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Abstract. The partition function for a one-dimensional system of Bosons with
repulsive delta-function interaction is investigated. We prove that if the Bethe
Ansatz eigenfunctions form a complete set then the grand canonical pressure
is given by the Yang- Yang formula. The proof uses a probabilistic formalism
to express the partition function as an expectation with respect to a probability
measure on a Banach space of measures; the asymptotic behaviour of the
expectation in the thermodynamic limit is determined by the Large Deviation
Principle. This method is applicable in situations in which the Hamiltonian
can be diagonalised using the Bethe Ansatz.

1. Introduction

Often, in mathematical physics, we are faced with the problem of determining the
asymptotic behaviour, for large /, of a sequence

(trace exp [ - βjf1'] \ I = 1, 2, . . . },

where β is a positive real number and {3? l \ I = 1, 2, . . . } is a sequence of self-adjoint
operators on some Hubert space. The problem arises, for example, in many-body
theory; here ffl l is the Hamiltonian of the system, β is the inverse temperature and
the volume Vl of the system increases as / increases. In this setting, there are not
many cases in which the problem has been solved. For a long time, only for the
free quantum gases, boson and fermion, was an explicit expression known for

lim - — In trace exp [ - βjtfl~\.
l-+ao βVl

In 1969, Yang and Yang [1] made a notable advance: they developed a
thermodynamic formalism for dealing with those interacting systems whose
Hamiltonians can be diagonalized with the help of the Bethe Ansatz. Yang and
Yang [1] applied their formalism to the quantum non-linear Schroedinger model
whose Hamiltonian had been diagonalized six years previously by Lieb and Liniger
[2]. In recent years, as more and more problems have succumbed to the Bethe
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Ansatz (see [3] or [4] for a review), the use of the Yang-Yang formalism has
spread; for example, it has been used to determine the thermodynamic functions
in the Kondo problem [5,6,7] and to compute the central charge of the Virasoro
algebra associated with critical two-dimensional classical statistical mechanical
systems such as the Potts model and the Ashkin-Teller model [8].

The core of the Yang-Yang formalism is their derivation of an expression for
the entropy density of the system; as they themselves point out, this derivation
unlike the rest of their paper, is far from rigorous. It is, in fact, an ingenious
elaboration of the derivation given by Landau and Lifshitz [9] for the non-
equilibrium entropy density of a free quantum gas. Our aim in this paper is to
give a rigorous proof of the Yang-Yang trace formula. We see little hope of doing
this by supplying the needed rigour at each step of the Yang-Yang argument
(any more than we could for the Landau-Lifshitz derivation). Instead, we use a
probabilistic formalism to express trace exp [ — β^l~\ as an integral

J eβVlG[m]Klldm']

with respect to a probability measure K f on a topological space E and we use
Varadhan's theorem [10] to determine the asymptotic behaviour of the integral.
Varadhan's theorem is an extension to regular topological spaces of Laplace's
theorem on the asymptotic behaviour of integrals over the real line. By checking
that the hypotheses of Varadhan's theorem are satisfied, we are able to give a
rigorous proof of the Yang-Yang trace formula.

At first sight, the probabilistic formalism which we use may seem far removed
from the Yang-Yang thermodynamic formalism. In fact, they are close in
spirit, since Laplacian asymptotics (the method of the largest term) is at the
heart of thermodynamics. Moreover, the Landau-Lifshitz expression for the
non-equilibrium entropy density of a free Fermion gas appears naturally in the
course of checking that the hypotheses of Varadhan's theorem are satisfied, and
the Yang-Yang expression is related to it by a simple transformation.

In this paper, we apply the probabilistic formalism to the non-linear quantum
Schroedinger model; we emphasize that it has the same wide applicability as has
the Yang-Yang thermodynamic formalism. Nevertheless, it would not be profitable
to display this work as an application of some general scheme, since the details
may vary greatly from model to model. The classical non-linear Schroedinger model
requires very different techniques; recently it has been treated rigorously by
Lebowitz et al. [11].

Many-body theory is characterized by the existence of a number operator: for
each Hamiltonian ffl1, there is a self-adjoint operator jVl whose spectrum is the
set 0,1,2,... and which commutes with ffll. The operator Λ^1 is interpreted as the
observable corresponding to the total number of particles in the system; the
eigenspace of Jfl corresponding to the eigenvalue N is called the N-particle
subspace. Since J^1 commutes with Jf\ we may regard ffll as the direct sum
of a sequence {H1

N\N = Q, 1,2,...} of operators, where H1

N is the restriction
of J^1 to the N-particle subspace. To investigate the asymptotic behaviour of
trace exp {—β3?1}, it is convenient to generalize the problem slightly: we examine
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the behaviour of trace exp {β(μ^1 — J^1)}, where μ is a real number. Put

Pι(μ) = ̂  In trace exp {β(μ^1 - J f 1 } } , (1.1)

and, denoting by trace^ the trace over the TV-particle subspace, put

/I(p)=-^rlntracewexp{-j81ίj ϊ}, (1.2)

where p = N/V^ we have

exp {βVrf^μ)} = trace exp (β(μJTl - Jf1)}

= Σ *^ trace* exp {-

= Σ exP {βVι(βP ~~fι(p))} (1-3)

In many models of physical systems, the limits p(μ) = lim pz(μ) and /(p) =

lim fι(p) exist; the function p( ) is called the grand canonical pressure and the

function /(•) is called the canonical free-energy. For / sufficiently large, the main
contribution to pt(μ) comes from the largest term in the summation on the
right-hand side of (1.3) and, in the limit, we have

p(μ) = sup{μp-f(p)}. (1.4)
P

The crux of the thermodynamic formalism is the possibility of making an indirect
evaluation of /(p). We illustrate this first in the case of the free Fermion gas.

In the case of a free gas, the ΛΓ-particle Hamiltonian H1

N is the sum of N copies
of the single-particle Hamiltonian H[. Suppose that the single-particle Hamiltonian
is the one-dimensional Laplacian with periodic boundary conditions on the interval
[0, Vι~\. The eigenvalues of H1

N are given by

where
2π

kj = —m7 , w7 eZ.
i

In the case of Fermions, the kj are distinct: kt φ kj if i φ j. As / increases, Vl increases
and the possible values of the momenta kj become increasingly dense in the real
line. It is argued that, in the limit 1-+ oo with p = 7V/F, fixed, the "eigenvalues" are
described, not by vectors k, but by continuous distributions p( ). These are
functions satisfying p(k) ̂  0, J ρ(k)dk/2π = p; the energy density corresponding to

R

a distribution p is given by

dk_

2n

in the limit / -»oo. But now we must count multiplicities. The entropy, the logarithm



368 T. C. Dorlas, J. T. Lewis and J. V. Pule

of the multiplicity of an eigenvalue, can be estimated in the limit / -> oo by a
combinatorial argument (see Landau and Liftshitz [9], Sect. 54, p. 154) which gives
its density as

dk
(1.6).

A second application of Laplacian asymptotics then gives the following
expression for the free-energy density:

/(p)= inf {u[p\-β-*s[p\}. (1.7)
\pεL\(R)\\\P\\ ι=p]

This argument leads to the well-known formula

J?-1ίln(l+^- t 2>) (1.8)

for the grand-canonical pressure of a free-Fermion gas.
Next we sketch briefly the extension of the thermodynamic formalism needed

to deal with Hamiltonians which can be diagonalized with the aid of the Bethe
Ansatz. Consider the non-linear quantum Schroedinger model: its Hamiltonian
can be written symbolically as

tf = J [dxφ*(x)dxφ(x) + 2c(φ*(x)φ(x))2}dx, (1.9)
R

where φ(x) is a one-dimensional Boson field satisfying

lφ(x),φ*(y)l = δ(x-y)9 (1.10)

and c ̂  0. The number operator Λf is given by

Jf = J φ*(x)φ(χ)dx. (1.11)
R

It commutes with 2tf and the restriction of ffl to the JV-particle space, which we
identify with L2(RN)sym, can be written as

HN=-Σ ^ + 2c Σ δ(Xi - Xj). (1.12)
J = l i>J

N

For c = oo, we interpret HN to be — Σ d2. with Dirichlet boundary conditions
7=1

on the surfaces x f = xj9 (i Φ j).
We restrict the system to a finite interval of length Vh impose periodic boundary

conditions and denote the resulting Hamiltonian by H1

N. The eigenvalue problem
for H1

N was solved by Lieb and Liniger [2], using the Bethe Ansatz. They obtain
the remarkable result that the eigenvalues are given by

£^(k) = £? + .»+££, (1.13)

with the kj solutions of the equations

^ - Σ ^ -U (1.14)
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where

k"
= 2 a r c t a n - ) (1.15)

and the fe7 are given by

kj = — m^, m7 eZ, if N is odd,

and

kj = — (nij +I), nijeZ, if N is even.

