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Abstract. The low-temperature phase diagram of the microemulsion model is
constructed for such values of its parameters when the model has only layered
ground states.

1. Introduction

The microemulsion model is a lattice 3-dimensional spin model of statistical
mechanics. It was proposed by Widom in [1] for the description of the microfilm
structure in a mixture "oil-water." Also he showed that for some values of the
mixture parameters the model can be reduced to a lattice spin model given by the
Hamiltonian:

H(φ(Z*)}=-ι Σ φ(χ)φ(y)-J Σ <rt*)<p(y)
dist(x,y)=l dist (*,>>) = J/2

-K Σ ψ(χ)φ(y), (i.i)
dist(x,y)=2

where x,yeZ3, φ(Z3) is a configuration on Z3 taking,values in the set {±1},
J = 2K. We shall consider a more general model with any /, J, K. Clearly (see [2]) it
is sufficient to consider only positive values of /.

First we investigate the ground states of the Hamiltonian (1.1). With this
purpose we put

and

U(φ(0(o)} = - 0.5/ Σ ΦMΦOO - 0.5 J Σ _i
dist(x, y )=l dist (*,)>) = 1/2

x,y<=O(o) x,yeO(o)

-K Σ ψ(χ)ψ(y) (1.2)
dist(x,y) = 2

x, ye 0(o)



28 E. I. Dinaburg and A. E. MazeΓ

Here o is the origin of Z 3, φ(O(o)) is the restriction of the configuration φ(Z3) on the
set O(o). Then (1.1) can be rewritten as

H(φ(Z3)) = X U(φ(O(x))).
xeZ3

(1.2)

Further we restrict ourself by investigation of periodic ground states. Let ψ{Z3)
be a locally minimal configuration, i.e. such that

U(ψ(O(x))) = mmU(φ(O(x))).

Then ψ{Z3) is a ground state. Evidently any periodic ground state is the locally
minimal configuration.

For any given triple (/, J, K) of parameters we define the set Σ(I9 J, K) of
configurations {σf(O(o))} for which

U(σ£O(o)))= min U(φ(O(o))) = m(I,J,K).
φ(O(o))

As both the Hamiltonian (1.2) and the Hamiltonian (1.1) are invariant with respect
to the ± symmetry and permutations of coordinate axes the set Σ(I, J, K) contains
together with the configuration σ the configurations — σ, σ(S(O(o))% where S is the
coordinate axes permutation. If the configuration on Z3 can be "gathered" from
configurations of Σ(I, J, K) then this configuration is a ground state. In Fig. 1 we
represent the diagram of ground states showing one element from every

l=const

l+ΛJ-2K=θ/ - \

K=(-1/2) I ^ - ^ + \ \

K
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\l+2J+2K=0

Fig. 1. Ground states of the model
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equivalence class of the set Σ(I, J, K) for each pair (J, K) when the parameter I is
fixed.

We shall consider only such parts of the diagram in which the all periodic
ground states are layered configurations. Let us recall that a configuration is
layered if it takes the constant value on any lattice plane orthogonal to one
coordinate axis. Because of the described symmetries of the Hamiltonian it is
sufficient to consider layered configurations which are constant on horizontal
planes. According to the known notations of layered configurations (see [3]) a
finite sequence </1? ...,/fc> of integer positive numbers defines the class of layered

k k

periodic configurations with the period L, where L= £ //iffeisevenandL= £ 2/f
ί=ί i=l

if fc is odd. The class consists of an adjoining to each other of horizontal layers of
thickness ll912,..., lk. A sequence of / adjacent horizontal planes is called a layer of
thickness / of a configuration φ if φ takes the same constant value on these planes
and the opposite value on the nearest planes to this sequence of planes. It is easy to
see that such class contains precisely 2Σlt configurations. There is a special
notation <oo> for the class consisting of two ferromagnetic configurations: φ(2Z3)

In the domain O1 there exist only the ferromagnetic ground states, in the
domain O2 - only the class <1>, in the domain O3 - only class <2>. On the interior
of the O2 and O3 common boundary there exists the infinite set of ground states
consisting of any periodic layered configurations containing the layers of thickness
1 or 2. At last on the interior of the interval on the line / 4- 4J + 2K = 0 belonging
to the boundary of domains Oί and O3 an arbitrary layered configuration is a
ground state if it does not contain layers of thickness 1. In the triple point / = — 4J,
K = 0 any layered configuration is a ground state.

