-
Lebedev transform (3.5), (3.6) can be used.

We define M*(λ) = λaM(λ), where M(λ) is obtained by scaling ω] -±λω] in (4.4),
i.e. by scaling T2-+λT2 while ignoring the prefactor T1 in (4.4) (it will be reinserted
in Theorem 4 below). Using (3.8) we can give a representation of M${X) [cf. (4.5)]
similar to (3.9). For simplicity we set 77=l/2π, and find

]dtL) ( Π dt) (
0 0 \l = λ / \l = λ

(5.1)
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with

= Γ(α-z) I f π dtλf{t) J j π ^f 0 -tiTtΓ1'1?] Π
0 \l = l J 0 UeΔ τi- J 1 = 1

£Π £' ) [Σ jMψV ΠSJΣ εvinιπA . (5.2)

Here/(ί) is given in (4.6), and βι by (2.4). In analogy to Sect. 3, λ is now defined as
the largest line in iVin the given sector. We choose α = \ IN + ε, for some 0 < e < j . We
recall from Sect. 3 that c is originally constrained by 0 < c < a, but to justify the
interchange of summations and integrations used to derive (5.1) and (5.2) we here
actually need 0 < c < ε. Also note that /* = IN for /§; λ. The entire /-dependence of m
is in the factors e~"ιml in (5.2). We have

Lemma 4. The function rn(tλ,...,tL,z) defined by (5.2)

1. w analytic in z for 9iz < ε
2. satisfies conditions 2 and 3 of Lemma 1 (Sect. 3).

Proof. The frequency summation in (5.2) converges for βjφO and 9lz<ε by the
theory of the Epstein C-function [12]. To find its leading singilarity for ^->0 we write

00

Γ ( α - z ) ( . . . ) z ~ α = J dρρa~z~1e~ρi-\ and put the ρ-integration to the left of all the
o

others (the integrand is positive and the integral exists a fortiori!). Since the
prefactor of n\ never vanishes, the integrand decays exponentially for ρ-»oo.
Following the proof of Lemma 3, we find that the integrand is Θ(ρ~*lN) for ρ->0. In
view of the choice α = \ IN -f ε, this proves point 1 provided that the other integrals
are finite. These, however, are completely under control by Lemmata 2 and 3 in
Sect. 4. Point 2 then follows as in the proof of Lemma 1. •

We next eliminate the v-integration in (5.1) in the manner described prior to
(3.10). This gives

c + ioo J oo 1 /L-l

Mf(A)= J f τ A ' K (
c-ioo L Ί ί l 0

A tΓa+i{ir+mΆX{1'I>~δι])~1)m(tλ,...,tL,z) . (5.3)

An asymptotic expansion for A-> oo now follows by shifting the contour to the left
and picking up the poles in complete analogy to the large-mass case (Sect. 3), where
z is replaced by — z. Lemma 4 guarantees that we may use the theorem quoted after
the proof of Lemma 1. We see that λ* then factorizes in M|(A), as it should.

As usual, an expression of the type (5.3) is valid in any sector. Taking the factor
T1 in (4.2) into account, which was not scaled in the definition Mα(A), and scaling T
rather than T2 by a factor λ, we thus have arrived at the central result of this paper.

Theorem 4. Let M(T, P, m) be a partial Feynman-Matsubara amplitude correspond-
ing to a diagram Γ with I loops, in which IN frequency summations are carried out,
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omitting the zero modes. Here Tis the temperature, andM(T,...) denotes the explicit
T-dependence. Also, P stands for an arbitrary set of external momenta, and m
represents a set of nonvanίshing masses on which M depends. Let M be renormalized
by (marginal) zero-momentum subtractions at temperature T, as explained in Sect. 4.
Then the leading term in the asymptotic expansion of M(λT, P, m) for large λ is
bounded by

Qχl - miny ( I * + max{l, if - δγ}) (

where c is independent of λ. The minimum is determined among all subdiagrams yaΓ
containing allnonstatίc lines. /* andl^ are the number ofnonstatic anastatic loops in
γ, respectively, andδy is the superficial degree of divergence ofy as determined by naive
four-dimensional power counting.

The above bound is less complicated in the following case.

Corollary 2. Let M(λT, P, m) be a finite unrenormalized partial Feynman-Matsubara
amplitude, otherwise as in Theorem 4. Then the leading term in its asymptotic
expansion for large λ is bounded by

where δ^ is the superficial degree of divergence of γ as determined by three-
dimensional power counting. The maximum is determined among the diagrams γ
described in Theorem 4.

These results are valid for any spin and in any dimension, and include the case of
nonzero external frequencies ω. [These would show up in the Kronecker delta in
(4.4) and (4.7), and in (4.10) in the guise of a factor eiUv(Ov, not spoiling any proof.]

Since the purely static diagrams are naively proportional to T1, and the
nonstatic diagrams by Theorem 4 cause a suppression factor of T ~^ or more, it may
appear that a dimensional reduction takes place in the infmite-temperature limit of
thermal field theory, in the sense that the nonstatic modes decouple, and leave a
three-dimensional theory behind. As discussed extensively in [17] there is a caveat,
however: because the renormalization prescription in which Theorem 4 holds is
temperature-dependent, the renormalized parameters, in particular the masses, are
T-dependent. It can be shown [17] that dimensional reduction only occurs if
Lim m(T)/T= 0, where the Γ-dependence of the masses can be evaluated by means
T-»oo

of the finite-temperature renormalization group [21, 17]. In those cases the results
of this section constitute a rigorous proof that such a reduction mechanism indeed
applies.
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