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Abstract. The partition function for a one-dimensional system of Bosons with
repulsive delta-function interaction is investigated. We prove that if the Bethe
Ansatz eigenfunctions form a complete set then the grand canonical pressure
is given by the Yang- Yang formula. The proof uses a probabilistic formalism
to express the partition function as an expectation with respect to a probability
measure on a Banach space of measures; the asymptotic behaviour of the
expectation in the thermodynamic limit is determined by the Large Deviation
Principle. This method is applicable in situations in which the Hamiltonian
can be diagonalised using the Bethe Ansatz.

1. Introduction

Often, in mathematical physics, we are faced with the problem of determining the
asymptotic behaviour, for large /, of a sequence

(trace exp [ - βjf1'] \ I = 1, 2, . . . },

where β is a positive real number and {3? l \ I = 1, 2, . . . } is a sequence of self-adjoint
operators on some Hubert space. The problem arises, for example, in many-body
theory; here ffl l is the Hamiltonian of the system, β is the inverse temperature and
the volume Vl of the system increases as / increases. In this setting, there are not
many cases in which the problem has been solved. For a long time, only for the
free quantum gases, boson and fermion, was an explicit expression known for

lim - — In trace exp [ - βjtfl~\.
l-+ao βVl

In 1969, Yang and Yang [1] made a notable advance: they developed a
thermodynamic formalism for dealing with those interacting systems whose
Hamiltonians can be diagonalized with the help of the Bethe Ansatz. Yang and
Yang [1] applied their formalism to the quantum non-linear Schroedinger model
whose Hamiltonian had been diagonalized six years previously by Lieb and Liniger
[2]. In recent years, as more and more problems have succumbed to the Bethe
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Ansatz (see [3] or [4] for a review), the use of the Yang-Yang formalism has
spread; for example, it has been used to determine the thermodynamic functions
in the Kondo problem [5,6,7] and to compute the central charge of the Virasoro
algebra associated with critical two-dimensional classical statistical mechanical
systems such as the Potts model and the Ashkin-Teller model [8].

The core of the Yang-Yang formalism is their derivation of an expression for
the entropy density of the system; as they themselves point out, this derivation
unlike the rest of their paper, is far from rigorous. It is, in fact, an ingenious
elaboration of the derivation given by Landau and Lifshitz [9] for the non-
equilibrium entropy density of a free quantum gas. Our aim in this paper is to
give a rigorous proof of the Yang-Yang trace formula. We see little hope of doing
this by supplying the needed rigour at each step of the Yang-Yang argument
(any more than we could for the Landau-Lifshitz derivation). Instead, we use a
probabilistic formalism to express trace exp [ — β^l~\ as an integral

J eβVlG[m]Klldm']

with respect to a probability measure K f on a topological space E and we use
Varadhan's theorem [10] to determine the asymptotic behaviour of the integral.
Varadhan's theorem is an extension to regular topological spaces of Laplace's
theorem on the asymptotic behaviour of integrals over the real line. By checking
that the hypotheses of Varadhan's theorem are satisfied, we are able to give a
rigorous proof of the Yang-Yang trace formula.

At first sight, the probabilistic formalism which we use may seem far removed
from the Yang-Yang thermodynamic formalism. In fact, they are close in
spirit, since Laplacian asymptotics (the method of the largest term) is at the
heart of thermodynamics. Moreover, the Landau-Lifshitz expression for the
non-equilibrium entropy density of a free Fermion gas appears naturally in the
course of checking that the hypotheses of Varadhan's theorem are satisfied, and
the Yang-Yang expression is related to it by a simple transformation.

In this paper, we apply the probabilistic formalism to the non-linear quantum
Schroedinger model; we emphasize that it has the same wide applicability as has
the Yang-Yang thermodynamic formalism. Nevertheless, it would not be profitable
to display this work as an application of some general scheme, since the details
may vary greatly from model to model. The classical non-linear Schroedinger model
requires very different techniques; recently it has been treated rigorously by
Lebowitz et al. [11].

