Communications in
Commun. Math. Phys. 125, 91112 (1989) Mathematical

© Springer-Verlag 1989

Anderson Localization for the 1-D Discrete Schrodinger
Operator with Two-Frequency Potential

V. A. Chulaevsky! and Ya.G. Sinai?

! Research Computing Centre, Academy of Sciences of the USSR, SU-142292 Pushchino,
Moscow Region, USSR

2 Landau Institute of Theoretical Physics, Academy of Sciences of the USSR, ul. Kosygina,
dom 2, Moscow V-334, USSR

Dedicated to Roland Dobrushin

Abstract. We prove the complete exponential localization of eigenfunctions for
the 1-D discrete Schrodinger operators with quasi-periodic potentials having
two basic frequencies. It is shown also that for such operators there is no
forbidden zones in the spectrum, unlike the operators with one basic frequency.

1. Introduction

The phenomenon of the Anderson localization, or exponential decay of eigenfunc-
tions of random self-adjoint operators, has been studied very intensively during the
last several years. It is fairly clear now that basic mechanisms of the Anderson
localization are essentially the same for differential operators like the Schrodinger
operator

2
o)== 24 V(). (1)
o being a random parameter, and for their discrete analogues like
Hy)m=eWn—D+y@+1)+V(n,0)yn) . 2

Furthermore, the localization is shown both for “true random” and for almost
periodic potentials V(-,«). From the formal point of view, both classes can be
considered in a more general context of random potentials having the form

Vix,0)=F(T *a) , a€Q, T*:Q-Q,

where {T*, xe Z} or {T*, xe R} is a group of automorphisms of a probability space
(2, wyand F: Q- 1R is a measurable function. But it is worth emphasizing that such a
general approach is not just a formality. On the contrary, it turns out that the
language of operator ensembles is adequate for the investigation of a very important
phenomenon like tunneling in disordered media due to long-range resonances.
Historically, the Anderson localization was initially proven for random
operators whose coefficients at different points were independent or very weakly
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dependent random variables. We refer to physical papers [1, 2] and mathematical
papers [3—6]. In the physical papers some convincing heuristic ideas were proposed
while in the mathematical papers the rigorous proofs were given.

In a series of papers by Frohlich and Spencer [7-9] and by Frohlich et al. [10] a
rigorous mathematical method for the investigation of the localization pheno-
menon was developed. The essence of that method was a detailed analysis of long-
range resonances, and, fortunately, this analysis did not depend crucially on the
“true random” type of potentials considered in [7-10]. We mention this because the
subject of our paper is rather far from random potentials with independent values,
but there is an interesting connection between the main mechanisms leading to
exponential localization in strongly stochastic and in almost periodic media.

It was discovered in [11] that for sufficiently small ¢ and for all E the Lyapunov
exponents for the finite difference equation

e (n—1)+y(n+1))+cos (nw+a)y(n) = Ey (n) ©)

(called the almost Mathieu equation) are strictly positive. Later Avron and Simon
[12] and independently Figotin and Pastur [13] gave a little more accurate
formulation of this fact and proved it rigorously. That was perhaps the first strong
argument in favour of Anderson localization for almost periodic operators with
nice, bounded potentials. One should note that there exists a special class of
unbounded potentials on Z°, v=1, for which the Anderson localization can be
proved in a relatively simple way. Namely, put

Vin,z2)=F(z+nw+...+n,0,) , neZ , zeR , 4

and assume that F(z) is a periodic function of period 1, real-valued on R and
meromorphic in some strip {{Imz|<R}, R>0. Assume also that F(z) has exactly
one pole on [0, 1) and no poles out of real line. Then it follows from the results by
Bellisard et al. [14] that for sufficiently small ¢ the operator ¢H,+ V with

Hop)m= ¥ ym), nmel",

m: |[n—m|| =1

has only point spectrum with exponentially decreasing eigenfunctions. Moreover,
even much more general non-local operators H, can be considered in the same way.
As a matter of fact, the long-range resonances and tunneling are absent for all such
operators. In turn, this is connected with the fact that the function Ftakes any value
exactly at one point on its period. Certainly, such a non-resonant condition is not
fulfilled for general quasi-periodic operators, e.g. for almost Mathieu operators. In
[15] some new method was developed for analyzing tunneling in resonant quasi-
periodic one-dimensional lattices, and the Anderson localization was proved for the
almost Mathieu operators. The recent paper by J. Frohlich, T. Spencer, and P.
Wittwer [16] contains results which are very close to the results of [15] and in some
respects is more general. However the main ideas of both papers [15, 16] are rather
close to each other. In [15] general C?-functions having one non-degenerate
maximum and one non-degenerate minimum on the period were considered, not
only cos(x). In [16] both finite-difference operators with one basic frequency and
differential operators with two basic frequencies were studied. Note that due to the
dilation group x+4x, >0, acting on IR the spectral properties of differential
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operators with two basic frequencies are similar to those of discrete single-frequency
operators if the spectral parameter E is close to the lower edge of the spectrum.

In our present paper we treat rather general one-dimensional discrete quasi-
periodic Schrédinger operators with two basic frequencies,

(H (@) () =e(Wp(n—D)+ ¢+ 1)+ V(o +nw,, i +nw)y(m) , ()

where aeTor? and w=(w,,w,) has rationally independent components. The
function ¥: Tor? > IR is assumed to be a “sufficiently non-degenerate” C2-function
(see the exact assumptions below). Following the main ideas of [15], we propose an
inductive procedure for construction of eigenfunctions for H,(«) from which we
conclude that all eigenfunctions decay exponentially fast for sufficiently small ¢ and
for almost every a e Tor?. Often the first step of the proof of Anderson localization is
the proof of positivity of the Lyapunov exponents. In our method this step is
included implicitly into the whole inductive procedure, so we get the positive lower
bound for Lyapunov exponents only at the end of the proof. Note that the positivity
of the Lyapunov exponents for some classes of quasi-periodic operators was proved
earlier by Herman [17] and by Pastur [18].