In other words, the eigenvalues of the JV-particle Hamiltonian of the non-linear
Schroedinger model can be labelled in the same way as the eigenvalues of
the N-particle Hamiltonian of the free Fermion gas: there is a one-to-one
correspondence between eigenvalues of H1

N and N-vectors k = ( fc l 5 . . . , f e N ) with
distinct entries taken, in this case, from the set {... — 2π/Fz,0,2π/Kz,...} when
N is odd and from {..., — 3π/Fz, — π/Vh π/Vh 3π/Vh...} when N is even. Yang and
Yang [1] assumed that, just as in the free Fermion case, the "eigenvalues" can be
described, in the limit /-> oo with p = N/Vl fixed, by a distribution p(k) satisfying

dk

R

The energy density is now given by

R 2π'

It remains to obtain an expression for the entropy density s[p]. In the free-Fermion
case, we can interpret the term

dk

R 2π

as the contribution to the entropy density from the occupied /c-values and the term

dk

^
as the contribution from the unoccupied fc-values (the "holes").

We could make this explicit by introducing ph9 the density of holes, and writing

dk

R

 h 2π

together with the side-condition

P(k) + ph(k) = l. (1.17)

In the case of the non-linear Schroedinger model, Yang and Yang give a
combinatorial argument which, in the limit /-> oo, yields the same formula (1.16)
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tor the entropy density, but with the side-condition (1.17) replaced by

p(k) + Ph(k) = l + l f f c ( K - s)p(s)^. (1-18)

Notice that, in the limit c -> oo, the free-Fermion side-condition (1.17) is recovered.
Using these expressions for u[p~] and s[p], it is not difficult to solve the variational
problem and obtain the Yang- Yang trace formula:

1 dk
l im— lntraceexp{-j8Jf'}=Πn(l+e" / ? ε ( f c ; / ϊ ))— , (1.19)
/->«> Vl R 2π

where ε(k; β) satisfies the integral equation

Λo

ε(/c; β) = k2-β~1$ θ'c(k - s)ln(l + e~ '*'•*>)—. (1.20)
R 2π

Notice that, since θ'c(s) = 2c/c2 -f s2, the free-Fermion result is recovered in the limit
c -> oo and the free Boson result is recovered in the limit c -> 0.

We now turn to the probabilistic formalism. Our aim is to express

in the case of the non-linear Schroedinger model, as an integral

by suitable choices of topological space E, functional G[ ] and probability measure
Kj. This will be accomplished using two propositions:

(1) In the case c = oo, the limit

p°(μ) = lim -L In trace exp {β(μ^1 - Jtf1)} (1.21)
ί^αo P K J

exists and is given by the free-Fermion expression

^-* 2 )). (1.22)

(2) The eigenvalues of the Hamiltonian of the non-linear Schroedinger model for
0 < c < oo are in one-one correspondence with the eigenvalues of the Hamiltonian
for c = oo, and given by the Lieb-Liniger formula (1.14).

The first proposition is a well-known result; for completeness we give a proof
in Sect. 2. Up to now, the status of the second proposition has been uncertain; the
results presented in the Lieb-Liniger paper [2] are rigorous, but they do not claim
that the Bethe Ansatz eigenfunction form a complete set; Yang and Yang [1] make
such a claim, but only sketch an argument, based on continuity, to support it. Our
proof of the Yang- Yang trace formula is complete modulo a proof of this
proposition. We will return to the problem of completeness of the Bethe Ansatz
eigenfunctions in another publication.

Since the strategy of proof which we adopt to verify the Yang- Yang thermo-
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dynamic formalism is not yet well-known among theoretical physicists, we first
give an informal sketch of it. Consider, first, the case c = oo: We can write the trace
(1.3) as a sum over configurations by introducing the space Ω defined by

(1.23)
eZ J

and the functions /c':f2-»Rz defined by

2π
—n> if Σ σj is °dd;

' 'ez (1.24)
2π 1 x r v^
—(n +l)> " L σj 1S even

Then

exp {/JKlP?(Ai)} = Σ ^P {/? Σ ̂  - #(*%)}• (1-25)
σeί2 C neZ J

Introducing the c = oo-occupation measure on R by

we can re-write (1.25) as

^ιpf(μ)} = Σ exP ) βVιί(f* ~ k2)m[dk; σ] >. (1-27)

The corresponding expression in the case c < oo is obtained by the following device:
for an arbitrary bounded positive measure m, define the function /m as the unique
solution of the equation

then we have

fm(k) = k - \θc(fm(k) -fm(k})m(dk) (1.28)
R

( ι
exp {βVtf^μ}} = Σ exp <^ j8Kj(μ -/mι(fc)2K[ί/fc; σ] X (1.29)

σeί2 ί R J

(It is here that we have to assume that the Bethe Ansatz eigenstates form a complete
set.) But this can be re-written as

exp {βVlPl(μ)} = Σ exp \βV^(k2 -/mz(/c)2K[<//c; σ] j exp \βV^(μ- fc2K[d/c; σ]
σeβ (. R J I R

Σ exp /^(fc2-/^)2^/^] Pf[σ], (1.30)
σeί2 I R J

where Pf [.] is the probability measure defined on the countable set Ω by

(1.31)
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This, in turn, induces a probability measure Kf on the space E =
{meJt£(R)\$k2m(dk)< oo},

R

K f ^ P f o m f 1 , (1.32)

since mt is a measurable mapping from Ω to E. Introducing the functional G defined
on E by

(1.33)
R

we have, finally,

= exp {/W^Jf ^'^Kftdm]. (1.34)

The measure Pf is in fact the grand canonical measure for c = oo, and we call the
induced measure Kf the Kac measure. (See introduction to [12] and [13] for the
historical background.) But these interpretations carry no hidden hypotheses: for
the purpose of the proof, Pf is the measure defined by (1.31).

The next step in the programme is to determine the asymptotic behaviour of
Kf for large /. If we were able to define Lebesgue measure on E, we might aim to
prove that, for large /, Kf behaves as exp{ — βVιIμ[m]}dm for some non-negative
functional /μ[m], and then apply Laplace's theorem to conclude that

lim -̂  In f^FlG[m]Kf[dm] = sup{G[m] -F[m]}. (1.35)
l^πpVl E E

In the absence of a suitable reference measure on E we have to settle for a more
technical description of the asymptotic behaviour of Kf :

Definition. Let (K / | /= 1,2,...} be a sequence of Radon probability measures on a
regular Hausdorff space E and let {at \ I = 1, 2, . . .} be an increasing sequence of positive
numbers diverging to +00. The sequence {KJ is said to obey the large deviation
principle with constants {at} and rate function Γ.E-+ [0, oo] if the following conditions
are satisfied:

(LD.l) /[.] is lower semi-continuous.
(LD.2) The level sets {xeE|/[x] ̂  b} with 0 ̂  b < oo are compact.
(LD.3) For each closed set C c £,

lim sup-lnKj[C] g - inf/M.
Z->oo at XeC

(LD.4) For each open set O c E,

lim inf-lnK,[0] ̂  - inf/M.
ί->oo aι xeo

In place of the Laplace theorem, we have Varadhan's theorem. We state a version
which covers all the situations that arise in this paper:
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Varadhan's Theorem. Let {K / | /= 1,2,...} be a sequence of Radon probability
measures on a regular Hausdorff space E satisfying the large deviation principle with
rate function /:E->[0, oo], and constants {at\l= 1,2,...}. Suppose that G:E-+R is
continuous and

lim lim sup-In J eaιG(x)Kt[_dx^ = -oo. (1.36)
Λ-+OO Ϊ-+GO QI XeEGxA

Then

lim -In J e?lG(x*Kj[dx] = sup (G(x) - I(x)}.
ί->oo0z E xeE

We prove in Sect. 3 that the sequence (Kf } satisfies the large deviation principle
with constants βVh and rate function /μ[.], where

P\m\ = p°(μ) +/°[m] - μ \\ m ||. (1.37)

Here p°(μ) is the free Fermion pressure (1.22), and /°[m] is the free-Fermion free
energy,

/0[m] = w[m]-j?-1s[m], (1.38)

where u[m\ = \k2m(dk) is the internal energy and s[m] is the entropy density,
R

dk dk
f - J { p l n p + (l-p)ln(l-p)}— , if m(dk) = p(k}— and p(k)£ 1;

s[w] = < R 2π 2π

(—oo otherwise.