Many-body theory is characterized by the existence of a number operator: for
each Hamiltonian ffl1, there is a self-adjoint operator jVl whose spectrum is the
set 0,1,2,... and which commutes with ffll. The operator Λ^1 is interpreted as the
observable corresponding to the total number of particles in the system; the
eigenspace of Jfl corresponding to the eigenvalue N is called the N-particle
subspace. Since J^1 commutes with Jf\ we may regard ffll as the direct sum
of a sequence {H1

N\N = Q, 1,2,...} of operators, where H1

N is the restriction
of J^1 to the N-particle subspace. To investigate the asymptotic behaviour of
trace exp {—β3?1}, it is convenient to generalize the problem slightly: we examine
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the behaviour of trace exp {β(μ^1 — J^1)}, where μ is a real number. Put

Pι(μ) = ̂  In trace exp {β(μ^1 - J f 1 } } , (1.1)

and, denoting by trace^ the trace over the TV-particle subspace, put

/I(p)=-^rlntracewexp{-j81ίj ϊ}, (1.2)

where p = N/V^ we have

exp {βVrf^μ)} = trace exp (β(μJTl - Jf1)}

= Σ *^ trace* exp {-

= Σ exP {βVι(βP ~~fι(p))} (1-3)

In many models of physical systems, the limits p(μ) = lim pz(μ) and /(p) =

lim fι(p) exist; the function p( ) is called the grand canonical pressure and the

function /(•) is called the canonical free-energy. For / sufficiently large, the main
contribution to pt(μ) comes from the largest term in the summation on the
right-hand side of (1.3) and, in the limit, we have

p(μ) = sup{μp-f(p)}. (1.4)
P

The crux of the thermodynamic formalism is the possibility of making an indirect
evaluation of /(p). We illustrate this first in the case of the free Fermion gas.

In the case of a free gas, the ΛΓ-particle Hamiltonian H1

N is the sum of N copies
of the single-particle Hamiltonian H[. Suppose that the single-particle Hamiltonian
is the one-dimensional Laplacian with periodic boundary conditions on the interval
[0, Vι~\. The eigenvalues of H1

N are given by

where
2π

kj = —m7 , w7 eZ.
i

In the case of Fermions, the kj are distinct: kt φ kj if i φ j. As / increases, Vl increases
and the possible values of the momenta kj become increasingly dense in the real
line. It is argued that, in the limit 1-+ oo with p = 7V/F, fixed, the "eigenvalues" are
described, not by vectors k, but by continuous distributions p( ). These are
functions satisfying p(k) ̂  0, J ρ(k)dk/2π = p; the energy density corresponding to

R

a distribution p is given by

dk_

2n

in the limit / -»oo. But now we must count multiplicities. The entropy, the logarithm
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of the multiplicity of an eigenvalue, can be estimated in the limit / -> oo by a
combinatorial argument (see Landau and Liftshitz [9], Sect. 54, p. 154) which gives
its density as

dk
(1.6).

A second application of Laplacian asymptotics then gives the following
expression for the free-energy density:

/(p)= inf {u[p\-β-*s[p\}. (1.7)
\pεL\(R)\\\P\\ ι=p]

This argument leads to the well-known formula

J?-1ίln(l+^- t 2>) (1.8)

for the grand-canonical pressure of a free-Fermion gas.
Next we sketch briefly the extension of the thermodynamic formalism needed

to deal with Hamiltonians which can be diagonalized with the aid of the Bethe
Ansatz. Consider the non-linear quantum Schroedinger model: its Hamiltonian
can be written symbolically as

tf = J [dxφ*(x)dxφ(x) + 2c(φ*(x)φ(x))2}dx, (1.9)
R

where φ(x) is a one-dimensional Boson field satisfying

lφ(x),φ*(y)l = δ(x-y)9 (1.10)

and c ̂  0. The number operator Λf is given by

Jf = J φ*(x)φ(χ)dx. (1.11)
R

It commutes with 2tf and the restriction of ffl to the JV-particle space, which we
identify with L2(RN)sym, can be written as

HN=-Σ ^ + 2c Σ δ(Xi - Xj). (1.12)
J = l i>J

N

For c = oo, we interpret HN to be — Σ d2. with Dirichlet boundary conditions
7=1

on the surfaces x f = xj9 (i Φ j).
We restrict the system to a finite interval of length Vh impose periodic boundary

conditions and denote the resulting Hamiltonian by H1

N. The eigenvalue problem
for H1

N was solved by Lieb and Liniger [2], using the Bethe Ansatz. They obtain
the remarkable result that the eigenvalues are given by

£^(k) = £? + .»+££, (1.13)

with the kj solutions of the equations

^ - Σ ^ -U (1.14)
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where

k"
= 2 a r c t a n - ) (1.15)

and the fe7 are given by

kj = — m^, m7 eZ, if N is odd,

and

kj = — (nij +I), nijeZ, if N is even.