For any given positive number ε along the half-line / = — 4J, K > ε, there exists
a finite number of periodic ground states and the Peierls condition is satisfied.
Consequently in the neighbourhood of this half-line the low-temperature phase
diagram can be investigated by the Pirogov-Sinai theory (see [4]).

In other cases both conditions necessary for the application of this theory are
violated: a number of periodic ground states is infinite and the Peierls condition is
not satisfied. Namely if the parameters /, J, K belong to the line / + 4J + 2K = 0
then the surface tension appears only along the vertical part of a phase-separation
boundary; if I,J,K belong to the line I + 4J — 2K = 0, then the surface tension
appears only along the edges of the phase-separation boundary.

For the phase diagram analysis we shall use some extension of the Pirogov-
Sinai theory applied to the study of phase transitions in the ANNNI model in [5]
and stated in a general form in [6], where the so-called dominant ground states are
considered instead of ground states. If the number of dominant ground states is
finite and some additional conditions are valid, then as proved in [6] a theory
analogous to the Pirogov-Sinai theory can be constructed.

The basic states of the theory are accounted in Sect. 2. Our conditions and
terminology are somewhat different from the ones in [6]. But one can easily verify
that for these conditions the theorem of Sect. 2 remains true. In Sect. 3 we find the
dominant ground states of the model (1.1) and so we prove the following result.
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Theorem. For each fixed I and large enough inverse temperatures β (Iβ> 1):
in a small neighbourhood of the triple point J-— 0.25/, K = 0 there exists a full

phase diagram (in the sense of [4] and \β]) for the phases <1>, <2>, <oo> (see
Fig.2.a);

in a small neighbourhood of the interval —I/2<K<β 1 on the line I + 4J
+ 2K = 0 the finite number of phases from the set: <2>, <3>, <4>, <oo> "survives"
(see Fig. 2.c);

in a small neighbourhood of the interval — J/6<X</?~ 1 on the line I + 4J
— 2K = 0 the finite number of phases from the set: <1 >, <2>, <2,1 > "survives" (see
Fig.2.b).

Remark. In [1] and [2] it was surmised that the point J = 2K on the line I + 4J
+ 2K = 0 is an ANNNI-like one, in particular, in its neighbourhood with finite β
an infinite number of phases exists. The theorem shows that this is not true.

l=const τ=p-

b.

Fig. 2a-c. The phase diagram of the model
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2. Description of the Method

We consider lattice spin models on the integer-valued v-dimensional lattice Z v

with a finite set Φ of spin variable values defined by translation-invariant
Hamiltonians H with a finite interaction range. It is clear that the "value" of such a
Hamiltonian on the configuration φ(Zv) [φ(x) £ Φ for any x e 2 v ] can be given as

(2.1)

where £ is a finite set of the lattice containing the lattice origin o, TXE = E + x is the
shift of set E on the vector x, U: φ(E)-+]R. is a potential, φ(E) is the restriction of
<p(Zv) on £. The set TXE is called an elementary volume (e.v.), restriction of φ(Zv) on
any e.v. is called an elementary configuration (e.c). The e.c. σ(E) is called the
minimal one if U(σ(E)) = min U(φ(E)) = m. The configuration φ(V) in any volume V
with the boundary condition φ(V) is a local ground state on V if φ(TxE) is a
minimal e.c. for any x for which TxEnV+0. (Here 7 is the complement of
V: V=ZV\K) It is evident the local ground state on Zv is a ground state in a usual
sense.