An interesting distinction between single-frequency and multi-frequency poten-
tials concerns the regularity of the limiting density of states. One of the results of
[15] says that for small ¢ the support of the density of states is a nowhere dense
Cantor set of positive measure and the Lebesgue measure of its complement
vanishes as ¢—0. Moreover, one can deduce from the techniques used in [15] that
the density of states has singularities of integrable type ¢!/, £] 0, at the edges of
each connected interval of the resolvent set (i.e. at the spectral boundaries and at the
edges of any spectral gap). We show that for two-frequency potentials the density of
states is strictly positive on the segment [inf Spectr H, («), sup Spectr H,(«)]. In other
words, the spectrum of a two-frequency operator has no spectral gaps. This fact has
a simple geometrical nature and is apparently true for any number of frequencies
greater than one, though our proofis still restricted to the case of two frequencies. It
follows also from our technique that the density of states (i.e. the derivative of the
integrated density of states) has an infinite number of discontinuities on the
spectrum though the one-side limits of the density of states exist at any point.

Remark. Recently, R. Johnson informed us that it follows from his results [19] that
our assumption ¥ e C*isimportant for the analysis of the density of states. Namely,
if we assume that ¥'e C* ~® with § > 0, then the support of the density of states might
be nowhere dense.

Let us describe now the class of potentials under consideration in more detail.
We assume that

L. Ve C?*(Tor?) and it has a finite number of non-degenerate critical points ;,
j=1,...,n. Its values at critical points are different.

II. The level sets A(V,c)={a: V(x)=c} = Tor? consist of a finite number of closed
curves which self-intersect only at critical saddle points.

III. For any we[0,1)x [0,1) the level set {a: V(ax+w)—V(x)=0} consists of a
finite number of closed curves which self-intersect in a finite number of points. The
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restriction of ¥ to any of these curves has a finite number of critical points which are
degenerate only for vectors w belonging to a finite number of closed curves or arcs.

The main result of the present paper is the following.

Theorem. Let V: Tor*>— R satisfy the conditions (1)~(11I). Then for any 6 >0 there
exists a set Q;<[0,1) x [0, 1) of Lebesgue measure less than 6 and a positive number
£(0) such that for any ¢, |e| <&(5), any w ¢ Q; and almost every a e Tor? the operator

(H (Y) (M =e@W(n—1)+y(n+1)+V(et+nw)y(n)

has purely point spectral measure, and all its eigenfunctions decay exponentially
fast. The limiting density of states for H. (o) does not vanish on the segment
I=[inf Spectr H,(«), sup Spectr H,(«)].

We sketch now the proof of the theorem. The proof goes by induction. For any
positive integer s=1 we will construct approximate eigenvalues (AEV) and
approximate eigenfunctions (AEF) of the operator H,(x). Note that if we have exact
EV and exact EF,

H )y (@)=Y (@) ,

H (a+t)T™"Y(@) =) T " () (6)

with T'f(n)=f(n—t). Thus, we should only construct AEF (o) concentrated
“mostly”” near the point n=0 and, to be definite, to the right side of 0. The identity
(6) permits us to construct all the other AEF. The set of all AEF with the described
property will be called @°(a) at the s-th step of induction, and the set of
corresponding AEF will be A%(a). The multivalued functions @°, A° are the main
objects of our construction. We denote the branches of these multivalued functions
as @), A3(), £=1.

Besides the parameter ¢>0 we will use a constant a>0 and two special
sequences of positive real numbers, a(s) and b(s), constructed in two steps. First,
define recursively a sequence of integers

then

up=4, o =uy+[nw], k>0.
Then put a(u,)=a, k=1, while for any other s we put
a(s)=aexp(In4 In*s/s)=a+06(s) , 5(s)|0 ass—+o0 .

Now put b(s)=u, if u, <s<u,,,. Note that b(s)>s—Ins.
For s=1 we define a unique branch of AEF &!(x), namely,

¢’11(0€;n)=5n,0 )
and the corresponding AEV is A} («)=V(x). A simple calculation shows that
Fi(a;m) = ((H, ()~ A} @) 9}) (@5 1) =2(6,, +0,, 1) -
In our construction at the s-th step the error

Fp(o;m) = ((H, (o) = A3(0)) D7) (1)
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will be of order O(¢°). Thus, in order to construct the next approximations
x(@) € ®%(x), we shall use the first order perturbation formulas

(Fi (), T~ ] (2 — te))

R@=0@+ T s s [P0
and
Af (@)= A1 () + (F (@), D1 () . 3

Remark. 1t is more convenient for us not to make EV and EF precise as it was done
in [15, Sect. 4, Theorems 1 and 2]. Instead, we use only the first order perturbation
formulas for the EF and EV in the spectral theory of self-adjoint operators and
construct new AEF and AEV omitting higher order terms. More concretely, we
mean the following. Consider a self-adjoint operator @ acting in a finite-
dimensional Hilbert space .. Assume that there exists a basis in % consisting of
approximate eigenvectors y; with approximate eigenvalues 4;, i.e.

Ov;=A+xf; , | fil|Sconst ,  j=1,. N .

The number « gives the order of approximation. Assume that for all j > 1 we have
inequalities |4;— A, | > 4 with /4 being sufficiently small. Then there exists a precise
eigenvector ¢, for Q with the corresponding eigenvalue g, such that

P1=Y; K0P +O0(K?) ,  py=A+xdl+003) ,

where

=3 (lf_‘”l) Vo =) -

The corrections of order O(x?) can also be written explicitly in terms of perturbation
series. However, they become more complicated, and it is difficult to use them in our
situation, and moreover, it is even unnecessary. If we construct new AEV AJ? () and
new AEF d)f () which correspond in the above notations to @, =y, +xdj,,
[i; =4, +kd4,, then one can verify by direct calculations using inductive assump-
tions that these new AEF and AEV give necessary approximations at the step s=2.
This calculation is quite analogous to that leading to the first order perturbation
formulas for EF and EV, so we omit the details. A more nontrivial part of this
argument is some estimation of C?-norms of perturbations A7 (x)—A](a),
@7 () — P} (o). They are given in the Appendix for a more general situation.

Note that the right-hand side of (7) makes no sense if the denominator of one of
the terms is zero while the numerator is non-zero. In such a case we say that the
corresponding AEF are in resonance. More exactly, we call a resonance the case
when the denominator is sufficiently small in some exact sense rigorously defined
below. We call the set of points « where Aj () = A} (x+ tw) a resonant curve I'! and
its neighborhood By is called a double resonant zone (DRZ).

