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Abstract. We show that various Hamiltonians and Jacobi matrices have no
absolutely continuous spectrum by showing that under a trace class perturba-
tion they become a direct sum of finite matrices.

1. Introduction

One of the most versatile tools in the study of scattering theory is the trace class
theory which goes back to the basic work of Kato, Kuroda, Rosenblum and
Birman, and which was raised to a high art by Pearson. A summary of the basic
results can be found in Reed-Simon [13].

We will apply these ideas to the study of stochastic Schrόdinger operators and
Jacobi matrices to show that, typically, there is no absolutely continuous spectrum
(at least in one dimension). At first sight, this seems an unlikely tool since there are
no scattering states if σac is empty. The point is that the trace class theory is ideal for
showing that two operators have the same absolutely continuous spectrum so if we
can show that under some kind of trace class perturbation h (or its equivalent) can
be transformed to an operator without any absolutely continuous spectrum, we are
done. In a different context, this idea has recently been used by Rowland [4, 5].
Obviously direct sums of finite matrices have no absolutely continuous spectrum
and it is these operators which we will show to be equivalent to the original ones.

A simple example concerns one dimensional Jacobi matrices of the form

(hu)(n) = u(n + l) + u(n-l) + v(n)u(n) (1)

on 12(Έ). If ι;(«) = /lcos(παπ), then for small λ and suitable α, h has absolutely
continuous spectrum [1 ] but if v(n) = λ tan (πα«), there is not absolutely continuous
spectrum for any λ φ 0 if α is irrational [16]. There have been spectulations that this
is due to the fact that tan is unbounded and we will prove that this is so in Sect. 2. So
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long as

lim |f (π)| = lim \v(n)\ = oo ,
M-+OO n-*- — oo

A has no absolutely continuous spectrum. Thus, for example, if v(j) are Gaussian
random variables, then σac(A) = 0.

The idea will be to pick a subsequence of the set of points where \v\ is large and
consider the operator where it is taken to infinity (i.e. a Dirichlet boundary
condition is put in). We will show the difference of resolvents is trace class.

The intuition behind why there is no absolutely continuous spectrum concerns
tunnelling. High barriers make tunnelling difficult and the trace class theory mostly
concerns that.

In Sect. 5, we consider potentials having a sequence of intervals, Ik, on which
v^O and whose width |4I goes to infinity. Such a potential should produce a
Hamiltonian with no absolutely continuous spectrum at negative energies by the
same intuition. The barriers here are broad rather than high. To realize this we need
to localize in energy the trace class analysis and the key is that if n is in the middle of
an interval of length / and Δ is a closed interval in (— oo, 0), then (with EΔ the spectral
projection of A) ||£^<5n|| is exponentially small in/. Such a priori results are presented
in Sect. 4.

Klaus [7] has studied models like those we consider in Sect. 5 although he looked
at the simpler question of identifying the essential spectrum (see also Cycon et al.
[3]).

It isn't only high barriers that force tunneling. Forbidden energies due to gaps in
the spectrum for a Dirichlet operator are also effective. The results in Sect. 4 are
stated in this framework. We then apply them in Sect. 6 to obtain a new proof of
absence of absolutely continuous spectrum in certain Anderson models. We settle
for a result under rather strong conditions on the potential distribution because this
section is intended for illustration purposes only.

The conditions under which the ideas of Sect. 6 apply are rather close to those
for conditions where Kirch et al. [6] apply ideas of Kotani [9] to prove that <τac is
empty. The methods are rather different, and extend easily to operators on a strip or
to where Ao is replaced by a matrix A obeying

\ΔiJ\^C{\i—jp+B + l}~1

This extension is discussed in Sect. 7.
While we focus on the discrete Jacobi matrix case, these ideas apply to the

continuum Schrodinger case also. We illustrate this in Sect. 3 which is an analog of
Sect. 2. Analogs of Sect. 4-6 are possible also.

The main results of this paper may be summarized as follows. Let A be given
as in (1).

a) If lim \v(n)\= lim |ι?(/i)| = αo, then σac(A) = 0.
«->oo n-* — oo

b) If 4 are intervals of width /k-+oo as |fc|-*oo and v(j)^tθ ifjelk, then

σa c(A)n(-oo,O) = 0 .
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c) Let /fc be as in (b) and let vP be a periodic potential. If

max \υ(j)-vP(j)\-+0

as |fc|->oo then, with probability 1 σac(h)aσ(h0 + Vp).

While we have stated results in terms of the absence of absolutely continuous
spectrum, it follows by results of Kotani [8] and Simon [17] that when the absolutely
continuous spectrum is empty then the Lyaponov exponent is a.e. positive.

