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Abstract. We prove that the density of states for the tight-binding model with
off-diagonal disorder under general conditions diverges for R-+Q at least

τz This result is established through the study of the recurrence4

properties of an associated Markov chain.

1. Introduction

In the field of Schrδdinger equations with random potential (see [S] and references
therein) a great deal of attention has been given to the study of the properties of
the density of states as a function of the energy E. For lattice systems with diagonal
disorder Wegner ([W]) proved that if the distribution of the potential is absolutely
continuous with bounded density, then the integrated density of states is absolutely
continuous and its derivative p(E) is bounded. With more detailed assumptions
and/or in one dimension one can prove smoothness properties of the density of
states a) in any dimension at high disorder ([CFS, BCKP]); b) in one dimension
at any disorder by using transfer matrix methods ([ST, CK]). In [CK] it is proven
that for a wide class of distributions for the potential including non-absolutely
continuous ones the density of states is smooth in one-dimension.

The case with only off-diagonal disorder, i.e. when only the couplings between
different sites are random, presents some different features. Here Wegner's result
does not apply. Indeed Dyson ([Dy]) found a one-dimensional model whose
density of states can be exactly computed and displays a singularity of the type

3 as E -> 0. It has been argued that this singularity should not be particular
\E\(m\E\)
to this model. In [ER] and [TC] numerical computations and heuristic arguments
are presented to support this claim.
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const
Here we prove a lower bound — - - '—? for the density of states as E -> 0. We

allow a general distribution for the potential absolutely continuous with continuous
density and with support bounded away from the origin.

Here is a sketch of our argument. We express the expected density of states in
a finite volume in terms of the distribution of a Markov chain at a finite time. We
study then the invariant density of the Markov chain. For E sufficiently small the
invariant density can be estimated in some ^-dependent interval by studying the
recurrence properties of the Markov chain. Here we make use of methods
introduced for Markov chains with continuous state space by Athreya and Ney
([AN]). As the densities at finite times approach for large times (that correspond
to large volumes for the physical system) the invariant density, we can use the
bound to get our result.

In the following, when no confusion can arise, we shall use the same letters c,
c etc. to indicate possibly different constants.

2. Description of the Model and Sketch of the Proof

Let H be the operator on /2(Z),

Hu(n) = Wn,n+lu(n + 1) + Wn. lpllφ - 1), (2.1)

where Wn^n + l are i.i.d. distributed random variables. We shall put Wn>n + 1 = Vn + 1

for n ̂  0 and WΛtΛ+ 1 = Vn for n g 1. We assumejhat the common distribution of
these variables has support in some interval [α, /?] with 0 < α < /? and continuous
density /.

Let ΛN be the interval [ — JV,ΛΓ] in Z. We shall denote by HN the operator H
restricted to 12(ΛN) with boundary conditions u(x) = 0 for xφΛN.

We can compute G^O, 0; z) = (Q\(HN - z)~ 1 10> by observing that GN(0, 0; z) =
0(0), where g satisfies the equation

(HN-z)g = δ0 (2.2)

with boundary conditions g(N -f 1) = g( — N — 1) = 0. If we define A + ίk(z) Δ _ ί k ( z )
for 0 ̂  k ̂  N by

, ^ . K . , . , (2.3)

and insert them in Eq. (2.2), we see that they satisfy the equations

with initial conditions Δ + tN(z) — Δ -^(z) = 0 and that

1
= Gw(o,σ,z)=-
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Notice that Δ + )0(z),zi_<0(z) are holomorphic functions of z, that are real for real
z and have a negative imaginary part if z has a positive imaginary part. Therefore,
in the distributional sense,

lim Im — —L = - πδ(Δ + 0(£) + Δ _ 0(£) - E).
40 [4 + t0(£ + ίe) + 4_ f 0(£ + iε)-£ + ίε] V + 'O V ' 'O V ' '

(2.6)

It follows that the averaged density of states in the finite volume [ — N, ΛΓj is given by

ImEl
40 π \s[Zl + 5θ(E + iε) + Zl_ 0(£ + ιε) — E + ιε]y

where q(

E\x) is the common density of the two independent random variables

We are thus led to consider the random process defined by (2.4) for real z. It
will prove convenient to introduce the logarithms of Δ + tk = Δk. In order to take
account of the negative values and to have a bijection between the two variables,
we introduce the map

(2.8)

In terms of the new variables the process (2.4) is described by the equations

The sequence {Δk} k= — Λf, . . . ,0 defines a Markov chain with R as a state
space. We will consider this Markov chain for E sufficiently small and we will
prove that this Markov chain approaches the stationary measure exponentially
fast and uniformly for E bounded away from 0. We then estimate qE(x) from below
by using the connection between the invariant measure of a set and the expectation
of the return time to it (see [C, AN]) to obtain the lower bound qE(x) ^ const.

