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Abstract. We study the quantum Coulomb Gas of N particles with Hamil-
tonian H at low temperature and negative values of the chemical potential y. If
wis sufficiently negative the Coulomb gas is approximately a perfect rare gas of
charged particles, as expected. The interesting fact is that for higher (but still
negative) values of u the gas changes to a rare gas of some atom or molecule
(which is most likely neutral). The type of molecule is determined by the ground
state of the Hamiltonian H —uN with center of mass motion removed.

Introduction

In this paper we are concerned with the thermodynamic properties of a quantum
mechanical Coulomb gas of nuclei and electrons at very low temperature and
density and to validate certain predictions of the Saha equation [10, 12], which
is the equation that governs the regime. (Actually, Saha was interested in the
solar chromosphere where the temperature is high by earthly standards and the
pressure is low, but this equation extends to the regime of very low temperature
and even lower density that we are considering here.)

Consider a system composed of S species of charged particles (electrons and
various nuclei) placed in a large box 4 of volume | A|. If N, is the number of particles
of species i, then g;=N,/|4| is its density. If the ¢s and B=(kzT)™ ' (with
kg =Boltzmann’s constant and T=temperature) are fixed and 4— oo in a suitable
way, we expect that, the long-range nature of the Coulomb potential notwith-
standing, the intensive quantities such as pressure, free energy per unit volume, etc.
have well defined limits and that these limits should have the correct convexity
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properties with respect to the ¢;’s and T. This, indeed, was shown to be true by Lieb
and Lebowitz [8]. They also proved the following facts:

1. The thermodynamic properties as calculated in the microcanonical (fixed
energy), canonical (fixed N;) and grand canonical (fixed chemical potentials y;) all
agree with each other.

2. For the grand canonical ensemble, with partition function Z, the value of the
ressure g1y
p p=I4]"1p"'InE (0.1)

is the same as that obtained from =° which is the value of 5 in which the
summation over all states is replaced by the summation over the states in which the
total charge of the particles is zero. [Note: It is a fact that Z> Z°, but nevertheless
|[4]”}(InE —1nZ°—0as 4—c0.] In this paper we shall work always with the grand
canonical ensemble and we let

p=(us,....,us) and N=(Ny,...,Ny) 0.2)

denote the chemical potentials and particle numbers.
Now let us inquire about the behavior of the system when g=Y g; is very
i

small. Lebowitz and Pena [7] proved that when T is fixed the free energy
per unit volume becomes f 'IZgiani in this limit. In other words, the system

becomes a (neutral) mixture of ideal gases formed by the individual particles. This
can also be called a plasma. The result is not surprising; at low density
the entropic contribution to the free energy, kzTo Ing dominates all binding en-
ergies, and any nontrivial bound complex “evaporates.”

The situation is more interesting if we let T—0 as we let the ;s —0. (In fact we
let o~ e~%) In this case, as T and g go to zero the properties of the system are
governed by the Saha equation [10, 12] which predicts that one will have ei-
ther an ideal gas of the elementary particles as before or else an ideal gas of some
bound complex. The entropy does not necessarily win.

To illustrate this phenomenon suppose there are carbon nuclei, oxygen nuclei,
and electrons and let E¢o, and N, denote the ground state energy and particle
number of one CO, molecule. The relevant energy for calculating Zis E(N)—p - N,
where E(N) is the energy of some state of the system with particle numbers N.
Presumably it is possible to choose u so that two things are true:

1. e=Eco,—1-Nego,>0.

2. E(N)—p-N>e+cforall other states, except for the vacuum, N=0. Here ¢ >0 s
some fixed constant.

While it lies beyond present rigorous technology to prove that such a p exists,
one probably does. If not there is surely some other neutral molecule or atom (or
a neutral pair of charged complexes) that replaces CO, and for which (1) and (2)
above are true. Let us here assume (1) and (2) for CO, and continue to compute

E=Y Y exp[—pEN)—p-N)J. (0.3)

N states

We decompose 4 into cells of very large but fixed size with volume of the order
exp[fe]. Let us pretend that the interaction between cells can be ignored
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(validating this is difficult and is the primary concern of this paper). The leading
term in = (for a cell) comes from the vacuum, N=0. The next most important
term is exp[ — fe]. What about the excited states of CO, and the states for other
mixtures of particles? These, it turns out, are small when f is very large
(validating this is the second main concern of this paper). The entropy, S, enters
in the combination TS and thus can be controlled when T is small. The energy
terms other than Eq, are controlled by the constant ¢>0 in (2) above. In short,
any cell is probably empty (the vacuum) but when it does contain some particles
they are in the form of a single CO, molecule.

Results as described above (and with the same assumptions) were proved by
Fefferman [S] for the case of protons and electrons. Then the hydrogen atom
replaces the CO, atom. The new features of our paper can be summarized as
follows.

1. Our method is completely different. It exploits the localization formula (i.e. the
restriction of particles to cells) introduced in our proof [2] of the N7/° law for
bosons. In the present context we regard it as simpler than Fefferman’s method.

2. The corrections to the simple Saha formula (i.e. the above picture of an ideal gas
of CO, molecules) should, on physical grounds, be of the order exp(— f¢) and not
1/B as Fefferman obtains. Our method is able to accomplish this. Moreover, as p
is changed one passes from one phase to another (i.e. from a plasma to CO, atoms
to some other complex, etc.). In the limit T—O0 the transition is sharp; when T+0
the width (in u space) should be of the order exp(— Be), not 1/f. Again, we are able
to show this.

3. We handle an arbitrary mixture of particles — not merely electrons and protons.

4. We are able to bound a large class of observables by one simple formalism
using the Feynman-Hellman theorem; cf. (6.9)—(6.13). Again, our error terms are
of order e,

In the main part of this paper we shall concentrate primarily on estimates of
the pressure and density. Our resulrs about expectation values of observables
are standard consequences of convexity (i.e. the “Feynman-Hellman theorem”)
and therefore we present them only briefly in the last section.

1. Main Results

The Hamiltonian to be considered is the quantum Coulomb Hamiltonian H acting
on a Fock space of charged particles. The definition of Fock space will be given
later. It is important, however, to understand the Hamiltonian H on the subspace
of fixed particle numbers. We shall assume in this paper that there is only a finite
number of different species of particles (various nuclei and electrons) and shall
denote this number by S. Let x =(x,, ..., xy) denote the coordinates of N particles
in R Denote by N, the number of particles of the a-species and put
s

N=(Njy,...,Ng). Obviously ¥ N,=N =total particle number. Let (z,, M,) be the
a=1

charges and mass of species « and set Z=(z, ..., zg) and M =(m;, ..., mg). Assume
for simplicity that we have only two species of negative particles (namely electrons
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with “spin up” and electrons with “spin down”). Denote their common mass by m
while their common charge is set equal to —1. To fix our notation, we choose
z,=z,=—1 and m; =m, =m. The charge of the positive particles are assumed to
be greater than or equal to 1. We leave the masses of the positive particles
unspecified but one should think of them as being much larger than m. This is the
situation in the case of electrons and nuclei. Let M be the total mass and let Q be
the total charge,

N S
M=Y Nm,=N-M, Q=Y N,z,=N-Z. 1.1
a=1 a=1
The quantum Coulomb Hamiltonian for N particles can now be defined by

N4, .

i<12m;  1=i<jsN

HN=_

where 4; denotes the Laplace operator in the variable x; and (m,, e;) =(m,, z,) if the
i'® particle belongs to the a-species. The Hamiltonian Hy acts on a Hilbert space $Hy
of wave functions (x;, ..., xy) € [*(R*") which satisfies Fermi statistics for the two
kinds of negative particles. The statistics of the positive particles are not relevant to
our study and we shall make no assumption about their statistics. Fermi statistics
means only that yp(x;, ..., X, ...) is antisymmetric when two electron’s coordinates
of the same species (i.e. same spin) are exchanged.

