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Abstract. Square integrable Wiener functionals may be represented as sums of
multiple Itό integrals. This leads to an identification of such functionals with
square integrable functions on the symmetric measure space of the Lebesgue
space R + . When the pointwise product of Wiener functionals is thus carried
over, the product takes a pleasing form (cf. Wick's theorem) and various
non-commutative perturbations of this "Wiener product" have been considered.
Here we employ cohomological arguments to analyse deformations of an
abstract Wiener product. This leads to the construction of Levy fields which
are neither bosonic nor fermionic, and also gives rise to homotopies between
quasi-free boson and fermion fields. Finally we unify existence and uniqueness
results for quantum stochastic differential equations by treating mixed noise
differential equations.

Introduction

Any square integrable Wiener functional F has an expansion in terms of multiple
Itό integrals:

where V" is the increasing quadrant {telR'V : t1 < ••• < tn}. The sequence {/„} may
be viewed as a single function / on the collection .Γ(IR + ) of all subsets of R+ having
finite cardinality:

/(0) = /o; /(*) = /»(s) for n = #σ^l

where sί9s2,...9sn is an enumeration of the set σ in increasing order. There is a
natural measure λ on 7"(IR + ), derived from Lebesgue measure on (R + , for which
the correspondence F-*f is an isometric isomorphism from W, the space of
square integrable Wiener functionals, to !F = L2(Γ(U + ),λ). Under pointwise
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multiplication the Wiener functionals form an associative algebra and numerous
subspaces of 'W are closed under this product, for example the Malliavin domain.
A natural question arises: how is this algebraic structure manifested in ̂ l This is
answered by the elegant formula

f*g:σ-+ £ J /(αuω)0(ωuα)dλ(ω), (0.1)
α c σ Γ(R + )

where α denotes the complement of α in σ. Dense subspaces of 2? which are stable
under * may be identified, and if / and g correspond to Wiener functionals F and
G respectively, then f*g corresponds to the pointwise product FG.

The form of the Wiener product (0.1) immediately suggests the following
generalisation: replace the Lebesgue measure space (R+ by an abstract one (S,m),
(Γ(R +), λ) by the symmetric measure space (Γ(S), μ) of (S, m), and * by the operation

/*p0:σ->£ J p(ω,α,α)/(αuω)g(ωuα)rfμ(ω). (0.2)
αc=σ Γ(S)

Incorporating an involution ~ on Γ(S), induced from a pointwise involution i on
S, we may further generalise:

f*pg:σ-+Σ J p(ω,α,α)/(αuώ)0(ωuα)έ/μ(ω). (0.3)
α<=σ Γ(S)

Such an approach unifies the various products considered by Maassen, Lindsay
and Meyer. The Wiener product is implicit in [Maa] and is highlighted in [Me 1]
where algebraic variations, including the Clifford product, are explored. The Bose
product, extensively studied in [LM 1] is obtained by taking the measure space
to be the sum of (U + ,m1) and (R + ,m2), where m1,m2 are non-zero multiples of
Lebesgue measure, and the involution to be (crl9σ2)~ = (σ2,σ1). The Fermi product
[L M 2] is obtained by a similar modification to the Bose product as is required
to form the Clifford product from the Wiener product—namely the introduction
of a {± l}-valued function p, which is dependent only on the relative position of
the points of ω, α and α on the line, in (0.3) and (0.2) respectively.

The analysis of functions p for which (0.3) is associative rests on an analysis of
the solutions of the functional equation

q(κ,β)q(wβ,y) = q(κ,βuy)q(β,y) α,j?,γeΓ(S) disjoint (0,4)

for non-vanishing complex-valued functions q. If Γ and u are replaced by a group
G and its binary operation, then (0.4) becomes the condition for q to be a second
order cocycle on G with values in C x , the group of non-zero complex numbers.
Such objects arise in the theory of projective representations of groups, in particular
they play a vital role in quantum theory [Var]. Our analysis has been inspired by
the work of E. P. Wigner, V. Bargmann and G. W. Mackey [BaW,Bar,Mac].

