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Abstract. We study the quantum Coulomb Gas of N particles with Hamil-
tonian H at low temperature and negative values of the chemical potential μ. If
μ is sufficiently negative the Coulomb gas is approximately a perfect rare gas of
charged particles, as expected. The interesting fact is that for higher (but still
negative) values of μ the gas changes to a rare gas of some atom or molecule
(which is most likely neutral). The type of molecule is determined by the ground
state of the Hamiltonian H — μAΓ with center of mass motion removed.

Introduction

In this paper we are concerned with the thermodynamic properties of a quantum
mechanical Coulomb gas of nuclei and electrons at very low temperature and
density and to validate certain predictions of the Saha equation [10, 12], which
is the equation that governs the regime. (Actually, Saha was interested in the
solar chromosphere where the temperature is high by earthly standards and the
pressure is low, but this equation extends to the regime of very low temperature
and even lower density that we are considering here.)

Consider a system composed of S species of charged particles (electrons and
various nuclei) placed in a large box A of volume \A\. lfNt is the number of particles
of species i, then Qi = NJ\A\ is its density. If the ρ£'s and β = (kBT)~1 (with
kB = Boltzmann's constant and T= temperature) are fixed and A -> oo in a suitable
way, we expect that, the long-range nature of the Coulomb potential notwith-
standing, the intensive quantities such as pressure, free energy per unit volume, etc.
have well defined limits and that these limits should have the correct convexity
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properties with respect to the ρt 's and T. This, indeed, was shown to be true by Lieb
and Lebowitz [8]. They also proved the following facts:

1. The thermodynamic properties as calculated in the microcanonical (fixed
energy), canonical (fixed Nt) and grand canonical (fixed chemical potentials μf) all
agree with each other.

2. For the grand canonical ensemble, with partition function Ξ, the value of the
p Γ e S S U Γ e p-lΛΓβ-'hiΞ (0.1)

is the same as that obtained from Ξ°, which is the value of Ξ in which the
summation over all states is replaced by the summation over the states in which the
total charge of the particles is zero. [Note: It is a fact that Ξ^>Ξ°, but nevertheless
\Λ\ ~ 1(\nΞ—lnΞ°)->Ό as A -> oo.] In this paper we shall work always with the grand
canonical ensemble and we let

μ = (μl9...,μs) and N = (N1,...,NS) (0.2)

denote the chemical potentials and particle numbers.
Now let us inquire about the behavior of the system when ρ = Σ ρf is very

ί

small. Lebowitz and Pena [7] proved that when T is fixed the free energy
per unit volume becomes j8~1Xρ£lnρi in this limit. In other words, the system

i

becomes a (neutral) mixture of ideal gases formed by the individual particles. This
can also be called a plasma. The result is not surprising; at low density
the entropic contribution to the free energy, kBTρ Inρ dominates all binding en-
ergies, and any nontrivial bound complex "evaporates."

The situation is more interesting if we let T-»0 as we let the ρ/s-^O. (In fact we
let ρ&e~β.) In this case, as T and ρ go to zero the properties of the system are
governed by the Saha equation [10, 12] which predicts that one will have ei-
ther an ideal gas of the elementary particles as before or else an ideal gas of some
bound complex. The entropy does not necessarily win.

To illustrate this phenomenon suppose there are carbon nuclei, oxygen nuclei,
and electrons and let Ecθ2 and N c θ 2 denote the ground state energy and particle
number of one CO2 molecule. The relevant energy for calculating Ξ is £(N) — μ N,
where £(N) is the energy of some state of the system with particle numbers N.
Presumably it is possible to choose μ so that two things are true:

1. e Ξ £ c θ 2 - μ N c θ 2 > 0 .

2. £(N) — μ N > e + c for all other states, except for the vacuum, N = 0. Here c> 0 is
some fixed constant.

While it lies beyond present rigorous technology to prove that such a μ exists,
one probably does. If not there is surely some other neutral molecule or atom (or
a neutral pair of charged complexes) that replaces CO2 and for which (1) and (2)
above are true. Let us here assume (1) and (2) for CO2 and continue to compute

Ξ = Σ Σ exp[-j8(E(N)-μ N)]. (0.3)
N states

We decompose A into cells of very large but fixed size with volume of the order
exρ[/?ε]. Let us pretend that the interaction between cells can be ignored
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(validating this is difficult and is the primary concern of this paper). The leading
term in 3 (for a cell) comes from the vacuum, N = 0. The next most important
term is exp[ — βε\. What about the excited states of CO2 and the states for other
mixtures of particles? These, it turns out, are small when β is very large
(validating this is the second main concern of this paper). The entropy, S, enters
in the combination TS and thus can be controlled when T is small. The energy
terms other than ECOl are controlled by the constant c>0 in (2) above. In short,
any cell is probably empty (the vacuum) but when it does contain some particles
they are in the form of a single CO2 molecule.

Results as described above (and with the same assumptions) were proved by
Fefferman [5] for the case of protons and electrons. Then the hydrogen atom
replaces the CO2 atom. The new features of our paper can be summarized as
follows.

1. Our method is completely different. It exploits the localization formula (i.e. the
restriction of particles to cells) introduced in our proof [2] of the JV7/5 law for
bosons. In the present context we regard it as simpler than Fefferman's method.

2. The corrections to the simple Saha formula (i.e. the above picture of an ideal gas
of CO2 molecules) should, on physical grounds, be of the order exp(—βέ) and not
1/β as Fefferman obtains. Our method is able to accomplish this. Moreover, as μ
is changed one passes from one phase to another (i.e. from a plasma to CO2 atoms
to some other complex, etc.). In the limit T->0 the transition is sharp; when TΦO
the width (in μ space) should be of the order exp( — βε\ not 1/β. Again, we are able
to show this.

3. We handle an arbitrary mixture of particles - not merely electrons and protons.

4. We are able to bound a large class of observables by one simple formalism
using the Feynman-Hellman theorem; cf. (6.9)—(6.13). Again, our error terms are
of order e~εβ.

In the main part of this paper we shall concentrate primarily on estimates of
the pressure and density. Our resulrs about expectation values of observables
are standard consequences of convexity (i.e. the "Feynman-Hellman theorem")
and therefore we present them only briefly in the last section.

1. Main Results

The Hamiltonian to be considered is the quantum Coulomb Hamiltonian H acting
on a Fock space of charged particles. The definition of Fock space will be given
later. It is important, however, to understand the Hamiltonian H on the subspace
of fixed particle numbers. We shall assume in this paper that there is only a finite
number of different species of particles (various nuclei and electrons) and shall
denote this number by S. Let x = (xu ..., xN) denote the coordinates of N particles
in R3. Denote by Na the number of particles of the α-species and put

s
N = (JVl9..., Ns). Obviously £ Na = N = total particle number. Let (zα, Mα) be the

α = l

charges and mass of species α and set Z = (z l9..., zs) and M = (ml9...9 ms). Assume
for simplicity that we have only two species of negative particles (namely electrons
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with "spin up" and electrons with "spin down"). Denote their common mass by m
while their common charge is set equal to —1. To fix our notation, we choose
zί = z2 = — 1 and mί = m2 = m. The charge of the positive particles are assumed to
be greater than or equal to 1. We leave the masses of the positive particles
unspecified but one should think of them as being much larger than m. This is the
situation in the case of electrons and nuclei. Let M be the total mass and let Q be
the total charge,

M= Σ NαmαEEN M, Q= ί iVαzαΞN Z. (1.1)
α = l α = l

The quantum Coulomb Hamiltonian for N particles can now be defined by

# N = - l Λ + Σ e. φ.-X Γ1, (1-2)

where A t denotes the Laplace operator in the variable xt and (mi9 ef) = (mα, zα) if the
ίth particle belongs to the α-species. The Hamiltonian # N acts on a Hubert space £ N

of wave functions ψ(xί9..., Xjy) e L2(R3N) which satisfies Fermi statistics for the two
kinds of negative particles. The statistics of the positive particles are not relevant to
our study and we shall make no assumption about their statistics. Fermi statistics
means only that ψ(xί9..., xn...) is antisymmetric when two electron's coordinates
of the same species (i.e. same spin) are exchanged.