(1.39)

After some reduction Varadhan's theorem yields the formula

= sup{μ||m||-/[m]}, (1.40)
me£

where

/M = $fm(k)2m(dk) - β^s[nί]. (1.41)
R

Using (1.40) it is not difficult to show that

dk
e-^k '^)—, (1.42)

where ε(fc; /?, μ) satisfies the integral equation

ds
ε(k;β,μ) = k2-μ- β~^Θf

c(k - s)ln(l + *-*^>)— (1.43)
R 2π

In this way the Yang- Yang trace formula is established. We recognize (1.39) as
the Landau-Lifschitz expression for the free-Fermion entropy density.

There is an alternative expression for the local free energy /[m] which makes
the connection with the Yang- Yang result a little clearer: for an arbitrary measure
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w, define the function hm by

(1.44)
R

In Sect. 2 we show that hm is the inverse of fm. Defining

m = m°f-i9 (1.45)

we have

«[«] = \fm(k}2m(dk) = fi2m(d~k). (1.46)
R R

When m(dk) = p(k)(dk/2π), we have

P(k) = (P*fj(k)f'm(k) = p(k)h'(kΓ\ (1.47)

so that

<
- p(k)h'(kΓ1)}h'(k)—

2n

dk
= ${h'(k)\nh'(k) - p(k)lnp(k) - (h'(l] - p(k))\n(h'(k) - p(W} (1-48)

Making the identification p(k) = ρ(k) and h'(k) — p(k) = ph(fe), we see that (1.44) and
(1.48) together are equivalent to the Yang- Yang expression, (1.16) and (1.18), for
the entropy.

The advantage of the probabilistic formalism which we have sketched is that
we are able to make each step rigorous. The first objective is to prove that the
large deviation principle holds for the sequence (Kf } of Kac measures for free
Fermions. To do this, we first find a candidate for the rate function. When £ is a
topological vector space, there is a standard trick which often works: if {Kf } were
to satisfy the large deviation principle with some rate function /μ[.] and Varadhan's
theorem were to hold for the linear functional G[m] = <ί,m>, then we would have

C"[f] = lim Cf[f] =-lnί^^m >

= sup{<ί,m>-nm]}. (1.49)
mε£

This relationship between C"[.] and /"[.] is satisfied by the Legendre transform
ofC",

F[m] = sup { <t, m> - C"[ί] }, (1.50)
ίe£*

so this expression is the usual starting point of a rigorous proof of the large
deviation property. (See [13] for a counterexample.)

Here is the structure of the paper:
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In Sect. 2 we define carefully the sequence {Kf } of Kac measures for c = oo and
calculate the limit Cμ of the sequence of cumulant generating functionals (Propo-
sition 2.1). As we have seen, the Legendre transform (1.50) of Cμ is an obvious
candidate for the rate function Iμ of the sequence {Kf}, but first we must find a
more useful expression for /μ; this is carried out in Sect. 3 where formula (1.37) is
established (Theorem 3.1). In Sect. 4 we prove (Theorem 4.2) that the sequence
{Kf} satisfies the large deviation principle with rate function /μ. The results of
Sects. 2, 3, and 4 concern the c = oo — Kac measures and are of independent interest
since trivial modifications yield the same results for the free-Fermion Kac measures.
The remaining sections are concerned with checking that the other hypotheses of
Varadhan's theorem hold. First we prove (Proposition 5.3) that the finite-volume
trace, given by (1.29), is well-defined; then we prove (Proposition 6.2) that the
functional wh-+G[m], given by (1.33), is continuous; finally, in Sect. 7, we put it all
together and prove the Yang- Yang trace formula. The main result of this paper
is the following:

Theorem. Let Jjf1 be the Hamiltonίan of the quantum non-linear Schroedinger model
on the interval [0, FJ and let H1

N be its restriction to the N-partίcle subspace. Then,
assuming that the eigenvalues of H1

N are given by (1.13), we have, for all βe(0, oo),

1 dk
lim— In trace exp{ -£.#*} = fln(l + e~ **"•»)— ,
ι-*aoVι R 2n

where ε( β) is the unique solution of the equation

2. Definition of the Kac Measure

In the introduction we have defined the underlying probability space Ω of
occupation numbers:

β = jσ:Z-+{0,l} |Σσ n<ooj. (2.1)
I neZ J

We endow it with the product topology of {0, 1}Z: a sequence {σ(m)}*=1 in Ω
converges to σ if and only if, for all n, there exists mn such that σ^m) = σn for all
m ̂  mn. Ω is a countable subspace of {0, 1}Z. It is useful to define ί2odd and ί2even by

neZ

and

neZ

)ZSince {0,1}Z is Hausdorff space and Ω is countable, every subset of Ω is a Borel
subset: &(Ω) = »(Ω\
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We define a wavevector k(l) as in (1.24): it is a map fc(/):ί2-»Rz given by

if

if
The occupation measure ml is the map ml:Ω ^^b

+(R\ the positive, bounded Radon
measures on R, given by (1.26):

wti [A σ] = IT Σ *Aϊ>(σ)IXI, (2.3)
Vl neZ

f l if xe^l*
where δx is the Dirac measure supported at x: δJA] = <

(υ if xφA.
We define the c = oo grand canonical measure Pf on Ω by

Pf [>t] = e-βv*^ £ exp j/ϊ X σn(μ - fc?(σ)2) j, (2.4)
ne/l I neZ J

where the c = oo pressure pz°(μ) is defined by

pΐ(μ) = ̂ InΓ Σ exp j/J X σn(μ - kg>(σ)2) }]. (2.5)
fV\ \_σeΩ ( neZ J J

We have

»>o

(2.6)
\ n / / /

from which it follows that

1 A]r

p°(μ) = Mm p?(μ) = ?J ln(l + e^~^—. (2.7)
z-^oo PR 2π

As explained in the introduction we want to transfer the measures Pf to the space

E = {mεJΐb

+(R)\$k2m(dk) < oo}, (2.8)

which we equip with the weak topology induced by the functions /eF, where

F = {/:R-»R|/(fc) = (1 + k2)φ(k) with φeVQ(R)}. (2.9)

(^o(R) denotes the space of real continuous functions vanishing at infinity.) This
is the weak-* topology; that is E = F* as a Banach space. Given teF we define the
functional pz°[ί] by
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P?M - ̂ 7 In Σ exp \β Σ *.W*P(<0) - *P(*)2) j (2.10)
pκ t σeβ [ nez J

Lemma 1. Lei teF. Then p°[t] = lim p/°[ί] exists and is 0ιϊ>en by
/-»oo

2 ) ) . (2.11)
PR ^π

Proo/. The integral in (2. 1 1) clearly converges since, for | fe | large, (1 + fe2) ~ 1 \ t(k) \<^.
This also shows that the tails of the sum in (2.10) are small. But, for | f e | ^ Λ,

+ exptβWπn/VΪ - (2πn/Fί)
2)])

converges as a Riemann sum to the integral

With the above remark that every subset of Ω is a Borel subset it follows
immediately that the mapping m^.Ω-^E is Borel. The image measure mf(Pf) = Kf
is therefore well-defined on E by

Kf[B]=Pf[mΓ1[B]], (2.12)

for Be3ϋ(E). We are going to prove that the sequence {Kf} satisfies the large
deviation property, and towards this end we prove

Proposition 1. For teF put

ί ">Kf[dm]. (2.13)

Then Cμ[f] = lim Cf [ί] exists and is given by
J-»oo

C"[t] = p°[μ + t]-pV). (2.14)

Proof. We have

Cf [ί] = ̂ 7 In ί exp {0 £ σπί(/c<V))}p?[*r]
P17; « I neZ J

3. Properties of the Rate Function

As we argued in Sect. 1, we have the following candidate for the rate function:

F[m] = sup«ί,m>-C'i[ί]}, (3.1)
teF

where F is the space of functions/(/c) = (1 + k2)φ(k) when φe^0(R). In this section
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we derive an explicit expression for P[m] and find some useful properties along
the way. First of all we have

Lemma 3.1. If P[m\ < oo then m is absolutely continuous with respect to Lebesgue
measure.