The second order cocycles on Γ (S) with values in C x are classified in Sect. 2
and the associative products *p are described and classified in Sects. 3 and 4. The
pointwise product of Poisson functionals also gives rise to a product on Fock
space [Me 1], [L M 2]. An analysis of deformations of this Poisson product, similar
to (0.2) and (0.3) for the Wiener product, will appear elsewhere ([LP]).

Several authors, particularly P-A. Meyer, have raised the subject of non-
commutative Poisson and Wiener type products [Me 2].
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The last two sections give some applications of these ideas. In Sect. 6 operator
fields, which are deformations of the quasi-free boson and fermion fields, are
constructed in a natural way from cocycles and multipliers on Γ. These fields
satisfy local commutation relations and provide bridges between boson and fermion
fields — two such bridges are discussed. A continuum of inequivalent Levy fields
[AP] with common co variance is also obtained, showing that commutation
relations do not follow from martingale (fair game) assumptions alone [P]. In
Sect. 7 we unify existence and uniqueness results for quantum stochastic differential
equations by establishing the explicit form (cf. [Maa]) of the unique solution of
linear stochastic differential equations driven by mixed noise.

1. Set Notations

For a set S, Γ(S) of Γs will denote the finite power set of 5: (α c S:#oc < 00} which
00

has the partition (J Γn(S), where Γn(S) = {σ c S:#σ = n}. When S is fixed and
π = 0

there is no danger of confusion we shall frequently drop mention of it in the
notation, writing Γ, Γn etc. The cartesian product Sn will be understood to be the
single point set with element 0 when n = 0 and the collection of coordinates
{$!,...,$„} of a typical element s = (sl9...9sn)eSH will, by convention, by empty
when n = 0. To each element σ of Γn is associated nl points of Sn — those points
which have σ as the set of their coordinates. S(n] (n = 0, 1, . . . ) will denote the subset
of Sn consisting of those points s with distinct coordinates: sf Φ s7 for i Φ j. To any
function / on Γ(S) is naturally associated a sequence of symmetric functions fn

on S(n): /π(s) = /( {sx , . . . , sn } ), and conversely such a sequence determines a function
on Γ(S). In particular, by considering indicator functions, there is a natural
correspondence between subsets E of Γ(S) and sequences of symmetric subsets En

oϊS(n\
For each n,Γ(n)(S) will denote the subset

ίnσ j = ( / > i f i / 7 } (1.1)

of F(S)n, and Δn(S) will denote the set diagonal:

Γ(S)n\Γ(n)(S). (1.2)

For <xGΓ(n\ o^ u •-• uαn will be abbreviated to |α|. In any summation over subsets
α of an element σ of Γ9 ά will always denote the complement of α in σ.

^(A B) will denote the set of #- valued functions on A, and will be abbreviated
to ^(A) when J5 = C. For a group valued function / we call (a:f(a) φ identity}
the support off. δ0 will always denote the function equal to one at 0 and zero
elsewhere in Γ, and an empty product will always be understood to be equal to one.

2. Second Order Cohomology on Γ(S)

In this section we describe the second order cohomology of Γ(S) for an arbitrary
set S. Since 5 will be fixed we shall frequently drop references to it in the notation.
A second order cocycle on Γ(S\ with values 'n the multiplicative group of non-zero
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complex numbers C x , is a map q\Γ(2\S)-*Cx satisfying the cocycle identity

9y\ (α, βy)eΓ<3>(S). (2.1)

The collection of such 2-cocycles forms an abelian group under the pointwise
product which is also closed under complex conjugation and the involution

β(α,/D = $(Aα). (2.2)

If / is a map from Γ into C x then

is called a trivial cocycle. For f9gε^(Γ9 C x ) to determine the same trivial cocycle,
h = f/g must be multiplicative (homomorphic): h(uuβ) = h((x)h(β) for (a,β)eΓ(2\
The trivial cocycles form a subgroup of the group of 2-cocycles. We denote the
quotient group by 3?2(Γ) and say that 2-cocycles q^q2 are equivalent written
q1 ~ q2, if their ratio is trivial.