Let A be a cube in R3. We shall also be interested in HN acting on functions
ψeL2(A3N) which satisfy Dirichlet boundary conditions on A. In that case we
denote the restricted Hamiltonian by HΛN.

The Fock space mentioned in the beginning is defined as the direct sum of all
the §N's. The Hamiltonian HN can be naturally extended to the Fock space by
requiring its restriction to ξ>N be given by HN in (1.2). We shall denote this
Hamiltonian by H. Similarly, we can define HΛ. In Fock space, the number of
particles of the αth species, Na9 can be thought of as an operator (still denoted by Na)
with eigenvalues Na. With this definition, § N is an eigenspace of the operator N.
Similarly, we can define mass operators and charge operators etc. In this paper, we
shall not be very careful to distinguish operators and numbers and shall use the
same symbols for both.

Let us recall the basic definitions of the quantum grand canonical ensemble
which is our main concern in this paper. Denote the chemical potential of the α
species by μα and put μ = (μ1? ...,μ s). A fundamental quantity from which other
thermodynamic quantities can be derived is the partition function. In the cube A at
inverse temperature β it is defined by

£(jg,M) = Tr exp[j3(μ N - f l J ] =ΣTrexp[i3(μ. pj-t f )], (1.3)
N

S

where μ N = £ μαiVα. The corresponding pressure pΛ(β, μ) is defined by
α = l

pΛ(β,μ)=β'^ogΞ(β,μ,Λ)/\Λ\. (1.4)

A basic fact, proved by Lieb and Lebowitz [8] (see also [6]) is that the
thermodynamic limit exists, i.e.

) (1.5)
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exists (if the limit A -> oo is taken in a proper sense) and the resulting function p(β, μ)
depends on μ only through the projection of μ to the orthogonal complement of Z,
i.e., if we let μ = μ + μZ with μ = (μ Z) (Z Z)~1 (note that μ is a vector and μ is a
number) then, with a slight abuse of notation, we can write

p(β,μ) = p(β,μ). (1.6)

Another basic fact proved by Lieb and Lebowitz [6,8] is that the thermodynamic
quantities (such as the pressure) calculated [as in (1.5), for example] agree with
those constructed in the canonical and in the microcanonical ensembles. An
analogous theorem for correlation functions does not exist.

The relation (1.6) is indeed a statement about total charge neutrality. Another
statement of charge neutrality is that one can restrict the summation in (1.3) to the
neutral ensemble Q = 0 but still obtain the same thermodynamic pressure. In short,
there is no way to choose the chemical potentials so that the system fails to be
neutral in the thermodynamic limit. See [6,8] for a more detailed discussion. The
advantage of (1.6) lies in the great technical simplifications it provides. Unlike the
constraint Q = 0, (1.6) is easy to use as we shall see later. We should point out,
however, that (1.5) and (1.6) are not obvious and their proofs are length.

Another thermodynamic quantity of interest is the density of the system. It is
defined by

ρ(i8,μ)=lim Σ [dpJ

It is known [6,7] that

ρ(β,μ)= Σ dp(β,μ)/dμoi (1.8)
α = l

for almost every μ, and ρ(β, μ) depends on μ also through μ alone.

Our main result in this paper, roughly speaking, is the proof that for low
temperature β~x and low density ρ the thermodynamic pressure and density
defined by (1.5) and (1.7) are given by a free gas of certain specific molecules (or
atoms). The types of molecules are determined by the "ground states" of H — μ N.
Strictly speaking, H — μ N has no ground states because it is translation invariant.
It is possible, however, to define the notion of "ground states" in terms of the
"relative Hamiltonian" as follows. We write H = HC + HR, where Hc^ is given by

and Δc is the Laplacian in the center of mass co-ordinate c,

c=^ΣmiXi. (1.10)

Note that the relative Hamiltonian HR is only nontrivial on subspaces with at least
2 particles. Fix a chemical potential satisfying for some positive constant σ

HN-μ-N>σN, (1.11)

μ i = μ 2 , μ.Z = 0. (1.12)
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Define eo(μ) to be the infϊmum of the spectrum of HR — μ N with N Φ 0 (i.e. the
vacuum is not allowed). By assumption (1.11),

eo(μ) = infspectf*-μ N > 0 . (1.13)

We claim that eo(μ) is an isolated eigenvalue of finite degeneracy if μ satisfies (1.12).
To see this, by assumption (1.11) we have that the infimum of HR — μ- N occurs
only when all Na are not too large. In other words, the cardinality of the set

is finite. To establish our claim, it then remains to show that EN is an isolated
eigenvalue of if£ — μ N for all N e Ω. But by the HVZ Theorem [3] the continuum
spectrum of Hζ—μ N starts from the infimum of the spectrum of all possible
cluster decompositions (into at least two components) of H^ — μ N. Our definition
of eo(μ) then tells us this infimum is at least bigger than 2eo(μ). Hence EN is not in
the continuum spectrum and we can use general results [3,9] to conclude that EN

is an isolated eigenvalue with finite degeneracy.
As a byproduct of the above discussion we have the following result: Let μ

satisfy (1.12) and let eo(μ) be the ground state energy of HR — μ N. Then there exists
a constant cγ depending on H and μ such that if \μ'— μ| <c1 then eo(μ) and eo(μ')
have the same eigenstates and

eo(μ) = eo(μ') + (μ '-μ) N. (1.14)

The proof of (1.14) is almost the same as the arguments just given above. One first
shows that the particle number can not be too big. Then choose cγ to be (up to
some constant) the gap between eo(μ) and the first excited state energy. We leave
the details to the reader.

Let us denote the ground eigenstates by ψl9..., ψg. Note that they depend on μ
only in a global way, i.e., the ψt do not change with respect to small perturbations of
μ. Denote their masses and numbers of particles by M ( 0 and N ( 0 with i = 1,2,..., g.
Also, let

M ( 0 = £ M ( 0 ? N(i)= £ J V(0 ? Q(0 = N ( 0 . Z

α = l α = l

be the total masses, particle numbers and charges. We may now state our basic
assumption:

Assumption (A). Fix a chemical potential μ satisfying (1.11) and (1.12). The ground
states must either all be neutral (i.e. all Q{i) = 0) or else both signs of charge occur
among ψu...,ψg. The latter case is referred to as the nonneutral case.

Generally, one expects in the nonneutral case that there are only two charges
Q + > 0 and β_ < 0 such that {β(0 |i = l, ...,g} = {β+,β_}. We shall not need this
assumption in the proof given below, but it is important for our proof that the set
{Q(ί)} ΦO have both signs. Indeed, assumption (A) is made for technical simplicity.
Suppose the ground states do not satisfy our assumption, and suppose that the
situation cannot be remedied by a small change in μ. Then, for example, we will
have only a charged ground state complex with a single charge, say Q +. Clearly, we
will not have an ideal gas of this complex. The neutrality requirement will force us
to find another negatively charged complex to balance the Coulomb interaction.
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In this case, one should change μ to μf = μ + μίZ and adjust μί such that our
assumption holds. It is not very difficult to prove this is always possible and our
proofs for Theorems 1.1 and 1.2 can then be carried out. The proofs are
complicated, however, and will not be presented here.