The series in right-hand side of (7) is in fact a finite sum for any point « since the
support of the function 7~'®{ (¢ — tw) contains one point and the support of F}
consists of two points. Hence,

(Fi (@), T'di (@t o)  (Fi(@), T"' P (x—w))

PF () =P () + A () — Al (ot ) AN (@) — A (a—w)
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The resonant sets {a:A}(x)=A}(a+w)} and {a:A}(x)=A}(a—w)} play
different roles in our construction. Recall that ®*(«) contains, by convention, only
those eigenfunctions which are concentrated “mostly” to the right of n=0. It is
well-known that in the case of resonance of two eigenvalues there exist two
eigenfunctions (in our case, two AEF) with slightly different eigenvalues (AEV)
which are, in the first approximation, the linear combinations of initial eigen-
functions coming in resonance. So, in the case A} (x)= A} (a — w) we get two AEF
which cannot belong to ®2(«) since their support has an essential part to the left of
the point n=0. On the other hand, the second resonance leads to AEF which do
belong to @2(«). Hence, the first resonant set should be excluded from the domain
of definition of ®2(«). This fact was strongly emphasized in [15]. It is convenient
also to exclude the second resonant set from that domain and to define on this set
two new AEF &2 (a), ¢2(«) and corresponding AEV A2(«), A3(«x) which appear
due to the splitting of A} (x) and Aj (& + tw). This procedure can be repeated once
more and leads to @3(a), A3(«), and so on. The only important difference is that at
the step s =3 there may appear points « where three AEV come in resonance, since
the graphs of three functions of two real variables can generically have a common
point. Multiplicity higher than 3 is obviously an exception, or a degeneration, and
we avoid it by changing the vector w. On each step of induction we exclude from the
domains of definition of branches of &°(a), A%(x) all resonant sets, and on the
resonant sets of the type

{a: A3 ()=A5,(+tw)} , >0,

we define new branches of @ (a), A" ().

At the s-th step of induction we assume that the following inductive assump-
tions are valid.

For any #<s there exists a set of frequencies Q, of Lebesgue measure less than
(b(r))™° [with b(¢) defined before] such that for any wé¢ ) @, the following

t<s

assumptions hold.

1,. There exists on the torus Tor? a finite number of non-self-intersecting closed
C?-arcs I}, 1<j<n,(s)<s5'%/In1/e, called double resonant arcs, or simply resonant
arcs (RA). For each RA I a positive number #(j) is defined which is called the
moment of the appearance of I'?, 1 <¢(j) <s. The curvature of I'; at any point does
not exceed (¢(j))*°°/In 1/e, and its length is less than s™°°/In1/e.

Recall that we have introduced the sequence a(s). The neighborhood B; of I'} of
radius (a(s))'“¥* is called the zone of double resonance (DR Z), or simply a resonant
zone (RZ). Call a RZ Bj large at the s-th step iff

t(j)<1001Ins/In1/e ,

and small otherwise.

Among all pair intersections B N B; there are marked ones which we call triple
resonant zones and denote them Cj. The appearance of a TRZ Cj is also defined,
1<t(k)<s. The rule according to which we mark TRZ will be clear from the proof
later.

The definition of large and small RZ extends as well to the TRZ with no change.
Small TRZ do not intersect small RZ.
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The total number 7, (s, o) of RZ containing an arbitrary point ae Tor? is not
bigger than cIn s/ln 1/e. The total length of all RA I’} for which £(j) = s is uniformly
bounded in s.

Remarks. 1. In fact, the RA described in (1,) are short arcs of resonant sets (resonant
curves) which appeared at previous steps of induction in the same way as it was
explained above for the case of I'. However, at the step s we cannot refer to AEV
A3~ (o) which are responsible for the appearance of I}, because the domains of
definition of AEV are given in terms of RA and cannot be defined before RA. Thus,
we use only local analytic properties of RA, not referring to any AEV, and we define
the RA explicitly only at the initial step of induction. For s=0, or, more generally,
for s =s,, the properties of RA follow from the assumptions (I)—(III) concerning the
potential V(«). At all subsequent steps we derive (1,,,) using only the local
properties formulated in (1,)-(6,) of our inductive procedure.

2. As it was mentioned, we partition the resonant sets into RA having length less
than s~%/In 1/e. Our goal here is to get “almost straight” arcs of smooth curves.
Indeed, the curvature of I'f is less than (¢())%°/In 1/e <5°°/In 1/e, so the variation of
the direction of tangent vector to any fixed RA is less than s73°.

2,. At the s-th step of induction a finite number of functions A3(«) is given,
£=1,...,n(s) < cs**/In 1/e. Each A} is defined on a subset of some DRZ B; or TRZ
C;. In the first case we denote i(/) =i and in the second case k (/) =k. The nature of
the sets which we exclude from By}, or from Cj,, is already explained. Namely, if A;
appeared at the moment r <s, then at the subsequent steps it can take part in new
resonances, i.e. it may happen that for bigger ¢+ and for some integers m, u,

{a: AL ()= AL (x+uw)} £0 . ©)

Below we introduce a constant ¢ >0 and consider only those resonant sets (9) for
which 0<|n]<és/ln1/e.

Denote the domain of definition of A} as L, if it appeared in DRZ or as M ,, if
it appeared in a TRZ. Then

L?(:)‘—‘Bis(t)\U U {o: A3 () = A5, (a4 tw)}
m |f|<és/inl/e

in the first case and

Mio=Cio\U U {e:43@=4;(a+1w)}
™ f|<és/lntfe
in the second case.
Assume that A}, appeared at the step  =1#(i()) due to a double resonance of A}
and A} and at the step s it comes in resonance with A;. Then we say that this is a
double resonance iff

100 Ins/In1/e=t(i(m)) .

Otherwise we say that A3, A5, and A? are in triple resonance. This convention will be
very useful in the sequel.