In other words, the eigenvalues of the JV-particle Hamiltonian of the non-linear
Schroedinger model can be labelled in the same way as the eigenvalues of
the N-particle Hamiltonian of the free Fermion gas: there is a one-to-one
correspondence between eigenvalues of H1

N and N-vectors k = ( fc l 5 . . . , f e N ) with
distinct entries taken, in this case, from the set {... — 2π/Fz,0,2π/Kz,...} when
N is odd and from {..., — 3π/Fz, — π/Vh π/Vh 3π/Vh...} when N is even. Yang and
Yang [1] assumed that, just as in the free Fermion case, the "eigenvalues" can be
described, in the limit /-> oo with p = N/Vl fixed, by a distribution p(k) satisfying

dk

R

The energy density is now given by

R 2π'

It remains to obtain an expression for the entropy density s[p]. In the free-Fermion
case, we can interpret the term

dk

R 2π

as the contribution to the entropy density from the occupied /c-values and the term

dk

^
as the contribution from the unoccupied fc-values (the "holes").

We could make this explicit by introducing ph9 the density of holes, and writing

dk

R

 h 2π

together with the side-condition

P(k) + ph(k) = l. (1.17)

In the case of the non-linear Schroedinger model, Yang and Yang give a
combinatorial argument which, in the limit /-> oo, yields the same formula (1.16)
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tor the entropy density, but with the side-condition (1.17) replaced by

p(k) + Ph(k) = l + l f f c ( K - s)p(s)^. (1-18)

Notice that, in the limit c -> oo, the free-Fermion side-condition (1.17) is recovered.
Using these expressions for u[p~] and s[p], it is not difficult to solve the variational
problem and obtain the Yang- Yang trace formula:

1 dk
l im— lntraceexp{-j8Jf'}=Πn(l+e" / ? ε ( f c ; / ϊ ))— , (1.19)
/->«> Vl R 2π

where ε(k; β) satisfies the integral equation

Λo

ε(/c; β) = k2-β~1$ θ'c(k - s)ln(l + e~ '*'•*>)—. (1.20)
R 2π

Notice that, since θ'c(s) = 2c/c2 -f s2, the free-Fermion result is recovered in the limit
c -> oo and the free Boson result is recovered in the limit c -> 0.

We now turn to the probabilistic formalism. Our aim is to express

in the case of the non-linear Schroedinger model, as an integral

by suitable choices of topological space E, functional G[ ] and probability measure
Kj. This will be accomplished using two propositions:

(1) In the case c = oo, the limit

p°(μ) = lim -L In trace exp {β(μ^1 - Jtf1)} (1.21)
ί^αo P K J

exists and is given by the free-Fermion expression

^-* 2 )). (1.22)

(2) The eigenvalues of the Hamiltonian of the non-linear Schroedinger model for
0 < c < oo are in one-one correspondence with the eigenvalues of the Hamiltonian
for c = oo, and given by the Lieb-Liniger formula (1.14).

The first proposition is a well-known result; for completeness we give a proof
in Sect. 2. Up to now, the status of the second proposition has been uncertain; the
results presented in the Lieb-Liniger paper [2] are rigorous, but they do not claim
that the Bethe Ansatz eigenfunction form a complete set; Yang and Yang [1] make
such a claim, but only sketch an argument, based on continuity, to support it. Our
proof of the Yang- Yang trace formula is complete modulo a proof of this
proposition. We will return to the problem of completeness of the Bethe Ansatz
eigenfunctions in another publication.

Since the strategy of proof which we adopt to verify the Yang- Yang thermo-
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dynamic formalism is not yet well-known among theoretical physicists, we first
give an informal sketch of it. Consider, first, the case c = oo: We can write the trace
(1.3) as a sum over configurations by introducing the space Ω defined by

(1.23)
eZ J

and the functions /c':f2-»Rz defined by

2π
—n> if Σ σj is °dd;

' 'ez (1.24)
2π 1 x r v^
—(n +l)> " L σj 1S even

Then

exp {/JKlP?(Ai)} = Σ ^P {/? Σ ̂  - #(*%)}• (1-25)
σeί2 C neZ J

Introducing the c = oo-occupation measure on R by

we can re-write (1.25) as

^ιpf(μ)} = Σ exP ) βVιί(f* ~ k2)m[dk; σ] >. (1-27)