Before stating the main theorems, let us introduce some notation and
definitions. Since we shall use HR — μ N to study p(β, μ), it is important to compare
HR—μ N and HR — μ N. We shall assume that μ is so small that the ground states
of H — μ N and H — μ N are the same. As we shall see later, we are only interested
in the case when μ is of order 1/β. Let ef(μ) be the energy of ψt with respect to
H - μ N. Clearly,

(1.15)

with Q{i) denoting the charge of ψ{ί). Define two functions G(β, μ) and R(β, μ) by

M ( i ) \ 3 / 2

J exp[-/teM], (1.16)

M ( i ) \ 3 / 2

exp[Mμ)] (1.17)

J
The function G can be thought of as (approximately) the pressure of a free gas of

particles with mass M ( 0 and "internal energy" e, (μ) (cf. Sect. 2). Similarly, R is the
number density. The function G is convex in μ (strictly convex if some Q(i) =t=0) and
has a unique minimizer with respect to μ [denoted by ω(μ)] if Q(i)QU) < 0 for some
i +j. The derivative of G with respect to μ can be interpreted as the charge density,
and we shall denote it by F(/J, μ).

We can define a function g(/?, μ) by

g(β,μ) = mfG(β,μ) = G(β,μ + ω(μ)Z). (1.18)

A minimizer for (1.18) always exists and is unique in the nonneutral case
( 6 ( 0 β o ) < 0). We extend the definition to the neutral case by defining ω(μ) = 0, hence

JO in the neutral case

(The unique solution of F(/?, μ + ωZ) = 0, non neutral case.

Since G is just a linear combination of exponential functions, it is not difficult to
check that for β large

ω(μ) = O(l/β). (1.20)

We also need a function r(/?, μ) defined by

r(β,μ) = R(β,μ), β = ω(μ). (1.21)

We may now state our main results as follows.

Theorem 1.1. Suppose assumption (A) holds. Then there exist ε > 0, β0 > 0 depending
on μ and H such that if β^βOi the thermodynamic pressure is given by the equation

(1.22)
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Theorem 1.2. With the same assumptions as in Theorem ί.ί the thermodynamic
density satisfies the following equation for almost every β and μ,

ρ(β,μ) = r(β,μ)ll+O(e-*e)-]. (1.23)

To gain perspective on the content of our theorems let us consider the simplest
case of the electron-proton system. It is convenient in this case to write μ = μ(\, \, 1).
Note that μ is a scalar. Let us define

EN = inf{inf spec(#£+>N_): ΛΓ+ +ΛΓ_ =N}

and denote the convex hull of {(N,EN)\N^ 1} by K. It is presumably the case (as
Fefferman conjectures) that (2, E(2)) is in K. If so, what μ will select the hydrogen
atom? We must have E(l)-μ>E(2)-2μ>0 and 0<E(2)-2μ<E{N)-Nμ for all
N ^ 3. The first condition gives μ > E(2) = — ̂ . The second condition (if we make a
rough, and so far unprovable guess) is

On the other hand, if μ < E{2) then the first inequality reverses and we pick up
the extremal point (1, E(\)). Clearly, (1, £(1)) corresponds to complete ionization. In
both cases, it is not difficult to check that Theorem 1.1 and Theorem 1.2 yield the
ideal gas equations βp=i>ρ (the hydrogen atom case) and βp = ρ (the complete
ionization case) - as expected.

Our method of proof for Theorems 1.1 and 1.2 consists in obtaining upper and
lower bounds on partition functions. The proof of the lower bound follows the
ideas of Lieb and Lebowitz [8] by applying the Peierls-Bogoliubov inequality. For
the proof of the upper bound we use the localization method of [2]. In
theorems 1.1 and 1.2 the correction terms from perfect gas behavior are 0{e~εβ)
whereas in the work of Fefferman correction terms are O(ί/β). The reason that we
are able to obtain sharper estimates than [5] is that we use the localization method
to bound the Coulomb Hamiltonian from below by a localized Yukawa
Hamiltonian. Fefferman bounds the Coulomb Hamiltonian from below by a
localized Coulomb-like Hamiltonian.

To illustrate why the use of a Yukawa Hamiltonian has advantages we
consider a simple inequality. Let Ξv denote the partition function which is defined
exactly as in (1.3) but with the Coulomb interaction l/\x\ replaced by the Yukawa
interaction Yv(x) = e~v^/\x\ with v>0. If we observe now that the function φ(x)
= (1 — e~v'*')/|x| is positive definite (in the sense that its Fourier transform is
positive) and satisfies </>(0) = v it follows that

N

for charges ef at positions ^ e R 3 , l^i^iV. Thus if Ξ denotes the Coulomb
partition function we have the inequality

where v denotes the vector, v = v(zf, ...,z|). Now the system with Yukawa
interaction has short range interactions and it has been shown by Brydges and
Federbush [1] that the partition function Ξv can be expanded in a cluster



Coulomb Gas at Low Temperature and Low Density 161

expansion provided μ is sufficiently negative. This cluster expansion will give terms
like those which occur in Theorem 1.1 plus other terms which are O(e~εβ). If we
choose v = O(e~εβ) then the inequality (1.24) also generates correction terms of
O(e~εβ). Therefore if we put the inequality (1.24) together with the results of
Brydges and Federbush [1] we obtain an upper bound on the pressure of the form
given in Theorem 1.1 provided μ is sufficiently negative.

Since we intend to bound the Coulomb partition function by a localized
Yukawa partition function we need to prove that assumption (A) is stable under
perturbation of the Coulomb-interaction to Yukawa interaction with small v. Let
Hli denote the Hamiltonian which is the same as (1.2) except that the Coulomb
interaction is replaced by the Yukawa Yv, and let H v be the corresponding Fock
space Hamiltonian.

In the following theorem, let M = max{mα|α = l, ...,S}.

Theorem 1.3. Suppose there exist μ and σ > 0 such that H — μ N> σN for all particle
numbers N. Then there is universal constant cγ such that if 0<v/M<^, then

Hv-μ.N>lσ-c1M\log(v/M)\-1/6']N (1-25)

Corollary. Fix μ satisfying assumption (A). Then for v small enough assumption (A)
holds with the same μ if we replace H by Hv and σ by σ — cxM\\og(ylM)\~116 in the
following sense:

1. Hv-μ'N>(σ-c1M\\og(v/M)\-ll6)N. (1.26)

2. The lowest g values (counting multiplicity) of the spectrum of Hv'R — μ N are
discrete (denote them by e\(μ)^ev

2(μ)^... ^ev

g(μ)) and can be bounded for some
constant c2 by

|e j(μ)-e o(μ)|^c 2v. (1.27)

3. Let τ be the gap between eo(μ) and the first excited energy of HR — μ N. Then
there is a gap τ'>τ — c1v between e (̂μ) and the g + 1 eigenvalue (or continuum
spectrum) of Hv' R — μ-N.

