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Abstract. Square integrable Wiener functionals may be represented as sums of
multiple Itό integrals. This leads to an identification of such functionals with
square integrable functions on the symmetric measure space of the Lebesgue
space R + . When the pointwise product of Wiener functionals is thus carried
over, the product takes a pleasing form (cf. Wick's theorem) and various
non-commutative perturbations of this "Wiener product" have been considered.
Here we employ cohomological arguments to analyse deformations of an
abstract Wiener product. This leads to the construction of Levy fields which
are neither bosonic nor fermionic, and also gives rise to homotopies between
quasi-free boson and fermion fields. Finally we unify existence and uniqueness
results for quantum stochastic differential equations by treating mixed noise
differential equations.

Introduction

Any square integrable Wiener functional F has an expansion in terms of multiple
Itό integrals:

where V" is the increasing quadrant {telR'V : t1 < ••• < tn}. The sequence {/„} may
be viewed as a single function / on the collection .Γ(IR + ) of all subsets of R+ having
finite cardinality:

/(0) = /o; /(*) = /»(s) for n = #σ^l

where sί9s2,...9sn is an enumeration of the set σ in increasing order. There is a
natural measure λ on 7"(IR + ), derived from Lebesgue measure on (R + , for which
the correspondence F-*f is an isometric isomorphism from W, the space of
square integrable Wiener functionals, to !F = L2(Γ(U + ),λ). Under pointwise
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multiplication the Wiener functionals form an associative algebra and numerous
subspaces of 'W are closed under this product, for example the Malliavin domain.
A natural question arises: how is this algebraic structure manifested in ̂ l This is
answered by the elegant formula

f*g:σ-+ £ J /(αuω)0(ωuα)dλ(ω), (0.1)
α c σ Γ(R + )

where α denotes the complement of α in σ. Dense subspaces of 2? which are stable
under * may be identified, and if / and g correspond to Wiener functionals F and
G respectively, then f*g corresponds to the pointwise product FG.

The form of the Wiener product (0.1) immediately suggests the following
generalisation: replace the Lebesgue measure space (R+ by an abstract one (S,m),
(Γ(R +), λ) by the symmetric measure space (Γ(S), μ) of (S, m), and * by the operation

/*p0:σ->£ J p(ω,α,α)/(αuω)g(ωuα)rfμ(ω). (0.2)
αc=σ Γ(S)

Incorporating an involution ~ on Γ(S), induced from a pointwise involution i on
S, we may further generalise:

f*pg:σ-+Σ J p(ω,α,α)/(αuώ)0(ωuα)έ/μ(ω). (0.3)
α<=σ Γ(S)

Such an approach unifies the various products considered by Maassen, Lindsay
and Meyer. The Wiener product is implicit in [Maa] and is highlighted in [Me 1]
where algebraic variations, including the Clifford product, are explored. The Bose
product, extensively studied in [LM 1] is obtained by taking the measure space
to be the sum of (U + ,m1) and (R + ,m2), where m1,m2 are non-zero multiples of
Lebesgue measure, and the involution to be (crl9σ2)~ = (σ2,σ1). The Fermi product
[L M 2] is obtained by a similar modification to the Bose product as is required
to form the Clifford product from the Wiener product—namely the introduction
of a {± l}-valued function p, which is dependent only on the relative position of
the points of ω, α and α on the line, in (0.3) and (0.2) respectively.

The analysis of functions p for which (0.3) is associative rests on an analysis of
the solutions of the functional equation

q(κ,β)q(wβ,y) = q(κ,βuy)q(β,y) α,j?,γeΓ(S) disjoint (0,4)

for non-vanishing complex-valued functions q. If Γ and u are replaced by a group
G and its binary operation, then (0.4) becomes the condition for q to be a second
order cocycle on G with values in C x , the group of non-zero complex numbers.
Such objects arise in the theory of projective representations of groups, in particular
they play a vital role in quantum theory [Var]. Our analysis has been inspired by
the work of E. P. Wigner, V. Bargmann and G. W. Mackey [BaW,Bar,Mac].