2. High Barriers-Jacobi Case

Theorem 2.1. Let h be the operator

on 12(Z). Suppose that

lim \v(ή)\= lim \v(n)\ = oo .
n-*ao n-> — oo

Then
<τβc(Λ) = 0 .

Remark and Example, v can be mainly zero or small. This result says that so long as
there are arbitrarily high barriers, h has no absolutely continuous spectrum. As an
example let / be an arbitrary R u { oo} valued function on S1 continuous in extended
sense with / unbounded. Let α be irrational and let

then σac(h) = 0.

Lemma 2.2. Let Ko be an arbitrary matrix with

Then

Proof. Write

(
Since ||(ΛoH-Z)""11| g l and | | £ 0 | | ^ 2

?

 w e have that

Proof of Theorem 2.1. Let tn be the matrix with ones in the (n, n + \) and (w + 1, w)
position and zeros elsewhere so that

K= Σ u ,
n— — oo

and (ho — tn) is a direct sum of an operation on (— co,n] and one on [(« + l), oo).
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Pick {HJ}]JL-OO SO that ±n±j^co as j->oo and so that

j

Define hn inductively by

A Ξ A ^ A O + I; , hj+1=hj-tn.-tn_. .

By Lemma 2.2 and the resolvent identity

Since that operator is rank 4, we have that the trace norm obeys

By the choice of the Πj, (hj + /) ~ ί is Cauchy in trace norm, so since s-lim Aj = A ̂  exists
we have that

is trace class and thus (see e.g. [13, Theorem XI.9])

σac(^) = σac(A00) .

But A^ is a direct sum of finite matrices and so σac(ho0) = φ. •

3. High Barriers-Schrόdinger Case

Theorem 3.1. Let V(x) be a function on(—oo, oo) 50 ίAύtf there exist points {xn}™= _ oo
with xn-+±oo and sequence {ln}™= _ «, β«rf {̂ «}̂ °= - oo of positive numbers (the half-
widths and heights of barriers) and v0 such that

(i) V(x)^-v0 allx,
(ii) V(x)^hn if\x-xH\£lH,

(iii) An->oo α^ |«|-^oo,

(iv) An/^->oo as |w|—>oo.

dx
σ a c ί — -T-2-+ ^ W I is empty.

\ dx J

Remarks. 1. Without much effort one could presumably replace (i) with a condition
of the negative part being uniformly locally L1 or even a condition allowing
Λ + l

j \V\dx to diverge but no faster than en2.
n

2. In terms of the intuition of Sect. 1, the conditions (iii), (iv) are quite natural, (iii)
says the barriers are high compared to any finite energy and (iv) says that the
barriers are effective [since tunnelling probabilities for energies small compared to
Angoasexp(-2Aπ

1/2/n)].

Lemma 3.2. Let Ho be — d2/dx2 with Dirichlet boundary conditions at some set of
points. Let Ho Dbe the some operator with an additional Dirichlet boundary condition
at x = 0. Let W be a potential obeying
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(i)
(ii)

where /l> 10, Λi> 10. Then (with || \x = trace norm)

\\(HO+

Proof. By general principles about quadratic forms, the operator in || ||x is positive
so the trace norm is just the trace. By writing the resolvant as an integral of
semigroups and writing a path integral for the semigroup kernel (see e.g. [15]) (or
by the maximum principle), one sees that this trace only goes up if we replace Ho by
Ho= — d2/dx2 (on all of (— oo, oo)) and decrease W. Thus, we can restrict ourselves
to H0 = H0 and W(x) = λχ(-U)(x). Let G(x, y) be the integral kernel of (Ho+W
+ 1)" 1. By the method of images

Ίr((H0+W+iy1-(H0,D+W+\Γ1)= f G(x,-x)dx .
— oo

Let φ+ solve (Ho+ W+l)φ+ =0, I2 at infinity and normalized so that φ-(x)
= φ+( — x) obeys

2φ'+(0)φ+(0)=-l ,
with say φ+(0)>0. Then

J G(x, -x)dx = 2 J \φ+(x)\2dx .
- o o 0

Straightforward matching analysis shows that

with

from which it follows that

J \φ + \2dx
o

as required. •

Proof of Theorem 3.1. Pass to a subsequence, also called xn9 with x ± M ^oo as
n-+±oo and so that

Σ l λ J ' ^ o o and ^e'^^Koo .