The proof of this corollary is simple. Let £N(v) denote the infimum of the
spectrum oϊH^R. Then since \r~ 1—r~ 1e~vr\ ^ v for all r, we immediately have the
operator bound

R R ^ l ) . (1.28)

Suppose v is so small that

cx M|log(v/M)|"1 / 6 < σ/2. (1.29)

Then for N>No = 2(eo(μ) + 2τ)/σ we have from Theorem 1.3 that EN(v) —μ N

^—JV §: eo(μ)-h 2τ. The statements (2) and (3) then follow from the above remark

and the operator bound (1.28) if we choose v satisfying (1.29) and

Theorem 1.3 will be proved in Sect. 5. Again, we use the localization method in
[2]. While the bound (1.25) is sufficient for our purpose to prove Theorems 1.1 and
1.2, it is clearly not optimal in the dependence on v. In view of (1.28) we expect a
linear dependence on v. We hope the interested reader will prove this.
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2. Bounds on the Partition Function in a Fixed Box

We wish to find upper and lower bounds on the partition function in a box of
fixed size. First we need a lemma concerning the eigenvalues of the relative
Hamiltonian HR. Let HRa denote the relative Hamiltonian restricted to the ball
of radius a. Thus H^a acts on wave functions ψ(xί9 ...,xN) which are supported
in the set

Σ ^ = 0, | x £ | ^α, i = l,...,ΛΓ, (2.1)
i = l

and satisfy Dirichlet boundary conditions on \xt\ = a, i= l , . . . ,N.

Lemma 2.1. Suppose eo(μ) is the ground state energy of HR — μ N with g degeneracy.
Let E^a), ...,Eg(a), be the first g eigenvalues of HR'a — μ-N. Then there exists a
constant c 3 such that for a>c3 we have

a-2

9 i = l,...,g, (2.2)

for some constant c4 independent of a.

Proof The lower bound of (2.2) is obvious since imposing Dirichlet boundary
conditions can only increase energy. For the upper bound, it is convenient to prove
instead

£ E^a^geM + c^-2 (2.3)
ϊ = l

for some constant c4. Recall that ψb i = 1,..., g, are the ground states of HR — μ N.
Define g functions in the domain of HR'a — μ N by

, ( 2 4 )
i= 1

where χ is a smooth cutoff function satisfying

Denote their overlaps by

Ly=<ψ?,φ5>. (2.6)

Clearly, there is a constant c 3 > 0 such that for a > c2 one has that A = L~1/2 exists
and is bounded in the norm \\A\\= sup\AU\. Denote by ρ(x, y) the matrix defined by

ρ(x9y)= Σ ΛikΨ

a

k(y)ψa

j(x)Aij. (2.7)
ί,j,k

It is easy to check that ρ is a g-dimensional projection. Now by the variational
principle we have

(2.8)
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where we have used the identity

lχf{-Δ)χfdx = \χ2f{-Δ)fdx+ l\Vχ\ψdx. (2.9)

Now by using the fact that ψk is an eigenstate, we find that the first term in the
right side of (2.8) is just geo(μ). The second term is easily seen to give the corrections
c4a~2. •

Remark. The constant c3 in Lemma 2.1 depends on the rate of fall off of the
eigenfunctions ψt. In the appendix we prove a similar result where c 3 depends only
on the eigenvalues of H and μ.

Let Uε be a cube in R3 with side of length e5εβ where ε > 0 and β is large. We wish
to find a lower bound for the grand partition function on Uε. To do this we define
an ensemble on Uε which consists of a subset of the configurations of the grand
canonical ensemble on Uε. We shall denote this new ensemble by G. To define it we
take a=e4εβ in Lemma 2.1 and let </>?, z = l, ...,g, be the eigenfunctions of
HRa—μ N corresponding to the eigenvalues E^a), z = l,...,g respectively. By
Lemma 2.1 E^a) can be bounded by

Eι{a) = e0(μ) + O(e'εfi). (2.10)

Suppose that μ|Z| = \μ — μ\ = 0(1/β) and β is large enough. Then, as remarked in
Sect. 1, [cf. (1.15)] the ground states {<pf} for H — μ N are also ground states for
// — μ N. Furthermore, the masses, charges and particle numbers for {φ?} are the
same as for {<pf}. Thus we shall use M(I), N{i\ and Q{i) for both φt and φf\ Now, for k
varying in the positive octant of Z 3 , let fk be the eigenfunctions of the Laplace
operator with Dirichlet boundary conditions on the cube concentric with Uε but
with side of length I=e5εβ-3e4εβ. Thus

where

λk = π\k\e-5εβll-3e-εβ']-1. (2.12)

We then define normalized wave functions ψKί by

i-c,' ',XNi-c), (2.13)

and c is the center of mass of the xj91 ^j^Nt which is defined in (1.11). Evidently
the ψkti form an orthonormal set supported in (Uε)

Nί and

(2.14)

The partition function for the ensemble G is given by

ΞG(β, μ, Uε) = 1 + Σ exp [/?<%„ ( μ β < 0 + | i N - fl)VΉ>] (2.15)

Clearly, one has the bound (by the Peierls inequality [11, Proposition 2.5.4])

Ξ(β,μ,Uε)^ΞG(β,μ,Uε). (2.16)

The partition function ΞG(β, μ, Uε) is easy to estimate. By using the bound

3 ^ 3 / 2 1 ) , (2.17)
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we have

M ( ί > \ 3 / 2 _ ε / i Ί

(2.18)

Putting (2.16) and (2.18) together, we have proved the following:

Lemma 2.2. Suppose μ satisfies assumption A and μ = 0(1/β). Then there exist β0 > 0,
εx and ε2 such that if β>βo and if s1 < ε < ε 2 , then

pUε(β, μ) ̂  G(β, μ) [1 + O(e ~~ εβ)~] . (2.19)

Next we obtain an upper bound for the pressure. The proof of this lemma uses
an idea from Fefferman [5] and Lieb-Lebowitz [8, Theorem 2.2].

Lemma 2.3. Let /?, μ, and ε satisfy the conditions of Lemma 2.2 (with possibly
different β0, e l 5 and ε2). Then the pressure can be bounded above by

pUε(β,μ)^G(β,μ) [1 +0(<Γβ>)]. (2.20)

Proof Let KN be the kinetic energy defined by

N

κN=- Σ (Ai/2mi)- ( 2 2 1 )

Write HN = {1- δ)KN + VC + δKN {Vc is the Coulomb energy part of HN). By scaling
we have

(1-5)^+7^(1-5)"%, (2.22)

where £ N = infspecf ί N . Hence from (1.11) HN — μ N can be b o u n d e d below by

(2.23)

where Q is defined by Q = Z N. Choose δ satisfying (5(1 — δ)~ 1(ma.xμi) ̂  σ/4. Recall
that μ = O(β~ί) whence for β large enough

HN - μ N ̂  δKN + σN/2. (2.24)

Equation (2.24) also holds if we replace ίfN and KN by H^ and K^ respectively. To
check this statement, one only has to note that (2.22) holds for K^ replacing KN. Thus
one has

N ( m \ 3 / 2

ft
( m \

Tr exp lβ(μ N - HΌm. N)] ̂  ft \ ^ j \ 17/ exp [ - /?σiV/4] (2.25)

for β sufficiently large. Since |t/e | — β15εβ, by choosing ε < σ/120 the last two factors
in (2.25) can be bounded by e x p ( - βσN/120). The first factor in (2.25) is obviously
smaller than exp(jSσN/240) for large β and thus

Trexp[j8(μ N - H ϋ β i N ) ] ^exp[-/?σN/240] . (2.26)

But βG(β, μ) ̂  O(e~αβ) for some fixed constant α. Hence if we choose No and ε such
that

(2.27)
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then

I17J-1 Σ Trexp[P(μ.N-HϋβiN)]^G(i8,μ)O(e-β0. (2.28)
N^No

Next we consider the case N<N0. Define a subspace Y by

Y= Θ {SU.,N}, ^ = {N|JV<iV0, tfN-μ.N>e0(μ) + c}, (2.29)
N4

where c is the gap between the first excited energy et(μ) and the ground state energy
eo(μ) of H — μ N. Here ξ>Uetn is the subspace of N particle wave functions with
Xi e Uε for all i. Again we split the kinetic energy into two pieces and use the
simple fact K^KN and (2.22) to yield