— — — — — for bE ̂  x ̂  — - and b a sufficiently large constant independent from E.
|x |(ln|£|) bE
The result will follow from this bound, the equality (2.13) together with convergence

3. The Invariant Measure and the Approach to Equilibrium

The equation (2.9) defines a Markov chain {x(w), n ̂  0} (we reverse here the time
direction in order to follow the usual conventions). The state space ̂  = U x { —1,1}
can be endowed with the natural measure v that, restricted to each of the two
copies of R, is equal to the Lebesgue measure. The transition probability density
of the Markov chain with respect to v will be denoted by pE(ξ,η\ and for any
Borel set A a y we define PE(ξ, A) = J pE(ξ, η)dηι the subscript E in pE and PE will

A
be omitted when no confusion can arise. p(

E

} and P(

E

} will denote respectively the
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rc-step transition probability density and the rc-step transition kernel of the Markov
chain.

The statements of the following three lemmas contain the information that we
need on the invariant measure of our Markov chain. The proofs of the lemmas
are deferred to the Appendix.

For b < 1 and δ > 0 we define Jb = [Info, —Info] and </M as the set of the
intervals / such that / c Jb and the length of / is equal to δ.

3.1. Lemma. There exists E0 > 0, fo > 0, δ > 0 and c> 0 such that for 0 < E < E0

and IeJ?bE,δ,

P(

E

2\ξ,η)^c for ξ,ηelx{l}. (3.1)

3.2. Lemma. There exists EQ>Q and b > 0 such that for 0 < E < E0 there is n0

positive integer such that

MξeyηeJbX{1]p^(ξ,η)^c>0, (3.2)

where n0 and c can be chosen uniformly in E for E bounded away from 0.
Given a closed interval / c IR we define Tf as the time of first arrival of the

Markov chain to the set / x {!}, i.e.

3.3. Lemma. There exists fo > 0, δ > 0, E0 > 0 and c> 0 such that for 0 < E < E0

and

sup E5(T,)^c(ln|E|)2, (3.3)
£ e / x { l }

where Eξ denotes the expectation with respect to the Markov chain with transition
kernel PE and initial condition ξ.

From Lemma 3.2 it follows that for the considered values of E there exists a
unique invariant measure QE with density qE(x) which is approached exponentially
fast in the variation distance uniformly for E bounded away from 0, i.e.

cpn (3.4)
ξ,A

with c> 0 and 0 < p < 1 (see [D] Chap. V, Sect. 5, case b). Moreover Lemma 3.2
shows that every IεJbEj is a recurrent set for the Markov chain with kernel PE.
This together with Lemma 3.1 allows us to use the construction by Athreya
and Ney of an auxiliary chain with a recurrent state (see in [AN] the regenera-
tion lemma and Sect. 5). In the notation of [AN] if /e./5JM with fo and δ
given by Lemma 3.1, {x(n\ n^O} is a (/,/l, </>, 2)-recurrent Markov chain where

y

λ = inf p(E\ζ,n} and φ = r-r with v equal to the Lebesgue measure.
ί , l f6/x{ l} I / I

Let now M/ = sup E^(T7). If we perform the construction of the equivalent
ξelx{l}

Markov chain as in [AN], Sect. 5 with a state Θ corresponding to the interval
/, and call β and E the invariant measure and the expectation for the equivalent
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chain, we have

EΛί^gΛM- 1 (3.5)
and

Q(Θ) = λQ(I\ (3.6)

where TΘ is the return time to the state Θ in the equivalent chain.
Formula (3.5) follows from the fact that

