
Communications in
Commun. Math. Phys. 124, 595-627 (1989) Mathematical

Physics
© Springer-Verlag 1989

Chern Numbers, Quaternions, and Berry's Phases
in Fermi Systems

J. E. Avron*'**, L. Sadun***, J. Segert** and B. Simon**
Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena,
CA 91125, USA

Abstract. Yes, but some parts are reasonably concrete.

Table of Contents

1. Introduction 596
1.1 The Adiabatic Connection 596
1.2 The Spectral Bundles of H(B) 599
1.3 Quadrupole Interactions 600
1.4 Topological Quantum Numbers 600

2. Time Reversal and Quaternions 601
2.1 Quaternionic Vector Spaces 601
2.2 Quaternionic Structure Maps 603
2.3 Angular Momentum and Time Reversal 604

3. Quadrupole Hamiltonians 605
3.1 Rotational Symmetry 605
3.2 Simple Hamiltonians 606
3.3 A Child's Garden of Matricial Miscelanea 607

4. The Homotopy of Simple Matrices 608
5. J = 3/2 Quadrupole Hamiltonians 612

5.1 50(5) Symmetry 612
5.2 Chern Numbers 614

6. J > 3/2 Quadrupole Hamiltonians 615
6.1 The Chern-Simons Form . .t 615
6.2 Chern Numbers 616
6.3 Properties of the Adiabatic Connections 618

7. Holonomy of the Adiabatic Connection 619
7.1 Symmetry Group Orbits 620

* On leave form Physics Dept., Technion, Haifa, 32000, Israel
** Research partially supported by NSF Grant DMS-8801918
*** Address after September 1989: Courant Institute, New York University, NY, NY 10012, USA



596 J. E. Avron, L. Sadun, J. Segert and B. Simon

7.2 Split Spheres ................... 622
8. Appendix: J = 5/2 Spectral Projections ............ 625

1. Introduction

Quantum Hamiltonians that depend on parameters give rise to interesting geo-
metric and topological questions [1-3]. A basic paradigm, due to M. Berry
[1], is a spin J in a magnetic field B:

H(B) = BJ. (1.1)

The geometric objects of concern are the bundles of one dimensional eigenspaces
of H(B) [2]. They are naturally defined over BeR3/{0}, with B = 0, the point of
level crossings, removed. The adiabatic evolution can be used to define a natural
connection for the bundles.

//(B), being odd under time reversal, is the paradigm for the general case. It
is natural to ask if time-reversal invariant Hamiltonians also give rise to interesting
geometry. The answer is sensitive to statistics in the sense that bosons (i.e., integer
spin systems) are different from fermions (i.e., half-odd-integer spin systems).

Mead [4] proposed the study of time-reversal invariant fermi systems, for which
spin J in a quadrupole electric field is the basic paradigm [5],

H(Q) = Qμ.vJμJv. (1.2)

Qμ v are the components of a real, 3 by 3, symmetric and traceless matrix, and we
use the summation convention. In this paper, we compute the Chern numbers,
curvatures, and holonomies for the bundles associated to spectral subspaces of

1.1 The Adiabatic Connection. Let H(x) be

x.T., (1.3)

where x = (Xι,...,xn)eR"/{0} and the {Tx} are fixed self-adjoint operators.
Fix an eigenvalue λ(x) of H(x) and let P(x) be the associated spectral projection:

.2πι J

Γz — H(x)

where the contour Γ circles λ(x) counterclockwise in the complex z-plane. In the
examples we consider here levels cross at x = 0. On R"/{0}, P(x) inherits the
smoothness of #(x), and in particular has fixed dimension. The adiabatic evolution
transports vectors from the range of P(x) to the range of P(x') More precisely:

The adiabatic connection A(P) is the operator-valued one-form1

]. (1.5)

This defmiton differs from the one of [6] by a factor of i
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Attention should be paid to the placement of parentheses. (dP) is a operator-
valued form and does not differentiate succeeding expressions, in contrast to
dP = (dP) + Pd. To motivate the above definition, we state:

Theorem 1.1. (Kato [7]) Let c be a path of Hamiltonians parametrized by t. Let
UA(t) be the solution of

/* ΓΛP Ί\
Λ0 = 0, (1.6)

where P(t) = P(c(t)\ with initial condition UA(Q) = 1. Then U A ( t ) is a unitary operator
which maps the range of P(G) to the range of P(t), i.e.,

(1.7)

Remarks.

1. It is a result of Kato that the physical evolution, generated by H(x), reduces to
the adiabatic evolution (1.6), in the adiabatic limit [7,6].
2. For closed paths, with c(l) = c(0), U A ( l ) is a unitary map from the range of P(0)
to itself, and may be identified with an element of U(n\ where n = dim (P). This
is the adiabatic holonomy. When dim(P) = 1, the holonomy is Berry's phase.

The adiabatic curvature two-form Ω(P) is defined as the curvature of the adiabatic
connection in the usual way, as the adiabatic holonomy over small closed paths
[8,9].

Proposition 1.2.

a) On Hilbert space-valued differential forms satisfying P(x)B(x) = B(x), the covariant
derivative corresponding to the adiabatic connection is

V = d + A = Pd. (1.8)

b) The adiabatic curvature is

= P(dP)(dP)P. (1.9)

c) In a neighborhood of P0, given a smooth family of unitaries U(x) such that
P(x) = U(x)P0U(x)~1

9 the curvature is given by

A2)U-\ A=P0U-l(dϋ)P0. (1.10)

Proof, a) follows from [2] and [10]. Part b) is a computation based on the equality
Ω= V2. Part c) is direct computation.

Remarks.

1. The proposition can be understood in terms of gauge transformations. Consider
B(x)= U~l(x)B(x). On Hilbert space- valued forms B(x) satisfying P0B(x) = B(x),
the covariant derivative transforms to V = U(x)~1VU(x) = d + A.
2. Equation (1.6) is equivalent to Vd/dtUA = 0.

Time reversal is associated with an antiunitary operator Θ. We shall return to this
in Sect. 2. For the curvature, using (1.4) and (1.9), this has the following consequence:
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Proposition 1.3. Suppose H(x)Θ=ΘH(x\ then Ύr(Ω2n + 1 ) = Q. In particular, if
dim(P) = 1, then the adiabatic curvature vanishes identically.

Proof. Since ΘH = HΘ, then also ΘP = PΘ, and ΘΩΘ~l =Ω. Since for any
complex-linear operator M we have Tr(ΘM6>~1) = Tr(Mt), it follows that

Ίr(Ω2n+1) = Ύΐ(ΘΩ2n+1Θ~l) = Ύr((Ω2n+l)') = -Tr(ί22n+1) = 0. (1.11)

For bosons, dim (P) = 1 generically, so time reversal invariant bosons are
uninteresting. Fermions, in contrast, have Kramers degeneracy, which allows for
nonzero Ω.

We now present some prerequisites for the introduction of Chern classes.

Proposition 1.4.

a)
</Tr[ί2m] = 0. (1.12)

b)
Ω*=-Ω. (1.13)

Proof, a) follows from the fact that (dP) maps the range of P to the range of (1 — P),
and vice-versa, so any form of odd degree made of P and (dP) has zero trace, b)
is a consequence of Eq. (1.9) the anticommutativity of one-forms.

Topological invariants arise from the fact that parameter space has nontrivial
topology once points of level crossing are removed. In particular, for the examples
we consider parameter space is R"/{0}> (n = 3 and n = 5 for H(E) and H(Q)
respectively), which is noncontractible. Bundles over parameter space may then
have nontrivial Chern classes, with corresponding nonzero Chern integers. More
precisely:

Definition 1.5. ([11,8])

a) The m-th Chern class is

-
. (1.14)

πι m

b) The m-th Chern number, Cm(P,X) associated with the projection P and the
closed 2m-dimensional submanifold X in parameter space, is

m(P). (1.15)

For the examples we consider, where parameter space is R"/{0} the only relevant
closed surfaces are S""1, i.e., the 2-sphere for H(B) and the 4-sphere for H(Q).

Proposition 1.6. Consider a family of Hamiltonians H(x) of the form (1.3\ with
n = 2m + 1, and suppose further that H(x) is nondegenerate for all x φ 0. Denote the
projection onto the μ-th eigenvalue of H(x) by Pμ(x), with μ= l, . . . ,v. Then

Cm(Pμ,S
2m)= -Cm(Pv+1_μ,S2m). (1.16)

Proof. The map H(x) -» H( — x) reverses the order of the eigenvalues, and so
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interchanges Pμ and Pv+ί-μ. The antipodal map x->— x on s2m^R2m+l is
orientation-reversing, and changes the sign of Ωm.

1.2 The Spectral Bundles of H(B). We now derive the well known properties of
the spectral bundles of {//(B)}. We use a method that will be generalized to (H(Q)}.
The holonomy formulae will in addition be used in calculating the holonomy of
{H(Q)}. The spectrum of H(E) is

|B|{-J,-J+1,...,J}. (1.17)

H(E) is nondegenerate away from B = 0. Denote the spectral projections by Pm(B),
where m is the eigenvalue of //(B), with B = B/|B|.

A special feature of //(B) is that the results can be inferred from the action of
S0(3) rotations. For example, POT(B) is unitarily equivalent to Pm(ή), with ή denoting
the north pole, by any unitary operator corresponding to the rigid rotation of n to B.