+ c-S(l-<5)-VN. (2.30)

By choosing δ with δ(l — δ)~1(maxμi)No<c/2 we conclude
N ί m \ 3 / 2

. N - ^ ^ ) ] ^ £ Π
N<N0 i = l

(2.31)

Since c> 0, the left side of (2.31) is again small in the sense of (2.28) if/? is sufficiently
large. It remains to bound the contribution from the subspace Y' defined by

Y'= Θ {S*..N}, B={N\N<N0,NφA}. (2.32)

Let X be the subspace defined by

X = L\Uε)®XR

with

XR = < τ/?(xl5..., xN)|φ are wave functions satisfying the statistics requirements

N I

and xf e 2l/e and £ m^- = 0; N e B >. (2.33)
i=i )

Clearly, Y'cX with the natural injection from Y' to X. It follows that

Try,exp{j3(μ N-Hϋε>N)} ^ΎvχQχp{β(μ N - f f ^ N ) } .

Now let XR t9 be the subspace of the first g eigenstates of i ϊ Λ — μ N and denote its
orthogonal complement in XR by XRig. Again the contribution from L2(C/ε)®XRf9

is small since the Hamiltonian HR — μ N restricted to XR g is larger than eo(μ) + c.
Finally, the contribution from l}(UE)®XRg is easy to compute and can be
bounded by

1 W > ® **, e ^ β\ UΛ\G(β, μ) (1 + O(e ~εβ)). (2.34)

We conclude Lemma 2.3 by putting all these bounds together. •

Remark. It is not difficult to check that Lemma 2.3 also holds if we replace the
Coulomb potential by a Yukawa potential with v = O(e ~εβ). One only has to relate
the Yukawa Hamiltonian to the Coulomb Hamiltonian by Theorem 1.3.
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3. The Localization Method

We wish to use the localization method developed in [2] to obtain an upper bound
on the partition function. The main result in this section is the following
Lemma 3.1. It was stated slightly differently in [2]. We shall give another proof
since we emphasize a slightly different aspect here.

First we need to define a function g(t) which is supported in an interval slightly
larger than the unit interval \t\^ and such that

l , a l l ίeR. (3.1)

To accomplish this let f(s), —oo<s<oo, beaC 0 0 function such that

) = 4 = if s^O, /(s) = 0 if s ^ l . (3.2)

1/2
For any given η, 0<η<^ we define g(t) by

(3 3)

g(ί)=g(-ί),

It is clear that g{t) is a C00 function supported in the interval \t\ Sj + η, and that
(3.1) holds.

The function g(ί) can be used to generate a translation invariant partition of
unity for R3. If we let χ(x) = g(xι)g(x2)g(x3) with x=(xι,x2,x3) and put χλ(x)
= χ{x + λ), where λeZ3, then it follows from (3.1) that

Σ χ | ( ) (3.4)
λeZ 3

Let Γ be the unit cube in R3 with center at the origin. A function h which is of
central importance to us is defined by

Γ λeZ3

= J duχ2(x + u)χ2(y + u). (3.5)
R3

It is evident from (3.5) that h(x,y) depends only on the difference z = x — y and

h(z) = h(x — y) = χ2 * χ2(z). (3.6)

It is obvious then that
Γ oo Ί 3

h(0)= f g4(ί)Λ = l + 0 ( ^ ) . (3.7)

Furthermore h(z) and its derivatives satisfy the inequality

\h(z)\SC, \d«h{z)\^-^—> | α | ^ l , (3.8)

for some universal constant C.
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Now for λ e Z 3 and I > 0 let ξ>h λ denote the Fock space for the cube with center
Iλ and side of length Z(l +2η). We introduce a Hamiltonian HJ λ η on ξ>ltλttJ which
differs from the Coulomb Hamiltonian (1.1) by replacing the Coulomb interaction
with a Yukawa and by including a scale factor depending on η. On an eigenspace of
N it is given by

Hlλ,η,N=-Σ J—^i + H^Γ1 Σ efijYv(Xi-Xj)' (3-9)

We assume this Hamiltonian acts on functions in ξ)ϊiλin which satisfy Dirichlet
boundary conditions. For any open subset A in R3 we define a subset Z3(A9 Z, η) of
Z 3 b y

Z3(y4,Z,η) = {λeZ3: there exists ueΓ such that the cube with center (λ + u)l

and side of length 1(1+2η) intersects A} . (3.10)

Then we define the Hubert space ξ>ιtAtη by

ξ>ι,Λ,η= (x) $ι,λ,η (3.11)

and the corresponding Hamiltonian Hv

lΛ η acting on § ι > y l f J ί by

HU,η= Σ Hϊ9λtη. (3.12)
λeZ3(Λ,l,η)

The Hamiltonian (3.12) only includes interactions between particles which are
contained in the same cube indexed by λ e Z3(A, Z, η).

Suppose the Coulomb Hamiltonian HΛ on the set A acts on the Fock space ξ>Λ.
For MeΓwe define an injection iu:ξ>A-+&ιtAtη. Let ψ(xu ...,XJV) ^>e a n ^ particle
wave function in ξ>Λ. For lteZ3, 1 ̂ i^N, we define a wave function v?Al>...jAlv. by

V^1,...,λN(^i» ^iv)= Π ^ ( T M X I + W^ ^JV + NO ( 3 1 3 )
i=l \ ί /

Then ιMi/; is given by

The Hamiltonian induced on 9yΛ by ξ>ΐtΛtη is given by i*HitAttliu. We wish next
to compare the average of this Hamiltonian for u e Γ to the Coulomb Hamiltonian
HΛ.

Lemma 3.1. There is a universal constant C such that if (vΐ)2η5 ^ C, then (m = minm^)

CN 1 Ί

^ ή (3 15)

Proof It is easy to see that the action of the Hamiltonian (3.15) on an N particle
wave function is given by [recall identity (2.9)]

- \ Σ ^-\Ή ί \?X\2dx+ Σ efijK^-Xj), (3.16)
[_i=i2mί_\l R3 ι^i<j^N
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where the function K^z) is defined by

Kι(z)=1

1K^(z/l) and Kμ(z)= ~-^Yμ(z). (3.17)

It is clear from the definition of g(t) that

$\Vχ\2dxS-, (3.18)
R3 η

for some universal constant C. One sees from (3.17) that Kμ(0) = μ. Hence if we
prove that Kμ(z) is a positive definite function then the inequality (3.15) will follow.