If k is a map from 5(2) to C x then

(2.4)
flea
beβ

is called a product cocycle. Thus a 2-cocycle is a product cocycle if it is multiplicative
in each argument.

Proposition 2.1. Let k be a map from S(2} into C x . Ifk is symmetric then πk is trivial,
and conversely.

Proof. If k is symmetric, then the function /:.Γ->CX,

αl~* Π k(s9t)
{*,ί}C«

is well defined and

In other words πk is trivial. The converse is obvious. Π

Putting β = 0 in (2.1) we see that q(0,-) and q(-,0) are equal constant
functions on 7"; dividing by q(0, 0) therefore gives an equivalent 2-cocycle which
is normalised: q(0,0) = 1. (The equivalence is effected by the function equal to
q(0, 0) at 0 and 1 elsewhere). Although Γ(S) is a semigroup under the union
operation, and even a group under symmetric difference, all the 2-cocycles on these
structures turn out to be trivial. Our less restrictive definition, only involving
disjoint elements, is therefore needed for obtaining non-trivial cocycles.

When σ = {sί9...9sn}9 τ = {tί9...9tm}9 where (σ, τ)eΓ(2\ q(σ, τ) will sometimes
be written q(s1 , . . . , sn; t1 , . . . , tm). The next result shows in particular that (normalized)
2-cocycles on Γ are determined by their restrictions to 7\ x Γ, i.e. {({s},τ)eΓ(2)}.

Proposition 2.2. Let q be a 2-cocycle on Γ(S)



Cohomology of Power Sets 341

(i) For (σ, τ)eΓ<2>, if σ = {s1,...,sn} n^l, then

g(σ,τ)^(sn;τ)Πlg(5 ;;U{Sί+1'-^"}). (2.5)
ΛΛ gfes ί+ !,...,$„)

(ii) q/q is a product cocycle^ where q is defined by (2.2).

Proof.

(i) Applying the cocycle identity to the triple ({sί9...9sn-1}9{sn}9τ) we obtain

Iterating this identity for the numerator and denominator there is a cancellation
of terms of the form q(s1 , . . . , s, ; s, + x ) for y = 1, . . . , n - 2, leaving the expression (2.5).
(ii) Let (α,jB,y)εΓ(3>, then

so that
q/q(ct u ft 7) =

By symmetry q/q is also multiplicative in the second argument. Π

A 2-cocycle q is symmetric if q = q and skew-symmetric iϊ q = q~ί. Clearly all
trivial cocycles are symmetric, and a 2-cocycle is both symmetric and skew-
symmetric if and only if it is (skew-)symmetric and { ± 1} -valued.

Proposition 2.3. Every 2-cocycle on Γ(S) is equivalent to a skew-symmetric product
cocycle.

Proof. Let q be a 2-cocycle on Γ which we suppose without loss to be normalised,
and let π be the product cocycle determined by the function (s, i) -> q(s; t). Define
a sequence of function /„ on S(n\ n = 0, 1, 2, ... recursively by letting /0(0) = 1 and,
for n ̂  1,

/M:(s1,...,sJh->/n_1(s1,...,sn_1)(^/π)(sn;s1,...,sw_1). (2.6)

/ι(5) = /o(0)(#/π)(s; Φ) = 1 and, for n ̂  2, the cocycle identity applied to the triple
({sn},{sn_1},{s1,...,sB_2}) yields

s 1,. . .,sΠ_ 2)

(2.7)