We suppose some conditions are valid for the Hamiltonian.

Condition 1. For the Hamiltonian (2.1) there exist at least one local ground state on
Έv. If for some boundary condition φ(V) (\V\ < GO) there exists its extension to the
local ground state on V then such an extension is unique.

Let L>0 be a constant. A set AeΈv is called L-connected if for any a,beA
there exists such a sequence of points ao,au ...,απ for which ao = a, an = b, a(eA,
and

Όist(ai,ai+1)^L(Όist(x,y) = max \xj-yjl x = (xl9 ...,xv), y = (

By definition a pair (TXE, φ(TxE)) is an elementary defect if U(φ(TxE)) + m, e.v.
TXE is the support of the defect. A set of elementary defects is L-connected if the set
of supports of these elementary defects is L-connected. Let φ(V) be a configuration
on V and φ(V) be a boundary condition. Then because of Condition 1 the
configuration φ(V) can be uniquely restored if the collection {ωj = {(Si9 φ(Sι))} of
connected components of elementary defects corresponding to it are given. For
any such component ωt put

AH(ωϊ= Σ ίU(φ(TxE))-ml, (2.2)
TxEnSi Φ 0

where S is the support of the component.
Also put Rt(A) = {yeZv:3xeA, Dist(x,y)^t] and

for any t > 0 and a set A.
Fix some constant L > 0. The pair ε = (S, φ(RL(S))) is called the perturbation of

the local ground state ψ(V) defined by boundary condition ψ(V) if the following
condition is valid: the perturbation support S belongs to V and is a L-connected
subset of Έy; φ(x) Φ ψ(x) with xeS but φ(x) = ψ(x) with x e RL(S)\S. For every local
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ground state ψ(V) the ensemble of perturbations compatible with this configu-
ration is defined, i.e. such a collection {εj = {Sb φ^R^Si)))} for which

RL(Stι)nSi2 = RL(Si2)nSh = 0, eil9 εh e {εj.

For any perturbation st its statistical weight

W(εd = exp {- Σ lU((Pi(TxE)) - U(φ(TM]\ (2-3)

Further we also fix some constant G > 0 called the main order.

Condition 2. Assume that the configuration φ(Zv) is given and for some volume V the
configuration φ(V) can be continued to the local ground state ψ(V). Also assume that
all connected components ωt of elementary defects of φ{V) satisfy the estimate
AH(cDi) ̂  G. Then there exists such L = L(G) for which every element of the partition
of the totality {ωj on L-connected components can be realized as the perturbation of
ψ(V).

From this point we shall use a special term "excitations" for perturbations
which connected components of elementary defects ωt satisfy the estimate:

Connected components of elementary defects ω with AH(ω)>G are called
clusters.

Clearly the Peierls condition: w(εt)<exp{ — const jS|Sf|} holds for every excita-
tion st. It is well known that for large enough β the satisfaction of this condition is
sufficient for the diluteness of the excitation gas of the configuration ψ{V\ i.e. for
the representation of the partition function logarithm

in the form of absolutely convergent series of polymers:

\nZ(ψ(V)J\ψ(V))= Σ Φ), (2.4)
iteV

where π = (S, φ(RL(S))) is such a collection {ε7} of excitations compatible with ψ(V)
for which the set S = KJSJ is L-connected. Also q(π) is uniquely defined by {εj} and
the estimation \q(π)\ <exp{ — constj8|S|} holds perhaps with another constant.

A configuration ψ containing no excitations in the volume V is called a factor
configuration in this volume.

Fix the boundary condition ψ(V) coinciding with some local ground state and
consider the ensemble of factor configurations in V. On this ensemble define the
factor model by the Hamiltonian HG:

where ψ(V) is the factor configuration in V,

HP(φ(F)) =

uS f is the union of all cluster supports of the configuration ψ(V). Here we include
obviously the dependence on β in the Hamiltonian HG.
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One can see that

Ξv(HJ\φ(V)) = Ξv(HG),

where in the left-hand side of this equality we have the partition function
calculated by the Hamiltonian H with boundary condition φ(V) and for the
inverse temperature /?, but in the right-hand side we have the partition function of
the factor model in volume V.