The corresponding expression in the case c < oo is obtained by the following device:
for an arbitrary bounded positive measure m, define the function /m as the unique
solution of the equation

then we have

fm(k) = k - \θc(fm(k) -fm(k})m(dk) (1.28)
R

( ι
exp {βVtf^μ}} = Σ exp <^ j8Kj(μ -/mι(fc)2K[ί/fc; σ] X (1.29)

σeί2 ί R J

(It is here that we have to assume that the Bethe Ansatz eigenstates form a complete
set.) But this can be re-written as

exp {βVlPl(μ)} = Σ exp \βV^(k2 -/mz(/c)2K[<//c; σ] j exp \βV^(μ- fc2K[d/c; σ]
σeβ (. R J I R

Σ exp /^(fc2-/^)2^/^] Pf[σ], (1.30)
σeί2 I R J

where Pf [.] is the probability measure defined on the countable set Ω by

(1.31)
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This, in turn, induces a probability measure Kf on the space E =
{meJt£(R)\$k2m(dk)< oo},

R

K f ^ P f o m f 1 , (1.32)

since mt is a measurable mapping from Ω to E. Introducing the functional G defined
on E by

(1.33)
R

we have, finally,

= exp {/W^Jf ^'^Kftdm]. (1.34)

The measure Pf is in fact the grand canonical measure for c = oo, and we call the
induced measure Kf the Kac measure. (See introduction to [12] and [13] for the
historical background.) But these interpretations carry no hidden hypotheses: for
the purpose of the proof, Pf is the measure defined by (1.31).

The next step in the programme is to determine the asymptotic behaviour of
Kf for large /. If we were able to define Lebesgue measure on E, we might aim to
prove that, for large /, Kf behaves as exp{ — βVιIμ[m]}dm for some non-negative
functional /μ[m], and then apply Laplace's theorem to conclude that

lim -̂  In f^FlG[m]Kf[dm] = sup{G[m] -F[m]}. (1.35)
l^πpVl E E

In the absence of a suitable reference measure on E we have to settle for a more
technical description of the asymptotic behaviour of Kf :

Definition. Let (K / | /= 1,2,...} be a sequence of Radon probability measures on a
regular Hausdorff space E and let {at \ I = 1, 2, . . .} be an increasing sequence of positive
numbers diverging to +00. The sequence {KJ is said to obey the large deviation
principle with constants {at} and rate function Γ.E-+ [0, oo] if the following conditions
are satisfied:

(LD.l) /[.] is lower semi-continuous.
(LD.2) The level sets {xeE|/[x] ̂  b} with 0 ̂  b < oo are compact.
(LD.3) For each closed set C c £,

lim sup-lnKj[C] g - inf/M.
Z->oo at XeC

(LD.4) For each open set O c E,

lim inf-lnK,[0] ̂  - inf/M.
ί->oo aι xeo

In place of the Laplace theorem, we have Varadhan's theorem. We state a version
which covers all the situations that arise in this paper:
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Varadhan's Theorem. Let {K / | /= 1,2,...} be a sequence of Radon probability
measures on a regular Hausdorff space E satisfying the large deviation principle with
rate function /:E->[0, oo], and constants {at\l= 1,2,...}. Suppose that G:E-+R is
continuous and

lim lim sup-In J eaιG(x)Kt[_dx^ = -oo. (1.36)
Λ-+OO Ϊ-+GO QI XeEGxA

Then

lim -In J e?lG(x*Kj[dx] = sup (G(x) - I(x)}.
ί->oo0z E xeE

We prove in Sect. 3 that the sequence (Kf } satisfies the large deviation principle
with constants βVh and rate function /μ[.], where

P\m\ = p°(μ) +/°[m] - μ \\ m ||. (1.37)

Here p°(μ) is the free Fermion pressure (1.22), and /°[m] is the free-Fermion free
energy,

/0[m] = w[m]-j?-1s[m], (1.38)

where u[m\ = \k2m(dk) is the internal energy and s[m] is the entropy density,
R

dk dk
f - J { p l n p + (l-p)ln(l-p)}— , if m(dk) = p(k}— and p(k)£ 1;

s[w] = < R 2π 2π

(—oo otherwise.

(1.39)

After some reduction Varadhan's theorem yields the formula

= sup{μ||m||-/[m]}, (1.40)
me£

where

/M = $fm(k)2m(dk) - β^s[nί]. (1.41)
R

Using (1.40) it is not difficult to show that

dk
e-^k '^)—, (1.42)

where ε(fc; /?, μ) satisfies the integral equation

ds
ε(k;β,μ) = k2-μ- β~^Θf

c(k - s)ln(l + *-*^>)— (1.43)
R 2π

In this way the Yang- Yang trace formula is established. We recognize (1.39) as
the Landau-Lifschitz expression for the free-Fermion entropy density.