Thus, if fj is symmetric for < n, by (2.6) fn is symmetric in its first n — 1 arguments,
and by (2.7) it is also symmetric in its last two arguments; in other words /„ is
symmetric. Since /0 and fί are symmetric, it follows by induction that each of the



342 J. M. Lindsay and K. R. Parthasarathy

functions /„ is symmetric. The corresponding function f on Γ satisfies

so that q = τfπ. Now let / be a logarithm of the function (s, ί) -> g(s; ί) on S(2\ then
π = πkπk, where fc = exp (/ — /j/2 and fc' = exp (/ + Q/2. Since fc' is symmetric πk/ is
trivial, τ^ say; on the other hand fc is skew-symmetric and g = τ/βπk, so that the
proof is complete. Π

Corollary 2.4.

(i) The trivial cocycles are the symmetric cocycles.
(ii) Two skew-symmetric product cocycles πkί and πk2 are equivalent if and only if

k1/k2 is skew -symmetric and { + l}-valued.

Since C x and C X /{±1} are isomorphic groups the above degeneracy is not
revealed in the second cohomology group of .Γs.

Theorem 2.5.

the multiplicative group of skew-symmetric C x -valued functions on S(2\
In terms of any given partition Sl u u Sn of 5 we have the following alternative

representation for 2-cocycles on Γs.

Proposition 2.6. Let Sί u u Sn be a partition ofS. Any 2-cocycle on Γs is equivalent
to a 2-cocycle of the form ]~| qij9 where each qtj is a product cocycle, (s, t) —> q^s; i)

has support in St x S/uSy x Sf and the qu are skew-symmetric.

Proof. By Proposition 2.3 any 2-cocycle is equivalent to a skew-symmetric product

cocycle π which may be written Ππu' w^ere πl7(α,j?) = π(αnSI ,jβn5J ). Define a
u

function / and product cocycles qtj (i ̂  j) as follows:

i ϋ i = 7

Then, by the multiplicativity of πί<7 (in each argument),

.
Π.««J(«,» = Π. fe α)πίj(ft ^ Π

and the result follows. Π

Each 2-cocycle q determines an algebraic structure on &(ΓS) as follows:

f°qQ' σ-* Σ #(α> β)/(α)0(β)> (2-8)
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where ά denotes the complement of α in σ:σ\α. The cocycle identity expresses the
associativity of this product. The resulting complex, associative algebra ^(ΓS9q)
has unit q(0,0)~1δ0 and is non-commutative unless q is trivial.

Mf will always denoted the point wise multiplication operator g^fg on
complex valued functions defined on the same space as /.

Proposition 2.7. Let q{ and q2 be 2-cocycles on Γs andfe^(Γs). Then the following
are equivalent:

(i)
(ii) Mf : ̂ (Γ9 q i ) -» ̂ (Γ9 q2 ) is an isomorphism.

Proof. Immediate.

Remark. Algebras of functions of several variables under products of the form

(where the sum is over pairs (α,/?) for which each α£u βt is a partition of σ f) may
be reduced to the one variable case through the obvious identification of
Γ(S,) X . - . X Γ(Sn) With Γ(S, JL - JL.SJ.

When g = (—!)" where π is defined, in terms of an ordering of S9 by
n(α, /?) = #{(α, fo)eα x β:a>b}, ^(Γ9q) is isomorphic to the algebra of anti-

symmetric functions on (J S(n) under the antisymmetric product. When q is the
n = 0

unit cocycle 3F is (naturally) isomorphic to the symmetric function algebra. Taking
a cue from P-A. Meyer [Me 2] we call ^(ΓS9q) Wick-Grassmann algebras on S.
By heeding the previous remark one can see that algebras of functions of several
variables which are symmetric in some of the variables and anti-symmetric in the
remaining variables are also covered by (2.8).