Proof. Suppose that the singular part ms of m is not identically zero. Choose A > 1
and let K be a compact set of Lebesgue measure zero such that ms(K) Φ 0. Choose
an open set U => K satisfying

(This is possible since K has Lebesgue measure zero.) By Urysohn's lemma
there exists a continuous function t satisfying 0^t(k)^A for all fe, and

^ r , τ !. With this function t we have
(0, for keUc.

1 dk
C"[t] = p[μ + t] ~ P(μ) < £ Jln(l + ̂ +A~^ < I

so that <ί, m> - Cμ[f] ^ Ams(K) - 1. Taking A -> oo we find /μ[m] = 00.

Note that, when t is continuous with compact support K we have the estimate

2^£±(μ + \\tU\K\. (3.2)

Lemma 3.2. If Iμ[nϊ] < oo and m has a density (2π)~V with respect to Lebesgue
measure, then 0 g p(k) ^ 1 for almost all k.

Proof. Let m(dk) = p(k)(dk/2π) and suppose that there exists a subset S c R with
positive Lebesgue measure: \S\ > 0, such that p(k) ^ p0 > 1 for all keS. Given ε > 0
we choose C c S compact and 0 ^ S open such that \0\C\ < ε and we take

such that 0 ̂ t(k)^A and t(k) = if' ί°Γ Then
[0 lor keϋ .

<t,m> - C'[ί] ̂  J-p0^|C| -^
2π 2π

^^{(Po- 1)|S| -(Po

using (3.2). Since p0 > 1 we can choose ε so that (pQ — ί)\S\ — (pQ + l)ε > 0. Letting
A -» oo we conclude that /μ[m] = oo if p(/c) > 1 on a set of positive Lebesgue
measure.

Lemma 3.3. Let meE be such that F[m] < oo. Then
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Proof. We first truncate a given ίeF with

r l , if |*| gw;
oLn(k) = < - |fc | + n + l , if n ^ | f c | ^ n + l ;

(.0, if | / c | ^ n + l .

and put ίΛ = απί. Then tne%c(R) and <ίw,w>-»<ί,m> and also Cμ[ί J -> Cμ[t]
Therefore /μ(w, ίj <-> /M(m, ί). We conclude that

F[m]= sup {<ί,m>

Now VC(R) is dense in JS?1. Let ίeJ^1. Then <ί,m> is well-defined since m(dk) =
p(k)(dk/2π) with pe^f00, and C"[ί] = p°[μ + ί] - p°(μ) is well-defined because, if
ίMe^c(R) and tn-+t in Jίf1, then \Cμ[tJ-Cμ[t-]\^ $\tn(k)-t(k)\(dk/2π) using the
fact that | ln( l+έ^-ln(l+έ?OI^ |x--J>l We also have |<ίπ,w> - <ί,m>| ̂
(l/2π)||ίn-ί||1 because 0^p(fc)gl. This shows that F(m, tn) -+ /"(m, ί), which
proves the lemma.

Lemma 3.4. Define, for ίeF or

(3.3)

Fermi-Dirac measures mμ+t(dk) = pμ+t(k)(dk/2π) satisfy

F[m^+ί] = <ί,m^+ί> - C"[ί]. (3.4)

Proo/. Clearly /"[mμ+ί] ̂  <ί, mμ+ί> - Cμ[ί]. It remains to show that, for any other
ΐeF respectively ϊe&\ <ί,mμ+ί> - Cμ[ί] ̂  <ϊ,mμ+ty~ Cμ[ΐ]. Given α,^eR define

/α(x,fe) = xpμ+α(/c)-(l/j?)ln(l +^+^-k2>). Then x^/α(x,fe) is concave and x = α
is a stationary point. Hence /α(x, /c) ^/α(α, fc). Now put α = t(k) and x = f(/c), and
integrate.

Let us define an entropy function s(x) by

xlnx-(l-x)ln(l-x), if 0<x<l;
if x = 0 or χ = l . (3'5)

We then have the following identity:

s(pμ(k)) = βpμ(k)(k2 - μ) + In (1+ eβ(μ~k2}). (3.6)

Inserting in (3.4) we obtain

1 dk
/V'] = P°(μ) + \(k2 - μ)mμ+t(dk) - -$s(pμ+t(k))~. (3.7)

Next we show, by approximating a general m by Fermi-Dirac measures, that this
formula is generally valid.

Theorem 3.1. Let meE be such that Iμ[nί] < oo. Then

m]-μl |m| | , (3.8)
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(3.9)

s[m] = -
dk_
2π'

(3.10)

Proof. We first show that /"[m] ̂ /

/"[m] = sup { f, t(k)p(k)f- - if, In (1
tef 2π /r

^ if sup \τp(k) - I
2π Γ6R (. P

+ p°(μ) - μ \\ m \\ .

2>Λ + p°(μ)2π

~ + P°(μ) ~μ\\m\\= p - μ || m || < oo.

To prove the reverse inequality we define tff as follows. Given M > 0 and n > 1
we subdivide the real line into the four regions: RQ = {k\ \k\ > M}, R1 = {k\\k\^M
and p(k) < pμ~n(k)}, R2 = {k\\k\^M and pμ-"(k)^p(k) ζ 1 - 1/n}, and
R3 = {k\\k\^M and p(k] > 1 - 1/n}, where p" was defined in (3.3). We put

0,

\-p(k)

-n,

if keR0;

if

if

if keR3.

(3.11)

Clearly if e^f1, so that by Lemma 3.3, /"[m] ̂  <ίf,m> - C"[ίf ]. But

(3.12)

The integral over R0 approaches zero as M -* oo because the corresponding integral
over R converges. Furthermore, we can omit all negative terms in the bound on
the right-hand side of (3.12), and
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n f p(k)— <n\p"-"(k) — = n\- —^ rr?->0 as π^oo,
έ, 2π- J P ;2π J 1 + exp{β(/c2 + n-μ)} 2π

1 dk
- J ln(l+^-"-fe2))— ̂ p°(μ-n)->0 as n->oo,
P R2 2π

and

We are left with

d/c dfe /c2

i P()2π ~J 2^ 1 + exp{β(k 2 + n-

As a corollary we have

Theorem 3.2. (Approximation theorem). Let me£ be such that Iμ[nϊ] < oo. Then
there exists a sequence tneF, n= 1,2, ... such that the corresponding Fermί-Dίrac
measures mn defined by

dk
)~ (3.13)

satisfy

(a) lim mn = m in E,
«->oo

(b) lim/ f'[mB] = F[m].
«-* oo

Proof. Put tn = t™n as in (3.11), where Mn is still to be determined. Then,
by Lemma 3.4, <ίπ,mn> — Cμ[ίΠ] = Iμ[_mn^\. We have shown that, as rc->oo,

ί n , m - m n > | ^ n ί \p(k)- p^(k)\—
2π

. (3.14)

If /CG.R! then tn(k)= -n, so pμ+t»(k) = pμ~n(k\ The first term on the right-hand
side of (3.14) is therefore bounded by

— - .