There is an alternative expression for the local free energy /[m] which makes
the connection with the Yang- Yang result a little clearer: for an arbitrary measure
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w, define the function hm by

(1.44)
R

In Sect. 2 we show that hm is the inverse of fm. Defining

m = m°f-i9 (1.45)

we have

«[«] = \fm(k}2m(dk) = fi2m(d~k). (1.46)
R R

When m(dk) = p(k)(dk/2π), we have

P(k) = (P*fj(k)f'm(k) = p(k)h'(kΓ\ (1.47)

so that

<
- p(k)h'(kΓ1)}h'(k)—

2n

dk
= ${h'(k)\nh'(k) - p(k)lnp(k) - (h'(l] - p(k))\n(h'(k) - p(W} (1-48)

Making the identification p(k) = ρ(k) and h'(k) — p(k) = ph(fe), we see that (1.44) and
(1.48) together are equivalent to the Yang- Yang expression, (1.16) and (1.18), for
the entropy.

The advantage of the probabilistic formalism which we have sketched is that
we are able to make each step rigorous. The first objective is to prove that the
large deviation principle holds for the sequence (Kf } of Kac measures for free
Fermions. To do this, we first find a candidate for the rate function. When £ is a
topological vector space, there is a standard trick which often works: if {Kf } were
to satisfy the large deviation principle with some rate function /μ[.] and Varadhan's
theorem were to hold for the linear functional G[m] = <ί,m>, then we would have

C"[f] = lim Cf[f] =-lnί^^m >

= sup{<ί,m>-nm]}. (1.49)
mε£

This relationship between C"[.] and /"[.] is satisfied by the Legendre transform
ofC",

F[m] = sup { <t, m> - C"[ί] }, (1.50)
ίe£*

so this expression is the usual starting point of a rigorous proof of the large
deviation property. (See [13] for a counterexample.)

Here is the structure of the paper:



Thermodynamic Formalism and Large Deviations 375

In Sect. 2 we define carefully the sequence {Kf } of Kac measures for c = oo and
calculate the limit Cμ of the sequence of cumulant generating functionals (Propo-
sition 2.1). As we have seen, the Legendre transform (1.50) of Cμ is an obvious
candidate for the rate function Iμ of the sequence {Kf}, but first we must find a
more useful expression for /μ; this is carried out in Sect. 3 where formula (1.37) is
established (Theorem 3.1). In Sect. 4 we prove (Theorem 4.2) that the sequence
{Kf} satisfies the large deviation principle with rate function /μ. The results of
Sects. 2, 3, and 4 concern the c = oo — Kac measures and are of independent interest
since trivial modifications yield the same results for the free-Fermion Kac measures.
The remaining sections are concerned with checking that the other hypotheses of
Varadhan's theorem hold. First we prove (Proposition 5.3) that the finite-volume
trace, given by (1.29), is well-defined; then we prove (Proposition 6.2) that the
functional wh-+G[m], given by (1.33), is continuous; finally, in Sect. 7, we put it all
together and prove the Yang- Yang trace formula. The main result of this paper
is the following:

Theorem. Let Jjf1 be the Hamiltonίan of the quantum non-linear Schroedinger model
on the interval [0, FJ and let H1

N be its restriction to the N-partίcle subspace. Then,
assuming that the eigenvalues of H1

N are given by (1.13), we have, for all βe(0, oo),

1 dk
lim— In trace exp{ -£.#*} = fln(l + e~ **"•»)— ,
ι-*aoVι R 2n

where ε( β) is the unique solution of the equation

2. Definition of the Kac Measure

In the introduction we have defined the underlying probability space Ω of
occupation numbers:

β = jσ:Z-+{0,l} |Σσ n<ooj. (2.1)
I neZ J

We endow it with the product topology of {0, 1}Z: a sequence {σ(m)}*=1 in Ω
converges to σ if and only if, for all n, there exists mn such that σ^m) = σn for all
m ̂  mn. Ω is a countable subspace of {0, 1}Z. It is useful to define ί2odd and ί2even by

neZ

and

neZ

)ZSince {0,1}Z is Hausdorff space and Ω is countable, every subset of Ω is a Borel
subset: &(Ω) = »(Ω\