3. Wiener-Clifford Algebras

In this section we construct associative algebras of measurable functions on Γ(S, m),
the symmetric measure space of a measure space (5, m) [Gui], by means of three
argument multipliers. Study of the isomorphism classes of these algebras shows
that the generic product is obtained by a welding of two paradigm products: the
Wiener product [Maa] and the Clifford product [Me 1].

Let X = (S, m) be a σ-finite, non-atomic measure space. The correspondence
00

between Γs and (J S(n} induces a measurable structure on ΓS:E c Γs is measurable
n = 0

if each En is of the form E'n n S(π) for some E'n which is measurable in the product
space Xn. A measure μx is then defined by

μx(E)= £ (nlΓ*nf(E'Λ\ (3.1)
« = o

where m° is point measure on S° and mn (for n ̂  1) is the product measure on 5".
We denote the resulting measure space, the symmetric measure space of X, by Γ(X)
or Γx and usually abbreviate dμx(σ) to dσ.
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Remark. Non-atomic σ-finite measures take all intermediate values between 0 and
the (possibly infinite) total measure. It follows that each set diagonal Δn(S) is
(contained in) a null set of the corresponding product measure. In particular μx

is unambiguously defined.
The algebras considered here result from the convolution-like products:

f*pβ <r-* Σ f p(ω,α,α)/(αuω)0(ωuα)dω, (3.2)
αcσ

where the requirement of associativity imposes some restriction on the form of p.
From now on ^(Y Z) will denote the space of measurable maps between the

measure spaces Y and Z. We introduce two further function spaces:

&r(Γn) = {fe^(Γn; C x ):/ has relatively compact range and / = 1
on the set diagonal Δ*(S)}9

JT(X) = {fε^(Γx):$a«σ\f(σ)\2dσ < oo Ma > 0} = f| ®(aN\
α > 0

where aN is the multiplication operator: (aNf)(σ) = a#σf(σ\ on L2(ΓX). The algebraic
structures will be on tf(X) and the products will be determined by functions from
^r(Γ3). Recalling out set notations (Sect. 1) the following elementary identities
are crucial:

Proposition 3.1.

(i) For/e^(Γ(2)),(σ,τ)eΓ(2),

Σ /fo?)=Σ Σ/(«u/Uυft (3 3)
y c σ u τ αcσ βczτ

(ii) Ifge^(Γn) is ίntegrable in the product measure μn, then

..,σn)dσl. dσn = $ Σ 0(4**- (3 4)

Proof. First suppose that g is non-negative, and j = (jι,...,7n)el\l1 1 let g.} be the
function on Sh x ••- x SJ'n = SJ'1 + '"+J'n corresponding to g \ Γ j l χ 'χ rjn which is
symmetric in its first jί arguments, and in its second j2 arguments, and so on.
Then for (51,...,5Λ,)e5(N),

Σ fif(α1,...,απ)= Σ O'l'-JiiO"1 Σ 0j(Sπ(l)> >Sπ(N))>
N = {s1,...,sJV} jι + "+jn = JV πeyN

so that, by the invariance of the product measure mN under (the natural action of)
the permutation group £fN, and regrouping courtesy of Fubini,

f Σ β(«)dσ = (N\Γi Σ OΊI-Λ1Γ1 Σ ί-fftίni — e.^-do.
ΓN\ά\ = σ jι + " +jn = N πeyN

Σ f ••' ί g(σl9...,σn)dσ^-dσn9
Ji + -+jn = Nr / 1 Γjn

where we have abbreviated dmk(u) to du. By summing over ΛΓ we obtain the identity
(3.4). Since an integrable function is expressible as a linear combination of
non-negative integrable functions (ii) follow by linearity, (i) is immediate. Π

Remark. Proposition 3.1 (ii) also follows by repeated application of the case n = 2
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which is proved in [LM 1]:

Γ V fί \ Λ f \~* V fί ~Q\ A
\ / J (OtjG G == I / / J v^i j j o^n — i ? P)a(7

We have included a full proof here since much of the subsequent analysis depends
on (3.4) which we shall refer to as the integral-sum identity /lemma.