Let A be a cube in R3. We shall also be interested in Hy acting on functions
ype %(43N) which satisfy Dirichlet boundary conditions on A. In that case we
denote the restricted Hamiltonian by H , y.

The Fock space mentioned in the beginning is defined as the direct sum of all
the Hy’s. The Hamiltonian Hy can be naturally extended to the Fock space by
requiring its restriction to $, be given by Hy in (1.2). We shall denote this
Hamiltonian by H. Similarly, we can define H,. In Fock space, the number of
particles of the o' species, N,, can be thought of as an operator (still denoted by N,)
with eigenvalues N,. With this definition, $y is an eigenspace of the operator N.
Similarly, we can define mass operators and charge operators etc. In this paper, we
shall not be very careful to distinguish operators and numbers and shall use the
same symbols for both.

Let us recall the basic definitions of the quantum grand canonical ensemble
which is our main concern in this paper. Denote the chemical potential of the «
species by p, and put p=(u;, ..., 4s). A fundamental quantity from which other
thermodynamic quantities can be derived is the partition function. In the cube 4 at
inverse temperature f it is defined by

E(B,m, A)=Trexp[f(n-N—H 4] =§Trexp[ﬂ(u ‘N—H, NI, (1.3)
S
where p-N= Y pu,N,. The corresponding pressure p (B, p) is defined by
a=1

pAB,w)=p""logZ(B,p, A)/|4]. (1.4

A basic fact, proved by Lieb and Lebowitz [8] (see also [6]) is that the
thermodynamic limit exists, i.e.

p(B,w)= Alglgo pABs W) (1.5)
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exists (if the limit 4 — oo is taken in a proper sense) and the resulting function p(f, p)
depends on p only through the projection of p to the orthogonal complement of Z,
ie., if we let p=p+ igZ with ji=(u-Z)(Z-Z)™ ! (note that u is a vector and ji is a
number) then, with a slight abuse of notation, we can write

p(B,W=p(B, 1. (1.6)

Another basic fact proved by Lieb and Lebowitz [6, 8] is that the thermodynamic
quantities (such as the pressure) calculated [as in (1.5), for example] agree with
those constructed in the canonical and in the microcanonical ensembles. An
analogous theorem for correlation functions does not exist.

The relation (1.6) is indeed a statement about total charge neutrality. Another
statement of charge neutrality is that one can restrict the summation in (1.3) to the
neutral ensemble Q =0 but still obtain the same thermodynamic pressure. In short,
there is no way to choose the chemical potentials so that the system fails to be
neutral in the thermodynamic limit. See [6, 8] for a more detailed discussion. The
advantage of (1.6) lies in the great technical simplifications it provides. Unlike the
constraint Q=0, (1.6) is easy to use as we shall see later. We should point out,
however, that (1.5) and (1.6) are not obvious and their proofs are length.

Another thermodynamic quantity of interest is the density of the system. It is
defined by

s
o(f, W)= Tim * 3. 3,8, w)/oms]. 1.7)
It is known [6, 7] that
S
o(B,m)= a; op(B, w/op, (1.8)

for almost every pu, and o(f, p) depends on p also through y alone.

Our main result in this paper, roughly speaking, is the proof that for low
temperature B! and low density ¢ the thermodynamic pressure and density
defined by (1.5) and (1.7) are given by a free gas of certain specific molecules (or
atoms). The types of molecules are determined by the “ground states” of H—p - N.
Strictly speaking, H—p - N has no ground states because it is translation invariant.
It is possible, however, to define the notion of “ground states” in terms of the
“relative Hamiltonian” as follows. We write H= H+ H®, where HY is given by

—1

HCNZWA“ 1.9)

and 4, is the Laplacian in the center of mass co-ordinate c,
1 N
C=Mi;1 mX;. (1.10)

Note that the relative Hamiltonian H® is only nontrivial on subspaces with at least
2 particles. Fix a chemical potential satisfying for some positive constant o
Hy—u-N>oN, (1.11)

Bi=ly, p-Z=0. (1.12)
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Define eq(u) to be the infimum of the spectrum of HX—p - N with N0 (ie. the
vacuum is not allowed). By assumption (1.11),

eo(u)=infspecHR —pu-N>0. (1.13)

We claim that e (u) is an isolated eigenvalue of finite degeneracy if u satisfies (1.12).
To see this, by assumption (1.11) we have that the infimum of H® —pu-N occurs
only when all N, are not too large. In other words, the cardinality of the set

Q={N|Ey=infspec HR — u-N=eq(p)}

is finite. To establish our claim, it then remains to show that Ey is an isolated
eigenvalue of HR — i - N for all N € Q. But by the HVZ Theorem [3] the continuum
spectrum of HR— - N starts from the infimum of the spectrum of all possible
cluster decompositions (into at least two components) of Hf — - N. Our definition
of ey(1) then tells us this infimum is at least bigger than 2ey(u). Hence Ey is not in
the continuum spectrum and we can use general results [3,9] to conclude that Ey
is an isolated eigenvalue with finite degeneracy.

As a byproduct of the above discussion we have the following result: Let u
satisfy (1.12) and let e (u) be the ground state energy of H® — i - N. Then there exists
a constant ¢, depending on H and p such that if |u' — u| < ¢, then ey(u) and ey(1')
have the same eigenstates and

eo(w)=eo(w)+( —p-N. (1.14)

The proof of (1.14) is almost the same as the arguments just given above. One first
shows that the particle number can not be too big. Then choose ¢, to be (up to
some constant) the gap between ey(u) and the first excited state energy. We leave
the details to the reader.

Let us denote the ground eigenstates by v, ..., y,. Note that they depend on u
onlyin a global way, i.e., the ,; do not change with respect to small perturbations of
. Denote their masses and numbers of particles by M® and N® with i=1,2,...,g.
Also, let

MO = i M9, NO= \E NO, QO=NO.Z
a=1 a=1

be the total masses, particle numbers and charges. We may now state our basic
assumption:

Assumption (A). Fix a chemical potential u satisfying (1.11) and (1.12). The ground
states must either all be neutral (i.e. all Q2 =0) or else both signs of charge occur
among ¥, ..., ,. The latter case is referred to as the nonneutral case.
Generally, one expects in the nonneutral case that there are only two charges
Q,>0and Q_ <O such that {Q¥i=1,...,g} ={Q,0_}. We shall not need this
assumption in the proof given below, but it is important for our proof that the set
{Q9} %0 have both signs. Indeed, assumption (4) is made for technical simplicity.
Suppose the ground states do not satisfy our assumption, and suppose that the
situation cannot be remedied by a small change in u. Then, for example, we will
have only a charged ground state complex with a single charge, say Q , . Clearly, we
will not have an ideal gas of this complex. The neutrality requirement will force us
to find another negatively charged complex to balance the Coulomb interaction.
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In this case, one should change p to y'=p+pu,Z and adjust u, such that our
assumption holds. It is not very difficult to prove this is always possible and our
proofs for Theorems 1.1 and 1.2 can then be carried out. The proofs are
complicated, however, and will not be presented here.