Proposition 1.7. ([1,2])

a) ωίfor each eigenvalue is rotationally invariant.
b)

C1(PIB,S2)=-2m. (1.18)

c) For a closed loop c(t) on S2, c(l) = c(0),

UA(\)Pm = exp(-imS)Pm, (1.19)

where S is the solid angle enclosed by c.

The remainder of this section is a proof of this proposition. We use only the
symmetry by rotations about the z-axis, not the full rotation symmetry actually
present in //(B).

Using formula (1.10) and the cyclicity of the trace, we find locally

Tr (Ω) = Tr (dA + A2) = Tr (dA) = dΎr (A). (1.20)

Let (θ,φ) be the usual spherical coordinates. Let P0 = P(0 0) = |m><m|. Choose
for each 0 < 0 < π a unitary operator Vθ such that P ( θ 0 )= ^PoK^1. Define
Wφ = exp (— iφ J3). Then

Pv^W+VePoV^W;1. (1.21)

Define U = WV. A is globally well defined away from the poles,2 and

Ύτ(Ω) = dΊτ(A) = dΎr(PθW~ l(dW)) = - id[Ύr(PθJJdφ]. (1.22)

Let N ci S2 be the set consisting of the north and south poles. The first Chern
number is then

U(ψ + 2π) - exp(-2πΐ J3)U(0). However, even if exp(-2π/J3) - -1, we have Ά(θ, φ + 2π) = A(θ, φ)
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C ι = - f
<£K S2/N e-*0

= Tr(PπJ3)-Tr(P0J3). (1.23)

For Berry's example, P0 = |w><w|, Pπ = | — m)< — m|, and C\ = — 2m. (Some
authors use a different sign convention in the definition of first Chern class, (1.14).)

For a connection with an Abelian holonomy group, U A ( l ) in this example, the
adiabatic transport U A ( l ) for a closed path c, c(l) = c(0), which does not go through
either pole, and for which U(c(t))= WV(c(t)) is single- valued3, equals

(1.24)

For a connection with Abelian holonomy group, U A ( l ) can also be expressed as
the exponential of the integral of the curvature over a disk bounded by the path
c. By Stokes' theorem, this is the same as Eq. (1.24).

For Berry's example, H(B), using the remaining rotational symmetry, we take
Kβ = exp(-/0J2),

Tr (Pθ J3) = Tr (P0 exp (iθ J2) J3 exp ( - iθ J2)) = cos (θ) Tr (P0 J3). (1.25)

Here we used the fact Ύ r ( P 0 J l ) = (m\Jί\my = Q. The adiabatic time evolution
around the closed loop gives a phase equal to -iTr(P0J3) multiplied by the solid
angle bounded by the loop [1,2].

1.3 Quadrupole Interactions. Spins do not couple directly to electric fields. Up to
an overall constant (reduced matrix element) for each J-multiplet, the form of the
interaction Hamiltonian is apparent from the Wigner-Eckart theorem [13]. We
outline why the interaction Hamiltonian does not vanish.

Consider perturbing an attorn by a quadrupole electric field with sources at
infinity. Such a field is described by a 3 by 3 symmetric and traceless matrix Q.
Q\ is the electric field at xeR3. For each electron the perturbation is [14]

ίβμ.v^v + 2 σ (βx) x (-iV). (1.26)

The first term is the usual potential energy term and the second has the same
origin as the spin-orbit interaction term.

1 .4 Topological Quantum Numbers. Quantum numbers that come from symmetry
of an operator play two roles: They label the spectrum, and give selection rules
for transitions. Selection rules forbid certain transitions. The Chern numbers play
analogous roles for families of operators. They clearly label the spectrum. They

3 For half-odd-integral, J, U is double-valued on S2 - N, although A is single-valued. The following
equation is then only valid for closed paths which wrap around an even number of times. Alternatively,
the substitution J3-»J3+ \ makes U single-valued, and makes the following equation valid in full
generality. See Zee [12] for further discussion of this point
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also give selection rules for adiabatic processes in the sense that a nonzero Chern
number guarantees nontrivial holonomy for some paths. In the nondegenerate
case the holonomy is just a phase. For time-reversal invariant fermions the
holonomy is an SU (2) matrix, so the initial and final state can be orthogonal. For
example, as we shall see, appropriate closed paths in the space of quadrupoles can
cause adiabatic evolution of a J3 = 3/2 eigenstate to a J3 = —3/2 eigenstate.

2. Time Reversal and Quaternions

It is an old result of Wigner [15] that time reversal in quantum mechanics is
implemented by an antiunitary operator Θ such that Θ 2 = 1 for bosons and
Θ2 = — 1 for fermions. Such a Θ can be written as Θ= l/°* with * denoting
complex conjugation and with U unitary. In group representation theory, Θ is
known as a structure map, and traces its origins to the work of Frobenius and

Schur [16].

In this section we collect some standard facts about time reversal for fermions.
For original works, see [17, 15, 18]. That time-reversal is identified with an
antiunitary can be seen from the basic requirements that the coordinate x and the
momentum p be even and odd, respectively, under time reversal. From the canonical
commutation relation [p a, x b] = — ia b, with a, beR", it follows that time-reversal
anticommutes with i, and so is antilinear.

The distinction between integer and half-odd-integer spins comes from the
oddness of angular momentum J under time reversal; ΘJ= —JΘ. Note that
H(Q)Θ = ΘH(Q) trivially follows. In the usual representation, where J^ and J3

are real, while J2 is imaginary, the unitary in Θ is a rotation by π about the y-axis:

Θ = exp(-iπJ2)o*. (2.1)

For an irreducible representation, this choice is unique up to an overall phase.
exp( — iπJ2) is real, so it commutes with *. Θ2 — exp( — 2πiJ2) is a 2π rotation, so
Θ2 = 1 for bosons and — 1 for fermions. Note that Θ2 does not depend on the
choice of overall phase, because Θ is antilinear.

Antiunitary operators whose squares are —1, acting on a finite-dimensional
Hubert space, exist only when the space is even-dimensional. For every vector |y>,

Θ\υy is orthogonal to |u> since

(), (2.2)

where we have used the fact that <zφ> = <Θt;|Θw>.
An immediate consequence of this is Kramer's degeneracy: if H is a hermitian

matrix commuting with (9, then each eigenvalue has degeneracy of even degree [19].

2.1 Quaternionic Vector Spaces. Dyson [17] pointed out that fermionic time-
reversal can be interpreted as a quaternionic structure. The basic ideas of this
observation date back to Frobenius and Schur [16]. We recall first the basic facts
about quaternions, and then recall the quaternionic interpretation of time-reversal.

Definition 2.1.

a) The noncommutative field (or division algebra) H of quaternions is generated
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as a real algebra over R by the elements zj, fc, with

;2=7 2 = fc2 = / / f c = - l . (2.3)

b) The conjugate of x = x0 + x tz* + x2j + x3/ceH, denoted x, is

x = x0 — x^i — x2j — x$k. (2.4)

c) The norm | | on H is defined by

|x|2 = xx. (2.5)

The unit quaternions are thus the 3-sphere S3. Note also that z-M'σ3,7-» — zσ2,
k -> — iσί , with σ x , σ2 , σ3 the Pauli matrices, are a representation of the quaternion
algebra.

When considering quaternionic vector spaces, the noncommutativity of the
quaternions forces us to mind the distinction between right and left multiplication
by scalars.

Definition 2.2. A quaternionic vector space V is defined by the following properties:
ι;,weF, x,}>eH

(t; + w)x = t x -f wx, v(x + y) = vx + vy, v(xy) = (vx)y. (2.6)

We have chosen to have scalar multiplication of a vector by a quaternion act on
the right. This choice of right multiplication by scalars yields a simple formula for
multiplication of quaternion- valued matrices, as we shall see. Left multiplication
of vectors by scalars is not defined, and expressions like "xι?" have no basis-
independent meaning.

A quaternionic operator H on K is a quaternionic linear map of V into itself:

H[(v + w)x] = (Hv)x + (# w)x. (2.7)

For a choice of basis in K, a quaternionic operator has a matrix expression,

HMι>,, (2.8)

where the matrix elements HatβeH and summation over repeated indices is implied.
Let A and B be two quaternionic operators on V. Then

(ABv)Λ = AΛ,βBMυΓ (AB)Λ,y = A^Bβ,r (2.9)

If we had instead chosen left scalar multiplication in (2.6), this would have had
the unfortunate consequence that (AB)Λty would equal Bβ^A^β.

We now consider the quaternionic inner product on V. This is a sesquilinear
map V x K-»H with the properties

(t x, wj;) = x(ι?, w)y, (t;, w) = (w, v). (2.10)

Definition 2.3. The quaternionic adjoint H* of an operator H on a quaternionic
vector space with inner product is defined by

(tf*vv,ιO = (w,//ι;), (2.11)

for all v, weV. If we use a basis {et} to identify Kwith Hn, and take the canonical
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inner product on FT defined by

(*ι,O = 5ι.m, (2-12)

then the matrix representative of the adjoint operation is

(H*\ =(H j. (2.13)

2.2 Quaternionic Structure Maps. A convenient formalism of dealing with
quaternionic vector spaces is that of structure maps on complex vector space
[20,21]. A structure map Θ on a complex vector space W is an antilinear map
satisfying Θ2 = ±1.