The factor configuration ψ{Zv) is called the G-dominant ground state of the
Hamiltonian HG if

for an arbitrary factor configuration ψi(Zv) not coinciding with ψ(Zv) only on a
finite subset of Z v .

Let c = {Cj be a lattice partition on the cubes Ct invariant with respect to shifts
on periods of all G-dominant ground states.

Condition 3. Assume that only a finite number of periodic G-dominant ground states
exists and that factor configuration ψ coincides with neither G-dominant ground
states on a finite set A which is the union of cubes Ct. Then the inequality

\HP(ψ(A)) - HP{κ{A))\ > const exp( - βG) \A\ (2.5)

is satisfied for any G-dominant ground state K.

Theorem [6]. Let the Hamiltonian H satisfy Conditions ί and 2. Consider the
n-l

perturbated Hamiltonian H = Ho + £ fcHi. Suppose that the corresponding factor
i=l

model has on a curve μ = μo(β) {β>βo) precisely n G-dominant ground states
satisfying Condition 3 and assume that the Hamiltonians Ho, ...,Hn_± remove the
degeneracy of the G-dominant ground states. Then for sufficiently large inverse
temperatures β>β0 and for some constant C > 0 there exists a full phase diagram in
the domain

\μ-μo(β)\<Qχp{-βCG}.
Here μ = (μu...,μn_ι).

The theorem has an evident extension on the case when all Ht (i = 0,1,..., n — 1)
have a symmetry group Γ. Then the theorem is true for classes of Γ-equivalent
G-dominant ground states.

3. Dominant Ground States of the Microemulsion Model

We investigate the domains defined by the following constraints:

1. Iβ>ί; \K\,\I + 4J\<β-ιexp{-7βI}9 (3.1)

2. Iβ>ί; -Jβ>U -//2<X<-j?- 1;jβ|/ + 4J + 2X|<exp{- jβ}, (3.2)

3. Iβ>\; -7/6<X<- iβ- 1;i8 |/ + 4J-2X|<exp{-iβ}. (3.3)

To verify Condition 1 let us consider the finite volume V with the boundary
condition φ(V) and for every horizontal plane Z 2 c Z 3 intersecting V denote
connected components of Z 2 n F by Έf and their boundary Z 2 n[R 1 (Z 2 )\Zf] by
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dZf. Obviously φ(V) can't be continued to the layered configuration φ(V) iϊφ(dZf)
Φ const, but for every Έf the unique continuation φ{Έf) = a exists if φ(dΈf) = a, i.e.
Condition 1 is valid.

To verify Condition 2 consider the configuration φ(Z3) with all connected
components of elementary defects ωt = (Sh φ(Si)) belonging to the finite volume V,
satisfying the estimation ΔH{ω^G, and hence the estimation |S f |<M with
constant M = M(G). Suppose the volume V is so large that configuration φ(V) has
continuation to the local ground state ψ(V). Consider φ(V) as the collection {Sj} of
2-connected sets on which φ(V)Φψ(V). Imagine Sj as the union of belonging R 3

closed unit cubes centered at xeSj and notice that in the configuration φ(V) its
elementary defects are placed at least along all edges of the polyhedron obtained.
Consequently for every connected component of this polyhedron's edges the total
edge length is smaller than M, the set of all polyhedron edges is M2-connected and
so the set corresponding to the Sj connected components of elementary defects is
M2-connected.