2 r = V, for 1 ^ k£j- l)(lγ - T^l\ (3.7)

where χ is the indicator function of the event in brackets and T(f is thej-th return
time to I with the natural identification between the two auxiliary processes
introduced in [AN]. It follows from the formula of the transition kernel with
starting point Θ that

and

Eβ(τy+ ι>-τy>)= f Eξ(τy+ι>-τ^)ψ(^ (3.9)
/ x { l }

where we exploit the Markov property.
Equation (3.6) follows from the equivalence theorem of [AN].
Now we have the following relation valid for Markov chains with a recurrent

state (see e.g. [Ch] Chap. 1, Sect. 10)

(3.10)

By using (3.3) of Lemma 3.3, (3.5) and (3.6) we get that

for E sufficiently small and IeJ^bE}δ with c constant independent from E and /.
We are now in the position to state the main result of this section.

3.4. Theorem. There exists b > 0, E0 > 0, c> 0 and n0 a positive integer such that
for 0 < E < E0, and ηeJbE

 χ {1} and n ̂  n0,

Proof. From the exponential approach (3.4) and the bound (3.11) we have for any
and Ie/bE,

(3.13)

for n sufficiently large and a suitable constant c. Therefore for ηeJbE x {1} we have,
by applying the estimate (3.1) of Lemma 3.1,



548 M. Campanino and J. F. Perez

pr2)(^) = ίp(

E"^Op£«^ ί PΪ\U)M,n}d^^ (3.14)
7 χ { i } vm^;

with a possibly different constant c. Π

4. Main Theorem

We are now in a position to state and prove our main result.

4.1. Theorem. Let p(E) be the absolutely continuous part of the density of states for
the Hamiltonian defined in (2.1) Then there exist E0>Q and c>0 such that for
o<|E|<£0,

(4.1)
\ιιι\n\) \r.\

Proof. We first remark that

π> (4-2)

and therefore it follows from Theorem 3.4 and (2.13) that for 0 < E < EQ and b
sufficiently large we have

1/bE 1 c 1/bE I c

(43)

where the same symbol c denotes different constants.
Now the integrated density of states k(E) is given by

E
k(E) = lim EkN(E) = lim j pN(x)dx. (4.4)

N->oo JV-»oo — oo

From (4.2) and (4.3) we get that the density of states p(E\ which is by definition
the derivative of k(E) in the full measure set where the derivative exists, satisfies

(45)

in some interval O < E < EQ. With obvious changes all our arguments work also
for negative E's, so that we finally get (4.1) with some possibly smaller constant

£o Π

Appendix. Proof of Lemmas 3.1, 3.2 and 3.3

Proof of Lemma 3.2. Let [α,/Γ] be an interval contained in the support of the
probability density of the potential / such that inf f(υ) > 0.

ye[α,/5]

Let ξ = (u, 1), η = (v, 1) with u, vel, and IeJ?bEj. In the inequality

Pφ(ξ,η)* ί PE(ξ,ζ)pE(ζ,η)dζ, (4.6)
Λ χ { - i }
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we take as A the set

A = 2 : (4.7)

By using (2.15) that defines the transitions of the Markov chain it is easy to see
that this choice of A ensures that for b sufficiently large, E sufficiently small and
ζ = (z, -1) with zeA,

w
pE(ξ, C) ̂  inf -#(w) = y > 0, and similarly pE(ζ, η) ̂  γ, (4.8)

\ve[tx,β]έ

, Injδ 2-lnα 2 , Γ .r t c Inj82-lnα2

if \v — u\ < - . Therefore if we take δ = - - - ,

$\ξ,η)*γ2δ2, D (4.9)

Proof of Lemma 3.2. Let us first take x(i) = (u;, l)eR x {!}. Assume that ut > ln£,
then by iterating twice the relation (2.9) (remember that we have reversed the
direction of time) we get the relation already exploited in [ER], x(ί+2) = (uί+2,εl+2)
with

1 — Eexp(— MJ

, ; £exp(ut)-£2

-ί I _ ,0

, εl + 2 = l. (4.10)

We can write the first formula of (4.10) in the form

tti+2 = "£ + ri + sl, (4.11)

where rf are bounded i.i.d. random variables with symmetric distribution and st

are non-positive random variables. The decomposition (4.11) will be essential to
obtain our result.