We consider the case Θ2 = — 1, which we call a quaternionic structure map.
A right quaternionic action on W is defined by

vi = iv9 vj = Θv, vk = (vi)j = Θ(iv) = — iθv, VE W. (2.14)

The first equation simply means that right multiplication of a vector by the
quaternion i is the same as multiplication by the complex number i. A quaternionic-
linear operator A must commute with the right action of i, which makes it a
complex-linear operator, and with the right action of7, which means AΘ = ΘA.
It then automatically commutes with the right action of k.

When W is given a quaternionic basis, quaternionic linear operators can be
written as matrices with quaternion entries. A quaternionic basis of W is a set of
vectors eteW such that [el9 &et} is a basis of W as a complex vector space.

Decomposing a vector v into quaternionic components vl (such that v = e/t;,),
we further decompose each quaternionic component, vt = vlt0 + vlΛi + vit2j + vlt3k
with vltΛ real, and note that

v = eι(vι,o + vι,ι * + vι,2J + vι,3k)= eι(vι,o + ty.i0 + (®β/)(ϋ/,2 ~ ty.sO (2.15)

A quaternionic operator is determined by its action on the complex basis,
{el9 0et}. As an example, we look at a one-quaternionic-dimensional vector space,
[i] denotes the 1 by 1 matrix with entry i, At denotes the corresponding 2 by 2
complex matrix in the basis (e, Θe\

= i, => Ate = ie

DΊ/= &' = *, => Aί(θe)=-iθe9 (2.16)

and so

Similarly, we compute

The matrix corresponding to a time-reversal invariant operator B relative to
an orthonormal basis {eh Θe{] consists of 2 x 2 blocks which are real linear
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combinations of {\,AhAj,Ak}. This may be thought of as a quaternion- valued
matrix.

If we have a sesquilinear complex-valued inner product on V, and if Θ is
antiunitary with respect to this inner product, then we can express the quaterion-
valued inner product as4

(ι?,w) = <ι?|w>-<ι;|βw>7. (2.19)

2.3 Angular momentum and Time Reversal. Let |J,w>, m= — J,...,J be the
standard basis for a spin J multiplet, i.e.,

J2 |J,m> = J(J

>, (2.20)

Time-reversal is implemented as in (2.1), and we have

Proposition 2.4.

Θα|J,m>=(-)(J-m)α*|J,-m>, αeC. (2.21)

Proof. [15, 13] We evaluate exp(-ίπJ2)|J,w>. Since ΘJ^Θ'1 = -J3, it follows
that <9|J,w> = /?JJ, -m> for some phase βm. Since J2 is purely imaginary,
exp( — iπJ2) is a real matrix, and βm= ±1. Now ΘJ+ = - J_6>, so βm = -βm±ι.
It then suffices to determine β j .

We build up the spinJ representation from tensor products of 2J distinct
spin^ representations. We label the generators of the n-spin^ representation by

usual (real) eigenstates of J3^ by |̂ , ± m>w. Then recall that

l i±i>ι®li,±i>2®-li±i> 2 j . (2.22)
Now for spin^ we have exρ( — inJ2) = — io2, and so

exp(-iπJ2,/)|ϋ>ί= +li,-i>,. (2.23)

We conclude that

exp(-iπJ2)|J,J> = |J,-J>, (2.24)

and so βj = + 1 and βm = (- l)J"m.

The preceding proposition suggests the nonstandard complex basis,

|α> = α 1 | J ,J>-hα 2 Θ|J,J>-hα 3 | J ,J-2>-hα 4 Θ|J,J-2>..

= α 1 | J ,J>-hα 2 | J ,-J>-hα 3 | J ,J-2>-hα 4 | J ,2-J>.. , (2.25)

and an associated quaternionic basis:

4 If A is a complex-linear hermitian operator invariant under time reversal, then Trc(Λ) = 2ΎτH(A)eR.
For non-hermitian operators, ΊΐAφR in general. Ω2n is Hermitian, so the 2n-th Chern classes can
be defined from purely quaternionic information, and are often called symplectic Pontrjagin classes in
this context
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Definition 2.5. The canonical quaternionic basis of the half-odd-integer J Hubert
space is

3. Quadrupole Hamiltonians

3.1 Rotational Symmetry. We first present the action on the rotation group on
the space of quadrupoles, following the outline of [22]. A quadrupole Q is a
3 x 3 real symmetric matrix with zero trace. The space of quadrupoles is a
five-dimensional real vector space, with an inner product (β, β') = fTr(ββ'). A
unit quadrupole satisfies f Tr Q2 = 1. A convenient orthonormal basis is given by 5

-1
-1

(3.1)

On the sphere of unit quadrupoles, we shall call + Q0 the north pole, and
the south pole.

The rotation group S0(3) acts on the space of quadrupoles by Q
preserving the inner product. This is of course the irreducible real J = 2 represent-
ation. The space of diagonal quadrupole matrices is two dimensional, spanned by
β0 and β3. Every unit quadrupole is rotationally related to a diagonal unit
quadrupole, i.e., a matrix of the form Qθ = cos(0)g0 4- sin(0)β3,

cos
cos(0-2π/3) , (3.2)

cos (Θ)

for some value of 0 ̂  θ < 2π. In fact, we can restrict θ to a subset of the circle:

Proposition 3.1.

a) Every unit quadrupole is rotationally related to exactly one Qθ with 0 ̂  θ g π/3.
In particular, the south pole — Q0 is rotationally related to Qπ/3.
b) The orbits of Qθ are two-dimensional when θ = nπ/3 for any integer n, and
three-dimensional otherwise.
c) For 0 Φ nπ/3, the subgroup of S0(3) which leaves Qθ invariant is the dihedral

We retain the normalization of [5], which was chosen because it is particularly convenient for J = 3/2
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group D2> The lift D2 to the SU(2) double cover is the eight-element group generated
by the unit quaternions {ί, j,fc}.

Proof, it a): We denote by L l 9 L 2 , and L3 the usual complex Hermitian generators
of S0(3). Then — iL l 9 - iL2 and - iL3 are real and antisymmetric. The rotation

exp( ± (2π/3)(i/v/3)(L1 + L2 + L3)) cyclically permutes the diagonal entries of Qθ,
so Q0 is rotationally related to 6(0±2π/3) Now the rotation exp(π(i/2)L3) permutes
the first two diagonal entries of Qθ9 so Qθ is rotationally related to <2_β. Thus any
unit quadrupole is rotationally related to some Qθ9 with 0 ̂  θ g π/3. The θ in this
interval is unique, because Det(<20) = ̂ 7cos(30) is a one-to-one function on this
interval.

Part b) is checked by noting that Q0 and βπ/3 each commute with exactly one
generator of the rotation group, while Qθ for 0 < θ < π/3 does not commute with
any nonzero linear combination of the generators.

Part c) is standard, see [15, 13].

3.2 Simple Hamiltonians. We say that a hermitian linear operator M over a field
F = R,C,H is simple if it has no degenerate eigenvalues. For fermi systems,
time-reversal-invariant operators are never simple over C because of Kramer's
degeneracy. They may, however, be simple when thought of as quaternionic
operators.

We now show that H(Q) is quaternionically simple for Q φ 0, assuming of
course J is half-odd integral. If this condition were not satisfied, the spectral
bundles, and consequently the Chern numbers would not be well-defined. We shall
use the notation

\ α = 0,...,4, (3.3)

so Γ0 = J\ - J2/3, etc. We also define

Tθ = cos (θ) TO + sin (θ) T3 . (3.4)

The basic result we will use is:

Proposition 3.2. Let M be a hermitian n x n matrix with values in F = R, C, H.
Suppose further M is tridiagonal, with no zeros on the subdiagonal and super diagonal.
Then M is ¥-simple.

Proof. Suppose M has a degenerate eigenvalue λ. Then the eigenspace of λ contains
a nonzero vector υ with v^ = 0. Since M is tridiagonal,

(3.5)
implying v2 = 0. Then

(3.6)

implying v3 = 0, and so on. Thus we get v = 0, a contradiction, and so M must be
simple.

Let W(R) be the representative of the rotation R. This is defined only up to
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an overall sign, since the representation has half-odd-integral J. Then

W(R)H (Q) W(R) ~1 = H(RQR ~1), (3.7)

with no sign ambiguity. Combining (3.7) with Proposition 3.1, we obtain:

Proposition 3.3. For Q a unit quadrupole, H(Q) there exists a unitary W(R)
corresponding to a rotation R such that

W(R)H(Q)W(RΓ1 = TΘ9 (3.8)

for a unique 0 ̂  θ rg π/3.

Theorem 3.4. For Q φ 0, H(Q) is quaternionically simple.

Proof. For reR,//(r<2) = rH(Q\ so it suffices to consider unit quadrupoles. By
Proposition 3.3 it suffices to consider Tθ, for 0 ̂  θ ̂  π/3.