3,. A$e C*(Lg). The number of critical points 3, of any function A$ does not exceed
some constant 7, (v, w). The absolute value of difference between values of A; at
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different critical points is not less than s ~°. At a critical point the absolute value of
each eigenvalue of the second differential D? A%(B5,) is not less than s~2°,

4,. For any function f: G— IR, G< Tor?, define its level sets A(f, ¢)={a:f(a) =c}.
Then for each ¢ and ae A(4}, ¢) the following inequalities hold

1/2
cls—w((mkin |c~Az(ﬂzk)|) +min lla—ﬁ;kll)é [pA@)]< e, -

5. On the domain Lj, a normed vector-valued function is defined,
®;: L ,,—>¢*(Z) such that

(1) there exists a finite subset Z(®;(«)) of the lattice called the essential support
of @;(«) for which

0e Z(@(a) <[0, &s/ln1/e] ,
105 (s m)| < (a(s) )it 22D

(2) (H () D)) (o;n)=A3(0) P (a; m) +hy(o; m)+fF(a;m),  where  [hg(a; n)]
<exp(—7/4¢s) for all n such that

dist (n, Z(®;(«))) < [¢s/In 1/¢]
and is zero otherwise. The function f;(a; n) is non-zero only at those points » where

dist (n, Z(®;(a)))=[Cs/In 1/e]
or
dist (n, Z(P;()))=[Cs/In1/e]+1 .

This boundary term is quite analogous to the term I3%) in [15, Sect. 4, Eq. (4.1)] and
satisfies the estimates

If7 (a; m)| Sexp (—és(1—k)) ,
where k>0 can be chosen arbitrary small. Outside the set
dist (n, Z(®;(x))) < [Cs/In 1/e]
the function @;(a;n)=0.

6,. Put
= U @)} .

¢:a€Lj,,
Then for any o the set of vectors
0
U T7'o%(a—tw)
t=-wm
is a basis in /2(Z), and moreover

(D7 (), T"Dp(0)) = 60 0pml =(a(s) €)™ -

Itis rather easy to see that for s=1 and, more generally, for s =s, with any fixed
s, the statements (1,)—(6,) can be derived from the assumptions (I)—(III) concerning
the potential V. In the next sections of the paper we give an inductive construction of
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AEF and AEV for arbitrary s and check (1,,,)—(6,.,) starting with (1,)—(6,).
Increasing the initial value s =s, is possible under appropriately decreasing ¢. Thus,
choosing ¢ in further arguments as small as needed, we can deal with s, as large as
needed. This is important in our construction since we use several monotonically
decreasing functions of s which should be sufficiently small. For example, in the
inductive assumptions the measure of the set

%

can be chosen arbitrarily small by choosing s, * and, hence, ¢ arbitrarily small.

A number of technical statements of [15] is the same for our operators as well.
Thus, we concentrate mostly on the technical statements specific for the two-
frequency potentials.

2. An Inductive Construction of Non-Resonant AEF
First of all, let us consider the simplest case where

[s/in1/e]=[¢(s+1)/In1/e] .
In this case we can put

s+1 _ s s+1 _ ps stl __71s
;7 =Iy, By =B;, L =L,

nis+1)=ni(s) , np(s+1,0)=ny(s,0)
and
=45, GFTI=0;,  Z(PTH(@)=Z(P(%)) -

Then the conditions (1,,,)—(6,,,) follow easily from (1,)—(6,).
Consider now the case where at the (s+ 1)-th step we have

dis+1)=[¢(s+1)/In1/e]>d(s) ,
but the following non-resonant condition holds:
| A3 (o) — Ay (o0 + tw)| > Ry, (2, 1)
=[5 +(dist (Z(2:(2)), Z@;, (2 + tw)))] !

for all m and ¢, d(s) <t=<d(s+1). This strict inequality holds, obviously, in some
open neighborhood of the point a. Therefore, in this neighborhood we can apply the
lemma on non-resonant deformation (see Appendix, Lemma 1) and get new AEF
and AEV, namely,

o (0)=230)+Y Y (F3(0), T* &3, (a+tw))

') (e +tw
m o<tsas+n A —An(a+tw) ( )

and
A3 (o) = A3 () + (Fi(w), D3(a)) -

Now using the exponential decay estimates (5,) we construct in the considered
neighborhood of « a new AEF &;*! (or, more precisely, the next approximation of
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the existing branch &) which vanishes outside the set
{neZ:dist(n, Z(®3(x))) Z[¢(s+1)/In1/e] .

Ifit is non-zero outside this set, then we cut it off in order to satisfy (5, ,). Using the
argument given in [15, Sect. 7, p. 899] one can show that either

(@51 (asn+1)|Zcle| |@5 (a5 m)]|
or
V4|05 (s n+2)/ D5 (o m)| <4

Thus, we can use the inductive decay estimates of @; and either obtain an inductive
estimate for the AEF at the next step (s+1) using the first inequality or restrict
ourselves to a weaker estimate

D5 (o; n+2)| S 41D (a3 m)]

This argument does not depend on (1,.,)—(6,.,). So, we can iterate it ¢ times and
obtain for #<Ins, the following estimate:

|51 (o; m)| < 415 (ag)dist(n, Z@3) —Ins < (g (s) g)dist (m Z(@3(0))
with a(s)<aexp (n4/elns/s)<a +3(s), 6(s) |0 as s— 0.

Remark. Certainly, this argument cannot be applied infinitely many times.
Therefore, we should use another argument for ¢ > In s. We follow here the strategy
of [15, Sect. 7] and prove the needed estimate for t=[Ins]+1 using ergodic
properties of the shift transformation a+>a+w and inductive assumptions
concerning resonant arcs appeared at previous steps of induction. This will be made
in Sect. 4.

3. An Inductive Construction of Resonant AEF
Suppose for some te[d(s)+1, d(s+1)] the following set is nonempty:
{02 145(@) — A3 (e 1) S R3 (a3 1))
Without loss of generality we can assume that the set
{a: A3 () =A% (a+tw)} £0 (10)

otherwise the resonance of A5 and A3, disappears outside of a set of frequencies of
Lebesgue measure less than s~°. Assume that for all k and re[d(s)+1, d(s+1)],

|45 () — Af (4 ro)| 2R3 (a5 7)
|45 (e +tw) — Af(a+r@)| 2 R (o t—7) .

Then we apply the lemma on the resonance splitting (see Appendix) and construct
new AEF concentrated on the set

{n:dist(n, Z(P;(0))) 2 d(s)+d(s+1)} .