By sucessively adding Dirichlet boundary conditions at x0, xx, x _ x,..., xn, x _„,...
and using the lemma
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where E= — v0 +1 and Ho has Dirichlet boundary conditions at {xn}. Since H0Λ-V
is a direct sum of operators on finite intervals, it has no absolutely continuous
spectrum, so, as in Sect. 2, neither does Ho+V. D

4. Decoupling Local in Energy

As motivated in Sect. 1, we want to prove:

Theorem 4.1. Let IIαII = sup \(Xi\on Zv. Given <5 > 0, there exists ε > 0 and Cso that
ί = l , . . . , v

for all intervals A=(a,b)aWί, all potentials {F(α)}αeZv and all aoeΈv, />0, the
following holds:

Let h = ho+V on 12(ΈV). Suppose that there exists a bounded self-adjoint A on
I2 (Έv) obeying:

(i) Af=hf iff vanishes on {β\ ||jS-αo|| >/},
(ii) (a-δ,

Then

Remarks. 1. To understand the theorem, think of the case where V(β)^b + 2v + δ
on {jS| || β — αo|| >/} and let A = ho+W, where W is an extension of V obeying

on all of TL\

2. We take the norm we do on Έv partly for notational convenience sine the "balls"
are then cubes. The "right" norm is clearly the Euclidean norm for which the proof
can be done also.

3. Section 7 contains an alternate approach to the decoupling expressed by
Theorem 4.1.

Lemma 4.2. For each δ, there exists ε > 0 and Cγ so that if7=1,2,.. .is given and a self-
adjoint B obeys:

(i) Bf =hof +Vf for some V and all f vanishing on {α| ||α||>/},
(ii) σ(B)n(-δ,δ) = 0,

then

Proof This is a simple exercise in the Combes-Thomas [2] method. Define ρ
on Zv by

ρ(α) = 0 i f H = " /

= i- | | - | | if Ml s i / .
Given any gel2 (Έv) we decompose g = f-hq, where / vanishes if || α|| > /, and q

vanishes if ||α|| ̂ /. If s vanishes for ||α|| ̂ /, then
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since Bs is supported in {α| ||α|| ̂ /}. Thus

e~ηβBeηβq = Bq .

Since Bf = (ho+V)f and for \η\< 1

119

with | | C j ^d^\ by an elementary calculation (depending on
|α — β\ = l) we see that

— ρ(β)\^C, if

e~ηρAeηβ =

with

Thus

^έ/itol for \η\<l. Pick η0 with 0<f/ o <l and dγ\η0\^\δ. Then
5^, so by inverting the geometric series e~ηoρAeηoρ is invertible and

\(δa, A *, (e~*»A

But for | |α| |g/, ρ ( α ) - ρ ( 0 ) = - | | α | | . Take C 1 = 2 < 5 " 1 and ε = ^ 0 •

Proof of Theorem 4.1. Without loss, we can suppose that α = 0 by translation
invariance. Let L be larger than /, and let hL = h0 L+ V on /2({α| ||α|| ̂ L}) with
vanishing boundary conditions. If we prove that

for all L, the result follows from the continuity of the functional calculus (see [12],
Sect. VIΠ.7)._

Let EoeA and suppose hLφ = Eoφ is an eigenfunction of hL. Let

= φ(cή | | α | | < / ,

and let B = A — E0. Then B$ is supported on {α| | |α | |=/} and | | £ $ | | 2

= Q Σ \Φ(a)\2 w ^ Q a dimension dependent constant (C2 = v, actually!).

Thus

«l = i

o-2εl

|α| = l

So

oll2 = Σ
EeA

Γ T / 2

1 ] 1 / 2 Σ I<H«)I2

Lιι«ιι=i J

le"*"[(2v)(2/)*- i r Σ
||||
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where we have used ]Γ |φE(a)\2 = (δa, δa) = 1. (Here and above φE should have an
allE

extra index for possible degeneracy. We suppress this index.) Since ε is fixed, we
have that

so that the theorem is proven with

C=CγC2Cτ . D

5. Distant Wells

Our main result in this section is the following (with ||α|| =max |α j as in the last
section): *

Theorem 5.1. From Zv choose a family, {Cn}%L1 of disjoint hyper cubes of side ln.
Define

ί/M = min{| |α-jS| | | α e C π , β e C m some m + n} .

Suppose that for any ε > 0,

Let V be a function on Έv obeying

Then <7 a c(Ao+F)n(-oo,O) = 0.

Remarks. 1. If v= 1, Z^"1 = 1, i.e. there is no restriction on the size of/„, except that
each is finite! Even if v > 1, if the dn grow fast enough, the /„ can be much larger, e. g.
dn = n\ /„ = *».

2. Think of the Cn as wells. This result says, if the wells are far enough apart, there
can't be effective tunnelling out to infinity at negative energies.