Use the basis of Definition 2.5 and the dictionary (2.17), (2.18) to write Γ0

and T3 as quaternion-valued matrices. T0 = J\ — J2/3, so the corresponding
quaternionic matrix is diagonal. Since the matrix is quaternionic hermitian, the

diagonal entries must all be real. T3 = (l/v/3)(«/ϊ - Jl} = (\lftW\ + «/-)• The
only nonzero matrix elements are < m ± l | T 3 | w + l > , none of which vanish for
— J + l ^ m ^ J — 1 . In the quaternionic basis, this takes the form of a real
tridiagonal matrix with zeros on the diagonal, and no zeros on the subdiagonal
or superdiagonal.

T0 = J\ — J2/3 is readily seen to be quaternionically simple. For 0 < θ ̂  π/3, Tθ

is a tridiagonal hermitian quaternionic matrix with no zeros on the subdiagonal
and superdiagonal, and hence simple by Proposition 3.2.

It is noteworthy that the degeneracy structure of both H(Q) and H(E) is what
one expects on the basis of the Wigner-von Neumann no crossing rule [23,24].
For the general (not time-reversal invariant) case, this says that degeneracies
are codimension 3, and so isolated points in generic 3-spaces. Since H(E) is
homogeneous in B, we may expect it to be simple for BeR3/{0}, and it is. For
fermions with time reversal the codimension is five. So again by the homogeneity,
H(Q) we may expect it to be simple on R5/{0}, and it is.

3.3 A Child's Garden of Matricial Miscellanea. In this section we exhibit some
properties of H(Q) that are useful in the next chapter.

Proposition 3.5. For Q and Q' unit quadrupoles, Ύr(H(Q)) = 0, and

Ύτ(H(Q)H(Qf)) = KjΎτ(QQf). (3.9)

It follows that

Ύτ(TaTβ) = KjδΛ^ (3.10)

where the constant Kj is independent of α and β.

Proof. The quadrupole operators H(Q) are J = 2 spherical tensor operators.
Tr (H(Q)) is a J = 0 tensor. A linear function of J = 2 tensors cannot be a nonzero
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J = 0 tensor, so Ύτ(H(Q)) = 0. Now H(Q)H(Qf) is the product of two J = 2 tensors,
and by the addition rules for angular momenta contains a unique J = 0 tensor.

Along the lines of the proof of Theorem 3.4, we obtain results on the structure
of the TΛ as quaternionic matrices. These are summarized in:

Proposition 3.6. As quaternionic matrices in the basis of Definition 2.5

a) T0 is real and diagonal,
b) Tα, for α = 1,2,3,4 is zero on the diagonal;
c) All entries of Tl(T29T^,T^) are real multiples of the unit quaternion j,(/c, l,i
respectively).

4. The Homotopy of Simple Matrices

We address here the computation of the homotopy groups of the simple hermitian
matrices. Although the methods are standard, we present the calculation in detail,
since it provides a context for one understanding of the Chern classes for the
spectral bundles of Hamiltonians, and shows why the second Chern numbers are
the only topological invariants for our quadrupole examples. Although most of
the present work is concerned with the quaternionic case, it is convenient, for the
purpose of this section, to consider this in parallel to the real and complex cases.
An introduction for physicists to the relevant homotopy theory is given by Mermin
[25]. Some of the material in this section recalls results in [26].

We distinguish two types of topological invariants: those associated to the
space of matrices as a whole (global invariants), and those associated to individual
parts of the spectrum (local invariants). Both global and local invariants can be
integers (Z) or torsion (Lp = Z/pZ), or combinations of both. The Chern numbers
are of course local in the above sense. Finally, the homotopy groups may also
indicate the existence global sum rules satisfied by local invariants.

Definition 4.1. We denote by Mw(R),Mn(C), and Mn(H) the real, complex, and
quaternionic hermitian n x n matrices that are simple. £/π(R), t/w(C), and Un(H)
denote the corresponding nxn unitary matrices. Thus

Un(C)=U(n\ Un(H) = Sp(n), (4.1)

in the standard notation.

Proposition 4.2. MΠ(F) (F = R,C, or H) is path-connected. Equivalently,
π0[MΛ(F)] = 0, where 0 is the group (set) with one element.

Proof. Every hermitian matrix is diagonalizable by conjugation with a unitary
matrix, preserving spectrum. The entries of a diagonal matrix can be arbitrarily
permuted by conjugation with unitaries. Thus there exists for each simple hermitian
matrix A a unitary 17 such that 17 A U~l is a diagonal matrix with the diagonal
entries in decreasing order. This unitary can further be taken to be path-connected
to the identity (for F = R, this means UeSO(n), and this imposes no restriction
when F = C, H.) The set Dn of all such ordered diagonal matrices is convex, and
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hence contractible. Each simple hermitian matrix is thus path-connected to an
element of Dn, and the result follows.

The basic tool in the computation of the higher homotopy groups of Mn(¥) is
the identification of this space as a quotient:

Proposition 4.3. MΠ(F) is homotopic to the quotient L7

π(F)/[l/1(F)]w.

Proof. A matrix in MΠ(F) is uniquely determined by its spectrum and by its
eigenvectors. Fixing the spectrum is the same as choosing an element of Dπ, the
real ordered diagonal matrices. Fixing the eigenvectors is the same as choosing
an element of VJ[Όl']

n, since each eigenvector has a U^ phase ambiguity. Thus

(4.2)

Since Dn is contractible, the result follows.

This fact, together with the homotopy exact sequence, relate the homotopy
groups of MM(F), [7Π(F), and I/^F). Ul(R) = 0(l) is the 0-sphere, S° = {±1};
Uί(Q=U(l) is the 1-sphere S1, and U l ( H ) = Sp(l) is the 3-sphere S3. The
homotopy groups of S° and S1 are particularly simple, which makes the real and
complex cases simpler than the quaternionic.

The basic result is: [27,28]

Theorem 4.4. There exists a natural exact sequence of group homomorphisms

(4.3)

That is, the kernel of each map is the image of the preceding map.
The following basic results are useful for extracting information from this

sequence:

Lemma 4.5.

a) // in an exact sequence an adjacent pair of groups is flanked by zeros, then the
two groups are isomorphic. That is

θ Λ β Λ c Λ θ =>£~C. (4.4)

b) // in the exact sequence

. . .AΛΛβΛcΛD-^. . . (4.5)

α is onto, then B is isomorphic to the kernel of δ.
c) In the exact sequence

. . . O A Λ Λ t f Λ c Λ / ) ^ . . . (4.6)

βis l-l,andB/A~kQτ(δ).

Proof. A standard exercise in diagram chasing.
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For S° all the homotopy groups except π0 are trivial. For Sl all the homotopy
groups except πl are trivial, and for S3 π0>1 2 are trivial. Part a) of Lemma 4.5
together with the sequence (4.3) then give:

Corollary 4.6.

], m^3, m = 0,

πm[MM(H)] - πm[Sp(n)l m g 2. (4.7)

Since π2 of the classical Lie groups is trivial, we see from (4.7) that π2[MΠ(R)]
and π2[Mn(H)] are both trivial. This is consistent with the vanishing of the first
Chern class in time-reversal invariant cases, for both Bose and Fermi systems.

To proceed further we need to examine the group homomorphisms in (4.3)
Define / to be the real dimension of F, / = 1, 2, 4 for F = R, C, H respectively.

Lemma 4.7. The inclusion ί/1(F)-^L/Π(F) induces an isomorphism of homotopy
groups πm(Ul (F)) -> πm(Un(¥)) for m<2f~2.

Proof. Use the exact sequence of the fibration C/k(F)/ί/k_ ^ (F) = Skf~ 1. We assume
the standard inclusion of Uk^i into Uk into the upper left corner and recall that
the map σm is the map induced by the inclusion [27]. Using πm(SΛ/~1) = 0 for
m < kf — 1, and the long exact homotopy sequence for this fibration,

πJS^-1)^..., (4.8)

we find that the inclusion map pm f c

), m<*/-2, (4.9)

is an isomorphism. It follows that the composition of inclusions

Pm.»0-0Pm.2:πM(l/1(F))^πm(l7 l l(F)), m<2/-2<3/-2- (4.10)

is an isomorphism.

Lemma 4.8.

a) For k < 2f — 2, the map σk in (4.3) is the sum map:

'"+zn. (4.11)

It is furthermore onto, and

kerσ^π^l/iίlOΓ-^Cπ^-1)]""1. (4-12)

b) σ2 is always an isomorphism.

Proof, a): From Lemma 4.7, we see that σm(z1,0,...,0) = z1. From Lemma 4.7
and the group structure, we verify Eq. (4.1 1), and (4.12) follows, b): π2 of the classical
Lie groups is zero, so the map σ2: 0->0 is an isomorphism.
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We now have the main result of this section, which describes the homotopy
groups associated to local topological invariants. The following theorem com-
plements Corollary 4.6 and Proposition 4.2.