Then we cut these AEF so that the diameter of ES would not exceed [¢(s+1)/In 1/e].

Introduce some ordering of the sets (10) and denote by I}(,; the set having
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the number i in this ordering. Define B; ), ; in the way it was done in (1,) and put
t(ny(s)+i)=s+1,i.e. weregard I'; () +; and BS,(j . ; as appeared at the step s+ 1. By
definition, all the new DRZ are small at the current step. Using the lemma on
resonant splitting we construct in each DRZ also a pair of new AEV A5,
ASFY with i(m')=i(£")=n,(s)+i and AEF ¢3!, @5 Similarly, we define new
TRZ and triplets of AEV and AEF in each TRZ.

Estimate now the total number of new DRZ for typical w. All possible
intersections of RZ at the current step can be classified as follows:

1. intersection with a large RZ,
2. intersection of a small TRZ with a small RZ,
3. intersection of two small DRZ.

Note that all intersections of type (2) can be removed by excluding a set of fre-
quencies of Lebesgue measure less than s ~° (see Fig. 1). Indeed, it follows from the

Fig. 1. Removing intersections of small TRZ with small RZ

definition of RZ that the width of any small DRZ is less than (gg)001ns/in1/2)/4 < =24
Let us perturb the vector w by a small vector dw. Then for any ¢, 0 < |¢| < const s, the
perturbation of the point a+ tw of the torus has the same direction as dw and is not
less than ||dw|. This is true also for the relative shift vector for two functions
fla+t w), ga+t,w) with ¢,, 1, <consts. According to the inductive assumption
(4,) [or more precisely, all assumptions (4,) for s, <r < s] the existing AEV appeared
at prevous steps not too close to critical points of corresponding AEV. Thus, the

Fig. 2. Removing intersections of almost tangent RA
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perturbation of w leads to the relative shift of RZ which is not less than || 5w|| In the
case of intersection of two small TRZ the direction of the vector is not important,
and in the case of intersection of a small TRZ with a small DRZ one should pick dw
orthogonal to the tangent vector to the corresponding RA for DRZ at some point
[the position of that point is not important since RA is short enough, due to the
inductive assumption (1,)]. Summing over all relevant TRZ and DRZ, and taking
into account the length or diameter estimates for RA and TRZ, we come to the
needed estimate of the set of frequencies which is to be excluded.

Remark. We will use the arguments of the described type in the sequel but omit the
details.

Consider now intersections of type (1). The number of pair intersections of large
RZ can be easily estimated by means of the inductive assumptions (1,) and does not
exceed

3 (d(s+1)—d(s))n?(1001n 5/In 1/¢) < const In**°s/In*1 /¢ .

Note that an intersection of a small DRZ with any RZ, Bin B; or B{n Cj, means
that the corresponding AEV A(«a), i(£) =1, is in a triple resonance, by definition.
Therefore, these intersections do not contribute to the number of new DRZ, but do
contribute to new TRZ. The same is true for all intersections of type (3). Dividing
new resonant curves into arcs of length (s+1)~°° or less, and taking summation
over te[l,s+1], we get the inductive estimate for the number of new RA
and DRZ.

Analyse now the smoothness of new RA. As it was mentioned above, these arcs
appear inside the DRZ B;j which, in turn, appeared not later than at the step
t=1001Ins/In1/e.

Therefore, at all subsequent steps of induction, the corresponding AEF &; ()
undergo only non-resonant deformations. Hence, the C%norm of A5— AL, i(£) =],
is less than

s
Y. (a'e)"<const(a’e)" .
r=t

Taking into account the inductive assumptions (1,)—(6,), 1 <t =1t(j), we conclude

that the absolute value of each eigenvalue of D* A3(B5,) at any critical point B, is

greater than In"%s1n1/e and less than (ag) ='W < 2% if ¢ is small enough.
Consider two possible cases.

1. Aj(x) and A§(o+tw) are in resonance, d(s)+1=t=d(s+1). Then, applying
the lemma on resonant splitting to @§(a), 7" P; (o + tw), we construct new AEF
@51, @5+, Recall that for any ¢ A} (x) stands for that branch of A'(x) which
never took part in resonances, by our convention. So, its domain of definition does
not contain any RZ. Applying the lemma on non-resonant deformation to Aj at
each step ¢, s, <t <s, we see that in the domain of A{ the C2-norm of the difference
A§ — A} isless than ce with the constant depending only on V. Thus, (1, ;) follows in
this case from (I)-(I1I) and from perturbation estimates for A}. Note also that the
total number of new critical points in RZ appeared in the neighborhood of the new
RA is uniformly bounded in s: for ¢ small this estimate depends essentially on V.
Furthermore, due to the assumption (III) concerning V(x), we can avoid
degeneracies of new critical points in the case in question for a.e. w. It is not difficult
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to see that the EV of D2 A3*! (B5!) corresponding to the normal vector of I''*! at

551 is always exponentially large with respect to s. Indeed, consider the vertical
section of the graph of the AEV A5*!(«) after resonant splitting, by the normal
plane to the resonant arc I''* ! at 871 . Then the needed lower estimate follows from
the explicit first order perturbation formula for a pair of resonant eigenvalues of a
self-adjoint operator. It is quite analogous to that used in [15, Sect. 4, Theorem 2,
(c3)], so we omit the details.

The minimal eigenvalue of the second differential of an AEV appeared earlier in
aresonance, i.e. A3 with /> 1, can be estimated for typical w as follows. If for some
m the point B3, +tw lies in a s~ °-neighborhood of B3, then we remove such a
degeneracy by omitting a set of frequencies of Lebesgue measure less than ¢’s ™12,
Since V() has only a finite number of critical points with distinct values, we can
remove all such degeneracies by excluding a set of w of Lebesgue measure less than
c"s™18 If B5, is a saddle point, an analogous procedure allows us to remove all
degeneracies related to the fact that the absolute value of the indefinite quadratic
form D? A3(B5,) on the vector tw/ | tw|| is less than (s+1) ~°. For all remaining w the
point B}, is non-degenerate due to the assumption (III) concerning the function

V().