The second order cocycles on Γ (S) with values in C x are classified in Sect. 2
and the associative products *p are described and classified in Sects. 3 and 4. The
pointwise product of Poisson functionals also gives rise to a product on Fock
space [Me 1], [L M 2]. An analysis of deformations of this Poisson product, similar
to (0.2) and (0.3) for the Wiener product, will appear elsewhere ([LP]).

Several authors, particularly P-A. Meyer, have raised the subject of non-
commutative Poisson and Wiener type products [Me 2].
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The last two sections give some applications of these ideas. In Sect. 6 operator
fields, which are deformations of the quasi-free boson and fermion fields, are
constructed in a natural way from cocycles and multipliers on Γ. These fields
satisfy local commutation relations and provide bridges between boson and fermion
fields — two such bridges are discussed. A continuum of inequivalent Levy fields
[AP] with common co variance is also obtained, showing that commutation
relations do not follow from martingale (fair game) assumptions alone [P]. In
Sect. 7 we unify existence and uniqueness results for quantum stochastic differential
equations by establishing the explicit form (cf. [Maa]) of the unique solution of
linear stochastic differential equations driven by mixed noise.

1. Set Notations

For a set S, Γ(S) of Γs will denote the finite power set of 5: (α c S:#oc < 00} which
00

has the partition (J Γn(S), where Γn(S) = {σ c S:#σ = n}. When S is fixed and
π = 0

there is no danger of confusion we shall frequently drop mention of it in the
notation, writing Γ, Γn etc. The cartesian product Sn will be understood to be the
single point set with element 0 when n = 0 and the collection of coordinates
{$!,...,$„} of a typical element s = (sl9...9sn)eSH will, by convention, by empty
when n = 0. To each element σ of Γn is associated nl points of Sn — those points
which have σ as the set of their coordinates. S(n] (n = 0, 1, . . . ) will denote the subset
of Sn consisting of those points s with distinct coordinates: sf Φ s7 for i Φ j. To any
function / on Γ(S) is naturally associated a sequence of symmetric functions fn

on S(n): /π(s) = /( {sx , . . . , sn } ), and conversely such a sequence determines a function
on Γ(S). In particular, by considering indicator functions, there is a natural
correspondence between subsets E of Γ(S) and sequences of symmetric subsets En

oϊS(n\
For each n,Γ(n)(S) will denote the subset

ίnσ j = ( / > i f i / 7 } (1.1)

of F(S)n, and Δn(S) will denote the set diagonal:

Γ(S)n\Γ(n)(S). (1.2)

For <xGΓ(n\ o^ u •-• uαn will be abbreviated to |α|. In any summation over subsets
α of an element σ of Γ9 ά will always denote the complement of α in σ.

^(A B) will denote the set of #- valued functions on A, and will be abbreviated
to ^(A) when J5 = C. For a group valued function / we call (a:f(a) φ identity}
the support off. δ0 will always denote the function equal to one at 0 and zero
elsewhere in Γ, and an empty product will always be understood to be equal to one.

2. Second Order Cohomology on Γ(S)

In this section we describe the second order cohomology of Γ(S) for an arbitrary
set S. Since 5 will be fixed we shall frequently drop references to it in the notation.
A second order cocycle on Γ(S\ with values 'n the multiplicative group of non-zero
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complex numbers C x , is a map q\Γ(2\S)-*Cx satisfying the cocycle identity

9y\ (α, βy)eΓ<3>(S). (2.1)

The collection of such 2-cocycles forms an abelian group under the pointwise
product which is also closed under complex conjugation and the involution

β(α,/D = $(Aα). (2.2)

If / is a map from Γ into C x then

is called a trivial cocycle. For f9gε^(Γ9 C x ) to determine the same trivial cocycle,
h = f/g must be multiplicative (homomorphic): h(uuβ) = h((x)h(β) for (a,β)eΓ(2\
The trivial cocycles form a subgroup of the group of 2-cocycles. We denote the
quotient group by 3?2(Γ) and say that 2-cocycles q^q2 are equivalent written
q1 ~ q2, if their ratio is trivial.

If k is a map from 5(2) to C x then

(2.4)
flea
beβ

is called a product cocycle. Thus a 2-cocycle is a product cocycle if it is multiplicative
in each argument.

Proposition 2.1. Let k be a map from S(2} into C x . Ifk is symmetric then πk is trivial,
and conversely.