As Conditions 1 and 2 are valid with an arbitrary G and as the number of
polymers with the statistical weight which is not o(exp { — βG}) is finite with respect
to Έ? translations it is convenient to check Condition 3 according to the following
scheme. First all polymers with the statistical weight exp{ — βGx} which is
maximal for given values of parameters are looked for and G1 -dominant ground
states are calculated. If the number of these states appears to be infinite then again
polymers with the statistical weight exp{ — βG2} which is maximal among the
remaining ones are looked for and G2-dominant ground states are calculated. The
procedure repeats until for some Gn the number of Gn-dominant ground states
becomes finite. After that the estimation (2.5) is verified and in case of its validity Gn

may be selected as the final main order.
Obviously for calculating of G'-dυminant ground states satisfying this estima-

tion the truncated polymer Hamiltonian Hi obtained from the full Hamiltonian
HP by cutting all terms that are o(exp{ — βG}) can be used. As the polymer π
statistical weight q(π) satisfies the Peierls condition, the Hamiltonian Hi has the
finite interaction radius and a Hamiltonian H$ = βH — Hi can be written in the
form:

τ 3 ΓΣ
A E

ΓΣ
\_A =

Σ Nrtπ)], (3.4)
π = (S,φ(RL(S)))

where external summation goes over all vertical lines ΈcTP. In the class of layered
configurations the Hamiltonian H£ is invariant with respect to horizontal shifts,
hence in (3.4) all terms of the external sum are equivalent and represent the one-
dimensional Hamiltonian HG(ψ(Έ)).

Each term which appears in the HG naturally corresponds to the sequence σ of
+ and — which is either the projection of ψ(A) on Έ or the projection of ψ(RL(S)\S)
on Έ. The sum over all such terms which are corresponding to the fixed σ defines
the potential ϋσ. Expressed by Όσ the specific energy of the periodic configuration

is equal to

where nσ(φ) is the occurrence frequency of the sequence σ in the configuration φ.
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In general frequencies nσ(φ) are linearly dependent. Suppose that the represen-
tation of certain frequencies by other ones is known:

^ = I>/V (3.6)

Then for σt we can define new potentials

U^ϋ^ + Σatjϋ.,, (3.7)

and can rewrite expression (3.5) as

In the rest of our paper we shall often use such transformations and the fact that
if YJnσ.Ci = \ for all φ from some configuration class, then in the space of model

parameters the system of equations

CϊιΌσ. = const

defines the hypersurface on which specific energies coincide for all φ from this class.
Let us pass over to the concrete calculations. The domain (3.1) in the space

(/, J, K, β) is the small neighbourhood of the hypersurface / + 4 J = 0, K = 0 which
minimal elementary configurations σ1,σ2,σ00 (see Fig. 1) coexist on, and thus all
layered configurations are ground states. In this neighbourhood it is convenient to
use the coordinates <5 = / + 4J + 2K, μ = I + 4J — 2K and to construct the phase
diagram in the space (δ, μ, β).

Potentials of the minimal elementary configurations are equal to

.55; l/(σ2) = 1.5/+ 0.55;
(3.9)

and the statistical weight of an arbitrary excitation has the form:

) = exp{-lβl-rnβδ-nβμ}, />0, m,neR. (3.10)

Using the closeness of βδ and βμ to zero in the further calculations we shall first
take into account only the main terms of power series for exp{— mβδ} and
exp{ — nβμ], i.e. we shall consider W(ε)= W{ε)\δ=μ=0. Then we are to correct the
results obtained taking into account the full power series.

In general the statistical weight of the excitation ε = (S, φ(RL(S))) depends on the
whole configuration φ(RL(S)\ but with δ = μ = 0 it is defined only by the value φ on
S since in this case the single-site excitation energy is clearly equal to 6βl (see
Fig. 3a) and the multi-site excitation energy is equal to the sum of energies of
corresponding single-site excitations minus doubled interaction energies of unit
bonds, diagonal planar bonds and double bonds belonging to the support of ε.