In the second term pμ+tn(k) = 1 — 1/n, so that this term is bounded by
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f p ( f c ) / c 2 + |μ |+hφ- 1) ->0 as n-+oo.— γ. ι J r v v i •* β

This proves (b) for the measures mn of the form (3.13) with tn = ifM of the form (3.11).
To prove (a) let teF and write φ(k) = (1 + k2)~lt(k\ Then

The integral over R0 vanishes as M -> oo because

)— <oo
2π

and

The second term is bounded by

1 + f c 2 dk

which converges to zero as n-> oo. The third term is bounded by

* 2π'

which converges to zero as n-> oo when we choose Mn =^/n.
Next we approximate if by £e#c(R)cF. Since *C(R) is dense in JS?1, there

exists, given ε > 0, a ίe^c(R) such that || t — if || t < ε. In the proof of Lemma 3.3
we have seen that

2π /ceR

I C*[f] - C"[if] I < II ί - ̂  I I ! < e/2π.

Also

|<ί,m^ί>-<ίf,m^|^|<ί-^,m^t>| + |<^,m^+f>-<^

because

Since if is bounded we find, using Lemma 3.4, that

|F[mμ+ί] - F[mμ+ί"M] | ̂  const. ε.

This proves the approximation theorem.
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4. The Large Deviation Property

In the proof of the large deviation property for the Kac measure defined by (2.12)
we need the large deviation property for the distribution of the mean density p
and the mean energy ε = §k2p(k)dk/2π. This is a so-called first level large deviation
result. The final result about the measure (2.12) is a second level large deviation
property. Let us now state the first-level result. Let Kf be the image measure of
Kf for the mapping m -> (p, ε), where

p= \\rnl and ε = \k2m(dk\ (4.1)

(Note that this mapping from E to [0, oo) x [0, oo) is Borel but not continuous.)

Theorem 4.1. The sequence {K{*|/= 1,2,...} of probability measures on [0, oo) x
[0, oo) satisfies the large deviation property with constants βVt and rate function

Iμ(p,ε) = sup {αp -f xε — Cμ(α,x)}, (4.2)
— oo <α< oo
- oo<x< 1

where

C*(α, x) = (1 - xΓ 1/2P°(μ + «) - P°(/4 (4.3)

Proo/. The lower semicontinuity of 7μ follows immediately from the expression
(4.2) and the fact that Cμ is continuous. Furthermore, Cμ is convex, so that we can
obtain the supremum in (4.2) by putting the partial derivatives equal to zero:

(4.4)

Inserting into (4.2) we obtain, writing σ = α + μ,

7"(p, ε) = α(l — x)~1/2p°'(σ) + ̂ x(l — x)~3/2p°(σ) —(1 — x)~1/2p°(σ) + p°(μ). (4.5)

Clearly, if p^oo or ε^oo, then either x->l or α-^oo. I f x - > l then obviously
)-^ oo. For α-> oo, we use the asymptotic behaviour of p°(σ) and p°'(σ):

and

? oo Ic2/11f. 2

-TT~^3/2> (4-7)

to conclude that 7"(p, ε)-> oo. This shows that the level sets Kb = {(p, ε)|7μ(p, ε) ̂  fo}
are bounded and therefore compact. We can actually determine the essential domain
[14] of P:

Lemma 4.1. The essential domain of P is the set

Proof. We first note that, if p < 0 or ε < 0 then 7μ(p,ε) = oo, because we can take
α-> — oo respectively x -> — oo. Now put t = βk2 and τ = βσ, and change variables
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in the integrals (4.6) and (4.7). We obtain

2 °° t3/2dt
/T3/2 f (49}

*-''
and

1 °° ti/2dt
p>'-^""l(i^-)(i+.-)' (4 '0)

Since

we can use Holder's inequality to find

tanhiτ)}2/3<^y/,0(σ)y/3. (4.11)

This means that (4.4) has a solution only if

ε>^π2p3. (4.12)

Suppose now that β < -jπ2p3. Then we can optimise in the α-direction by solving

p» = p(l-x)1/2. (4.13)

The derivative in the x-direction is then negative so that the supremum is attained
as x -> — oo and σ -> oo satisfying (4.13). Since the derivative is bounded by a strictly
negative number, it follows that ΐμ(p,ε) = oo.

We still have to consider the boundaries. If p — 0 then we can optimise in the
α-direction by taking α-» — oo. Then taking x-> 1 we find

7*(0,ε) = ε + p°(μ). (4.14)

For the case ε = ̂ π2p3 we need the second terms in the asymptotic expansions for
p°(σ) and pQ'(σ):

(4.15)

π

We conclude that along the curve (4.13),

(4.16)
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00

Since the integral J σ~2dσ converges we conclude that 7μ(p,yπ2p3) < oo.
i

Let us now proceed with the proof of Theorem 4.1. It remains to show that
LD.3 and LD.4 are satisfied. (See Sect. 1.) This is standard: see e.g. Ellis [15] or
[16]. In the proof of LD.3 one uses the following

Lemma 4.2. (Ellis [15]). Given (α, x)eR2 with x < 1 and yeR define /f +(α, x, y) by

H + (α, x, γ) = {(p, ε)e[0, oo) x [0, oo)|αp + xε - C"(α, x) £ γ}.

If C is a closed subset of R3 such that y < Iμ(C) then there exists a finite set
r

(«!, Xi ),..., (αr, xr) SMcΛ ίΛαί Cc |J H+(uj9xj9y).
j = ι

Using Markov's inequality we find

j=ι

g-weVjί+rt
j = l 0 0

= Σ
j = ι

so that

But y < 7μ[C] was arbitrary; hence

which is LD.3.
It remains to prove LD.4: for any open set 0 c= [0, oo) x [0, oo),

liminf ^-InKf [0] ̂  -7μ[0].

This is trivial if OcD(7μ)c. If OnD(7μ)^0 then there exists a point (p0,ε0)eG,
where G = mt(OnD(Iμ)) such that 7μ(p0,ε0) <7μ[0] + δ.

Let (α0, x0) be the corresponding solution of (4.4) and define the shifted measures

Kgfί(dp, dε) - exp {βV^p + x0ε- Cf (α0, x0)}Kf (dp, dε).

Lemma 4.3. For I sufficiently large, Kgfί[#a] >^, w/zβre

55 - Gn {(p, ε)| |α0(p - p0) + x0(ε - ε0)| < (5).

Given this lemma we have

- exp {β^Cf (α0,x0)} J exp { -

^ ̂ exp {βVt(Cf (α0, x0) - α0p0 - x0ε0 -
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SO that

liminf— -lnKf[0] ;
ί-oo βVl

This proves LD.4 since δ > 0 was arbitrary.

Proof of Lemma 4.3. We calculate the Laplace transform of Kg f ί:

oo.

<5Cμ

= exp{-sp0-fε0}.

This means that Kg jZ-»<5(^ }

The proof of the large deviation principle for the second-level measures {Kf }
is very similar:

Theorem 4.2. The sequence {Kf | /= 1,2,...} of probability measures on E defined
by (2.12) satisfies the large deviation property with constants βV{ and rate function
Iμ given by (3.1).

Proof. The lower semicontinuity of P follows from the fact that it is a Legendre
transform. Since the topology on E is the weak-* topology, LD.2 follows if we can
prove boundedness of the level sets Kb = {m\P[m~\ ^b}. But if P[m] ^b then
< ί, m > ̂  Cμ [f] + b for every teF and therefore | < t, m > | ̂  Cμ [ 1 1 \ ] + fe, which proves
that Kb is weak-* bounded and hence bounded. In the infinite-dimensional case
Lemma 4.2 is not valid, but the corresponding statement for compact sets is true:

Lemma 4.4. Let K c E be compact. Given teF and yeR we define

Ify </μ[X], then there exists a finite set tί9...,trεF such that K c (J H + (tj9γ).
j=ι

The upper bound

then follows as before. If C c E is a general closed set we can make use of the large
deviation result, Theorem 4.1 above. Indeed, the sets

BR = {me k2)m(dk) £ R}
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are compact subsets in E so that the upper bound holds for CnBR. But

Kf[βc

Λ]^Kf[(p,ε)|p + ε^#]^ - inf j"(p,ε)-> - oo as R-+OO.
p + ε^R

Therefore,

ί^oo

= limsup — lnKf[Cn£R]^ -/"[Cn^]^ -P[C~\.
ί^oo P K Z

In the proof of LD.4 we make use of the approximation theorem: Let 0 c E be
open. Then Theorem 3.2 says that, given δ > 0, there exists a Fermi-Dirac measure
m0(dk) = p»+to(k)dk/2π such that m0eO and P[m0] < P[O] + δ. Again we define
the shifted measures

Kgfi[dm] = exp{j»7 l«ί0,m> - Cf [ί0])}Kf [An],

and prove

Lemma 4.5. For I sufficiently large, Kgs/[^] >|, w/iere

Given this lemma the proof proceeds as in the proof of Theorem 4.1.