Before stating the main theorems, let us introduce some notation and
definitions. Since we shall use H® —p - N to study p(8, p), it is important to compare
HR —p-Nand HR— u - N. We shall assume that ji is so small that the ground states
of H—p-Nand H — i - N are the same. As we shall see later, we are only interested
in the case when f is of order 1/6. Let e(n) be the energy of yp; with respect to
H—p-N. Clearly,

e(p)=eo()+AQ? (1.15)

with Q% denoting the charge of . Define two functions G(f, ) and R(B, p) by
1 9 [M®\3/2

G(B,n)= “[; izzl <ﬂ> exp[—PBew], (1.16)
0 o (MO

R(B, u)=i=Z1 N <ﬂ> exp[—few)]. (1.17)

The function G can be thought of as (approximately) the pressure of a free gas of
particles with mass M® and “internal energy” e,(u) (cf. Sect. 2). Similarly, R is the
number density. The function G is convex in ji (strictly convex if some Q” % 0) and
has a unique minimizer with respect to ji [denoted by w(u)] if 0?QY <0 for some
i#+j. The derivative of G with respect to i can be interpreted as the charge density,
and we shall denote it by F(f, p).

We can define a function g(f, u) by

g(B. w)=1nf G(B, W)= G(B, p+ @(WZ). (1.18)

A minimizer for (1.18) always exists and is unique in the nonneutral case
(09QY <0). We extend the definition to the neutral case by defining w(u) = 0, hence

0 in the neutral case
The unique solution of F(f, u+ wZ)=0, non neutral case.

alu)= { (1.19)

Since G is just a linear combination of exponential functions, it is not difficult to
check that for f§ large

a(u)=0(1/p). (1.20)
We also need a function r(f, 1) defined by
rB.w=RB.p), p=wp. (1.21)

We may now state our main results as follows. .

Theorem 1.1. Suppose assumption (A) holds. Then there exist ¢>0, $,>0 depending
on u and H such that if = B, the thermodynamic pressure is given by the equation

Bo(B, W) =g(B, w) [1+ O(e ~*)]. (1.22)
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Theorem 1.2. With the same assumptions as in Theorem 1.1 the thermodynamic
density satisfies the following equation for almost every f and p,

o, w=r(B,m)[1+0(™*N]. (1.23)

To gain perspective on the content of our theorems let us consider the simplest
case of the electron-proton system. It is convenient in this case to write p = u(2, 4, 1).
Note that p is a scalar. Let us define

Ey=inf{infspec(HX, y_):N,+N_=N}

and denote the convex hull of {(N, Ey)[N =1} by K. It is presumably the case (as
Fefferman conjectures) that (2, E(2)) is in K. If so, what u will select the hydrogen
atom? We must have E(1)—u> E(2)—2u> 0 and 0< E(2)—2u< E(N)— Ny for all

N = 3. The first condition gives u> E(2)= —%. The second condition (if we make a
rough, and so far unprovable guess) is
n<EQ)—EQ~H—H—(-H=—4.

On the other hand, if 4 < E(2) then the first inequality reverses and we pick up
the extremal point (1, E(1)). Clearly, (1, E(1)) corresponds to complete ionization. In
both cases, it is not difficult to check that Theorem 1.1 and Theorem 1.2 yield the
ideal gas equations fp=1p (the hydrogen atom case) and fp=g (the complete
ionization case) — as expected.

Our method of proof for Theorems 1.1 and 1.2 consists in obtaining upper and
lower bounds on partition functions. The proof of the lower bound follows the
ideas of Lieb and Lebowitz [8] by applying the Peierls-Bogoliubov inequality. For
the proof of the upper bound we use the localization method of [2]. In
theorems 1.1 and 1.2 the correction terms from perfect gas behavior are O(e ™ %)
whereas in the work of Fefferman correction terms are O(1/f). The reason that we
are able to obtain sharper estimates than [5] is that we use the localization method
to bound the Coulomb Hamiltonian from below by a localized Yukawa
Hamiltonian. Fefferman bounds the Coulomb Hamiltonian from below by a
localized Coulomb-like Hamiltonian.

To illustrate why the use of a Yukawa Hamiltonian has advantages we
consider a simple inequality. Let =, denote the partition function which is defined
exactly as in (1.3) but with the Coulomb interaction 1/|x| replaced by the Yukawa
interaction Y,(x)=e ™ "™*/|x| with v>0. If we observe now that the function ¢(x)
=(1—e "™)/|x| is positive definite (in the sense that its Fourier transform is
positive) and satisfies ¢(0)=v it follows that

N
> eiejd’(xi_ 2 —3v Z
1<Si<jsN i=

for charges e; at positions x;eR3, 1<i<N. Thus if £ denotes the Coulomb
partition function we have the inequality

E(B,m, S E (B, n+3v, 4), (1.24)

where v denotes the vector, v=v(z%...,z%). Now the system with Yukawa
interaction has short range interactions and it has been shown by Brydges and
Federbush [1] that the partition function Z, can be expanded in a cluster



Coulomb Gas at Low Temperature and Low Density 161

expansion provided p is sufficiently negative. This cluster expansion will give terms
like those which occur in Theorem 1.1 plus other terms which are O(e™ ). If we
choose v=0(e~ %) then the inequality (1.24) also generates correction terms of
O(e~ ). Therefore if we put the inequality (1.24) together with the results of
Brydges and Federbush [1] we obtain an upper bound on the pressure of the form
given in Theorem 1.1 provided p is sufficiently negative.

Since we intend to bound the Coulomb partition function by a localized
Yukawa partition function we need to prove that assumption (4) is stable under
perturbation of the Coulomb-interaction to Yukawa interaction with small v. Let
HyY, denote the Hamiltonian which is the same as (1.2) except that the Coulomb
interaction is replaced by the Yukawa Y,, and let H® be the corresponding Fock
space Hamiltonian.

In the following theorem, let M =max{m,ja=1,...,S}.

Theorem 1.3. Suppose there exist pand 6 >0 suchthat H—u-N>aN for all particle
numbers N. Then there is universal constant ¢, such that if 0<v/M <%, then

H'— - N> [0—c, Mllog(v/M)| " V$IN . (1.25)

Corollary. Fix p satisfying assumption (A). Then for v small enough assumption (A)
holds with the same p if we replace H by H" and o by o —c,M|log(v/M)|~'/® in the
following sense:

1. H’—p-N>(0—c;Mllog(v/M)|”"*)N . (1.26)

2. The lowest g values (counting multiplicity) of the spectrum of H"®—yu-N are
discrete (denote them by ej(u)<ey(W)=<...<e;(u)) and can be bounded for some
constant ¢, by

lej()—eo(w = c,v. (1.27)

3. Let 7 be the gap between e(u) and the first excited energy of H® —p-N. Then
there is a gap ©'>1t—c,v between ej(u) and the g+1 eigenvalue (or continuum
spectrum) of H"®—u-N.

The proof of this corollary is simple. Let En(v) denote the infimum of the
spectrum of HY®. Then since |[r~* —r~'e ™| <v for all r, we immediately have the
operator bound

|HYR—HR|<3vN(N —1). (1.28)

Suppose v is so small that
¢ Mllog(v/M)| " <g/2. (1.29)

Then for N> N,=2(ey(pt)+21)/0c we have from Theorem 1.3 that Ey(v)—pu-N
o
2
and the operator bound (1.28) if we choose v satisfying (1.29) and

=— N 2>ey(u)+ 21. The statements (2) and (3) then follow from the above remark

CZ =%N% .
Theorem 1.3 will be proved in Sect. 5. Again, we use the localization method in
[2]. While the bound (1.25) is sufficient for our purpose to prove Theorems 1.1 and

1.2, it is clearly not optimal in the dependence on v. In view of (1.28) we expect a
linear dependence on v. We hope the interested reader will prove this.
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2. Bounds on the Partition Function in a Fixed Box

We wish to find upper and lower bounds on the partition function in a box of
fixed size. First we need a lemma concerning the eigenvalues of the relative
Hamiltonian HR. Let H®“ denote the relative Hamiltonian restricted to the ball
of radius a. Thus HX'* acts on wave functions y(x,, ..., xy) which are supported

in the set
N

Y mx;=0, |x)|<a, i=1,..,N, 2.1)

i=1
and satisfy Dirichlet boundary conditions on |x;|=a, i=1,...,N.
Lemma 2.1. Suppose ey(p) is the ground state energy of H® —p - N with g degeneracy.
Let E(a), ..., E (a), be the first g eigenvalues of H®*—p-N. Then there exists a
constant ¢y such that for a>c5 we have

e SEf) e +cia?,  i=1,..g, (22)

for some constant c, independent of a.