2. Suppose at least one of the functions A}, A coming into resonance appeared
before as a result of a resonance. To be definite, assume that

@) zek)) ,  i=i2), j=itk), t=1@)

(see Fig. 3). Assume also that A3 appeared in a double resonance of A}, and A} .

Fig. 3. Resonance of with appeared in DRZ; i(k)=j i({)=i

The case of a triple resonance is quite similar and even more simple although the
notation is somewhat cumbersome. Pick an arbitrary point a’ on I’} and linearize
Ay, and A, at o'

AL ()= AL, (@) + DAL, (@) (e — o)+ 82 AL, (o) = AL, () + 62 AL, (o)
with

[6% 4%, | c2<constlnlnsln™* 1/ |a—o'[? ,
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Fig. 4. Double resonant splitting of linearrized AEV

which hold since A4;, did not undergo any resonance after the step 100 In#/In1/e.
Similarly
At (=A%, (@) +5% 4L, () .

Define a function /3 by analogy with A3 but use instead of A%, , A, coming into
the resonance, their linearizations. The graph of A} is then a part of an algebraic
surface of the second degree which can be decomposed into a one-parameter family
of parallel straight lines. Taking into account the width of B! equal to (ag)”*, we see
that up to higher order terms the function /3 coincides with A3 inside a rectangle
with one side parallel to the tangent vector to I'* at o’ and of length #2°(ae)* while
the other side has length 2 (ae)’*.

If A; appeared due to a triple resonance, then up to higher order terms A3
coincides within a circle of radius 72°(ag)”* with a third order algebraic function 4,
the graph of which is a “smoothed” trihedral angle (see Fig. 5).

Fig. 5. Triple resonant splitting of linearized AEV
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If A3 appeared at the step #(i(k)) > 1, then the same arguments are applicable to
it as well. If k=1, then A did not come into a resonance, and Aj is linear. So, in
order to estimate the correction term §243(x), one can use the initial C?-norm
estimate of V(&)= A} (&) by some constant. Anyway, the graphs of A3 and A can
only have isolated tangency points removable by an arbitrary small perturbation
of . Without any loss of generality, we can assume that the RA for AS and A}
lies outside of all the s~*°-neighborhoods of critical points of those AEV. Hence,
the norm of the first differential of each function on the RA is greater than
§710/In10g > 511,

Furthermore, for a set of frequencies of measure greater than 1 —s~2, the norm
of DAS(x) — DAS(x) on the RA is greater than s~ 1°. Otherwise the tangent planes to
the graphs of /13 and of A are almost parallel, and their intersection is removable by
excluding a set of frequencies of Lebesgue measure less than s~°.

For A3(a), Ag(x+tw) the resonant set

{o: A3(a)= A5 (x+tw)}
is a piece of an algebraic curve since A3(a) and A(a+tw) are functionally
independent in the considered neighborhood of the resonant set. Denote this curve

as y(u), where u is the length parameter along the curve. Let v(u) =7 (u)/||7 ()| be a
family of unit tangent vectors to y(u). Then we have

{ A; (@) [o@)]=D A (yW) + 1) [v(w)]
@), vw)=1 .

Recall that if AJ(x) and Aj(x+tw) are in a double resonance, then they have
appeared before the step 100 In s/ln 1/, otherwise this resonance would be triple, by
convention. Therefore, we can use the inductive estimates of D? A3, D% A§ which are
close to D2 AL D2 ALE®) with t(i(¢)), t(i(k)) < 1001n s/ln 1/e The smoothness of
DA; and of DA}, the inequality

| DAS(0) — DA (a+ tew)|| 2570

and the C2-norm estimates of A3 — A3, A§ — A§ yield the existence and smoothness of
the solution to the above approximate system of equations, as well as of the solution
to the “exact” system for “‘true” RA y’(u) for the AEV A;, A;. We also have

[o@)] £25°(ae) '@,  1(i))<100lns/n1/e .

Thus, ||o(u)| < (s +1)*°°, which completes the inductive estimate of the curvature of
the new RA.

The intersection of a new RZ with a small TRZ may occur only for a set of
frequencies of measure less than

(ag)*100mns/intje 4 o7 (ge)si4

Thus, the desired estimate of the measure follows from the inductive estimates of the
number of RZ and of their lengths.

Remark. In the study of new RZ, we focus mainly on DRZ, their number,
geometry,and on properties of the corresponding AEV. The reason is that the TRZ
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do not exist independently, in addition to the DRZ. They are parts of DRZ where
the analytic properties of the graphs of AEV change, and this is perhaps the only
important difference. Moreover, once a TRZ appears, it is less “dangerous” from
point of view of later resonances which will occur when the given TRZ, small at the
step s, will become a large one at the step exp (In1/e5/100) =¢~51%°, Indeed, the
main difficulties come from those a where the first differential of an AEV is small by
norm, and in TRZ the graph of new AEV is less degenerate than it can be in DRZ.

Arguments analogous to the ones given above show that for “typical” w (i.e. for
all w except for a set of measure which is negligible at the step s+ 1) new RZ appear
inside large RZ. This leads to the inductive upper bound for n, (s + 1, ) (the number
of RZ containing the point « at the step s+1). All remaining statements in (2,,,)
describe, in fact, the procedure of constructing new AEV.

Let us investigate now the differential properties of new AEV. The fact that
Ast e C?(Ls*Y) follows immediately from the lemma on the resonant splitting. If
A3 (o) and Af (a+ tw) come into resonance, then for sufficiently small ¢ the number
of critical points is uniformly bounded in s. If at least one of the AEV appeared in
earlier resonances, then the number of critical points admits an upper bound
independent of ¥ and w since up to C2-small corrections both AEV in the new RZ
are given by algebraic functions considered above. Recall that these algebraic
functions are obtained by replacement of the “true” AEV coming into resonance by
their linearizations. Since gradients of all AEV are uniformly bounded in norm
(only the second derivatives can be large) the relative shift of these linear
approximations due to the change of w leads to the shift of values of new AEV at any
critical point. It is not difficult to verify using the boundedness of gradients that for a
set of frequencies of measure greater than 1 —s~° all the differences between values
of new AEV at different critical points are greater than (s+1) 717,

The EV of D*A3*Y(B5!) corresponding to the normal vector to I+,
i=i(/), at B5! grows by absolute value as s grows; this was already mentioned
above. So, we need only to estimate from below the second EV in the case of double
resonance. Since 5! lies in a DRZ, it did not appear in any RZ after the step
100 In (s+1)/In 1/e. Thus, A satisfies (3,), (4,) for r<1001n(s+1)/In 1/¢, or, more
precisely, (3,), (4,) with changed values of constants: ¢; =c¢;/2, ¢c;=2c¢,.