By using (4.10) and the fact that the distribution of the variables F/s has compact
support contained in (0, oo), we see that there exist constant Kl9K2 > 0 such that
for E sufficiently small if x(ί) = (uh 1) with u^ K1 - In (£), then x(ί + 2) = (ut + 2,1) with

~K2 - ln(£) ̂  ui+2 ̂ K2- ln(£). (4.12)

Let us define the stopping time

τ(1) = min{2;|M2J^ln(£:)}. (4.13)

We can prove that if x(0) = (MO, 1) with u0 > ln(£), then

i (4.14)

whre c is a constant independent of E. Indeed from (4.12) we can assume
). Then

(4.15)
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where we have used the decomposition (4.11) and in particular the non-positivity
of the variables s/s. For c is sufficiently large the right-hand side of (4.15) is less
than I by the central limit theorem and this proves (4.14).

Let now b,δ,c,EQ constants such that the statement of Lemma 3.1 is verified,
i.e. such that for 0 < E < E0, Ie/bjE,δ and every ξ,ηel x {!}]

Let / = (yί9y2) be an interval such that the following properties are verified:

ii) it is not possible that for x(ί) = (uh 1) with ut ̂  y2x
(i + 2) = (ui + 2,1) with ui + 2 ^ yί

iii) the length of Γ|7| is bounded uniformly with respect to E.

These properties are verified by (4.10) if we take |Γ| ̂  41n/P/ά2 if b is sufficiently
large and E is sufficiently small.

Let τ(2) be the stopping time

~~(2) " f ~^> 1 ( / ) T " f 1 ' ) " ) ίΛ 1 £\

If x(0) = (u0,l) with M 0 <ln£ we have X (I ) = (M!,I) with u^ -ln(&E) if b is
sufficiently large. Therefore

/[(c/2)|ln£|2] \

P,(θ)(τ(2)^ c|ln£|2)^ pi £ r^u,-ln(bE) j

[(c/2)|ln£|2]

• - (4.17)

if c is sufficiently large and c is a suitable positive constant (we used the properties
i),ii) of the interval f and, as in the previous estimate, the decomposition (4.11)
and the central limit theorem).

We are interested in the stopping time

τ^^minίj^l x^e/xί l}} . (4.18)

By applying Lemma 3.1, (4.17) and the property iii) of Γ we can show that for
0 < E < E0 with E0 sufficiently small for x(0) = (u0,1) with w0 < In £,

P χ ( 0 )(τ ( 2 )^c|ln£|2)^l-p (4.19)

for some positive p > 0. Indeed after the process reaches the interval Γthe process
can reach / in an even number of steps with probability bounded from below since
by (4.17) it can move in two steps in an interval of size δ with density bounded
from below.

After reaching / x {1} by (4.17) the process can return to / x {1} after an even
number of steps with positive probability. Summarizing we can find an odd integer
n0 ^ c|lnE|2 for some constant c such that

P(E°}(ξ,η)^c>0 for any ξ = (u,l) and η = (υ,l) with veJbE. (4.20)

The proof is completed by remarking that if x(0} = (u0-l\ then x(1) = (w1 ? 1).
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Therefore we have that

p(£0 + 1)(ξ,η)^c>0 for any ξ = (u, - 1) and η = (υ,l) with υeJbE.

(4.21)

By combining (4.17), (4.20) and (4.21) we obtain that

P(Eno)(ξ>*l)^c>0 for any ξe^ = R x { - 1, 1} and η = (υ,l) with υeJbE.

(4.22)

Proof of Lemma 3.3. The result follows easily from the proof of Lemma 3.2. Indeed
the arguments used there imply that iΐl€^bfEtδ for appropriate constants b and <5,

P ξ(T /^c(ln£)2)^p>0, (4.23)

where the constants c and p are uniform in£e^ = [ R x { — 1,1} and E < E0. Let
then £k be the event that Γ/ > fcc(ln E)2. From (4.23) we have that

P^EJ^l-p. (4.24)

By applying the Markov property we get

1). (4.25)

Therefore

P,(EJ^(l-p)fc (4.26)

uniformly in ξey. But then

oo

E4(Γ,)£c(lnE)2(l-P ί(E1)) + £ (k+ ί)c(lnE)2(Pξ(Ek)-Pξ(Ek+l))
fc=l

( oo \ / oo \ rΠn IT) 2

14- Σ P5(£k)Uc(In£)2 1+ Σ(l-p) f cU-W^ D
*=ι / \ k = ι J P

(4.27)
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