To see this we consider the Fourier transform Kμ(p) of Kμ(z) given by

p V + μ2) (2πfh(0) J L(P - ξ)2 + μ2 p2 + μ2

4π

-p2 + μ2lp2

where

4πμ2 1 ff 4π 4π

(3.19)

3/ϊ(0)J(p-ξ)2 + μ2 "'

τdξ. (3.21)

From (3.8) we see that there is a universal constant C such that

ψ (3.22)

It follows easily from this that

\J(p)\SC/η5p2 (3.23)

for some universal constant C. We estimate I(p) by using the fact that H(ξ) = fi( — ξ\
since h(z) is an even function. Thus

23M0) J ( 3 2 4 )
_ r ^

2π3M0) J [(p - ξ)2 + μ2] [(p + ξ)2 + μ2] '

It is easy to see now that there is a universal constant C such that

\I(p)\SC/ηY. (3.25)
It follows then from (3.19), (3.23), and (3.25) that if μ2η5 ^ C for some universal

constant C then Kμ(z) is positive definite. The inequality (3.15) follows easily now
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from this, (3.18) and the following inequality,

Σ e/
l

Σ
j=l

- Σ
j l

(3.26)

4. Bounds on the Global Partition Function

Here we prove Theorems 1.1 and 1.2 by obtaining upper and lower bounds on the
partition function in a large cube A. First we consider the upper bound. From
Lemma 3.1 we have the inequality

βpΛ(β, μ) = \Λ\-1 log Tr exp [j8(μ N - HJ]

(4.1)

where μ' = (μ'1?..., μ's) and

μ'. = μ. + (C/ml2η) + v(maxzα)2. (4.2)

Now if we use the log convexity of Trace [11] then the term on the right in (4.1) is
bounded above by

J du\A\ ~ι log Tr exp [β(μ' N — HJ Λ )]
r

£\A\~l Σ logTrexp[/J(μ' N-fί? i A J]
λeZ3(Λ,l,η)

= \A\-X \Z3(A, I, f, )|log Tr exp \β(μ' N - HI O t , ) ] , (4.3)

where |Z3(Λ, Z, f/)| is the number of elements in Z3(Λ, Z, T/).
For ε > 0 satisfying the condition of Lemma 2.3 we choose l = e5εβ and η = v

= C/l2/Ί in such a way that the condition of Lemma 3.1 holds. Then by the remark
of Lemma 2.3 we have

^ ] , (4.4)

where Uε is a cube with side of length l = e5εβ. From (3.10) it is easy to see that
ι * (4.5)

We conclude then from (4.1) to (4.5) that
£β)-]. (4.6)

Since (4.6) is true for all μ with μ = 0(1/β) and G(β, μ) achieves its minimum for
some μ = O(\/β\ we can replace the right side of (4.6) by g(β,μ) and conclude the
proof of the upper bound.

We have proved an upper bound on the pressure. Next we obtain a lower
bound. To accomplish this we define the ensemble G on the large cube A. Let g be a
covering of A with disjoint cubes Uε with side of length e5εβ. The ensemble G has
already been defined on Uε in Sect. 2. We extend it to A so that

S G ( j8,M)= Π ΞG(β,μ,Uε). (4.7)
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Let ® be the set of all wave functions ψ which are antisymmetric tensor products
of the ψkti defined in (2.13) with each ψkΛ belonging to a different Uε e g. Then it is
clear that

<φ, (//-μ N)φ> = Σ <φk,b (H-μ N)ψκ,> + Vint, (4.8)
(k,i)

where the sum is over the (kj) such that \pki is included in the tensor product
representation for ψ. The usual exchange terms vanish because ψki and ψhj have
disjoint supports for fcφ/i. The term Vint is the Coulomb interaction energy
between the wave functions ψKi. Since the wave functions in S form an
orthonormal set, one has that

= ΞG(β,μ,Λ)EG[.cxp(-βViaJ], (4.9)

where EG denotes the expectation with respect to the ensemble G, and we have
defined Vint = 0 on the vacuum. Jensen's inequality yields

-]. (4.10)

From (4.7), (4.9), and (4.10) we obtain then a lower bound on the pressure,

ΞG(/ί,μ, Uε)-β\ΛΓιEG(Vial). (4.11)

To estimate the interaction term, we first note that the total density of those (p°s
corresponding to a fixed eigenvalue Eld) is radial. This is because the Hamiltonian
Hχa is rotation invariant. Note that for a particular eigenstate φ\, the density
corresponding to this state need not be radial! Now we can use Newton's theorem
on the ί/r potential (i.e., the mean value property of the harmonic function 1/r) to
write

EG(Vint)=ί Σ I(U»WX (4.12)

where

I(Uε,Wε) = f f — —dxdy. (4.13)
U'ε W'ε \X—y\

The cubes Uε, Wε are concentric with Uε, Wε respectively but with side of length
e5εβ — 3e4εβ. The charge density ρ(x) is defined for xe U'ε by

(4.14)

Choose μ in such a way that the total charge in a cube is zero, i.e.

J ρ{x)dx = 0. (4.15)

Clearly, μ = 0(1/β) by the same arguments as given in (1.20). We now prove that the
contribution from £G(^int) is small. First, note that from the symmetry we have

\xρ{x)dx = Q. (4.16)
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Now we use Taylor's theorem to expand \x—y\~1 and (4.15), (4.16) to estimate
I(Uε, Wε). From this we obtain the inequality

1/(17., Wε)\ ^e2^d(U'ε, WX5 ^J \ρ(x)\dxj,

whence one sees that there is a universal constant C such that

Σ\I(Uε,Wε)\ίC\$ \ρ(x)\dx]2. (4.18)

Hence from (4.12) we have that

|£G(^n,)l^flSirileWMxl2. (4.19)

If we put the inequality (4.19) together with (4.11) and Lemma 2.2 we have then

βpΛ(β,μ)m\ \Ut\ \Λ\~ι ΪG(β,μ)li +O(e"«")]- ^βe~l""\l IβWld*?

(4.20)
It is clear that if ε satisfies the condition of Lemma 2.2 then

ί ' ) . (4.21)

Now using the fact that

^ l , (4.22)l
yl-» oo

(4.20) and (1.6) yields in the limit A ->oo the lower bound

βp(β, μ) ̂  G(β, μ) [1 + O(e " εβ)~]. (4.23)

Now we can take the infimum on the right side of (4.23) to conclude the lower
bound of Theorem 1.1.

Proof of Theorem 1.2. Theorem 1.2 is actually a simple consequence of
Theorem 1.1. To see this, first note that p(β, μ) is a convex function in μ. Hence the
derivative of p can be bounded by finite differences as

-7[p(fcμ-ίδ)-p(ftμ)]^ Σ |^03,μ) = ί?(/?,μ)t a=ιoμa

^*L>(Aμ + ίδ)-/?0?,μ)] for all ί > 0 , (4.24)

where δ = (l,...,l). Because the lower bound is exactly the same as the upper
bound, we shall concentrate on the upper bound only. Write δ = δ 1 + δ' with δ 1 Z
= δ1 δ'=0. Now we take t = O{e~εβ/2) and use Theorem 1.1 to bound the right
side of (4.24) as

ί(β + ίδ 1 ) - g(i8, μf] + O(e ~ ^2)

* ' 2 ) , (4.25)
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where μ' is some point on the line segment joining μ and μ + ίδ1. Define a function
h(μ) by h(μ) = μ + ω(μ)Z with ω(μ) satisfying (1.19). By definition

1 ) (/?, μ') = (dG/dδ1) (j8, h{μ')).

But (dG/dδ')(β,h(μ')) = O (again by definition) and hence

(dg/dδ1) (β9 μ') = (dG/dS) (β, h(μ')) = R(β, h(μ')). (4.26)

To conclude Theorem 1.2, it remains to show that

Λ(j8, %')) ̂  *(ft %)) + 0(<Γβ/?/2) (4.27)

Now by (1.14) we have

^2), (4.28)

and hence the relation between R(β, h(μ')) and R(β, h(μ)) becomes elementary and
involves only finite linear combinations of exponential functions. Now (4.27)
follows from (4.28) because the exponential functions are differentiable.

5. Continuity of Stability of Matter Constant

Here we. prove Theorem 1.3 by a modified version of the localization method in
Sect. 3.

Let K denote the kinetic energy operator for the Hamiltonian Hv and φ(z) be
the function

φ(z) = h(z)/(\z\h(0)), (5.1)

where h(z) was defined in Sect. 3 and includes a parameter η,O<η<^. For
simplicity of notation, we shall assume mα = \za\ = 1, α = 1,2,..., S.