Proof. The lower bound of (2.2) is obvious since imposing Dirichlet boundary
conditions can only increase energy. For the upper bound, it is convenient to prove
instead

T Efa)Sgeqw)+cia 3)

for some constant c,. Recall that y, i=1, ..., g, are the ground states of H® —p - N.
Define g functions in the domain of H®*—p-N by

N
Yi=pxg, .. Xp) ,E[l x(x), 24)

where y is a smooth cutoff function satisfying

1 |x|Za/2
= 2-
1) {0 . 25)
Denote their overlaps by

Lij=<wi, v - (2.6)

Clearly, there is a constant c5 >0 such that for a> ¢, one has that A= L™ '/* exists
and is bounded in the norm || 4| =sup|A4,;|. Denote by ¢(x, y) the matrix defined by

olx,y)= i }j:k Zisz(y)w‘}(x)Ai e (2.7

It is easy to check that g is a g-dimensional projection. Now by the variational
principle we have

d - N 2
izl Ei(a) = TrQ(HR,a e N) éi;k {AiinkJ[ilz_ll X(xl)]

X p(H®*—p - Nypdx + Ay Ay SuPlVXIZ}, (2.8)
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where we have used the identity

J1f (= Dyfdx=[ *f(— A)fdx+ [IVx*f *dx. (29)

Now by using the fact that iy, is an eigenstate, we find that the first term in the
right side of (2.8) is just geq(x). The second term is easily seen to give the corrections
c,a”t O
Remark. The constant ¢; in Lemma 2.1 depends on the rate of fall off of the
eigenfunctions y;. In the appendix we prove a similar result where c; depends only
on the eigenvalues of H and p.

Let U, be a cube in R? with side of length % where ¢ >0 and f is large. We wish
to find a lower bound for the grand partition function on U,. To do this we define
an ensemble on U, which consists of a subset of the configurations of the grand
canonical ensemble on U,. We shall denote this new ensemble by G. To define it we
take a=e** in Lemma 2.1 and let ¢¢, i=1,...,g, be the eigenfunctions of
H®*_—p-N corresponding to the eigenvalues Efa), i=1,...,g respectively. By
Lemma 2.1 E(a) can be bounded by

Efa)=eow)+0(e ). (2.10)

Suppose that g|Z|=|u—p|=0(1/p) and B is large enough. Then, as remarked in
Sect. 1, [cf. (1.15)] the ground states {¢;} for H—pu- N are also ground states for
H —p - N. Furthermore, the masses, charges and particle numbers for {¢?¢} are the
same as for {¢;}. Thus we shall use M, N, and Q% for both ¢, and ¢{”. Now, for k
varying in the positive octant of Z3, let f, be the eigenfunctions of the Laplace
operator with Dirichlet boundary conditions on the cube concentric with U, but
with side of length [ =e3%# —3e*#. Thus

—Afy=2fe, (2.11)
where
J=mlkle”5F[1—3e" ] 1. (2.12)
We then define normalized wave functions y, ; by
Y (X150 Xy ) = flO)@i(x —¢, ..., XN, —C), (2.13)

and c is the center of mass of the x;, 1 <j < N; which is defined in (1.11). Evidently
the y, ; form an orthonormal set supported in (U,)" and

/12
(H—p- Ny, ;= [ﬁt{ + Ei(a)] Pk, (2.14)

The partition function for the ensemble G is given by
EeBm, U)=1 +%6Xp [B<wiis (AQ?D + - N~ H)py)]. (2.15)
Clearly, one has the bound (by the Peierls inequality [11, Proposition 2.5.47)
EB.n,U)2E6(pnUy). (2.16)

The partition function E4(f, p, U,) is easy to estimate. By using the bound
173y exp[—aAZ]=Q2nra)"**+0(7 1Y), (2.17)
3
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we have

UJ logZe(Bm, U2 ¥ [(M—m)w +0(e'5ﬂ)]
€ =S 2nf
x exp{ — pleu)+ A0 +0(e™*#)]}. (2.18)
Putting (2.16) and (2.18) together, we have proved the following:

Lemma 2.2. Suppose u satisfies assumption A and ji= O(1/). Then there exist >0,
&, and ¢, such that if B>, and if ¢, <e<e,, then

pu (B, W= G(B,m) [1+0(e™#)]. (2.19)

Next we obtain an upper bound for the pressure. The proof of this lemma uses
an idea from Fefferman [5] and Lieb-Lebowitz [8, Theorem 2.2].

Lemma 2.3. Let f, u, and ¢ satisfy the conditions of Lemma 2.2 (with possibly
different B, €., and &, ). Then the pressure can be bounded above by

pu (B, W)= G(B,w) [1+0(e™*)]. (2.20)
Proof. Let Ky be the kinetic energy defined by

N
Kn=— i}=:1 (4,/2m)). (2.21)

Write Hy=(1 —6)Kn+ V. + 0Ky (V. is the Coulomb energy part of Hy). By scaling
we have

(1—9)Kn+V.z2(1-6)'Ey, (2.22)
where Ey=infspec Hy. Hence from (1.11) Hy—p - N can be bounded below by
Hy—p-N206Ky+[oN—06(1—0)"'u-N—aQ], (2.23)

where Q is defined by Q =Z - N. Choose ¢ satisfying 6(1 — 6) ~ *(max ;) < 6/4. Recall
that i=0(B~') whence for B large enough

Hy—p-N2=6Ky+0aN/2. (2.24)

Equation (2.24) also holds if we replace Hy and Ky by H§ and K§ respectively. To

check this statement, one only has to note that (2.22) holds for K§ replacing K. Thus
one has

m;
216
for p sufficiently large. Since |U,| ~ e! 5%, by choosing & < /120 the last two factors

in (2.25) can be bounded by exp(— foN/120). The first factor in (2.25) is obviously
smaller than exp(foN/240) for large § and thus

Trexp[f(p-N—Hy,_n)]Sexp[—poN/240]. (2.26)

But SG(f, p) = O(e ~ *#) for some fixed constant a. Hence if we choose N, and & such
that

N 3/2
Trexp[ﬂ(u-N—Huc,N)Jgigl( ) |UJ¥expl—foN/4]  (2.25)

0N/240 =0+ 2, 2.27)
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then
|U,I™* szzv Trexp[(n-N—Hy, x)] =< G(B,p0(e ™). (2.28)

Next we consider the case N <N,. Define a subspace Y by
Y=N(—DA {Sv.n}, A={NIN<N,, Hy—p-N>ey(p)+c}, (2.29)
where cis the gap between the first excited energy e, (n) and the ground state energy
eo(n) of H—p-N. Here $y_n is the subspace of N particle wave functions with

x;€ U, for all i. Again we split the kinetic energy into two pieces and use the
simple fact K§ = Ky and (2.22) to yield

Hi—pn-N26K&+c—38(1—8)"'n-N. (2.30)
By choosing 6 with 6(1 — &)™ *(max ;)N <c/2 we conclude

N C\3/2
Tryexp[fn-N—Hy V1< Y I (ﬂ) U, Ne = bei2g = Beot®)
© N<No i=1\27fi0

(2.31)

Since ¢ > 0, the left side of (2.31) is again small in the sense of (2.28) if § is sufficiently
large. It remains to bound the contribution from the subspace Y’ defined by

Yl:@{ng} , B={NIN<N, N¢A4}. (2.32)
Let X be the subspace defined by
X=DH(U)®X,
with

Xg= {w(xl, ..., xy)|w are wave functions satisfying the statistics requirements

N
and x;€2U, and Y myx;=0; NEB}. (2.33)
i=1

Clearly, Y'C X with the natural injection from Y’ to X. It follows that

Try exp{f(n-N—Hy, N} =Tryexp{f(n-N—Hy_y)}.