Proof Let Sn be the boundary of the cube of side /„ -j- dn with the same center as Cn.
Let HD be the operator obtained by removing all couplings between sets in Sn and
the region An surrounded by Sn. Then HD is a direct sum of the finite matrices and an
operator on l2(Zv\<uAn) which is positive so σ a c(//D)n(— oo,0). Suppose that we
prove for any finite a < b < 0,

is trace class.
It follows by Pearson's theorem [13, Theorem XI.7] that

j-lim eitH°(H-HD)Eiaib)(H)e-itHEac(H) = Ω ±

t~* + 00

exists. Since it intertwines eίsHD with eίsίI, it defines a map into
RanEac(HD)E(_afb)(HD) = {0}. Since it is an isometry on Ran [E^b){H)EΆC(H)l
this space must also be zero.
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Thus we need only show that CM) is trace class. H—HD can be written as a sum:
Σ^$?&) o n e f°Γ e a c k s e t ' SH- Sn has (2v)(/B + έ/π)v"1 points in it. Each can be
surrounded by a cube of side dn on which Kis positive. Thus, for each of those points
or a neighboring point, α, if b< — δ:

by Theorem 4.1. Since the *SΠ contribution to (H—HD) can be written as a sum of
(4v)(/w + ί/π)

v~1 rank one operators, the trace norm of that Sn contribution is
bounded by

so the sum of those terms is finite by the hypothesis. •

This result is of interest because there are examples where h has an interval inside
(— oo, 0) in its spectrum. By using ideas in [3] (Sect. 3.5), based on the work of Klaus
[7], one can easily prove:

Theorem 5.2. Consider the operator h of Theorem 5.1. Suppose that F(α) = 0 if
aφ[jCn.Let

FM(α)=F(α)

= 0 ocφCn

andhn = h0+Vn. Then

σess(λ) = limit points of σ(hn) .

Example 1. In one dimension, one can construct well potentials of this type where
σ(/?)=[— 1, oo) and where the spectrum is purely singular continuous [10]: this uses
ideas derived from [11].

Example 2. Take a sequence of wells in two dimensions of constant size strung out in
only one dimension. By varying the potential in the wells and using Theorem 5.2,
one can arrange that σ(h) = [ — 1, oo). By Theorem 5.1, σΛC(h)c[0, oo). By using
explicit states which move to infinity under the free evolution along a classical path
orthogonal to the wells, it is easy to see that [0, oo)c=σac(Λ) so σac(Λ) = [0, oo).

6. Random Potentials

In this final section, we will indicate how the idea of this paper can also be used to
prove the absence of absolutely continuous spectrum in some one dimensional
random Jacobi matrices. We will prove that

Theorem 6.1. Let v = 1. Let vbea random potential with v(n) i.i.d.r.v. with distribution
dy which has an interval (c, d) in its support. Then h has no absolutely continuous
spectrum.

Remarks. 1. This result is certainly not new, although our proof requires less
machinery than other proofs.
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2. Basically, our proof shows that for any Hamiltonian if there are arbitrarily long
intervals where v is within δ of a periodic potential for which (a, b) is in a gap, then
(a + δ,b — δ) is disjoint from the absolutely continuous spectrum of the original h
(in accordance with our discussion in Sect. 1).

We need the following lemma, proven in [6]:

Lemma 6.2. Fix a>0. Let Val be the potential.

VaΛ(rι) — a « = 0, mod/

= 0 «Φ0, mod/ .

Then for each I sufficiently large there is ε^Oso that for j = 1 , 2 , . . . , / — 1 , the intervals

2008^,2008^

are disjoint from the spectrum ofh+Val.

Remarks. 1. The energies cos (— I are the points gaps can open. The point [6] is that

large / is weak coupling and one can use a kind of perturbation argument.

2. In fact the ει go to zero exponentially [6].

Proof of Theorem 6.1. By the argument in Sect. 5 and Theorem 4.1, it is sufficient to
find for any real α, an ε, a sequence / ± 1 , . . . , / ± „,..., of intervals whose length
diverges with /+„-• + oo as «->oo and a sequence of potentials {wn}™= _ ̂  so that

(a) (oι-ε,
(b) wn = vonln.

Pick x,ye (c, d) the interval in sup γ with x < y. If α < x — 2, pick δ > 0 and note
that since γ(JC, x-f δ) > 0, there are arbitrarily long intervals where υ{ή) > x, and so
we can take wn>x and thus σ(h + wn)cz[x — 2, oo). Similarly for oc>x + 2.