Theorem 4.9.

a) ForO^m^ 5,

πm(Mπ(H)) = [πm_1(Sp(l))]"-1. (4.13)

In particular, πm(MΠ(H)) = 0 for m ̂  3, and

π4(Mn(U)) = Z»~\ π5(MΠ(H)) = ZΓ1. (4.14)

b) ForO^m^ 2,

πm(MΠ(C) = [πm_1(ί/(l))]w-1. (4.15)

In particular, πm(Mn(C)) = 0 for m ̂  2, and

π2(Mn(C)) = Z"-1. (4.16)

c) For n ̂  3,

Zr1. (4.Π)

The interpretation of this is as follows. The homotopy groups in (4.14) and (4.16)
are those that give a topological invariant for each eigenvalue, constrained by one
sum rule. There are no additional global invariants in these cases.6 The homotopy
group in (4.17) is similar, except that there is an additional global Z2 invariant
not associated to individual eigenvalues. For the real case the local invariant is in
Z2, and is called the "Longuet-Higgins charge" for bosonic, time- reversal invariant
situations [29]. It can be computed from the adiabatic holonomy as a line integral.
It corresponds to the first Stiefel- Whitney number W j [30] of the eigenvalue bundle.
π2[Mrι(C)] corresponds to the TKN2 integers [31,32], or equivalently to the first
Chern numbers [26]. π4[Mn(H)] corresponds to the second Chern numbers, our
main concern here. Notice that time-reversal invariant fermions do not have a
Longuet-Higgins charge associated to closed loops, since by Corollary 4.6
π^M^H)] = 0. They do, however, have further local topological invariants, e.g.,
π5[Aίn(H)], to be compared with the general local cohomological invariants
discussed by Chang and Liang [33]. We note that for F = R or C, the higher
invariants are global.7 We now prove the theorem:

Proof, a) follows from applying part b) of Lemma 4.5 to the long exact sequence
(4.3). Define α = σm and δ = σm_ λ , and use Lemma 4.8. Conclude from Lemma 4.5

6 Recall that vector bundles over Sn with fiber F are classified by πn_1(S / *) [27]. Real line bundles
over S" are trivial for n ̂  2, and complex line bundles are trivial for n ̂  3. However, for any n ̂  4,
there exists nontrivial quaternionic line bundles over S"
7 This follows from the stability of the homotopy groups πm(U(ri)) and πm(O(ri)\ i.e., for large enough
n, the given homotopy group is independent of n, and from Corollary 4.6. Stability is an easy consequence
of the exact sequence for Uk(¥)/Uk_ t(F) = Skf~l
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that β = πm(Mn(F)) is equal to the kernel of δ = σm-1 to complete the proof.
b) is similar. For m = 1, the proof is identical to part a). For m = 2, we use the
additional fact that σ2 is an isomorphism, and thus onto, and proceed as before.
Part c) uses part c) of Lemma 4.5, with B = πl(Mn(R)). We need the condition
n ̂  3 to ensure that π^Ofa)) = Z2.

5. J = 3/2 Quadrupole Hamiltonians

We now discuss some features of H(Q) which are particular to J = 3/2.

5.1 S0(5) Symmetry. When is H(Q) unitarily related to H(Q')Ί We shall find for
J = 3/2 all H(Q) with Q a unit quadrupole are unitarily related. In contrast, for
J > 3/2, there is a one dimensional family {Tθ} a {H(Q)} of unitarily inequivalent
unit quadrupole Hamiltonians. Recall that for any J, Proposition 3.3 states that
H(Q) is unitarily related to H(Q) if Q and Q are related by an SO(3) rotation.

For J = 3/2, the set of H(Q) is precisely the set of all traceless quaternionic
hermitian matrices. The set of H(Q) for unit Q is the set of traceless quaternionic
hermitian matrices of unit norm, all of which are unitarily related.

We first show that this is not true for J > 3/2.

Proposition 5.1. Γ0 is unitarily related to - T0 if and only if J = 3/2 or J = 1/2.

Proof. The largest eigenvalues of T0 = J\ - J2/3 is equal to J2 - J(J + l)/3. The
largest eigenvalue of - T0 = - J\ + J2/3 is equal to - 1/4 + J(J + l)/3. Setting
these equal gives a quadratic equation with solutions J = 1/2 and J = 3/2.

The J = 1/2 case is trivial, H(Q) = 0 for all β.
In the remainder of this section, we shall examine symmetry properties of H(Q)

for J = 3/2. This is all done in a basis-independent way. However, for reference
we write below the matrices corresponding to Tα in the basis of Definition 2.5.
Using Proposition 3.6, the matrices are determined up to overall real constants.
The final result is:

o -A _ / o feN

-k o/ '

o
One checks by explicit matrix computation using (5.1) that

TQT,T2T^=-\. (5.2)

We now examine the symmetry properties.

Lemma 5.2. For J = 3/2,

. (5.3)
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Proof. For β ^ 0, the sum of the two distinct eigenvalues of H(Q) is zero by
Proposition 3.5. H(Q)2 is then a multiple of the identity operator, the normalization
coming from Eq. (3.9).

The first consequence is:

Proposition 5.3. For J = 3/2, and Q and Q any two unit quadrupoles, H(Q) is unitarily
related to H(Q'\

Proof. For Q a unit quadrupole, Lemma 5.2 tells us that the squares of the
eigenvalues are -hi . Since H(Q) is traceless, the eigenvalues are {!, — !}. By the
spectral theorem, all H(Q) with unit Q are unitarily (symplectically) related.

The space of quadrupole operators is a real five-dimensional vector space with
inner product given by (3.9). There is thus an action of SO(5) on this space.
For general J, only an 5O(3) subgroup of this is a symmetry. For J = 3/2, from
Proposition 5.3, we see that S0(5) is a symmetry. We now examine how this
symmetry is implemented on H(Q). For a rotation GeSO(5), we look for a unitary
U(G) such that

H(G(Q))=U(G)H(Q)U(GΓl. (5.4)

This is a generalization of Eq. (3.7) for the 50(3) action. Recall that for #e50(3),
U(R) is determined only up to a sign. It is also well known that R -> U(R) is a
representation of St/(2), the two-fold cover of 5O(3), but only a project! ve
representation of 50(3). This is exactly what happens with the 50(5) symmetry.
There is no S0(5) representation G->L/(G) of the form above, but there is a
representation of Spin (5), the two-fold cover of 50(5). Equivalently, this is a
projective representation of 5O(5).

The Spin (5) action is best understood through Clifford algebras.

Proposition 5.4. For J = 3/2, the operators H(Q) form a Clifford algebra:

H(Q)H(Q') + H(β')H(fi) = 2f Tr(ββ'). (5.5)

Equivalently, in the basis Γα,

TΛTβ+TβTΛ = 2δΛ,p. (5.6)

Proof. Apply Lemma 5.2 to H(Q + Q').

H(β)H(β') + H(Q)H (Q) = 2f Tr (ββ'). (5 7)

It is standard lore that the commutators \_H(Q\ #(β')], or [Γα, η,], 0 ̂  α < β ̂  4,
span the ten-dimensional Lie algebra of the group Spin (5). The H(Q) transform
in the vector representation. This is the fundamental representation of 5O(5) on
the space of quadrupoles.

It is well known that Spin (5) ~ 5p(2). The 5p(2) symmetry on our system can
be readily understood directly. Note that the real dimension of the space W of
traceless quaternionic hermitian operators on H2 is five, the same as the dimension
of the space V of quadrupoles.
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Lemma 5.5. The map V^W which maps a quadrupole Q to the operator H(Q) is
a linear isomorphism.

Proof. Since H (Q) is simple for Q φ 0, thus the kernel is 0, and the map is one to
one. The dimension of both vector spaces is the same, so an injection is an
isomorphism.

It follows that all operators on H2 with spectrum { — 1, -f 1} are H(Q) for some
unit quadrupole Q. For £7eSp(2), UH(Q)U~1 = H(Q'). This gives an action of Sp(2)
on the space of quadrupoles.

Finally, the generators of the rotation group form a subalgebra of the spin (5)
Lie algebra. It useful for a later chapter to work these out explicitly in terms of
the basis Γα of the Clifford algebra:

Lemma 5.6.

T2 + 7\T4- T2T3),

+ TsTt). (5.8)

5.2 Chern Numbers. We now compute the Chern numbers of the J = 3/2 spectral
bundles.

Lemma 5.7. The spectral projections P± onto the positive and negative eigenspaces
of H(Q) for unit Q are given by

(5.9)

Proof. By Lemma 5.2, P± are projections. H(Q) = P+ - P_.

The xμ are coordinates on the space of quadrupole operators, H(Q) = xμTμ.

Lemma 5.8. At T0,

[β±]
2 = Tfi(l ± T0)dxldx2dx3dx49 (5.10)

and Tr(ί2 + ) = -F 3dx1dx2dx3dx4.

Proof. In general, [P,(dP)2] = 0, so Ω2 = P(dP)4. Substituting (dP) = ±^Tμdxμ

and using (5.2) proves the first part. The trace (over C) of the projection is
equal to 2.

The Chern numbers are now easily computed.

Proposition 5.9. The second Chern numbers for the spectral bundles of positive and
negative energies are + 1 and — 1 respectively.

Proof. At T0, we have by Definition 1.5,

"(2π/):

3
2^,ίdx2dx3dx4. (5.11)

oπ



Chern Numbers, Quaternions, and Berry's Phases in Fermi Systems 615

Using the S0(5) symmetry, we find C2(P± , S4) = ± 1, since the volume of the unit
sphere S4 is equal to 8π2/3.

We finally note the duality properties of the curvature [34]. Let * be the Hodge
dual on forms [8, 34].