All polymers with the statistical weight ^exp{ —11/?/} are enumerated in
Fig. 3b in decreasing weight order. Since their diameters ^ 3 for any periodic
configuration φ(Έ) the specific energy h(φ) corresponding to the Hamiltonian HX1I

can be calculated by the formula

h(φ)= Σ nσ(φ)Uσ, (3.11)
σe{+ + + , + + - , - + + , + - + , , + , + , - + - }
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Fig. 3a-c. Excitations and their statistical weights near the triple point (Notations: black and
white circles correspond to spins of opposite signs. Bigger circles show the sites where spin-flips
have to be done)

where Uσ are defined with the help of identities:

(3.12)

(3.13)

(3-14)

and analogous identities forn_,n__,n_ + .
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Clearly £ nσ(φ) = 1 and Uσ=U^σ, therefore in the space (δ9 μ, β) the system of
equations

U+ + + = U+ + _ = U+-+ (3.15)

defines the coexistence curve of 11/-dominant ground states constructed from
minimal elementary configurations σuσ2,(τao and systems

£/+ + + <£/ + + _ = £/+_ + , (3.16)

l/+ + _ < l / + + + = t/ + _ + , (3.17)

U+_ + <U+ + + = U+ + _ (3.18)

define coexistence surfaces of 11/-dominant ground states constructed from
minimal elementary configurations σγ and σ2, σx and σ^, σ2 and σ^ respectively.
After elementary calculations one can find the solutions of the system (3.15):

(3.19)

μ=_ j5-1(0.5exp{-8jS/}+exp{-10iS/}-1.5exp{-lljS/}. (3.20)

Solutions of systems (3.16), (3.17), (3.18) can be found in an analogous way.
Obviously as the main order increases no polymers with supports a height ^ 3

can remove an infinite degeneracy of the dominant ground state on hypersurfaces
defined by systems (3.15-3.18). Such polymers only add terms of a corresponding
order to the right-hand sides of (3.19-3.20).

The excitation shown in Fig. 3c has the maximal statistical weight among
polymers with height ^ 4. This excitation corresponds to the sequences + + + +
and , therefore taking into account that excitation the specific energy h(φ)
is equal to

Σ

(3.21)

Hence the equation /ι«2» = /ι«oo» is transformed to the

The configuration consisting of layers of thickness m ^ 3 can't already be 12/-
dominant ground states on the surface defined by this equation because

n « m » = (m- 3)/m

and

». (3.22)

Thus the excitation which we have considered-removes the infinite degeneracy
of 11 /-dominant ground states on the coexistence surface of configurations <2>
and (oo), but clearly one can't remove a similar degeneracy on the coexistence
surface of configurations <1> and <2>.
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Fig. 4a-d. Excitations and their statistical weights near the line I+ 4J + 2K=0

The excitation removing this degeneracy arises only in the order 15/ and is
shown in Fig. 3d. Taking into account the given excitation for configurations φ
consisting only of layers of thickness 1 or 2 we have

%»)= nβ{φ)Vσ

σe{+ + - , -

and on the surface defined by the equation /ι«l» = /ι«2» a minimum of h(φ) is
reached only on configurations <1> and <2>. Other polymers with the statistical
weights

exp { -12βl} < q(π) < exp { -15βl}

either have height ^ 3 or (see Fig. 3e) only strengthen the inequality (3.22).
Thus in the order 15/ there is a full phase diagram for phases < 1 >, <2>, <oo > in

the small neighbourhood of the curve δ = δ(β), μ = μ{β), defined by equations /i«l»

Finally we must correct our results taking into account true polymers
statistical weights. Since βδ and βμ obtained are O(exρ{ — 8β/}) only two terms:
mβδW{s)\δ=μ=0 and nβμW{ε)\δ=μ = 0 are not o(exp{— 15βl}) in the power series for
W{ε). Furthermore they are not o(exρ {-15βl}) only for W(ε)\δ=μ=0 ̂  exp {- Ίβl).
The preceding condition is valid only for single-site excitations and it is easy to
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verify that such additional terms can't influence the fullness of the phase diagram
obtained.