Proof of Lemma 4.5. Since Bδ is open, there exists a finite set tί9 . . . , treF such that

Let Qj be the marginal distribution of the variables <ί 1 ?m >,..., <ί,,w>. We
compute its Laplace transform as in the proof of Lemma 4.3:

- ~ tvi
P ( / ί > = ι

s = 0

«=ι

Thus Ql converges to the ^-measure on « ί!,m0 >,..., <ίr,m0». It follows that,

5. Existence of the Finite- Volume Pressure

After all the preliminary work in Sects. 2-4 we can finally start considering the
interacting model. As explained in the introduction the ΛΓ-particle Hamiltonian
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(1.12) can be diagonalised with the help of the Bethe Ansatz, and the eigenvalues
can be labelled by the sets {kl9... ,kN} of distinct momenta kj = (Iπ/V^Ij with /,- = HJ
if AT is odd, and /,- = HJ + \ if N is even. We have seen that, assuming the completeness
of the Bethe Ansatz eigenstates, the eigenvalues are given by

where the k j ( k l 9 . . . 9 k N ) are defined as follows.
Define, for any measure weE, the function fm: R ->R as the unique solution of

fm(k) = k - $θc(fm(k) -fm(k})m(dk'\ (5.2)

Let ml be the occupation measure,

with σn. = l(j = 1,2,..., N) and σn = 0 if n ̂  n^ for any j. The kl

n(σ) are defined by
(1.24). Clearly kl

nj(σ) = kj. Given all this, kj is defined as

Kj=fmί(kj). (5.4)

Presently we show that/m exists and is unique. First we establish this in the
L2-sρace:

Proposition 5.1. Let meE. Then there exists a unique solution fmeL2(R,dm) to (5.2).

Proof. This is a rigorous version of the argument of Yang & Yang [1]. We define
a functional 5:L2(R,dm)-»R by

- \kf(k}m(dk] + iίJΘc(/(fe) -f(k'}}m(dk)m(dk'\ (5.5)

where

Θc(k) = ]θc(k')dk' (5.6)
0

We calculate the Gateaux derivative:

DBina = $f(k)g(k)m(dk) - f kg(k}m(dk)

+ \\θc(f(k}-f(k'}}(g(k) - g(k'))m(dk)m(dk')

= J{/(k) - k + \ΘJJ(k) -f(k'))m(dk')}g(k)m(dk). (5.7)

Since geL2(R,dm) is arbitrary, we find that

= fc - J0c(/(fc) -f(k'))m(dk') for m - a.e. fc. (5.8)

A simple calculation shows that B is strictly convex. Furthermore, using the fact
that I &c(k)\ ^ π| fc | , we have

B[/] ̂  έ II / I I 2 - II / II (f fc2m«/2 - π II / II (I m II 3/2, (5.9)

so that £[/] is bounded below. It also follows from (5.9) that #[/]-» oo as
> oo. We can now apply Theorem 1.2 of Barbu & Precupanu [14] to conclude
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that #[/] attains a unique minimum at/meL2(R,dw). (See also Remark 1.1 and
Remark 1.2 below Theorem 1.2 in [14].) The minimiser/w clearly satisfies (5.8).

Proposition 5.2. Let meE. Equation (5.2) has a unique s0/ufion/me#00(R)n«3? 2(R. tlm}.

Proof. Let fmE^2(R,dm) be a solution of (5.2) for m — a.e. /c. Then /m is
m-measurable and the image measure m=fm(m) is well-defined. Now define
feΛ:R->Rby

k'}m(dk}. (5.10)

Clearly /le^700 and h'(k)> 1. Hence /ι is invertible. Let /m be the inverse. Then
/me^°° and /m satisfies (5.2) for all k. This equation implies

\ f m ( k ) - k \ £ π \ \ m \ \ (5.11)

so that/me^2(R,dm).

Given the solution fmι the eigenvalues (5.1) are fully determined and the
expression (1.1) for the finite-volume pressure pt(μ) becomes

Σ ΛμN V 0-ttk(k) /c 19\e 2^ e > ip.i/j

where

^ = j fc = { f c j , . . . , feN} | fcj-6— Z if N is odd, and fc^e—(Z 4- i) if ΛΓ is even 1.

(5.13)

Warning: {/q,..., kN} is meant in the sense of sets, i.e. it is an unordered JV-tuple
of distinct fc/s.

Presently we show that the series in (5.12) converges, so that the finite-volume
pressure is well-defined. We write (5.12) as follows:

exp (βVlPl(μ)} = Σ e^N Σ exP \ ~βΣ OnfM*))2 I (5.14)

We need an estimate on the function fmι(k). Differentiating the defining relation
(5.2) we obtain

/«(*) = [1 +lffc(fn(k)-fm(kr)WdV)Tl. (5.15)

A very simple estimate can be obtained in the following fashion. Since

(5 16)

we have

l=Ί- (p = ||m||). (5.17)

We order the set {kj} so that kj<kj+1 and define Δkj = kj+1 — kj. The set
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[kj\j = 1,..., N} is then also ordered since kj=fmι(kj) and/mι is increasing. Putting
Δkj = kj+l — kj we conclude from (5.17) that

~ 1
Δkj^aΔkj with α = -—-—=—. (5.18)J~ J \ + 2c~lp

We can then use

Lemma 5.1 If Δk^aΔk^ then

N _Λ2 N / 1 N \2

(5.19)
j = l

Proof. Let z^ = Δkp Δj = Δkj. We have

1 N \2 I N /i-1 N-l

-^ΣM =^ιΣ Σ Λ- Σ (N-^ £ = 1 / A/ i = ι \ j = ι j = i

This is a homogeneous, second order expression in the A ; (/' = 1, . . . , ΛΓ — 1). The
coefficient of 4? is N/(N —7) and the coefficient of ΔtΔj (i <j) is 2z(ΛΓ2 — Nj —j) > 0.
All coefficients are therefore positive and (5.19) follows.

We also have, from (5.2),

\fm(k)m(dk) = \km(dk\ (5.20)

which in the case m = mh reads

Σ ^ = Σ * j (5 21)
j = ι j = ι

Together with Lemma 5.1 this implies that

Σ^« 2Σ k; (5 22)
j=ι j=ι

For fixed N, p and hence α is fixed. Thus (5.22) gives

exp - β k] ^ Σ exp ~^2 fc;

2 < oo. (5.23)

However, the bound (5.22) is not sufficient to ensure that convergence of the sum
over N in (5.12). This fact can be appreciated by restricting the sum in (5.23) to
the ground state:

U=1,.,N). (5.24)

N

Then Σ kj = Θ(N*), while α = 0(ΛT ̂  so that

exp - α c ê .e-^ .̂ (5.25)
N = 0 fce^N (

This expression diverges for large μ.
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We can improve on the bound (5.22) by the following iterative procedure. We
reinsert (5.18) into (5.15).:

Next we show that the sum in this expression can be bounded by the corresponding
ground state sum:

Lemma 5.2. We have

N
iΣ{C

2 + α2(/c-feί)
2}

provided that Vl is large enough.

(5.27)

Proof. By shifting over multiples of 2π/Vl it is clear that it is sufficient to prove
this inequality in the case that 0 ̂  k < (2π/Vl). Now let j be the index such that
kj £ 0 and kj+1^ (2π/Vj (j = 0 if ̂  ̂  (2π/^) and j = N + 1 if kN £ 0). We push
the k{ with i <^j to the right and the k{ with ί ̂ 7 + 1 to the left to conclude that

ί=1

v 2 Ί - 1

The lemma now follows from Lemma 5.3.