We can use the condition (IIT) concerning the potential V' («) and the recursive
estimate of the C2-norm of the difference A§ («+ tw) — A} (& + tw) within the domain
of Aj(a+tw). This implies the needed estimate of the smallest EV of the second
differential in the case when A§ comes into resonance with its own shift. For other
resonances we have already obtained algebraic approximations of new AEV.
Outside a set of frequencies of Lebesgue measure less than 25~ ° the curvature of
any curve from A(A5 (- +1tw), A5(Bsi' +tw)) at the point B5;! is greater than
consts 1 and differs from the curvature of the corresponding curve from
A(AS(-st, AS(Bi ")) at the intersection point more than in s”°. Use again the
Taylor expansions for A3(x), A5 (x+tw) at B3 up to terms of second order. At
the critical point of new AEV the gradients of two resonant AEV are either parallel
or anti-parallel (see Fig. 6). The direct calculation of the curvature of the new
resonant curve (broken line in Fig. 6) for the quadratic approximants of resonant
AEV in terms of their Taylor coefficients shows that at such an intersection for
all w outside a set of Lebesgue measure less than s~7, the curvature is greater
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Fig. 6. Non-degenerate RA near new critical point

than consts~° > s~ 1°. Furthermore, the gradients of considered AEV coming into
resonance at ;! are orthogonal to the new resonant curve, so the absolute value of
the second derivative of the restriction of A} (or, equivalently, of A;,) to the new
curve is greater than s~2°>(s+1)"2° due to the inductive assumption of non-
degeneracy of critical points (we refer to (3,), (4,) mentioned above). This completes
the proof of (3,,,).

The uniform boundedness of ||DA;*!(a)| follows from (4,), the lemma on
resonant splitting and the lemma on non-resonant deformation applied to those
steps ¢ when A} does not come into resonances. The first inequality of (4, ;) follows
from (3,,,).

4. Exponential Decay of AEF

The most important part of (5, ,) is the upper bound for an AEF outside its ES. To
establish this bound we can proceed by analogy with [15, Sect. 7, Lemma 4].
However, the proof of a statement analogous to Lemma 4 of [15] should be slightly
modified in our case.

Recall that (1,)—(6,) imply (5,) for <Ins+s. Therefore, it suffices to show that
for a point « the frequency of entering RZ during the time interval [s, s +1In s] is less
than ¢!/*. The Lebesgue measure of all RZ appearing at the step ¢ does not exceed
(ag)”’® and the total number of them is less than ¢!°°. These RZ are (ac)"*-neigh-

Fig. 7. Intersections of a level set with RZ

borhoods of either RA or of intersection points of two RA. The curvature of the RA
at step ¢ is less than £2°°, so, we can decompose the new resonant set into a union of
less than 71°%° components each contained in a circle of radius (ae)’®. We will
essentially use the ergodic properties of the shift transformation on the torus 7, :
—oa+w. For a circle D of arbitrary radius R <1 on the torus the frequency with
which the trajectory

{o, Tpot,..., T ot}
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comes into this circle can be estimated as follows:
r 'N(a,D,R)Sr '+2nR*, r2r,, R<R,.

The first term corresponds to at least two visits to the circle during the time interval
[0, z,]. We avoid this by excluding a set of having measure less than 27 R2. For all
t<t, the double points are removed simply by making choice of a smaller ¢, if the
RA have no points of triple intersection. The latter follows from inductive
assumptions (for a.e.w). Thus, for ¢ > ¢, at the step ¢ the frequency for the point a
increases less than on &!/2(1 +const £¥1%) < ¢'/* for all w except for a set of measure
less than s~°. Summing over ¢, s<t<s+Ins, we conclude that for the set of
frequencies of measure greater than 1—consts™® and any o, the frequency of
entering the RZ is less than &!/2(1 4 const ¢/1%) < ¢!/*, Proceeding now as in [15,
Sect. 7, 8] we complete the proof of the inductive upper bound of AEF decay outside
its ES.

5. Completeness of the Set of AEF

At each step of induction we get a countable set of finite-dimensional subspaxes
P (a,t) of the form

Lo, )=C[T'P;(a+tw) , acLj],

each having dimension less than const-s. For |¢; —¢,]>2const -s the subspaces
Z(a,t,) and ZL(a,t,) are orthogonal, and in each #(a, ) the system of vectors
T'®5(o+ tw) is a basis with

(@3(@), Dp (@) =0l S (ae)™ .

This follows from the construction of AEF with the help of the first order
perturbation formula and the inductive estimates of decay of AEF. Renumber
all vectors T*®;(a+tw) by integers in such a way that for any ¢ <r the label
of T*®j(a+tw) would be less than the label of any T"®; (x+rw). Let the
n-th vector in this numeration be ¥;(x). Then we can define an operator
Ws(a): T" @} — ¥5(x) and decompose it into the sum W*=U*+G*, where U* is
unitary with

(U()T"®;, T*d})=0, |n—k|=const s,
and the norm of G5(«) is less than (ag)°*. Furthermore,
(G (@) T"d, TP < (ae)™ .
Thus, for ¢ small enough the following series converges in the strong operator
topology: .
on (=U* (@) ' G @)y ,

yielding a well-defined representation for (W*(«)) !

9

@) '= 3 (=U@) ' G @) (U @) .

£=0
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This means that any basic function in /2(Z) concentrated on a one-point set is
contained in the minimal closed subspace containing the vectors T* ¢3(a+ ). This
implies the completeness of the system {T"¢3(x+tw), teZ}.