The domain (3.2) in the space (I,J,K,β) is the small neighbourhood of the
hypersurface / 4- 4J + 2K = 0 which minimal elementary configurations σ1 and σ^
(see Fig. 1) coexist on and thus all layered configurations containing no layers of
thickness 1 are ground states. In this neighbourhood it is convenient to use the
coordinate δ = / + 4J + 2K and to construct the phase diagram in the space (δ, β).

It can be verified that with K^2J the excitation shown in Fig. 4a and with
Kf^2J the excitation shown in Fig. 4b have the maximal statistical weight among
the weights of all polymers. Let Gi = min {— 24J — 8K, — 40J}. In the order Gί the
specific energy of the periodic configuration φ containing no layers of thickness 1 is
equal to

h(φ)= Σ
σe {+ + - , - + +, + + + , +, + , }

Σ M^expί-jSGa, (3.23)
σe{+ + + , + +, + + +, + + }

where Uσ are defined by means of identities (3.12-3.14). In the expression (3.23) the
first sum does not depend on φ and the second sum is maximal when φ = <3>.
Therefore in defining the curve δ^β) as the solution of the equation A«3» = h((T))
and curve δ2(β) as the solution of the equation ft«3» = /z«oo» we have that with
δ^δx configurations <2> are the G^dominant ground states, with <5î <5^<52

configurations <3> are the G^dominant ground states, with δ^δ2 configurations
<oo> are the Gx -dominant ground states.

The specific energy of configuration φ consisting only of layers of thickness 2 or
3 can be calculated as

h(φ)= Σ nσ(φ)Uσ+ Σ nJiφ)Uσ9 (3.24)
σe{+ + , - + + -} σe{+ + +, }

where Uσ are obtained with the help of identities:

n + = 3 n + + + + 2 n _ + + _, (3.25)

n+ + = n _ + + _ + 2n+ + + , (3.26)

n + + + __ = rc+ + + , (3.27)

and analogous identities f o r π _ , π _ _ , n + +. Besides

Σ 2nJiφ)+ Σ 3nσ(φ) = l .
σe{+ + , - + + -} σe{+ + +, }

Therefore all similar configurations are Gt -dominant ground states on the curve
δ^β) and no polymers with supports belonging either to the layer of thickness 2 or
to the layer of thickness 3 can remove this infinite degeneracy. Among polymers
intersecting the boundary between layers with K > 1.75J the excitation illustrated
in Fig. 4c and with K < 1.75 J the excitation illustrated in Fig. 4d have the maximal
statistical weight. These excitations correspond to the sequences + + H
and h + + and consequently remove the infinite degeneracy of the
Gi-dominant ground state because in the order G2 = min {— 44 J— 16X, — 72J} the
maximum of the n+ + + (φ) + n + + +(φ)is achieved on the configuration
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On the curve δ2(β) specific energies of the configurations which do not contain
layers of thickness 1 and 2 coincide because with Uσ calculated by means of
identities:

the expression for h(φ) takes the form:

(3.28)
σe{++ , + +} σe{+ + +, }

and

Σ 2nσ(φ)+ Σ nJίφ)=ί.
σe{+ + , + +} <τe{+ + +, }

With K^.2J the excitation introduced in Fig. 4e has the maximal statistical
weight among polymers that do not coincide with polymers shown in Fig. 4a and
b. Since this excitation corresponds to the sequences + + + + + and
for m ̂  4

Λ«m»= 17+ + +(m-2)/2 +17+ + _ _/m-exp{24j?J + 12βK}/m

= h{{ oo » + exp {24βJ +12βK}/m

on the curve defined by the equation

Hence infinite degeneracy of the dominant ground state is removed in the order
-24βJ-l2βK.

With K^2J the statistical weight of the excitation shown in Fig. 4e becomes
smaller than the statistical weight of the excitation shown in Fig. 4f and
corresponding to the sequences: + + + + + +, , + H ,

h + + +. Because of this excitation the curve δ2{β) is splitting and phase <4>
arises between phases <3> and <oo>. Moreover there is no other — 48J-dominant
ground states on the coexistence curve of phases <4> and <oo>, but on the
coexistence curve of phases <3> and <4> all configurations containing only layers
of thickness 3 and 4 are — 48 J-dominant ground states.