Proposition 5.10. The curvatures Ω+ and Ω_ are self-dual and anti-self-dual
respectively everywhere on S4:

*Ω± = ±Ω±. (5.12)

Proof. At TO,

Ω± =^(1 ± TQ)±TμTvdxμdxv. (5.13)

Compare for example the dxίdx2 component with the dx3dx4 component:

4±Γ1Γ2)=±[fl±]3 i 4. (5.14)

We have used (5.2). The other components are analogous. The result for all of
S4 follows from the transitive action of the S0(5) symmetry group.

Readers familiar with the SU(2) Yang-Mills instanton or with canonical
bundles over projective spaces will recognize these results as expressing the
following abstract observations. By Lemma 5.5, the spectral bundles are identified
with the canonical quaternionic line bundle over the quaternionic projective space
HP1, which is homeomorphic to S4 [35,34]. The second Chern number of the
canonical bundle is known to be -hi, and consequently the Chern numbers of the
two spectral bundles are + 1 and — 1 [5]. We perform this standard computation
by using the transitive symmetry to evaluate the integral of Ω2 in terms of the
value at T0. This bundle and connection are also known as the symmetric
Yang-Mills instanton. We derive the known fact that the adiabatic curvature is
self-dual. The self-duality of the adiabatic curvature for J > 3/2 will be investigated
in the next chapter.

6. / > 3/2 Quadrupole Hamiltonians

In this chapter we compute C2 of the spectral bundles of H(Q) over the 4-sphere
of unit quadrupoles for J ^ 3/2. The Chern numbers are of course well defined,
since we have already proved that all nonzero H(Q) are simple. The method we
use in this section is similar to that of Sect. 1.2, where we computed the first Chern
numbers for Berry's example. Using Stokes' theorem, we reduce the integral of
Tr(/22) over S4 to the integral of a Chern-Simons form on 3-surfaces. Using the
rotational symmetry, we then reduce these 3-dimensional integrals to traces of
operators at the north and south poles, which we then evaluate. A variant of this
calculation appeared in [22]. The ̂ /Chern-Simons form and quaternions also
appeared in a different context ip/f36].

6.1 The Chern-Simons Form. As in Sect. 1.2, we wish to find unitary operators
U(Q) such that P(Q)= U(Q)P0U(Q)~1, where P0

 ίs the spectral projection
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at the north pole. Then Ω= U(dA + A2)U~\ where A = P0U~l(dU)P0, as in
Proposition 1.2, and we have

Tr(ί22) = Tr([(A4) + Ά2]\_(dA) + A2])

= Tr [d(Ά(dΆ)) + 2A2(dA) + A4]. (6.1)

We choose U(Q) as follows. Let PΘ be the projection associated with the
Hamiltonian Tθ = Γ0 cos (θ) + T3 sin (0), with 0 ̂  θ ̂  π/3, and choose a unitary
Vθ such that Pe = VΘP0 VQ 1. By Proposition 3.3, we can take U = WV9 where W is
a unitary belonging to the SU(2) representation.

We remark that U is only locally defined, and even then only on S4/N,
where N c S4 is the set consisting of the two rotation group orbits that are
two-dimensional. We recall that the north pole is contained in one of these orbits,
and the south pole in the other. On the orbit of the north pole there are an infinite
number of rotations W that link P0 to PQ, since all rotations of the form exp(ΐ0J3)
commute with P0. This prevents a consistent choice of W, and so U is ill defined.
A similar problem exists at the south pole. For QeS4/N, there is an eight-fold
ambiguity in the choice of W, and hence of 17, recall part c) of Proposition 3. 1.8

Thus A is only locally single-valued on S4/N.
Noting that Tr (A4) = Tr (A Λ A3 ) = Tr ( - A3 Λ A) = 0, (6. 1) gives

Lemma 6.1. On S4/N, the second Chernform is given by

where S is the Chern-Simons 3-forms [37]

S = ττίΆ(dΆ) + $Ά3]. (6.3)

Both S and the second Chern form are single-valued on S4/N, even though A
is multiple valued. The global ambiguity disappears when we take the trace. We
can now use Stokes' theorem to obtain:

Lemma 6.2.

2 = J ω 2 = - l i m f S-JS (6.4)
S4/N 8π ε-0\y π / 3 _ ε γε J

where Yθ is the orbit containing Tθ.

6.2 Chern Numbers. We now integrate S over Yθ. We first note that, restricted to
Yθ9dV = Q, and so

(6.5)

8 In the quaternionic basis of Definition 2.5, the eight element group consists of the diagonal matrices
with entries ±1, ±i, ±j, and ±k. These commute with real matrices, such as Pθ
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Let Sθ be S restricted to Ye. Defining y = W~i(dW)9 we then have

Sθ = Tr [ - PθyPθy
2Pθ + f (Λ,y)3l (6 6)

Sθ is rotationally invariant. There is up to normalization a unique rotationally
invariant three-form on Yθ, so we need merely determine this normalization.
Examine S0 at the origin, W=l. Near the origin we use the coordinates {yα},
α = 1, 2, 3, with W = exρ( - UΛya). This gives

y= -UadyΛ,

y
2
 = -i(J

1
dy

2
dy

3
 + J

2
dy

3
dy

l
 + J

3
dy^dy

2
\

S
θ
 = (Tr IP

9
J

1
P

9
J

1
 + P

β
J
2
Pe /2 + ̂Vs^Vs]

yidy2dy,. (6.7)

The volume form dy1dy2dy3 is independent of 0, of J, and of the eigenvalue, so
integrating S over Yθ just gives a constant times f(Pθ). Thus

C2 = X[/(P0) -/(n/3)] = Λ[/(P0) - /(P*)]> (6-8)

where ,4 is some normalization constant. The last equality comes from the fact
that Pπ/3 and Pπ are rotationally related and / is a rotationally invariant function.
By knowing C2 for J = 3/2 we will fix A.

The spectrum of H(Q) is labeled by the J3 eigenvalue, as we now explain. Since
there are no level crossing for Q Φ 0, each level of H(Q) can be uniquely identified
with a level of T0 = J\ — J2/3. Each eigenspace of T0 decomposes as the sum of
two eigenspaces of J3 with eigenvalues {wr, — mr}. We thus label the spectrum of
H(Q) by the corresponding mτ > 0. Similarly, the levels of H(Q) can be identified
with the levels of - T0 = Tπ, yielding an analogous labeling which we denote by
mB. These are related by

mτ + mB = J + %. (6.9)
We then have:

Theorem 6.3. The second Chern number C2(Pmτ,j,S
4) of the spectral bundle

corresponding to the mτ level of the spin J quadrupole Hamiltonians (H(Q)} is equal to

Proof. We calculate /(P), for P of the form P = |J,m><J,m| + |J, -m><J, -m|
with m > 0. PO is of this form with m = mr, as is Pπ with m = mB.

For m>^ we have PJ1P = PJ2P = 0, and so /(P) = Tr(PJ3PJ3) = 2m2. For
m = i, on the vector space with basis |J,|>,|J, — 1>, we have PJ1P = cσ1,
PJ2P = cσ2, and PJ3P = ̂ σ3, with c = (J 4- i)/2. This gives

Tr (2iPJlPJ2PJ3) = Tr ( - 2iPJ3PJ2PJ,) = - 2c2,

O = Tr (PJ2PJ2) = 2c2,

J3) = i = 2m2. (6.11)
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So/(P) = 2 m 2 f o r a l l m .
Since /(P0) = 2m2

T and f(Pn) = 2m2,, we have C2 = 2A(m2

T - m2

B). For J = 3/2,
mr = 3/2 and (mβ = ̂ ) we already know that C2 = l, implying that A = 1/4 in
Eq. (6.8).

6.3 Properties of the Adίabatic Connections. From Theorem 6.3 we see that different
combinations of J and mτ may lead to the same Chern number C2. For example,
both the ( J = 5/2, mτ = 5/2) and the (J = 1 1/2, mτ = 7/2) systems have C2 = 3. The
question naturally arises as whether distinct bundles with the same Chern number
can have gauge-equivalent connections. We shall see that they cannot. We also
consider whether any bundles have self-dual or anti-self-dual curvatures, and will
see that this cannot occur for J > 3/2.

Our basic tool is to examine the curvature at the north and south poles, which
may be easily calculated using first order perturbation theory and Eq. (1.9). Using
the coordinates (xα}<->xαTα we have

Lemma 6.4. a) For mτ > 3/2, the curvature at the north pole is given by

(6.12)

where K = J(J + 1), and R = (|m r><m r | - |mr><-mr|).

b) For mτ = 3/2, the curvature equals the one above, plus

G|f X -f |(Λcι - idx2) Λ (dx3 - idx4) -G\- f ><f \(dx, + idx2) Λ (dx3 + idx4\

(6.13)

where G = (J- 1/2)(J -f 1/2)(J + 3/2). In particular Jor mτ = 3/2, the dx^ Λ dx2 and
dx3 Λ dx4 components are given by the same formulas as for mτ > 3/2.

c) For mτ = \, the curvature is given by

dx2 + dx, Λ dx4

+ tdχ2) Λ (dx3 - idx4)
- G\ -i> ̂ {(dx, - idx2) Λ (dx3 -f idx4). (6.14)

We remark that at the south pole the same formulas apply, only with mτ

replaced by mB = J -f \ — mτ. The reason is that the energy levels, the eigenstates,
and dH are the same at the north and south poles, as are the tangent planes. The
only difference between the two poles is that dx± Λ dx2 Λ dx3 Λ dx4 is in the positive
orientation at the north pole, but is in the negative orientation at the south pole,
a distinction that has relevance to the question of self-duality.