Now let X , be the subspace of the first g eigenstates of H® —p - N and denote its
orthogonal complement in X ; by X ,. Again the contribution from (U )® Xk ,
is small since the Hamiltonian H® —p - N restricted to X , is larger than eq(p) +c.
Finally, the contribution from I*(U)®Xpg , is easy to compute and can be
bounded by

Tt @xn, = BIUIGB, 1) (1 +0(e ™). (2.34)
We conclude Lemma 2.3 by putting all these bounds together. []

Remark. 1t is not difficult to check that Lemma 2.3 also holds if we replace the
Coulomb potential by a Yukawa potential with v= 0(e ). One only has to relate
the Yukawa Hamiltonian to the Coulomb Hamiltonian by Theorem 1.3.
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3. The Localization Method

We wish to use the localization method developed in [2] to obtain an upper bound
on the partition function. The main result in this section is the following
Lemma 3.1. It was stated slightly differently in [2]. We shall give another proof
since we emphasize a slightly different aspect here.

First we need to define a function g(t) which is supported in an interval slightly
larger than the unit interval |t| <3 and such that

Y g¥t+j)=1, allteR. (3.1)
jeZ
To accomplish this let f(s), — oo <s< oo, be a C® function such that
f(s)=71_2‘ if s<0, f(s)=0 if s=1. (3.2)

For any given , 0<n <% we define g(t) by

e T

g(t)=f<%>, (21, (3.3)

lIA
IIA

1
1=7,

g()=g(—1), teR.

It is clear that g(t) is a C* function supported in the interval |t| <1 +#, and that
(3.1) holds.

The function g(t) can be used to generate a translation invariant partition of
unity for R3. If we let y(x)=g(x")g(x?)g(x>) with x=(x*,x?,x>) and put y,(x)
=y(x+A), where AeZ3, then it follows from (3.1) that

Azzs xi(x)=1, VxeR3. (3.9

Let I be the unit cube in R? with center at the origin. A function h which is of
central importance to us is defined by

hx,y)=1du ¥ Gx+wziy+u

=st duy®*(x +wy*(y +u). (3.5
It is evident from (3.5) that h(x, y) depends only on the difference z=x—y and
h(z)=h(x—y)=x** (). (3.6)
It is obvious then that
h(0)= [_?w g“(t)dt:r —14+0(). (3.7)

Furthermore h(z) and its derivatives satisfy the inequality
C
lh(z) =C, [0*h(z)| = RIS of 21, (3.8)

for some universal constant C.
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Now for Ae Z> and I>01et §, ;, denote the Fock space for the cube with center
I4 and side of length [(1 +2#). We introduce a Hamiltonian Hj ; , on $, ; , which
differs from the Coulomb Hamiltonian (1.1) by replacing the Coulomb interaction
with a Yukawa and by including a scale factor depending on 7. On an eigenspace of
N it is given by

N

1 -
Hy;on=— 2 2—mAi+h(0) ! ; ee;Y (x;—x)). (3.9

i=1 1=i

II/\

We assume this Hamiltonian acts on functions in 9, ; , which satisfy Dirichlet
boundary conditions. For any open subset 4 in R® we define a subset Z3(4, 1, 77) of
Z3 by

Z3(A,1,n)={AeZ>: there exists ue I such that the cube with center (1 + u)!

and side of length I(1 +2#) intersects A} . (3.10)
Then we define the Hilbert space 9, 4 , by
551,A,n= & 551,/1,n (3.11)
AeZ3(A,l,m)

and the corresponding Hamiltonian Hj , , acting on $, 4 , by
Lan=_ Y Hi,,. (3.12)

AeZ3(A,1,n)
The Hamiltonian (3.12) only includes interactions between particles which are
contained in the same cube indexed by Ae Z3(4,1, ).
Suppose the Coulomb Hamiltonian H , on the set A acts on the Fock space $ ;.
For ueI we define an injection i,:9,—9; 4,,- Let p(x,,...,xy) be an N particle

wave function in § . For 4,€ Z3, 1 <i<N, we define a wave function y, _ , by
X;
Yoy anX s s Xy) = H Xz.( I )U)(Xﬁ'ul Xyt ul). (3.13)
Then i,y is given by
W= > D@Vi,..iy- (3.14)

{2i€Z3(A,1,m): 1ZisN}

The Hamiltonian induced on $, by 9 4, is given by i H] 4 ,i,. We wish next
to compare the average of this Hamiltonian for u e I' to the Coulomb Hamiltonian
H,.

Lemma 3.1. There is a universal constant C such that if (vl)*n> = C, then (m=minm,)

j=1

o CN 1 N
H = JEHY iz = [mlzn vy e}] (3.15)

Proof. It is easy to see that the action of the Hamiltonian (3.15) on an N particle
wave function is given by [recall identity (2.9)]

N1 1
— |: 2m:|l_2 l£3 |VX[2dX+ Y e,.ejK,(xi-—xj) s (3.16)

i= 1<i<j=EN
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where the function K(z) is defined by
1 h(z)

1
K{(z)=~-K"z/l) and K*z)= 3.17
(&)= 7K/} (2) 2l h0) Y,(2). (3.17)
It is clear from the definition of g(¢) that
IPpdxs S, (3.18)
R3 n

for some universal constant C. One sees from (3.17) that K*(0)=pu. Hence if we
prove that K¥(z) is a positive definite function then the inequality (3.15) will follow.
To see this we consider the Fourier transform K*(p) of K*(z) given by

N in
K= (2n)3h(0)J = O
dnp? 1 47
- - o
o GO [(p~5)2+u P ] (€t
S ] 319
100 (.19
where
_ 1 p-Eh(E)
1= 43500 j g (3.20)
1 E2h(E)
J(p)= 8n3h(0)j(p_ 1 dé. (3.21)

From (3.8) we see that there is a universal constant C such that
[1+1¢P°1° lﬁ(€)|§ (.22

It follows easily from this that
J(p)| = C/n°p? (3.23)

for some universal constant C. We estimate I(p) by using the fact that (&)= h(— &),
since h(z) is an even function. Thus

1 1 1
)= 5757} [(p—é)%r 2 ey +,ﬂ]” - £h(Me
S
2H0)) (o= + w10+ 5+ 7T

It is easy to see now that there is a universal constant C such that

(p) <C/n°p*. (3.25)

It follows then from (3.19), (3.23), and (3.25) that if u?»° = C for some universal
constant C then K*(z) is positive definite. The inequality (3.15) follows easily now

(3.24)
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from this, (3.18) and the following inequality,

Y ee;K'(x;—x) =3 j K*(p) [

1<i<j<N

Z € iP%s
=1

g

= — K"(O)

u[\/]z

(3.26)

1

4. Bounds on the Global Partition Function

Here we prove Theorems 1.1 and 1.2 by obtaining upper and lower bounds on the
partition function in a large cube A. First we consider the upper bound. From
Lemma 3.1 we have the inequality

Bra(B,w)=14]""log Trexp[B(n-N—H )]
<|4]"'log Trexp [[3 (u’ N—{ i:}‘H,”,A,,,iuduﬂ , .1
r
where p'=(y}, ..., ) and
1= p;+(C/ml*n) +v(maxz,)*. 4.2)
Now if we use the log convexity of Trace [11] then the term on the right in (4.1) is
bounded above by
;dul/l]“ 'log Trexp[f(w -N—H; , )]
SiI7t % logTrexp[f( -N—Hj,,)]

AeZ3(A,l,m)

=|41"Y1Z%4, 1, n)log Trexp[Aw - N—H} o )], (4.3)

where |Z3(4,1,1)| is the number of elements in Z3(4, 1, 7).