This infinite degeneracy is removed in the order — 88J by means of the
excitation shown in Fig. 4g.

It is easy to verify that if K = 2J, then only the configurations <3>, <4>, <oo > are
— 88J-dominant ground states.

The domain (3.3) in the space (/, J, K, β) is the small neighbourhood of the
hypersurface J + 4J — 2K = 0 which minimal elementary configurations σγ and σ2

(see Fig. 1) coexist on and thus all layered configurations consisting of layers of
thickness 1 and 2 are ground states. In this neighbourhood it is convenient to use
the coordinate μ = I + 4J — 2K and to construct the phase diagram in the space
(μ,β).

Investigation of this region can be carried out analogously to the investigation
of the regions mentioned above therefore we only indicate excitations removing
the infinite degeneracy of the dominant ground states. With K^— 0.1/ the
excitation shown in Fig. 5a and with K^ —0.1/ the excitation shown in Fig. 5b
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Fig. 5a-d. Excitations and their statistical weights near the line / + 4 J — 2K = 0

have the maximal statistical weight. In the corresponding main order
G1=min{ — 67 — 12K, —127 — 12K] as the occurrence frequency of these exci-
tations is maximal for configurations <2,1> equations ft«l» = ft«2,l» and
ft«2,l» = /ι«2» define curves μx(β) and μ2(β) for which configurations <1>,
<2,1>, <2> are Gi-dominant ground states with μ^μu μ i ^ μ ^ μ 2 , μ^μ 2

respectively. With X ^ —0.1/ there is no other Gi-dominant ground state on the
curve μ2{β\ but with K^— 0.17 all configurations consisting of layers of
thickness 1 and 2 and having no adjacent layers of thickness 1 are Gx-dominant
ground states. In the next orders this infinite degeneracy is removed by the
excitation shown in Fig. 5b with — 0.17^K^ —(1/12)7 and by the excitation
shown in Fig. 5c with K^ -(1/12)7.

All layered configurations consisting of layers of thickness 1 or 2 and having no
adjacent layers of thickness 2 are Gλ -dominant ground states on the curve μ^β).
This infinite degeneracy is removed in the order — 67 — %K by means of the excita-
tion shown in Fig. 5d.

Remark. For the ANNNI model defined by the Hamiltonian:

H(φ(Z3)) =-JOΣ φ(Φ(y) -JiΣ Φ)φ(y)+JiΣ ψ(Φ(y),

where the first summation goes over all horizontal nearest neighbours, the second
summation goes over all vertical nearest neighbours, the third summation goes
over all vertical next nearest neighbour's infinite family of curves δ = δn(β) which

b.

c.

o—O—•—•—o—O— — —

vertical

Fig. 6a-c. Excitations and its statistical weights for the ANNNI model
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phases <3,2n '1} (i.e. < 3 , ^ ^ T ) ) and <3,2W"2> coexist on grows from point δ = 0

(δ = J1—2J2). The difference between the ANNNI model and the microemulsion
model in particular consists in distinction between excitations removing the
infinite degeneracy on the phases <2> and <3> coexistence curve. This excitation
for the microemulsion model was shown in Fig. 4c and for the ANNNI model it is
shown in Fig. 6a. Moreover the phase <3,2"+1> appears between phases <3,2">
and <2> because of the excitation illustrated in Fig. 6b, and <3,2">-<3,2n+1>
boundary becomes stable because of the excitation illustrated in Fig. 6c. The last
excitation defines the main order Gn+2 = (ί6n + 24)J0 + 2J1 which is used for
construction of the curve δn + 1(β). The smaller main order G/J+2 = (8n + 16)J0

and smaller excitation were erroneously indicated in [5].
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