Proposition 3.2. For f9geJf(X) and peJΓ(7"3) essentially bounded, f*pg is well-
defined and satisfies the L2-norm inequality

\\aN(f*pg)\\ίsup\p\\\(ajϊ)Nf\\\\(ajϊ)Ngl α^l, (3.5)

while ifqe^(Γ2) is essentially bounded andf°qg is defined by (2.8),

\\aN(f°qg)\\ίsup\q\\\(a^2ff\\\\(a^2)Ng\\, α>0. (3.6)

In particular, f*pg,f°qgeJf(X).

Proof, (cf. [LM2]) An application of the integral sum identity (3.4) gives for
/6Jf(JO,

J3*σ|/(σ)|2dσ = | Σ 2*"\f(σ)\2dσ = \\2**\f(avβ)\2d*dβ;
αc=(τ

in other words, f:βt-> f(auβ) is square integrable for almost all α and

2dα. (3.7)

By Cauchy-Schwartz and more applications of (3.4),

(sup|p|Γ2f l(aw(/*0))M|2d<r^i{ Σ $\(aNf)(avω)(aNg)(ωvά)\dωV dσ
lαczσ J

= ί 2* || (αw/Π| 2 rfα J 2#/ί || (α

in particular /*pg is defined almost everywhere and (3.5) holds. Again by the
integral-sum lemma,

\\aN(f°qg)\\2 = $\a#σ Σ
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giving (3.6). Π

Proposition 3.3. Let pe^r(Γ3) be essentially bounded and satisfy the identity

p(ω2 u ω3 , α t , α2 u α3 )p(ωί , α2 u ω3 , α3 u ω2)

= p(ω1uω2,α1uα2,α3)p(ω3,α1uω2,α2uω1) (3.8)

/or almost all (ω,(x)eΓ6, then *p is associative.

Proof. By the non-atomicity of the measure w, {σe7":σnτ 7^ 0} is a μ-null set for
each τeΓ. Applying (3.3) with (σ,τ) = (ω,δίί) and then (3.4) with n = 2 and
(α1?σ) = (ω2,ω) gives

= Σ ίί Σ Σ P(ω,α1,ά1)p(ω1,ώ2uα2,ω2uά2)/(α1uω)

= Σ Jίίp(ω2uω3,α1,α2uα3)p(ω1,ω3uα2,ω2uα3)/(α1uω2uω3)
\<x\ = σ

• (̂ω! u α2 u ω3 )ft(ω! u ω2 u α3)dω! rfω2 rfω3 .

On the other hand, applying (3.3) with (σ,τ) = (ω,α3) and then (3.4) with
(α l 5σ) = (ω2,ω) gives for (f*g)*h(σ\

= Σ ίί Σ Σ P(ω,α3,α3)p(ω3,ω2uά2,ώ2uα2)

•/(ω3 u ω2 u α2 )#(ω3 u ώ2 u α2 )/ι(ω u α3

= Σ ίίfp(ω1uω2,α1uα2,α3)p(ω3,ω2uα1,ω1uα2)

Thus if p satisfies (3.8) *p is associative. Π

Thus the a.e. equality (3.8) is a sufficient condition on an essentially bounded
p for the associativity of *p. When X is a separable measure space the condition
is also sufficient. Since the proof does not illuminate the rest of the paper, where
separability plays no role, we defer it to [LP]. In view of (3.5) *p descends to the
quotient of tf(X) by the μ^-null functions. By abuse of notation we also denote
the quotient by jf (A>

Elements p of J%(Γ3), satisfying (3.8) for all (ω,α) in Γ(6) will be called
multipliers. We do not know the answer to the following natural question: suppose
that p belongs to ̂ r(Γ3) and *p is associative, then does p agree almost everywhere
with a multiplier on XΊ A positive answer to this would permit a more liberal
definition of multipliers.