Write Λ(0) = l-2<5/(l+<5) [recall from (3.7) that δ = O(η)] and split the
Hamiltonian Hv into two parts as

Hv = iδK + V{] + (1 - <5) [K + ̂ ] = H' + H", (5.2)

where J>7r is the two body interaction obtained from the potential φt(z) = l~1φ(z/l)
and V{ is defined similarly with the potential Φx given by

Φι(z)=Yv(z)-(l-δ)l~ιφ(z/l). (5.3)

The second term in (5.2) can be bounded by the localization method in Sect. 3. We
can then use the assumption H — μ N>σN to yield the bound

H " ^ - {CN/l2η) + (1+ δ) [ - μ N + σiV]
2 (5.4)

with c5 = max{2[max|μα| + σ],C}.
Let dμ(Γ) be a probability measure onR+ (which will be fixed later) and define

ΦμhY Φμ(z) = δY1(z) + [Yv(z)-δY1(z)-(l-δ)μ-1φ(z/l)dμ(l)-]

= 57^) + * ; (5.5)

with corresponding 2-body interaction Vμ = δV{1)+ V^2\
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Now integrate the inequality (5.4) with respect to dμ(l) to obtain

•μ N . (5.6)

The first bracket can be bounded below by the stability of matter theorem for
Yukawa interaction [2,13] as

(5.7)

where E is some universal constant. For the second term Vμ, we claim that there is a
choice of dμ such that if

η^c'\logv\~1/6, (5.8)

then the potential Φ'μ is positive definite and

j/~2ίiμ(/)^c|logv|~1. (5.9)

Here c and d are universal constants. Assuming this, we can then bound W by

H^lσ-\δE+-^+c5δ-cc5η-ί\logv\-ί JN-μ N, (5.10)

where we have used the positivity inequality (3.26) with Φ'μ{0) = δ — v. Theorem 1.3
is then an immediate consequence of (5.10) arid the choice (5~?7~|logv|~1/6.

To conclude Theorem 1.3, it remains to prove the existence of such a
probability measure.

We choose a probability measure dμ(ϊ) of the special form

l, (5.11)

where χ denotes characteristic function and α is given by

α = | logvΓ 1 log2. (5.12)

The following two elementary inequalities concerning dμ(l) will be useful later.

(5.13)

,A-2-\. (5.14)

Let φ(p) denote the Fourier transform of φ(z). Then from Lemma 3.1 we see
that there is a universal constant c such that

5 ' 4 (5.15)

[c-4π/p2, p<η~5/*. (5.16)

The Fourier transform of Φ'μ is given by

4π " ^ " ' yy ' ' An

Write $' as a sum of two terms

(5.18)
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v 2 ) ] - ' , (5.19)

(5.20)

The last term k(p) can be bounded using (5.13)—(5.16) as

ίcav-2-(i-δ)p~2, pel

Wίk?(p)=\ c<xη~5p~4, pell (5.21)
[2caη-5'2p-2, pelll

with

and

We shall assume from now on that

δ>4v2, (5.22)

which is certainly satisfied by our choice oϊη. The first term g(p) can be bounded by

[
)^g'(p)= (<V4p4), pell (5.23)

[iη5/2(δ-v2-η^2)p-2, pelll,

where we have used the bounds

(p2 + v 2 )- 1 ^^(l+p 2 )- 1 +(l-^)( l+^- 5 / 2 )- 1 v- 2 in/;

p ' V + v 2 ) " 1 ^ ^ " 4 and [p2(δ-v2)-(l-5)v2]p~2^(5/2 in//

[recall (5.22) and η< 1/2];

p2((5-v2)-(l-^)v2^p2(^-v2-f/5/2) and p 2^(p 2 + l)(/?2 + v2)^5/2/4 in///.

Hence

)-/c(p)^O if (l-(

Clearly, α^l logvp 1 and ?7 = O(|logv|~1/6) satisfy all these inequalities for small v.

6. Estimates on the Observables

In this section, we shall present a brief discussions of observables via the
"Feynman-Hellman" method. As we shall see, this method applies to a large class
of observables once good upper and lower bounds on the partition function are
obtained. We shall not define the optimal class of observables which can be
estimated by this method. Instead, we shall choose a more specific class of
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observables for which a clean formula can be given. Our class of observables is
different from the usual ones (the n-point functions) of many-body theory. Our
main result is stated in (6.13) and an example is given right after that.

Let A be a multiplication operator defined by

9 ...,xN) = AN(xu ...,xN)ψN(xu . . . ,x N ) . (6.1)

By log convexity we can bound the expectation of A by finite differences as

-t [log Tr exp {β(μ N-HΛ- tA)} - log Tr exp {β(μ N - Jϊ J } ]

D o g p { j ( μ i l + ) } g { i ( μ N - f l i l ) } ] . (6.2)

To apply (6.2), one should have good lower and upper bounds on the pressure
in the presence of small perturbations tA. Let us further assume that ^4N is given by

AN(x1,...,xN)=$dufN(xι-u,...,xN-u). (6.3)
A

The functions fN are defined in terms of symmetric functions gk of k variables
yl9 ...9yk, fc = l,2,..., which are supported in the set | ^ | < C , ΐ = l, ...,fc. To define
/NCVI* •> Λv) l e t ζ > 0 and suppose the set of yb 1 ̂  i <£ iV, such that \yt\ < ξ is given by
yb i = l,2,..., θ(ξ), and the center of mass of these yt is y(ξ). Then we have

0 ί f

Thus in the definition of fN there are two parameters ξ, ζ, involved as well as the
functions gk. These parameters are chosen fixed, depending on β, with

ξ = O(e«)9 ζ = O(β). (6.5)

We shall also assume that the gk can be bounded,

(6.6)

for some universal constant c. The assumption (6.6) is important since otherwise tA
can not be viewed as a small perturbation of H and the physics described by H + tA
can be completely different from that described by H.

With this assumption, it is not difficult to check that the localization method in
Sect. 3 can be extended to the operator H±tA with the localized Hamiltonian
Hϊ,λ,η replaced by Hv

uλ^ + tAUλ. Here the operator Ahλ is given by

AUλψ(xu ;XN) = $dufN(xί-u,...,xN-u)ψ(x1,...,xN), (6.7)
Q

where Q is the set of u which are within a distance ξ from the cube with center Iλ and
side of length /(I + 2η). Equation (6.7) reduces the estimate of the pressure to that of
a cube with size of order / and Yukawa interactions. For this purpose, our first task
is to estimate the shifts of the ground state energy under small perturbations. A
natural tool for this is to make standard second order perturbation theory
rigorous. In the case of the ground state energy with a gap, this is not difficult to
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achieve by combining usual perturbation arguments with the variational
principle.

To avoid discussion of degenerate perturbation theory, we shall assume that
the ground states ψl9..., ψg of HR — μ N have different particle numbers, namely

N(θ + Nθ) if i φj [ ^ definition of N(ί) is given in Sect. 1 before assumption (A)]. The
general case can be treated by degenerate perturbation theory but the notation
becomes too clumsy and will not be discussed here. With this assumption,
Lemma 2.1 can be easily modified using standard perturbation theory. We leave
the details to the reader and simply write down the following conclusion:

] j ) , (6.8)

where τ is the gap defined in the corollary of Theorem 1.3 and Wj is defined by

, (6.9)

with dx denoting the standard Lebesgue measure restricted to the subspace
Σ mpCi = 0. Note that we need a universal bound || gN \\ ^ < C for all N < No to make
use of second order perturbation theory. This bound is again provided by (6.6).
Now we can apply the method of Lemma 2.3 to conclude an upper bound for the
pressure in a cube. By the above remarks on localization, this bound extends to the
pressure on the whole box A. Hence we have the following bound for t = O(e~εβ/2\

βp(β,μM)ύ Σ ρ^expC-jSίwJίl+O^-^2)). (6.10)

Here the function ρ{i) is the "reduced density" of the ith-comρlex defined by [cf.
( U 7 ) ] /M<oγ/2

i^J (6.11)
with μ = μ + μZ and β solves (1.19).