Theorem 6.5. Suppose that the (J,mτ) and the (J',m'τ) systems have the same Chern
number and suppose that mτ > m'τ. Then the two systems do not have gauge-equivalent
connections.

Proof. If two connections do not have unitarily related curvatures at one point,
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then they cannot be gauge-equivalent. We examine the curvatures at the north
pole. Note that the theorem covers all cases, since by (6.10) mτ = m'τ would imply
J = J', and the systems would not be distinct. The proof is by cases:

i) If mτ > m'τ > 3/2, then the two curvatures differ in their dx± Λ dx2 terms at the
north pole. By Eq. (6.12), the magnitude of this term is proportional to mτ and is
independent of J.

ii) If mτ > 3/2 ̂  m'Γ, then the curvature of the ( J', w'Γ) system at the north pole
has a dx1 Λ dx3 terms, while the curvature of the (J,mτ) system does not.

iii) If mτ = 3/2 and m'τ = 1/2, we look at the magnitude of the dx± Λ dx3 terms.
These are equal to (J - 1/2)(J + 1/2)(J + 3/2) in one case and (J' - 1/2)(J' + 1/2)
(J' + 3/2) in the other case. Since J φ J\ these magnitudes are different.

The other result of this section concerns self-duality.

Theorem 6.6. For J > 3/2 the curvature Ω is never self-dual or anti-self dual.

Proof. We consider some necessary conditions for a curvature to be self-dual. At
the north pole *(dx1 Λ dx2) = dx3 Λ dx4, so a self-dual curvature must have the
same dx^ Λ dx2 and dx3 Λ dx4 terms at the north pole. This gives the condition

(Cl) either£2-(m£-l)2 = 8(m£-l)2 or m r =l/2.

At the south pole *(dxl Λ dx2) = —dx3 Λ dx4 so our condition there is

(C2) either K2 - (m2

B - I)2 = - 8(m| - I)2 or mB = 1/2.

The first equality in (C2) can never be met, since the left-hand-side is positive and
the right-hand-side is negative. Thus we must have mB = 1/2, which in turn implies
mτ = J. Plugging this into (Cl) we get that either J = J, or J(J + 1) = K = 3(J2 - 1),
implying J = 3/2. Thus the only possible self-dual system has J = mτ = 3/2 or
j = mτ = ̂ . By a similar argument, the only possible anti-self-dual systems have
j = mB = 3/2 (and so mτ = 1/2) or J = mB = % (and so mτ = ̂ ).

For J ^ 3/2, Ω is always either self-dual or anti-self-dual.

7. Holonomy of the Adiabatic Connection

The physical time evolution of a system, that generated by the Schrodinger equation,
is in the adiabatic limit the same as the holonomy of the adiabatic connection
discussed in Sect. 1.1. We now compute this holonomy for certain time-dependent
quadrupole Hamiltonians. Holonomy calculations for other systems also appear
in [38, 39, 4, 40, 12]. There is an explicit form of the solution of the adiabatic
connection equation that will prove useful.

Proposition 7.1. ([2,3]) Let c(t) be a path on parameter space, and P(t) = P(c(t)).
Define

(7.1)
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Then
U(t)P(0)=]imUJίt). (7-2)

H-» 00

is a solution of the adiabatic evolution Eq. (1.6), with the initial state in the range
o/P(0).

We shall in this section frequently write quaternionic matrices corresponding
to operators using the basis of Definition 2.5 without further comment.

7.1 Symmetry Group Orbits. We now calculate the adiabatic time evolution for
paths on the four-sphere of unit quadrupoles of the form

T(ί) = exp (M)T(O) exp (- tA\ (7.3)

where A is an antihermitian generator of the symmetry group, which is Spin (3) ̂
SU(2) for J>3/2, and Spin(5)^Sp(2) for J = 3/2. Since the symmetry group
preserves time-reversal in variance, A necessarily satisfies ΘAΘ~l = A. The gene-
rators of the SI/(2) symmetry are of the form A = - iJμ, and the generators of the
Spin (5) symmetry of the form A = [Γα, Tβ].

The spectral projection of T(t) is given by

P(t) = exp (tA)P exp (- tA\

where P = P(0). Use Proposition 7.1 to obtain the adiabatic evolution:

Γ ft M"Γ ί-t \ T
U(t)P= lim exp {-A P exp —A \P P = exp (tA) exp (- tPAP)P. (7.4)

M-oo|_ \n J J L \ n / J
Lemma 7.2. Let P be a quaternionic projection of rank one, and | | the quaternionic
operator norm. If A is an antihermitian quaternionic operator, then

(PAP)2=-\PAP\2P. (7.5)

Proof. (PAP)2 = - PAPAP = - PAP PAP is a negative hermitian operator of rank
one. A hermitian quaternionic operator on H1 is a real multiple of the identity,
and the norm of a projection is one. The result follows from applying the operator
norm.

Lemma 7.3. Let P and A be as above. Then

exp(-tPΛP) = cos(t \PAP\)P - PAP (7 6)

Proof. Use the series expansion of the exponential function, and Lemma 7.2.

We finally obtain

Proposition 7.4.

U(t)P = exp(M)cos(ί|PΛP|)P - P/lP (7.7)

We first examine J = 3/2. Since there is a transitive symmetry group, we can
without loss of generality consider paths starting at T0. The antihermitian



Chern Numbers, Quaternions, and Berry's Phases in Fermi Systems 621

generators A are linear combinations of i[Tα, Tβ] = TaTβ, α < β. For T0, the
spectral projections onto the positive and negative eigenstates are

P±=έ(l±Γ0). (7.8)
Define

ϊ(-T1T3±T2Tt), (7.9)

±3 = ^(T3T4±T1T2).

In the basis (2.26), using (5.1),

= (0 o) '- = Co o) '- = (0 o) (7 10)

o o\ /o o
θ -fc) "-2 = U -,

The following lemma easily follows from the expression (7.11), although we
give an independent proof.

Lemma 7.5.

a)
P±T0TΛP±=0. (7.12)

b)
= P±n ,~ *

Proof, a) follows from the Clifford property of the Tα . b) comes from T0 7\ T2 Γ3 T4 =
— 1, as in the proof of Lemma 7.6. It follows that p+np_m = 0.

We remark that {p+n} and {p~n} each span a copy of the Lie algebra sp(\) ̂
spin (3). This can be understood by noting that a) shows that only the spin (4)
subalgebra of spin (5) which leaves T0 invariant is nonzero in PAP.9

To demonstrate the technique, we present two examples:

Example 7.7. Let A = — i(cJ3 + sJλ ), with c2 + s2 = 1. Then exp (2πA) = - 1, which
leaves all the quadrupoles fixed, i.e,

exp(ίΛ)Γ0exp(-ί,4), 0^ί^2π (7.14)

is a closed path on the space of unit quadrupoles. Using (5.8) and Lemma 7.5,

(7.15)

It is well known that spin (4) ̂  spin (3) 0 Spin (3)
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Using Proposition 7.4, the adiabatic time evolution operator for the upper two
levels is

U(2π)P + = ( — )[cos(3πc)P+ + sin(3πc)p + 3] = — exp(3πd),

U(2π)P. =(-)

= - exp ( - π(cί + 2s/)). (7. 1 6)

The equation for the upper level is precisely Berry's phase for m = 3/2. The equation
for the lower level gives a holonomy which has a j component as well as i, and is
not just a complex phase multiplying the function, but rather induces transitions
between the J3 = ±% states. This formula has been derived in the papers [4,40].

Example 7.8. By allowing 50(5) rotations which do not lie in the subgroup of
physical rotations, we can obtain any desired holonomy. As an example, take
A = iT^cTo + sΓ3), with c2 + s2 = 1. Then exp(2πX) = - 1, and

exp(ίA)Γ0exp(-f,4), 0^ί^2π (7.17)

is a closed path on the space of unit quadrupoles.

U(2π)P+ = (-)[cos(πs) + sin(πs)p + 2] = -exp(πsj). (7.18)

For s = %9 U(2π)P+ = p + 2 The holonomy is j, in other words, the adiabatic time
evolution interchanges the J3 = ± 3/2 eigenstates.

For J > 3/2, the calculations are similar but more lengthy, and will not .be
performed in detail. The symmetry group is now 517(2), which does not act
transitively on 54, As we saw earlier, we can without loss of generality consider
paths starting at Tθ = cos(0)Γ0 + sin(0)Γ3, 0 ̂  0 g: π/3. The main difficulty comes
in obtaining the spectral projections of Tθ. For J = 5/2, this is done in the appendix.

7.2 Split Spheres. The holonomy of a path can be easily found when the holonomy
group of a connection is Abelian. We now look for subsets M c H(Q) such that
the adiabatic connection restricted to M has Abelian holonomy group.

We shall study connections which arise from splitting projections.