For &> 0 satisfying the condition of Lemma 2.3 we choose [=¢°* and n=v
= C/I*/" in such a way that the condition of Lemma 3.1 holds. Then by the remark
of Lemma 2.3 we have

log Trexp[ B -N—Hj o, )] < BIUIG(B, 1) [1+0(e )], (4.4)
where U, is a cube with side of length [=¢%%. From (3.10) it is easy to see that
lim |41~ 1Z3A, L) U |=1. (4.5)

We conclude then from (4.1) to (4.5) that

p(B, W= G(B,w) [1+0(e™)]. (4.6)

Since (4.6) is true for all p with ji=0(1/p) and G(f, p) achieves its minimum for
some ji=0(1/f), we can replace the right side of (4.6) by g(f, 1) and conclude the
proof of the upper bound.

We have proved an upper bound on the pressure. Next we obtain a lower
bound. To accomplish this we define the ensemble G on the large cube 4. Let Fbe a
covering of A with disjoint cubes U, with side of length ¢°*’. The ensemble G has
already been defined on U, in Sect. 2. We extend it to A so that

E6(B,m, A)=Uﬂ EeBm U,). 4.7

€
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Let € be the set of all wave functions y which are antisymmetric tensor products
of the y, ; defined in (2.13) with each y, ; belonging to a different U, e §. Then it is

clear that
<wa (H_"' . N)lp> Z <wk is (H n- N)wk ¢> +V int» (48)

where the sum is over the (k,i) such that y, ; is included in the tensor product
representation for y. The usual exchange terms vanish because y,; and y,; have
disjoint supports for k+h. The term V,, is the Coulomb interaction energy
between the wave functions y, ;. Since the wave functions in & form an
orthonormal set, one has that

Trexp[f(n-N—H)]=1+ w;@exp[ﬁw,(u "N—H)yp)]
=54(B,n, AEg[exp(—BVia)] s (4.9)

where E; denotes the expectation with respect to the ensemble G, and we have
defined V,,,=0 on the vacuum. Jensen’s inequality yields

Eglexp(—BViad] 2 exp[— BEa(Vind] - (4.10)
From (4.7), (4.9), and (4.10) we obtain then a lower bound on the pressure,
Bpa(B, w2141 |l logZs(B, 1, U — BlAI ™ Eg(Viny)- (4.11)

To estimate the interaction term, we first note that the total density of those ¢fs
corresponding to a fixed eigenvalue E(a) is radial. This is because the Hamiltonian
HR-? is rotation invariant. Note that for a particular eigenstate ¢?, the density
corresponding to this state need not be radial! Now we can use Newton’s theorem
on the 1/r potential (i.e., the mean value property of the harmonic function 1/r) to
write

EG( 1nt) %U V; I(Us’ VV;)9 (412)
U, ;ue/?’
where
1w, w=| | Ql( X)00) jdy. (4.13)

The cubes U,, W, are concentric with U,, W, respectlvely but with side of length
e># —3e*F The charge density g(x) is defined for x € U, by

2

ox)=elf, 1, U™ 5, A0 exp[—ﬁ{ o+ (a)+uQ‘”}]
4.14)

Choose i in such a way that the total charge in a cube is zero, i.e.
AI o(x)dx=0. (4.15)
Clearly, i=0(1/f) by the same arguments as given in (1.20). We now prove that the
contribution from E4(V,,,) is small. First, note that from the symmetry we have
J, x0(x)dx=0. (4.16)
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Now we use Taylor’s theorem to expand |x —y| ! and (4.15), (4.16) to estimate
I(U,, W,). From this we obtain the inequality

(U, W)| <4 e**Pd(U;, W) ~3 [ J; IQ(X)IdX]2 , 4.17)
whence one sees that there is a universal constant C such that
YUU,, W)= C[ ) |Q(x)|dx]2 . (4.18)
7 U;
Hence from (4.12) we have that
C
|E¢(Vind = EI‘&I [ J IQ(X)IdX}2 . (4.19)

If we put the inequality (4.19) together with (4.11) and Lemma 2.2 we have then

BpA(B,w)Z | U 4] [G(ﬂ, w1 +0™*)]- %ﬁe_ 125 [ J IQ(x)ldXJz] .

(4.20)
It is clear that if ¢ satisfies the condition of Lemma 2.2 then
[ l; IQ(X)IdX]2 =G(B,W0(e” ). 4.21)
Now using the fact that
/}im IF U4 7 =1, (4.22)

(4.20) and (1.6) yields in the limit 4— oo the lower bound
Bp(B, 1) Z G(B, w) [1+O(e™*)]. (4.23)

Now we can take the infimum on the right side of (4.23) to conclude the lower
bound of Theorem 1.1.

Proof of Theorem 1.2. Theorem 1.2 is actually a simple consequence of
Theorem 1.1. To see this, first note that p(f, p) is a convex function in p. Hence the
derivative of p can be bounded by finite differences as

1 S5 0p
— [p(B,n—18)—p(B, m)] éa; A B.w)=0c(B,n)
< % [p(B,n+1t8)—p(B,p)] forall >0, 4.24)

where 8=(1,...,1). Because the lower bound is exactly the same as the upper
bound, we shall concentrate on the upper bound only. Write § =8+ 8’ with §*- Z
=8'-8'=0. Now we take t=0(e?/?) and use Theorem 1.1 to bound the right
side of (4.24) as

P, S Ta(6, 15— g8, k)] + Ol ")

=(0g/08%) (B, )+ O(e™ /), (4.25)
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where ' is some point on the line segment joining u and p+ t8*. Define a function
h(p) by h(p) = p+ w(wZ with o(u) satisfying (1.19). By definition

(0g/08") (B, w')=(0G/08") (B, h(w)-
But (0G/08') (B, h(1'))=0 (again by definition) and hence

(0g/08%) (B, ) =(0G/03) (B, h(w'))= R(B, h(w')). (4.26)
To conclude Theorem 1.2, it remains to show that
R(B, h()) < R(B, h(1) + O(e %), (4.27)

Now by (1.14) we have
eo()=eo(w)+0(e "), (4.28)

and hence the relation between R(S, h(¢')) and R(, h(n)) becomes elementary and
involves only finite linear combinations of exponential functions. Now (4.27)
follows from (4.28) because the exponential functions are differentiable.

5. Continuity of Stability of Matter Constant

Here we. prove Theorem 1.3 by a modified version of the localization method in
Sect. 3.
Let K denote the kinetic energy operator for the Hamiltonian H* and ¢(z) be
the function
@(2)=h(2)/(z|h(0)), (5.1)

where h(z) was defined in Sect. 3 and includes a parameter #,0<n<%. For
simplicity of notation, we shall assume m,=|z,|]=1, «=1,2,...,S.