6. Absence of Spectral Gaps

At the intial step of induction the function A} (x)=V(x) has a connected range
I'=[min V(a), max V(a)]. The distribution of its values posesses a piecewise smooth
density K} (A) since Ve C?(Tor?) with a finite number of non-degenerate critical
points. At the boundary points of 7 it has discontinuities of the first order and
vanishes out of I. At each subsequent step from the domains of some branches of
multivalued function A° the new RZ are excluded as well as sets obtained from RZ
by some shift on the torus. We have already explained this process in the
Introduction. On the other hand, the new branches appear on new RZ. Each new
branch is defined either on the (ag)®*!’*-neighborhood of new RA or on the
intersection of two such domains. The distribution function for the new A3*!(a)
also posesses a density, K5**(4), since all 45*! have only non-degenerate critical
points. From the exponential bound on the domain of new AEV and from the
polynomial bound on the minimal EV of D2 A5*1(B5F"!) we conclude that

0K (4) S (@)™ Vf(s+1) 0 S (@) D110 .

Summing over all the branches of A’ and overallz, 1 S1<s+1, we get the following
upper bound on the density of the distribution function for the multivalued function
A +1 (tX) .

0K (W)=Y KM Y (a)* % <o
3 =1

So, the limit
K(A)=1lim K*(1)
exists and is uniformly bounded. However, it is easy to see that K(4) is nowhere
continuous on its support because K3(4) has a discontinuity of the first order at any
point A3, = A3(85,), while later the magnitude of this discontinuity is not less than
one half of its initial value, if ¢ is chosen small enough.
Let us show that the range of
A(@)=lim A*(x)
is connected and inside this set K(4) does not vanish. We assume that K(1) vanishes
at some point and will come to the contradiction.
Let 4 be any maximal interval where K(1)=0 or sufficiently small interval
containing a point where K(1)=0. For any 6 > 0 there is such s(8) that for s > 5(5)

mes {a: AS(a) € 4 at least for one value of 1} <¢ . (11)

Let A be of the form A4=1[b,d]. The set (11) is bounded by a union of piecewisely
smooth curves obtained by a small deformation (for small ¢) of initial curves from
the level sets A(V, b), A(V,d) out of those arcs of the curves which enter into RZ.
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The width of RZ at the step ¢ is 2 (ag)"’*. Excluding a set of measure vanishing as -0
we can guarantee that for any ¢ no arc from the initial level sets A(V, ¢) of length
10ac or less intersects a RZ at the first step of induction. Since the angle between a
given curve and a RA intersecting it decreases not faster than s %, the length of arc
entering the RZ is less than 2 (ae)** 5'°. Hence, it remains always a part of the arc of
length greater than

10ae— Y. (2ae)™ >5ae>0
outside all the RZ. Without loss of generality assume that the arc lies strictly inside
{a: A3() e 4}. Then for some constants b>0, ¢>0,
mes {o: A3 (0) €[A—c, A+c]} = Sabe ,

where A€ 4 because together with any point of the arc outside of a RZ this set
contains a segment of an orthogonal line to this arc at the given point. This follows
from the polynomial upper bound of curvature of the RA at the step s.

Thus, we see that the density of the distribution function for A(«) is uniformly
bounded from below by a positive constant. This completes the proof.

Appendix
In the formulations of Lemmas 1 and 2 we use the notations of the Sect. 1.

Lemma 1. Let the AEF ®}(a) and the corresponding AEV A3(a) satisfy the follow-
ing condition: for any te[d(s)+1, d(s+1)] with d(s)=[s/ln 1/e] and my m=+1,

|45(@) — A, (0 + tw)| > Ry, (a0, 1) = (s + (dist (Z(D3 (), Z(T" & (a+ t)))'?) 7 .
Then there exists an AEF &1 (x) with an AEV A3** (), namely,

WD (Fy (@), T' P, (0 + t))

W=+ Y Y - Aietio)

T @5, (o+tw)

and
A3 (@) = A3(0) + (F5 (@), D3() ,

satisfying (3541)s (S¢11), (6541) and such that
(i) the domain of ®;**, A5** coincides with that of @5, A3
(i)
| @5 — ®g||c2<exp (—3/485) ,
[ A5+t — A5 2 <exp (—3/48s) .
We call this statement the lemma on non-resonant deformation.

Lemma 2. Assume that the AEV A, (a), 2<k<N, NX3, satisfy the following
conditions :

(g (@) = A (a+ )= R, (@5 1) 5, 25]EN (A1)
!A(j(a)—Am(a+tw)|>R{jm(a; t)7 2§J§N, m¢{{j, 1 é]éN} . (Az)
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Define in the N-dimensional Hilbert space with the orthogonal normed basise,, ..., ey
a self-adjoint operator Q (o) with the following matrix elements :

Qij(@)=(®;,(0), H (o) T" D}, (a+ 1)) .

Let A;(x) be the eigenvalue of Q(x) and
N

Xj(“)= Z Cjk(“)ek

k=1

be its normed eigenfunctions. Then there exists the AEF ®;*' and the AEV A},
1=k < N defined on the domain where (A1), (A2) hold and have the following form :

N
P; (@)=} () T"®; ()
j=1

ALY (F3 (a+t0), T'®,, (x+tw))

N
+ ¢;i(a L <
jgl J( ) m#:/?.‘,f,,, ‘;0 A/j(a+tjw)_Am(°‘+tw)

A3 o0)=2(0)
These AEF and AEV satisfy the indictive assumptions (34,1), (55+1)s (6541)-

T'®5 (a+tw) |

This statement will be called the lemma on resonant splitting.

Remarks. 1. The new AEF and AEV in both cases are constructed with the help of
the first order perturbation formulas, and the one uses the cut-off in order to satisfy
the condition that the diameter of ES is bounded by const s. This procedure is quite
similar to that used in [15, Sect. 4]. The only difference with [15] is that we do not
construct the exact EF and EV but only the approximate ones. Therefore, we can
omit the seond order correction terms. Then it remains to study the local analytic
properties of new AEF and AEV as functions of the variables o, a,. This can be
done by the term-by-term differentiation of the equalities which determine new
AEF, AEV in the above lemmas. One should use also the inductive estimates of the
decay of AEF (which gives the upper bound for the numerators in the above-
mentioned formulas) and the estimates of polynomial type for the decay of
denominators corresponding to non-resonant terms. The resonant terms are
studied with the help of an auxiliary spectral problem as was done in [15, Sect. 4,
Theorem 2].

2. Further analysis of new AEV and AEF is given in Sects. 2—4.
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