Proof. If k is symmetric, then the function /:.Γ->CX,

αl~* Π k(s9t)
{*,ί}C«

is well defined and

In other words πk is trivial. The converse is obvious. Π

Putting β = 0 in (2.1) we see that q(0,-) and q(-,0) are equal constant
functions on 7"; dividing by q(0, 0) therefore gives an equivalent 2-cocycle which
is normalised: q(0,0) = 1. (The equivalence is effected by the function equal to
q(0, 0) at 0 and 1 elsewhere). Although Γ(S) is a semigroup under the union
operation, and even a group under symmetric difference, all the 2-cocycles on these
structures turn out to be trivial. Our less restrictive definition, only involving
disjoint elements, is therefore needed for obtaining non-trivial cocycles.

When σ = {sί9...9sn}9 τ = {tί9...9tm}9 where (σ, τ)eΓ(2\ q(σ, τ) will sometimes
be written q(s1 , . . . , sn; t1 , . . . , tm). The next result shows in particular that (normalized)
2-cocycles on Γ are determined by their restrictions to 7\ x Γ, i.e. {({s},τ)eΓ(2)}.

Proposition 2.2. Let q be a 2-cocycle on Γ(S)
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(i) For (σ, τ)eΓ<2>, if σ = {s1,...,sn} n^l, then

g(σ,τ)^(sn;τ)Πlg(5 ;;U{Sί+1'-^"}). (2.5)
ΛΛ gfes ί+ !,...,$„)

(ii) q/q is a product cocycle^ where q is defined by (2.2).

Proof.

(i) Applying the cocycle identity to the triple ({sί9...9sn-1}9{sn}9τ) we obtain

Iterating this identity for the numerator and denominator there is a cancellation
of terms of the form q(s1 , . . . , s, ; s, + x ) for y = 1, . . . , n - 2, leaving the expression (2.5).
(ii) Let (α,jB,y)εΓ(3>, then

so that
q/q(ct u ft 7) =

By symmetry q/q is also multiplicative in the second argument. Π

A 2-cocycle q is symmetric if q = q and skew-symmetric iϊ q = q~ί. Clearly all
trivial cocycles are symmetric, and a 2-cocycle is both symmetric and skew-
symmetric if and only if it is (skew-)symmetric and { ± 1} -valued.

Proposition 2.3. Every 2-cocycle on Γ(S) is equivalent to a skew-symmetric product
cocycle.

Proof. Let q be a 2-cocycle on Γ which we suppose without loss to be normalised,
and let π be the product cocycle determined by the function (s, i) -> q(s; t). Define
a sequence of function /„ on S(n\ n = 0, 1, 2, ... recursively by letting /0(0) = 1 and,
for n ̂  1,

/M:(s1,...,sJh->/n_1(s1,...,sn_1)(^/π)(sn;s1,...,sw_1). (2.6)

/ι(5) = /o(0)(#/π)(s; Φ) = 1 and, for n ̂  2, the cocycle identity applied to the triple
({sn},{sn_1},{s1,...,sB_2}) yields

s 1,. . .,sΠ_ 2)

(2.7)

Thus, if fj is symmetric for < n, by (2.6) fn is symmetric in its first n — 1 arguments,
and by (2.7) it is also symmetric in its last two arguments; in other words /„ is
symmetric. Since /0 and fί are symmetric, it follows by induction that each of the
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functions /„ is symmetric. The corresponding function f on Γ satisfies

so that q = τfπ. Now let / be a logarithm of the function (s, ί) -> g(s; ί) on S(2\ then
π = πkπk, where fc = exp (/ — /j/2 and fc' = exp (/ + Q/2. Since fc' is symmetric πk/ is
trivial, τ^ say; on the other hand fc is skew-symmetric and g = τ/βπk, so that the
proof is complete. Π

Corollary 2.4.

(i) The trivial cocycles are the symmetric cocycles.
(ii) Two skew-symmetric product cocycles πkί and πk2 are equivalent if and only if

k1/k2 is skew -symmetric and { + l}-valued.

Since C x and C X /{±1} are isomorphic groups the above degeneracy is not
revealed in the second cohomology group of .Γs.

Theorem 2.5.

the multiplicative group of skew-symmetric C x -valued functions on S(2\
In terms of any given partition Sl u u Sn of 5 we have the following alternative

representation for 2-cocycles on Γs.