Write h(0)=1-26/(1+0) [recall from (3.7) that §=0(n)] and split the
Hamiltonian H" into two parts as

H'=[6K+V/]+(1-8)[K+V/1=H +H", (5.2)

where V}" is the two body interaction obtained from the potential ¢,(z)=1"'¢(z/I)
and ¥ is defined similarly with the potential @, given by

D(2)=Y,(2)—(1-8)""o(z/]). (5.3)

The second term in (5.2) can be bounded by the localization method in Sect. 3. We
can then use the assumption H—pu-N>0oN to yield the bound

H'2 —(CN/Pp)+(1 +6)[—pu-N+06N]
> —u-N+oN—cyl" 2~ 1+ 5N (5.4)

with ¢s =max {2[max|u,| + ], C}.
Let du(l) be a probability measure on R* (which will be fixed later) and define

®, b
T () =60+ [X0)— %) — (1 — &) § 1 o(e/du(D)]
=6Y,(2)+ P, (5:9)

with corresponding 2-body interaction ¥V, =6VV+ V2,
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Now integrate the inequality (5.4) with respect to du(l) to obtain
H'2[6K+ 6V + VP +[o—cséd—csn™ ' 1 2du()]—p-N. (5.6)

The first bracket can be bounded below by the stability of matter theorem for
Yukawa interaction [2,13] as

SK+8VW> —GEN, (5.7)

where E is some universal constant. For the second term V;, we claim that thereis a
choice of du such that if

n=c'llogv|~ /8, (5.8)
then the potential @), is positive definite and
[172du() < cllogv|~*. (5.9
Here ¢ and ¢’ are universal constants. Assuming this, we can then bound H" by
6—v
2

where we have used the positivity inequality (3.26) with @,(0)=6—v. Theorem 1.3
is then an immediate consequence of (5.10) and the choice § ~n~ [logv|~ /6.
To conclude Theorem 1.3, it remains to prove the existence of such a
probability measure.
We choose a probability measure du(l) of the special form

H'> {a—[&E—i— +c55—cc511_1|10gv|_1]}N—y-N, (5.10)

du()=ox(1 Iy Y~ 1+, (5.11)

where y denotes characteristic function and o is given by
a=|logv| 'log2. (5.12)
The following two elementary inequalities concerning du(l) will be useful later.
fxAdslsAPdusad?, (5.13)
[HASISvT ) 2dp() Semin[1,472]. (5.14)

Let ¢(p) denote the Fourier transform of ¢(z). Then from Lemma 3.1 we see
that there is a universal constant ¢ such that

otp)—4nfp? =ama)s {7 P70 1o
The Fourier transform of @), is given by
Lo =2+ =0t 407 = 2 rgpnauy. 617
4z 4n
Write &, as a sum of two terms
i<13;=g(p)—k(p), (5.18)

47
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gp)=@*+v*) ' =8> +1)" —(1—-6)p~?

=[p*(0—v)~(1 -V 1[P*@P*+ 1) (P* +v})] ', (5.19)
k(p)=(1—09) { A(p)I*du(l). (5.20)
The last term k(p) can be bounded using (5.13)—(5.16) as
cav 2—(1-90)p~2, pel
k(p)ék’(p)={cw1‘5p“‘, pell (5:21)
2can~5?p~2, pelll
with
I={plp™'n™>*2v71}, H={pp~'n7>*<1},
and

HI={pll<p~in~>*<v71}.
We shall assume from now on that
6>4v?, (5.22)
which is certainly satisfied by our choice of 5. The first term g(p) can be bounded by
A=0)[v 2 +n~**)"1—p~%], pel
g(P)zg'(p)=1 (6/4p%), pell (5.23)
i@ —vi—n¥?)p~2, pelll,
where we have used the bounds
@P*+v)"1Z26(1+pH) 1 +(1=8)1+n"%?)"y"2 inI;
p AP’ +v) ' z3p™* and [pX6—v)—(1—-0p*IpT?26/2 inlI
[recall (5.22) and n<1/2];
P —v)—(1 =2 = pX6—v*—7n*?) and p*=(p*+1)(p*+v¥y*?/4 inIII.
Hence

gp)—k(p)z0 if (1-0)>ca(l+n""?), o/4>can?,

5/2 5

6—v2—y52>2can~3.

Clearly, a ~|logv| ™! and 1= O(|logv|~'/®) satisfy all these inequalities for small v.

6. Estimates on the Observables

In this section, we shall present a brief discussions of observables via the
“Feynman-Hellman” method. As we shall see, this method applies to a large class
of observables once good upper and lower bounds on the partition function are
obtained. We shall not define the optimal class of observables which can be
estimated by this method. Instead, we shall choose a more specific class of
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observables for which a clean formula can be given. Our class of observables is
different from the usual ones (the n-point functions) of many-body theory. Our
main result is stated in (6.13) and an example is given right after that.

Let 4 be a multiplication operator defined by

AwN(xl, ceey xN) = AN(xb [EXS} xN)wN(xls seey xN) . (61)
By log convexity we can bound the expectation of 4 by finite differences as
(t>0),
1
HogTrexp{f(n-N—H,—tA)}—log Trexp{f(n-N—H,)}]
1
<A< JMlog Trexp{f(p-N—H,+tA); —log{f(e-N-Hy}].  (62)

To apply (6.2), one should have good lower and upper bounds on the pressure
in the presence of small perturbations tA. Let us further assume that Ay is given by

AN(xl,...,xN)=/j1dqu(x1—u,...,xN—u). (6.3)

The functions fy are defined in terms of symmetric functions g, of k variables
Vis-- Vi k=1,2,..., which are supported in the set |y,|<(, i=1,...,k. To define
Sy, - Yy let £>0and suppose the set of y;, 1 <i< N, such that |y;| < £ is given by
¥ i=1,2,...,0(&), and the center of mass of these y; is y(¢). Then we have

0 if 6(¢)=0,
hOw-m={" 5 PO

Wé’om()ﬁ‘f’(@,-~-,J’0(¢)_J—’(5)) if  6(8)>0.

Thus in the definition of fy there are two parameters &, {, involved as well as the
functions g,. These parameters are chosen fixed, depending on B, with

E=0("), (=0(p). (6.5)
We shall also assume that the g, can be bounded,
gkl <ck (6.6)

for some universal constant c. The assumption (6.6) is important since otherwise tA
can not be viewed as a small perturbation of H and the physics described by H+tA
can be completely different from that described by H.

With this assumption, it is not difficult to check that the localization method in
Sect. 3 can be extended to the operator H +tA with the localized Hamiltonian
Hj , , replaced by H} , ,+tA; ;. Here the operator 4, ; is given by

Al,).w(xb ey xN)=£dqu(x1 —Uu, "'st_u)w(xla ey xN)) (67)

where Q is the set of u which are within a distance & from the cube with center I4 and
side of length I(1 + 2#). Equation (6.7) reduces the estimate of the pressure to that of
a cube with size of order / and Yukawa interactions. For this purpose, our first task
is to estimate the shifts of the ground state energy under small perturbations. A
natural tool for this is to make standard second order perturbation theory
rigorous. In the case of the ground state energy with a gap, this is not difficult to
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achieve by combining usual perturbation arguments with the variational
principle.

To avoid discussion of degenerate perturbation theory, we shall assume that
the ground states v, ..., p, of H® — u- N have different particle numbers, namely
N® £ N if i+ [the definition of N® is given in Sect. 1 before assumption (4)]. The
general case can be treated by degenerate perturbation theory but the notation
becomes too clumsy and will not be discussed here. With this assumption,
Lemma 2.1 can be easily modified using standard perturbation theory. We leave
the details to the reader and simply write down the following conclusion:

le}(u, tA) —(eo(w) +tw)) <z~ 1O(t*)+ 0(I"?), (6.8)
where 1 is the gap defined in the corollary of Theorem 1.3 and w; is defined by

Wj=,{ ]wj(xl, ceny xN(,-))lng(,-)(xl, ceny xN(j))di 5 (69)

with dx denoting the standard Lebesgue measure restricted to the subspace
Y m;x;=0. Note that we need a universal bound | gy| ., < C for all N <N, to make
use of second order perturbation theory. This bound is again provided by (6.6).
Now we can apply the method of Lemma 2.3 to conclude an upper bound for the
pressure in a cube. By the above remarks on localization, this bound extends to the
pressure on the whole box 4. Hence we have the following bound for t = O(e ~*/?),

BP(B, 1w tA)S 3 0¥ expl — Biw,] (1+Ofe™"). (6.10)

Here the function ¢ is the “reduced density” of the i*-complex defined by [cf.