Definition 7.9. A splitting projection is a complex hermitian projection L that
satisfies

l = l. (7.19)

To each splitting projection L, we associate the set M L of L-split quadrupoles, the
set of H(Q) commuting with L. It is clear that M L is a vector subspace of H(Q).

Proposition 7.10. L splits the spectral bundles over ML as the sum of ίwo complex
line bundles, and the adiabatic time evolution respects the splitting, i.e.,

U(t)L = LU(t). (7.20)
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Proof. For every TeML, the spectral projections of T commute with L. Since Γ
is time-reversal invariant, the spectral projections satisfy ΘP = PΘ. It follows that

P = LP+ΘLPΘ~\ (7.21)

and LP and ΘLPΘ ~1 are projections onto orthogonal subspaces, both of complex
rank one. Let c(t) be a path on ML. Using Proposition 7.1, we obtain a solution
of the adiabatic time evolution operator as the limit of a product of spectral
projections;

l/(t)= lim W<!ll^Y..i{* WίW (7.22)
V n J \n J \nj

Each of the projections P(kt/n) commutes with L, proving Eq. (7.20).

We first show that the dimension of ML must be less than five: i.e., ML cannot
be all of H(Q).

Lemma 7.11. Let F be a complex vector bundle of rank two over S4. IfC2(F)^0,
then F cannot be split as the sum of two complex line bundles.

Proof. Suppose that F is the sum of two complex line bundles, F = F^ © F2. Since
H2(S4) = 0, C^Fj) = 0. The Chern classes satisfy [30]

C(F) Ξ 1 + C,(F) + C2(F) = (1 + CΛFJXl + C,(F2)\ (7.23)

so if F = F! 0 F2 then C2(F) — 0. By Theorem 6.3, C2 of the spectral bundles is non-
zero except for the middle eigenstate of the J = 1/2, 5/2, 9/2... Hamiltonians.

We now construct splitting projections from the symmetry group of H(Q). The
dimension of ML for these splitting projections is three. The intersection of the
unit quadrupoles with ML is a two-sphere. There is a first Chern number associated
with the split pair of bundles. In the following, all operators are considered as
complex time-reversal invariant, rather than quaternionic. The difference is that
iA is a well-defined operator in the former sense, but not in the latter.

Lemma 7.12. Define

FL = i(l-2L). (7.24)
Then

a) the following are equivalent.

i) L is a splitting projection',

ii) VL is a time-reversal invariant unitary, and FL

f = — VL.

b) For any complex-linear operator A, \_A,L] = 0 if and only if VLAV^ = A.

Proof. i)=>ii): ΘVLΘ~l =-i(\-2(\ -L))=VL. Vj = -i(\ -2L)= -VL, and
the unitarity comes from V^VL = -i(\ - 2L)i(l - 2L) = 1.

ii)=>i): Inverting (7.24), L = $[l + iVL). L is hermitian, Iΐ = ̂ (l-iVl}) = L.
ΘLΘ'1=^(l-iVL)=l-L.
b): If [Λ,L] = 0, then [A, KJ = 0, and VLAVj} = A because KLKL

f = 1. To prove
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the converse, VLAV^ = A is the same as [FL, A] = 0, and the result follows.

We first examine J = 3/2. All time-reversal invariant unitaries satisfying
K f = — V have spectrum {i, — i}, and are related by a time-reversal invariant
unitary, i.e., by an element of the Sp(2) symmetry group. We can without loss of
generality examine just one such K, and the corresponding L.

Proposition 7.23. The operator L defined by

VL=TlT2 = i(l-2L) (7.25)

is a splitting projection. The set ML of H(Q) commuting with L is the linear span of
{Γ0,Γ3,Γ4}.

Proof. (7\ Γ2)
f = T2 7\ = — 7\ T2, and 7\ T2 is clearly time-reversal invariant. By

Lemma 7.12, L is a splitting projection. By the Clifford property, [T\T2, T0] = 0,
and analogously for T3 and T4. Note also that VL= -exp(-iπJ3).

The linear span of the operators {LT0,LT3,LT4}, acting on the range of L, is
isomorphic to the set of operators H(B) = B J for J = 1/2. Thus follows by noting
that both sets span the simple traceless 2 by 2 complex matrices. Alternatively,
only could use the Clifford properties of {LT0,LT3,LT4} to identify them with
the σ matrices. The Chern numbers of the resulting complex line bundles over S2

are + 1 and — 1 . The analogous statements obviously hold for { ( 1 — L) Γ0 , ( 1 — L) T3 ,
(1 — L)T4}. The adiabatic time evolution is now easily computed as in Sect. 1.2.
The analog of Berry's phase is again a unit quaternion. In the basis (2.26), we obtain;

Proposition 7.14. The holonomy U(t)P(0) for a closed path c(t) on the split sphere
spanned by {T0,T3, Γ4} is equal to exp(±//l). Here A is the solid angle on the
split sphere subtended by the path, and i is the unit quaternion. The sign depends
on the energy eigenvalue.

Proof. By Lemma 7.12, the adiabatic time evolution operator U(t) commutes with

For U(ή to commute with KL, the entries the matrix of U(t) in the same basis must
be linear combinations of 1 and i. The above observations relating the split sphere
to H(B) complete the proof.

By the Sp(2) symmetry, we can now find split spheres for which the holonomy
is any unit quaternion. For example, the split sphere consisting of real Hamiltonians,
spanned by {Γ0, Γ2, Γ3}, has holonomy exp(+;Vt). Note that V = ±exp(-iπJ2)
for this split sphere.

For J > 3/2, the symmetry group is smaller, but it is still easy to find split
spheres. KL = exp( — iπή J), where ή is any unit vector, satisfies the necessary
properties in Lemma 7.12. All such split spheres are related by the SU(2) symmetry,
so it suffices to consider the split sphere corresponding to VL = exp( — iπJ3), which
is spanned by {T0,Γ3,T4}. We note that for J>3/2, this split sphere does not
have a transitive symmetry group, but — U3 generates an axial symmetry. This
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symmetry is sufficient to apply the result of Sect. 1.2. We can thus obtain the first
Chern number of each of complex line bundles over the split sphere. Note that
exp(-iπJ3) is the identity transformation on the split sphere, whereas in Sect. 1.2
it was exp(-ΐ2πJ3). Using Eq. (1.23), and denoting by Pτ and PB the appropriate
spectral projections of T0 and - T0 respectively, we find for the first Chern class
of the complex line bundle LP over S2

C, = Tr (LPΓiJ3) - Tr (LP^J3). (7.27)

L projections onto the complex subspace spanned by the J3 eigenstates
{|J,l/2>, |J, -3/2>,|J, +5/2>...}. We then obtain the first Chern numbers for
these split spheres. For J = 3/2, they are -hi, — 1, as determined earlier. For J = 5/2,
we obtain ( + 1,0, -1}, for .7 = 7/2, the numbers are {2,-2,2,-2}, etc. One
immediate use of these numbers is to compute the holonomy for the closed path
cos (ί)T0 + sin(ί)T3. The holonomy is + 1 if the corresponding first Chern number
is even, -1 if it is odd.

Another class of split spheres for J > 3/2 is defined by
A w

) = i . (7.28)

Again, all such split spheres are related by the 5(7(2) symmetry, and it suffices to
consider VL = isign(J3), which is spanned by {T0, 7\, T2}. These split spheres also
have an axial symmetry, and the first Chern numbers can be calculated by the
same method.

One can further compute the holonomy for closed paths on split spheres using
the formulae of Sect. 1.2, Eq. (1.24) in particular. The complex one-dimensional
projections are of course LPΘ, where Pθ are the spectral projections for Tβ, and
one must use ̂ J3 instead of J3 for the VL = exp( —iπή J) class of split sphere. This
is straightforward if the spectral projections Pθ are known. The spectral projections
for J = 5/2 are calculated in the appendix.

The time evolution for open paths on split spheres can also be calculated
explicitly, by closing paths with segments whose time evolutions can be calculated.
This is straightforward, and we do not discuss it here.

8. Appendix: J = 5/2 Spectral Projections

Denote by Tθ = cos(θ)T0 + sin(0)T3. In the basis (2.26), abbreviating c = cos(0)
and s = sin (0),

lOc ./Ms 0

-8c 3^/όs . (8.1)

-2c

We already know from Proposition 3.5 that Tθ is traceless, and Tr(T^) is
independent of θ. Tθ is then a quadrupole matrix, and we may use the results of

Sect. 3.1. One checks that fTr(Γ£) = 28, so £θ= Γ0Λ/28 is a unit quadrupole
matrix. Using Proposition 3.1, we find that Tθ is related by S0(3) conjugation to
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a matrix of the form

x/2811 cos(0-2π/3) = E2 (8.2)
cos (φ)

for a unique O^φ^π/3. Note further that £1^£2^£3. Of course Tθ is
nondegenerate, so El<E2< E3. Furthermore, from the proof of Proposition 3.1,
we see that Όct(B^) = ̂ jCθs(3φ). It is straightforward to compute Det(T0) =
(c3 - 3cs2)160/27 = cos (30)160/27. The eigenvalues of Tθ thus are

(8.3)

We can now solve for the spectral projections. Real normalized eigenvectors
of Ba are

.yJ_3/2> + |l/2», (8.4)

^

and Θ\Eny. Here

are functions of θ, as is the normalization constant C, determined by
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