Lemma 5.3. There exists a constant A such that, for a> A,

(N-D/2 1 (N-l)/2 1
y ________< y

j= -fc-1)/2 a2 + (p -7)2 ~ j= -fr-i)i2 a2 +j2

for all positive integers AT, and peR.

Proof. By symmetry we may assume that 0 ̂  p < \. We calculate the derivative
and distinguish between N odd or even. If N = 2m + 1 is odd we write

d V ^ _ — 2p ™ j —2(p—j)

fyj^-ma2 + (p-j)2=(a2+p2)2+£1[\:a2 + (p-jW

2p * a4' + 2(p2-j2)a2 + (p2-j2)(p2 + 3j2)

~~(a2+p2)2~ Pj^ι [α2 + (p-7)2]2[α2 + (p+7)2]2

When JV = 2m is even,

3 .-π/2) 1 "•-α^α4 + 2(p2 -j V + (p2 -J2)(p2 + 3j2)
— > — = — t\Ύ) y —-—

\2 " L-t r~2 i /_ - \2π2r«2

In both cases it is sufficient to prove that the sum in the final expression is positive



392 T. C. Dorks, J. T. Lewis and J. V. Pule

irrespective of m. Since 0 ̂  p < \ these sums are bounded by

a4-2j2a2-3j4

/ / λ 2

1-3 r
v

~r I ~ 1 II 1 ~r

As α -> oo this sum tends to

We can bound the sum on the right-hand side of (5.26) by an integral:
If N = 2m + 1 is odd,

and if N = 2m is even,

ι-U/2) 1

~ r + -τ.

Therefore, in all cases,

* 1 Vt ™l/c dx 1

i = i c + α (/c - fcj 2παc _παp_/c 1 + x c

Inserting this into the bound (5.25) foτf'mι(k) we find an improved bound: f'mι(k) ^ α',
with

[ 9 9 / ~ \Π" 1

1 + -— + — arctan ( — α | . (5.28)
Vtc πα \ c / J

Iterating the above procedure we obtain better and better bounds f'mι(k) ^ α(fl)

with α^^α^"1^. As n->oo, α(w) approaches a fixed point α* of (5.28). Putting
u — (πp/c)α* we have

2 / 2 \ c
- arctan u = 1 - 1 + — —w. (5.29)
π \ V f j π p

As p-^ oo, w-^ oo and asymptotically,

i -—^i-Λ+A ̂ 1—W^w

2^^fι+— V'>^
TtU \ VίC 1710 C V VjC / C

From this we conclude that, for large p,

v l / 2

(5.30)
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and with Lemma 5.1:

Lemma 5.5. For p large enough,

N r P

£*>??• (5 31)

This bound is sufficient to ensure the convergence of the series (5.12):

Proposition 5.3. For all μeR, p^μ) < oo.

Proof. We write L=Vl and κ = (βc/π2). Assume that the bound (5.31) holds for
N^NQ. We estimate the sum (5.23) in the case N ̂  N0:

-β ?(*) S £exp -ι kf
i = l

(5.32)

!"i}Γ=ι

where ^eZ if N is odd, and rcf + ̂ eZ if N is even. We now estimate Σn? by splitting
off the ground state:

Lemma 5.6.

N («-l)/2

(5-33)

Proo/. By induction for odd and even N separately. Consider odd N. The case
JV = 1 is trivial. The induction step amounts to proving

N+l\2 Λ Γ + 1

This follows from nN+2 — nί'^N-\-l.

Inserting (5.33) into (5.32) and using the fact that

(N-D/2 1

Σ ί2^(N-l)3, (5.34)
ί=-(N-l)/2 -LZ

we obtain, after summing over N:

ι=l

4π2κ
ΠΣ>Pi-~>^ (5.35)

00

For α < π we have Y e~αm2 < 2^/π/α. Therefore
m= — oo
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Σ eP" Σ exp{-j»Σ*?©
N = N° ke^N ( ί=1

N/2 Γ

e x p W - - o o . (5.36)
(

This proves the proposition.

6. Continuity of the Functional

As explained in the introduction we can rewrite the expression (5.14) for the pressure
Pj(μ) as an expectation with respect to the Kac measure Kf :

exp {βVlPl(μ)} = exp {βVlPf(μ)}^ exp {flVfi[m]}Kt[dm] (6.1)

with

(6.2)

There remain two obstacles to be overcome before we can apply Varadhan's
Theorem. First we have to show that G[m] is continuous, and second, that it
satisfies condition (1.36). We shall deal with the latter problem in the next
section, and prove the continuity of G in the present section. We first consider the
map mh-»/m and prove

Proposition 6.1. Let F3/4 be the space

F3/4 = {/e«(R)| f(k) = (1 + k2)3/4φ(k) with φe^0(R)} (6.3)

equipped with the norm

||/||3/4 = sup{(l + fc2)-3/4|/(fc)|}. (6.4)
keR

For every meE there exists a unique /weF3/4 satisfying (5.2), and the map m\—*fm

is continuous: F-»F3/4.

Proof. The bound (5.11) implies that the unique solution /w6#°°(R)nJί?2(R, dm)
found in Proposition 5.2 belongs to F3/4. Conversely, if/eF3/4 satisfies (5.2) then
it obeys the bound (5.11) so that it is an element of j£?2(R,dm). It is therefore
uniquely defined on the support of m and hence everywhere by (5.2). Indeed,
yt-*k — $θc(y—f(k')) m(dk') is monotonically decreasing, so that the equation
y = k — ]θc(y — f(k'))m(dk') has a unique solution y—f(k\

Now consider a net (mα)αevl in E converging to me£. We shall prove that fm

converges to fm using the following well-known lemma:

Lemma 6.1. Let (xα)αeyl be a net in a topological space X such that every subnet has
a subnet converging to xeX. Then xa converges to x.

Let, therefore, (m(β})βeB be a subnet of (mα). It follows from the bound (5.11)
that {fm(v}βeB is bounded in F3/4. (Note that mα -» m=> \\ m(

β

} || ->|| m II •) Furthermore
\fma(k)\ ^ 1, so that {/mj, and hence also {(1 + fc2)"374/^1^)}^^!86^11^011^11110118-
The set {fmw}βeB is therefore relatively compact in F3/4. We conclude that there
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exists a subnet (fm(v)κeK converging in F3/4. Let/EF3/4 be the limit. We shall prove
that / =/TO. To this end we use

Lemma 6.2.

\θc(χ -y)- θc(x' - 3/)| ̂  |θc(χ - x')l + \θc(y - /)|.

Proof. If M, u ̂  0 then θc(u + v}^ θc(u) + θc(υ\ because θc(k) is concave for k ̂  0. It
follows that, for general u,υeR9. \θj(u)\^\θ£u-v)\ + \θc(v)\ and |0c(tι)- θc(v)\ ̂
\θc(u - v)\ ̂  \θc(u -υ + z)\ + \θc(z)\. Now put u = x-y, v = x'-yf, and z = y-yf.

This lemma implies that θc(/m(2)(fc) - /m(2)( )) converges to θc(/(fc) - /(•)) in F3/4

for all /ceR. Next we use

Lemma 6.3. 7/wα-»w m £ andfΛ->fin F3/4, ί/zβw </α,^α>--^</,m>.

Proo/. |</β,mβ>-</,m>|g|</β-/ smβ>H-|</,wιβ>-</,m>|. The second term
converges to zero because /eF. As to the first term we have: given ε > 0, there
exists α0 such that

(l + fc2)3/4ε for all
But then

and the latter integral is bounded because mx-+m in E and (1 -f k2)3/4eF.

We conclude that

converges to
k-\θc(f(k)-f(k'))m(dk')

for all fceR. On the other hand fmw(k)->f(k)9 so that / satisfies (5.2) and by
uniqueness, f = fm. The continuity of mi— *fm now follows from Lemma 6.1.

Proposition 6.2. The functional mi— >G[m] = J(/c2 — fm(k)2)m(dk) is continuous:
£->R.