A lower bound to the pressure similar to (6.10) is much easier to obtain since it
is just a variational calculation. Putting this lower bound together with the upper
bound (6.10), we have succeeded in extending Theorem 1.1 to the case with small
perturbations. To summarize, for A satisfying (6.5) and (6.6) the pressure can be
bounded (for t^e~εβ/2) by

βp(β,μ,tA)= Σ ^expC-iSίwJίl + O^-^ 2 )) . (6.12)
i=ί

We can now use (6.12) in (6.2) to bound {A} by

Ml"'<A>= Σ [ Λ ( l + O(e-εβ/2)) + ρ(i)O(e-εβl2)-] . (6.13)
i=ί

In case wf + 0 the second term in the bracket can be absorbed into the O(e~εβ/2)
part of the first term, while for wt = 0 the first term vanishes and only the second
term is left. Equation (6.13) is the main result in this section. It shows that the
expectation value of an observable is given by the expectation value of that
observable in the ideal gas of ground state atoms or molecules plus a fluctuation of
order e~εβf2.
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Let us specialize (6.13) to the following example to have some perspective and
to compare with previous results for the hydrogen atom [5].

Let gk be the local number operator defined by

Σ
i= 1

where χζ denotes the characteristic function of the set \y\ < ζ. The corresponding
operator A can be interpreted as the local density operator. If one takes into
account that ψj has exponential decay (see [9] for a discussion and references) the
expectation Wj can then be bounded by

\Wj-N{j)\<O(e-εβ). (6.15)

Hence Eq. (6.13) asserts that the local density is indeed the same as the global
density (given by Theorem 1.2) with accuracy O(e~εβ/2). Note that this is an assertion
concerning the density fluctuations. In particular, if we let gk = 0 in (6.14) for
k E {N{i)\i = l,...9g},A can be interpreted as the local density for "complexes" other
than the ground state complexes. In this case, (6.13) shows that the expected
density is then smaller by a factor of order e~εβ/2, which is a stronger statement
than the corresponding statement for the hydrogen atom which appeared in [5].

Appendix

Here we show how our localization method can be applied to prove a result similar
to but stronger than Lemma 2.1. The advantage of this result over the simpler
proof of Lemma 2.1 is that the constant involved depends only on the ground state
eigenvalue of the Hamiltonian and not on the ground state eigenfunctions.

Lemma A.I. With the same assumptions as Lemma 2.1 there is the inequality

eo(μ) S Et(a) ̂  eo(μ) + C/a2, a ̂  1, (A.I)

where the constant C depends only on eo(μ).

Proof. For simplicity of notation we shall take μ = (μ1? ...,μ s) to have all
components equal, μ{ = μ, whence μ N = μN, eo(μ) = eo(μ).

The lower bound on E^a) in (A.I) follows easily from the Rayleigh-Ritz
principle so we shall concentrate on the upper bound. The main tool we shall use is
Lemma 3.1. Let us fix a particular eigenspace of N, namely N = N 0 , and assume
that HR — μN has ground state energy eo(μ) on this eigenspace with degeneracy
g ^ 1. The Hamiltonian HR is given by the formula (1.2) with N = N 0 and acts on
wave functions ψ(xu...,xN) on R3]V which are constant along 3 dimensional
hyperplanes orthogonal to the subspace

N

Σ Wi^i = 0 j with respect to the quadratic form (A.2)
i= 1

Σ mt\xt\
2. (A3)

i=l

The norm of ψ, \\ψ\\ is the L2 norm of xp restricted to the subspace (A.2) which is
induced by the quadratic form (A.3). We denote this Hubert space by §£•
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Let λ = (λu λ2i..., λN) e Z 3 N denote a multi index and ψλiU be defined for u e Γ by

N f* \
ψλ,u(Xi> '>xN)= Π lλx\T+U )Ψ(XI>-' ,XN)' (A.4)

The Hamiltonian H\ is given by

H\= - Σ ^-Ai+ ] 4 Σ dM*fijYtXi-X) (A.5)

and is assumed to act on functions in §* . Then if we let Pψλue ξ>* be defined by
χ,u — Ψλ,u o n t n e subspace (A.2) it is clear from Lemma 3.1 that

(A.6)

For α e Z 3 , AeZ 3 Λ ί let JVΛ(α) be

JV A (α)=#μ ί :A ί = α, l ^ i ^ i V } . (A.7)

Then by the Rayleigh-Ritz principle and scaling one has

^ " ' 2h(0)
(A.8)

Now let ψb i = 1,2,..., g be the ground state wave functions in § * of HR — μN
with energy eo(μ). Putting φ = tpi? ι = l, ...,g in (A.6) and summing we obtain the
inequality

)ί|F(uMU-|~+vlgN. (A.9)

From (A.8) we obtain a lower bound on F{u\

F(u) ̂ g{[l + O^jeoίμ) + μNO(η)- vN2} . (A.10)

Hence if we put G(u) = F(u) — geo(μ), then (A.9) and (A. 10) yield the inequalities

G(u) ̂  O(η)e0(μ) + μNO(η) - vN2, (A.I 1)

Let Γo C Γ be a cube with center at the origin and side of length L o < 1. Then it is
clear from (A.ll) and (A. 12) that there is a uoeΓo such that

G(u0)SL~o

3 j | ~ + vJ gN-O(η)eo(μ)-μNO(η) + viV2|. (A.I3)

For α ^ l let J5N>ί(α), ί = l,2, ...,g be the first g eigenvalues of HRa — μN on the
eigenspace of N. We choose a such that

.-£ί
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Then by Rayleigh-Ritz and scaling it follows that if /ί = 0eZ 3 J V then

g Γ

Σ
i=lL (A.15)

where K: is defined by

K-' = min f f l i i-i Σ K\ + M > (A.16)
1 ^ 0 1 J* i J

and v4 = (αl7) is the matrix determined by the transformation

Pψi,o,uo= Σ aφj9

where ϋί? 1 ̂ i ^ g is an orthonormal set.
Next we take L0=l,η = v, and l2ηΊ = C in such a way that the condition of

Lemma 3.1 is satisfied. It follows then from (A.I5) and (A.I3) that if K^ 1 + Ca~2/Ί

Since we already know that ENΛ(a)^eo(μ), l ^ ί ' ^ g Lemma A.I follows
provided we prove the bound on K.

To accomplish this let L be the gxg matrix

Then if L is nonsingular 4̂ = L1/2. We shall show that

||L-/||g Jy, (A.20)

whence the bound on K follows. To see this note that if λ e Z3N has all λt equal then
PψλyUo = 0 unless λ = 0. Also by (A.8) if λ is such that not all λ{ are equal then

It follows then from (A.I3) and (A.21) that

\\ψi-Pψi.o.J\2£Ca-2iΊ

9 l^ i^g. (A.22)

Since the ψt form an orthonormal set the inequality (A.20) follows. We can now
argue as in Lemma 2.1 to obtain the inequality A.I. •
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