Proposition 2.6. Let Sί u u Sn be a partition ofS. Any 2-cocycle on Γs is equivalent
to a 2-cocycle of the form ]~| qij9 where each qtj is a product cocycle, (s, t) —> q^s; i)

has support in St x S/uSy x Sf and the qu are skew-symmetric.

Proof. By Proposition 2.3 any 2-cocycle is equivalent to a skew-symmetric product

cocycle π which may be written Ππu' w^ere πl7(α,j?) = π(αnSI ,jβn5J ). Define a
u

function / and product cocycles qtj (i ̂  j) as follows:

i ϋ i = 7

Then, by the multiplicativity of πί<7 (in each argument),

.
Π.««J(«,» = Π. fe α)πίj(ft ^ Π

and the result follows. Π

Each 2-cocycle q determines an algebraic structure on &(ΓS) as follows:

f°qQ' σ-* Σ #(α> β)/(α)0(β)> (2-8)
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where ά denotes the complement of α in σ:σ\α. The cocycle identity expresses the
associativity of this product. The resulting complex, associative algebra ^(ΓS9q)
has unit q(0,0)~1δ0 and is non-commutative unless q is trivial.

Mf will always denoted the point wise multiplication operator g^fg on
complex valued functions defined on the same space as /.

Proposition 2.7. Let q{ and q2 be 2-cocycles on Γs andfe^(Γs). Then the following
are equivalent:

(i)
(ii) Mf : ̂ (Γ9 q i ) -» ̂ (Γ9 q2 ) is an isomorphism.

Proof. Immediate.

Remark. Algebras of functions of several variables under products of the form

(where the sum is over pairs (α,/?) for which each α£u βt is a partition of σ f) may
be reduced to the one variable case through the obvious identification of
Γ(S,) X . - . X Γ(Sn) With Γ(S, JL - JL.SJ.

When g = (—!)" where π is defined, in terms of an ordering of S9 by
n(α, /?) = #{(α, fo)eα x β:a>b}, ^(Γ9q) is isomorphic to the algebra of anti-

symmetric functions on (J S(n) under the antisymmetric product. When q is the
n = 0

unit cocycle 3F is (naturally) isomorphic to the symmetric function algebra. Taking
a cue from P-A. Meyer [Me 2] we call ^(ΓS9q) Wick-Grassmann algebras on S.
By heeding the previous remark one can see that algebras of functions of several
variables which are symmetric in some of the variables and anti-symmetric in the
remaining variables are also covered by (2.8).

3. Wiener-Clifford Algebras

In this section we construct associative algebras of measurable functions on Γ(S, m),
the symmetric measure space of a measure space (5, m) [Gui], by means of three
argument multipliers. Study of the isomorphism classes of these algebras shows
that the generic product is obtained by a welding of two paradigm products: the
Wiener product [Maa] and the Clifford product [Me 1].

Let X = (S, m) be a σ-finite, non-atomic measure space. The correspondence
00

between Γs and (J S(n} induces a measurable structure on ΓS:E c Γs is measurable
n = 0

if each En is of the form E'n n S(π) for some E'n which is measurable in the product
space Xn. A measure μx is then defined by

μx(E)= £ (nlΓ*nf(E'Λ\ (3.1)
« = o

where m° is point measure on S° and mn (for n ̂  1) is the product measure on 5".
We denote the resulting measure space, the symmetric measure space of X, by Γ(X)
or Γx and usually abbreviate dμx(σ) to dσ.
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Remark. Non-atomic σ-finite measures take all intermediate values between 0 and
the (possibly infinite) total measure. It follows that each set diagonal Δn(S) is
(contained in) a null set of the corresponding product measure. In particular μx

is unambiguously defined.
The algebras considered here result from the convolution-like products:

f*pβ <r-* Σ f p(ω,α,α)/(αuω)0(ωuα)dω, (3.2)
αcσ

where the requirement of associativity imposes some restriction on the form of p.
From now on ^(Y Z) will denote the space of measurable maps between the

measure spaces Y and Z. We introduce two further function spaces:

&r(Γn) = {fe^(Γn; C x ):/ has relatively compact range and / = 1
on the set diagonal Δ*(S)}9

JT(X) = {fε^(Γx):$a«σ\f(σ)\2dσ < oo Ma > 0} = f| ®(aN\
α > 0

where aN is the multiplication operator: (aNf)(σ) = a#σf(σ\ on L2(ΓX). The algebraic
structures will be on tf(X) and the products will be determined by functions from
^r(Γ3). Recalling out set notations (Sect. 1) the following elementary identities
are crucial:

Proposition 3.1.