Proof. In view of Lemma 6.3 it is sufficient to prove that wh-»gm(/c) = k2 — fm(k)2

is continuous: £->F3/4.
Let (mα)α6^ be a net in E converging to meE. Then / -> /m in F3/4. But gm^EF3/4

because

β /m .WI^π| |^
and || mα || is bounded. We also have

gm(k) = 2k\θc(fm(k) - fm(k'))m(dk') -f [f θc(fm(k) -

hence

gm(k) = 2 Jθc(/m(/c) - fm(k))m(dk) + 2f
~ V J m W
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so that

The last term is also bounded because, by (5.17),

l/m(fe)-/m(fc'

and therefore,

We conclude that {gm } and hence also {(1 + k2)~3/4gm (k)} is equicontinuous.
Each subnet therefore has a convergent subnet. But since fm ->/m in F3/4=>
gm (k)-*gm(k) for all /ceR, we conclude with Lemma 6.1 that gm -+gm in F3/4.

7. The Yang- Yang Trace Formula

Apart from being continuous, the function G[m] also has to satisfy condition (1.36)
if we want to apply Varadhan's Theorem. In our concrete situation this condition
reads

lim limsup— -In J Q\p{βVlG[m]}Kΐldm] = - oo. (7.1)
Λ-oo ί-oo pVi {meE\G[m]^A}

In proving this condition we shall use several times the following basic lemma
without always mentioning it:

Lemma 7.1. Let [at] and {bt} be sequences of positive real numbers. Then

lim sup — In (α, + bz) ̂  ( lim sup — In αz ) v ( lim sup — In bλ.
ί-oo βVl \ ί-oo βVl J \ f^oo βVl J

The first time we use this lemma is in splitting the integral in (7.1) into integrals
over the regions £< = (me£| ||m|| < p0} and E^ = {meE\ | |m|| ^ p0} respectively,
where p0 is such that, for measures m in the support of Kf such that p^p0, the
bound (5.31) holds; that is,

p^Po^G[m]gε-^. (7.2)

The integral over £< can be easily bounded with the help of the general bound
(5.22). With α0 = (H-2c~1po)"1 we have

P<p0=*G[m]g(l-αg)β. (7.3)
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We use the fact that, for δ > 0,

- A)} (7.4)

to bound the integral over £< as follows,

-Un J exp{/^G[m]}Kf[W]

with C = 1 + <5 Hence, in order that

limsup-^-ln J
ί-+oo βVi (weEJGΓ

approaches — oo as A -> oo, it is sufficient that, for some ζ > 1,

limsup-^-ln f expίC/J^GMjKf [dm] < oo. (7.5)
Z-oo pVl E<

Now let ζ = (1 - αg/2)/(l - αg). Then

ί £< i

= C?(0, 1 -iαg)->(iαg)-^2p0(μ)-p°(μ). (7.6)

The integral over E^ is more difficult to control. Indeed, the simple-minded
approach in the proof of Proposition 5.3 does not work because, if we put N = λL
with L large enough so that the bound (5.31) holds, the corresponding term in the
bound (5.36) becomes of the order LλL

e

consί L. \Ve improve on this by iterative use
of the following inequality,

Lemma 7.2. Let σ > 0 be fixed. Then, for arbitrary integer k> 0 and arbitrary real

Proof. We have
CO

Σ exp {- σ[(n-h m)2-f ••• + (n +m +/c)2]}

i = o _

»2• £ exp {- σ(fe + l)[m2 + (2n + /c)m]}
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Γ k 1
-σ Y (n + ί)2 + σ(k+l)(n + ±k)2 \.

L i-o J
exp -σ n

00

• Σ
m = 0

k

n + k)

Iterating this inequality we obtain

Lemma 7.3. Letn^Q,N^L Then

Σ Σ - Σ e x p Γ - σ f n ? ]
M l ^ / J M 2 ^ « l + l « Λ Γ ^ « J V - 1 + 1 L ί=1 J

Proo/. We use induction on TV. If N = 1 then

exp[-σn2]

(which, of course, is only useful if n > 0). Now suppose that statement is true for
a given N. Then

Γ N+1 Ί
Σ Σ - Σ exp - σ Σ π f

«ι^««2^«ι + l /ίΛr + ι ^ n Λ r + 1 L i= 1 J

N ( \

< Γ
i + 1 + 2N - k)

1
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Proposition 7.1. The function G[nί] = J(fc2 — fm(k)2)m(dk) satisfies the conditions
for Varadharfs Theorem, in particular (7.1).

Proof. We have shown in Sect. 6 that G[m] is continuous. Given the above bounds
on the region E< of the integral (7.1), it remains to show that

lim limsup-^- f exp{0KfG[m]}Kf [An] = - oo.
A^co /-»«>

Using (7.2) we have

-^ln fPyl {meE^\G[m

g^ln J πp\βvL-~}}Zf(dp,de)
βyι {<*,)I«S4«Λ,} I V ι rpj]

Σ ™ΛβμVlpί(σ}--2βVl^-\-p'}(μ), (7.7)
is^JSΛ ^WέCoί ί- π P lWJ

= In

where p,(σ) = (1/F,) X σn, and ε,(σ) = (1/K() ̂  fcn(σ)2σB.
neZ neZ

Clearly,

1 /2π\ 2 (^-i)/2
- — Σ
n\n / n=-(N-i)/2

Therefore,

and hence

using the same upper bound as in (7.4) for the indicator function. It follows that
it suffices to show that

neZ

is bounded as /-> oo. (Comp. (7.5)) Writing L = V{ and K = 4c(l - δ)β this expression
becomes

— In Y eβμN y exp < — y n? i, (7.9)

(π j}j=l
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where the sum is over all sets of N distinct integers or half-odd integers according
as N is odd or even. In this sum we replace the negative n/s by their absolute
value. Each n 3 > 0 can then occur once or twice. We distinguish these cases by
additional variables r\j which can take the values 1 or 2. Thus we obtain

{-A".,
K N

^ Σ Σ e x p f t * Σ ΊJ Σ eχp -r-r Σ *ij»J

(7-10)

Next we use Lemma 7.3 to estimate the last sum in this expression:

„£ ^{~^£B4%?oJs+x"^JL

N c 2LN

(7.11)

where L = 2L/κ. We assume L^ 1. It remains to estimate

3L Σ &2βμ)N πYl+^exPj-4-(JV-l)3j. (7.12)
N = 2 k=l \ Λ / (̂  5LN )

Again we split this sum into two parts (using Lemma 7.1) and distinguish the cases
N - 1 ̂  [L] and N ̂  [I] + 2. In the first case we write

' Λ <7 13)

Inserting we find

1 f [t] + l N - l / 7\ Γ 1 "1")

— ln<!3L y. (2e2'")* ΓT 1+r exP —=^(N-1)3 Π
*-ι\ fc/ L 3LN JJJ V = 2

^ —In {3L(2e)[I]ei/e[L](2e2"")[£]+1}, (7.14)

which tends to

In the second case we write



Thermodynamic Formalism and Large Deviations 401

"π'('4)-fl(>4) π' KW'lh'ί1 Σ' 1}
k = ι \ kJ * = ι \ fcΛ=[ί] + Λ kJ L^1 I *-[!] + ! *J

e x p JLln = ( 2 - <s (4ef e<»- '>/«. (7.15)

This yields

•f Σ e x p A N - ^ N 2 , (7.16)
f^ L JV = [L] + 2

where

Now

£
]V=-oo

We conclude that the lim sup of the left-hand side of (7.16) is bounded by

βK

Using Proposition 7.1, Theorem 4.2 and Varadhan's Theorem, we find from
(1.34) that

p(μ) = lim Pl(μ) = p°(μ) + sup |G[m] - F[m]}. (7.17)
/ ->• ex) me£

This reduces to

?(/<) = sup {/i || «|| -/[«]}, (7.18)
me£

using (1.33), (1.37) and (1.38); the formula

dk <7 '9)

where ε( ; /?, μ) is given by (1.43) then follows using standard methods of the calculus
of variations as in [1], and the proof of the theorem stated at the end of Sect. 1
is complete.
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