For any energy, α, in [x — 2, x + 2] write α = z -f 2 cos ( — 1 with z e (c, d). Use the

lemma to be sure that α is in a gap for a potential with values z — ε and y with y only at

sites which are a multiple of / and ε < — and so that z — εe(c,d). Suppose that the

distance from α to R\gaps is d>0. There will be arbitrarily long intervals with

d d
\v(n)—y\ <- if n is divisible by 1 and \v(ή)—z + E\ <- otherwise, so the theorem is

proven. •

7. Long Range Free Hamίltonians

We want to show that the results of Sect. 6 extends to certain situations where h0 is
not the usual free Hamiltonian but only an operator with some decay off-diagonal.
We will consider bounded operators h0 on 12(Z) so that for some /=1,2, . . . we
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have that

[x,h0],..., [x,...[x,h0]]...] (I times) are bounded , (2)

where (xu)(ή) = nu(n).

Lemma 7.1. Suppose that

KΛoJylgCdί-yr1"1'8) (3)

for some ε > 0. Then (2) holds.

Proof. The discrete version of Holmgren's estimate says that

sup £ kfyLsup £ \atj\[ .
L * J J i

Since [x, [x, [..., h0]... ]tj (m times) = (ι —7)m(Ao)y w e s e e t n a t (3) implies (2). •

Lemma 7.2. Suppose that (2) Λo/ίfe. Lei h = ho + v with v diagonal. Then

t

Proof. We know that [x,eith] = i\eisth[x,h]ei{t~s)hds from which we obtain the

results inductively. D °

Corollary 7.3. Suppose that (2) holds and thatfeC^(R). Then

| /

Proof. By Fourier transforms

so that Lemma 7.2 implies that [ c, [x,..., f(h)]... ] is bounded, from which the result
follows. D

Now define
()

We suppose that h = ho + v h1=h0 + vί.

Theorem 7.4. Fix ε, δ, Eo, M, andf e Q° supported in Iδ_ε(E0\ h0 andv. Suppose that
h0 obeys (2) wzYλ / ^ 1 and \v\^M. Then there is a C so that if there is a vλ with

then, for ix, i2 e τlL / 2 (/) :

/. Define f2 by

v^εβ on ΛL(j) ,

σ(hi)nIδ(E0) = φ ,

v2(k) = v(k) keΛL(j)

= υx{k) kφAL(j) .
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Then \υ2-Όx\<Lεl2 on all of TL so σ(h2)nIδ__ε(Eo)-0 and thus, /(A2) = 0. Thus by
DuHamel's formula for eith-eith2\

f(h) = (2πyί/2i J / ( θ ( ί ei{t-s)h(v-v2)eish2ds]dt .
\o /

Since v — v2 is supported outside ΛL(/) we see by Corollary 7.3 that

Σ \(t-s)%-kr'sιy2-k\-'
φΛL(j) 0

Theorem 7.5. Let h0 obey (2) with 1=3. Suppose v is bounded. Suppose there exists

«5>ε>0, Eo, {Lk}^0, { Λ J ^ - O O , and {»»}»"--» so that

(i) + Λ " * 0 0 ^ ^"^ i °°5
(ii) Lk->oo,

(iii) |ϋ-ί?k |^ε/2θΛ^L (/k),
(iv) σ ( h o + ) I ( E )

Then σac(ho+v)nIδ_ε(Eo) = 0.

Remarks. 1. It suffices that

|(A0)^C|/-yΓ4-ε

2. This theorem provides an alternate proof of (c) stated in the introduction.

Proof. By passing to a subset, we can suppose that

Break Z into regions Rk with Rk = (JkJk+i) P^k a function / supported in Iδ-E(E0).
Let

i h>h ί n t h e s a m e ^fc

= 0 iί9 i2 in different Λfc .

A is a direct sum of finite matrices, so if we show that A—f(H) is trace class, then
f{H) has empty absolutely continuous spectrum. Since / was arbitrary (except for
smoothness and support), H has no absolutely continuous spectrum in Iδ_ε(E0).

If C is any matrix with

then C is trace class as a sum of rank one operators. Thus it suffices to show that

Σ \f(H)tιιt\«x> •
it, i2 in different Rk

The sum is bounded by

2 Σ Σ
k iι<jk<i2
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We break the sum over ix, i2 into the regions where both are smaller than Lkβ and
those where \ix — i2\^Lkj2. The points where i1J2<Lk/2 are controlled by
Theorem 7.4 so their sum is bounded by

C(Lk/2)2Lk

2l + 1 .

Since /^3, this is O(L~3).
For the points where \i1—i2\^.Lkj2, we use Corollary 7.3 and bound by

dxdy

\X~y\
x<0
y>0

which is O(Lk

{l~2)y
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