(1.17)] o
Q(l)=<ﬂ> exp[—few)], (6.11)

with p=p+ Z and j solves (1.19).

A lower bound to the pressure similar to (6.10) is much easier to obtain since it
is just a variational calculation. Putting this lower bound together with the upper
bound (6.10), we have succeeded in extending Theorem 1.1 to the case with small
perturbations. To summarize, for A satisfying (6.5) and (6.6) the pressure can be
bounded (for t ~ e~ %#/2) by

Bp(B.utA)= 3. @ expL—Brw] (1+0(e” ). (6.12)
We can now use (6.12) in (6.2) to bound {A4) by
417 1CAY = 5. Tow(1+0(e™#2)+¢"0(e~#2)]. (613)

In case w; %0 the second term in the bracket can be absorbed into the O(e ~*#/2)
part of the first term, while for w;=0 the first term vanishes and only the second
term is left. Equation (6.13) is the main result in this section. It shows that the
expectation value of an observable is given by the expectation value of that
observable in the ideal gas of ground state atoms or molecules plus a fluctuation of
order e~ %F/2,
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Let us specialize (6.13) to the following example to have some perspective and
to compare with previous results for the hydrogen atom [5].
Let g, be the local number operator defined by

k
&V s ,Vk)=i§1 X;(Yi), (6.14)

where y, denotes the characteristic function of the set |y| <{. The corresponding
operator A can be interpreted as the local density operator. If one takes into
account that y; has exponential decay (see [9] for a discussion and references) the
expectation w; can then be bounded by

lw;— N9 < O(e™*F). (6.15)

Hence Eq. (6.13) asserts that the local density is indeed the same as the global
density (given by Theorem 1.2) with accuracy O(e ~*#/2). Note that this is an assertion
concerning the density fluctuations. In particular, if we let g,=0 in (6.14) for
ke{N®ji=1,...,g}, A can be interpreted as the local density for “complexes” other
than the ground state complexes. In this case, (6.13) shows that the expected
density is then smaller by a factor of order e ~?#/2, which is a stronger statement
than the corresponding statement for the hydrogen atom which appeared in [5].

Appendix

Here we show how our localization method can be applied to prove a result similar
to but stronger than Lemma 2.1. The advantage of this result over the simpler
proof of Lemma 2.1 is that the constant involved depends only on the ground state
eigenvalue of the Hamiltonian and not on the ground state eigenfunctions.

Lemma A.1. With the same assumptions as Lemma 2.1 there is the inequality
e SEf{a)<e(w+C/a*, azl, (A1)
where the constant C depends only on ey(p).

Proof. For simplicity of notation we shall take p=(u,,...,us) to have all
components equal, ;= u, whence p- N=uN, eq(p) =eq(1).

The lower bound on Ea) in (A.1) follows easily from the Rayleigh-Ritz
principle so we shall concentrate on the upper bound. The main tool we shall use is
Lemma 3.1. Let us fix a particular eigenspace of N, namely N=N,, and assume
that HR — uN has ground state energy e,(u) on this eigenspace with degeneracy
g2=1. The Hamiltonian H® is given by the formula (1.2) with N=N, and acts on
wave functions y(x,,...,xy) on R3*¥ which are constant along 3 dimensional
hyperplanes orthogonal to the subspace

N
>, mx;=0,  with respect to the quadratic form (A.2)
i=1 N
Y milxi|?. (A.3)
i=1

The norm of y, ||yl is the L2 norm of y restricted to the subspace (A.2) which is
induced by the quadratic form (A.3). We denote this Hilbert space by HR.
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Let A=(Ay,4,, ..., Ay)€ Z3" denote a multiindex and y, , be defined for ue I' by

N X;
Yo,ulX1s - Xy)= 'l=_[1 X2, (T +u> P(xys .05 Xp)- (A4)
The Hamiltonian H? is given by
Hi—— Y g4 z 5, ;e Y(x;—x) (A.5)
AT i=zl 2mi i h(o) 1<iSi<N AiAyvivjiv\vi j .

and is assumed to act on functions in H¥. Then if we let Py, ,€ HX be defined by
Py, ,=w, , on the subspace (A.2) it is clear from Lemma 3.1 that

C
<y, (HR— uNyp) 2;dulegw Py, (H;—uN)Py, ) — [— + V] N.

ml?y
(A.6)
For aeZ3, € Z3 let N,(x) be
NZ(OC)=#{],!I].I=OC, 1§i§N}. (A.7)
Then by the Rayleigh-Ritz principle and scaling one has
eo(w) + uN () VN (o) — 1IN (@)
H,—uNZz ———— " —uN (o) — .
AR T (@eZ3: Na@) # 0} h(0)* HN () 2h(0)
(A.8)

Now let p;, i=1,2, ..., g be the ground state wave functions in H of HX —uN
with energy ey(u). Putting y=vy,, i=1,...,2 in (A.6) and summing we obtain the
inequality

geo(n)= Ij_ F(u)du— |:r—n% + v] gN. (A9)
From (A.8) we obtain a lower bound on F(u),
F(u)z g{[1+0()]eo(n) +1NOMn)—vN?} . (A.10)
Hence if we put G(u)=F(u)— ge,(u), then (A.9) and (A.10) yield the inequalities
G(u)Z O(n)eo(w) + uNO()— VN2, (A.11)

Ij_G(u)du§ |: ¢ +v:I gN. (A12)

ml*n

Let I, CI" be a cube with center at the origin and side of length L, < 1. Then it is
clear from (A.11) and (A.12) that there is a u, € I, such that

Glug) <L {[ ©

ml*y

+ v] gN —O(n)eo(u) — uNO(m)+vN 2} . (A.13)

Forax1let Ey (a), i=1,2,...,g be the first g eigenvalues of H®“— uN on the
eigenspace of N. We choose a such that

a= 73[1 + LI +0(m)]. (A14)
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Then by Rayleigh-Ritz and scaling it follows that if A=0€ Z3" then

g g vN?
;1 En {a)=x[1+0()] _=Zl I:<Plpi,0,uo(H‘6 —uN)Py; 0,4, + N + O(ﬂ)ﬂN:I )

(A.15)
where « is defined by
K1 =f§§2g {aii—%j;i laij|+|aji|}, (A.16)
and A =(a;;) is the matrix determined by the transformation
Pwi,O,uc.:j:il a;iv;, (A.17)

where v;, 1 i< g is an orthonormal set.
Next we take Lo=4, n=v, and I>7” =C in such a way that the condition of
Lemma 3.1 is satisfied. It follows then from (A.15) and (A.13) thatif k <1+ Ca~ %

then 2

g CN
Y. Enda)Sgeol)+ o (A18)

Since we already know that Ey (a)=ey(n), 1<i<g Lemma A.1 follows
provided we prove the bound on «.
To accomplish this let L be the g x g matrix

Lij=<Pv;,0,up P¥j,0,u0” - (A.19)
Then if L is nonsingular A= L', We shall show that
C
IL=1 = 7 (A.20)

whence the bound on « follows. To see this note that if e Z3" has all 4; equal then
Py, ,,=0 unless A=0. Also by (A.8) if 4 is such that not all 4; are equal then

H}—uN =2ey(u)+Ca=?". (A.21)
It follows then from (A.13) and (A.21) that
lpi—Pw; 0,ull><Ca™?7, 1Zig. (A.22)

Since the p, form an orthonormal set the inequality (A.20) follows. We can now
argue as in Lemma 2.1 to obtain the inequality A.1. [
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