(i) For/e^(Γ(2)),(σ,τ)eΓ(2),

Σ /fo?)=Σ Σ/(«u/Uυft (3 3)
y c σ u τ αcσ βczτ

(ii) Ifge^(Γn) is ίntegrable in the product measure μn, then

..,σn)dσl. dσn = $ Σ 0(4**- (3 4)

Proof. First suppose that g is non-negative, and j = (jι,...,7n)el\l1 1 let g.} be the
function on Sh x ••- x SJ'n = SJ'1 + '"+J'n corresponding to g \ Γ j l χ 'χ rjn which is
symmetric in its first jί arguments, and in its second j2 arguments, and so on.
Then for (51,...,5Λ,)e5(N),

Σ fif(α1,...,απ)= Σ O'l'-JiiO"1 Σ 0j(Sπ(l)> >Sπ(N))>
N = {s1,...,sJV} jι + "+jn = JV πeyN

so that, by the invariance of the product measure mN under (the natural action of)
the permutation group £fN, and regrouping courtesy of Fubini,

f Σ β(«)dσ = (N\Γi Σ OΊI-Λ1Γ1 Σ ί-fftίni — e.^-do.
ΓN\ά\ = σ jι + " +jn = N πeyN

Σ f ••' ί g(σl9...,σn)dσ^-dσn9
Ji + -+jn = Nr / 1 Γjn

where we have abbreviated dmk(u) to du. By summing over ΛΓ we obtain the identity
(3.4). Since an integrable function is expressible as a linear combination of
non-negative integrable functions (ii) follow by linearity, (i) is immediate. Π

Remark. Proposition 3.1 (ii) also follows by repeated application of the case n = 2
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which is proved in [LM 1]:

Γ V fί \ Λ f \~* V fί ~Q\ A
\ / J (OtjG G == I / / J v^i j j o^n — i ? P)a(7

We have included a full proof here since much of the subsequent analysis depends
on (3.4) which we shall refer to as the integral-sum identity /lemma.

Proposition 3.2. For f9geJf(X) and peJΓ(7"3) essentially bounded, f*pg is well-
defined and satisfies the L2-norm inequality

\\aN(f*pg)\\ίsup\p\\\(ajϊ)Nf\\\\(ajϊ)Ngl α^l, (3.5)

while ifqe^(Γ2) is essentially bounded andf°qg is defined by (2.8),

\\aN(f°qg)\\ίsup\q\\\(a^2ff\\\\(a^2)Ng\\, α>0. (3.6)

In particular, f*pg,f°qgeJf(X).

Proof, (cf. [LM2]) An application of the integral sum identity (3.4) gives for
/6Jf(JO,

J3*σ|/(σ)|2dσ = | Σ 2*"\f(σ)\2dσ = \\2**\f(avβ)\2d*dβ;
αc=(τ

in other words, f:βt-> f(auβ) is square integrable for almost all α and

2dα. (3.7)

By Cauchy-Schwartz and more applications of (3.4),

(sup|p|Γ2f l(aw(/*0))M|2d<r^i{ Σ $\(aNf)(avω)(aNg)(ωvά)\dωV dσ
lαczσ J

= ί 2* || (αw/Π| 2 rfα J 2#/ί || (α

in particular /*pg is defined almost everywhere and (3.5) holds. Again by the
integral-sum lemma,

\\aN(f°qg)\\2 = $\a#σ Σ
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giving (3.6). Π

Proposition 3.3. Let pe^r(Γ3) be essentially bounded and satisfy the identity

p(ω2 u ω3 , α t , α2 u α3 )p(ωί , α2 u ω3 , α3 u ω2)

= p(ω1uω2,α1uα2,α3)p(ω3,α1uω2,α2uω1) (3.8)

/or almost all (ω,(x)eΓ6, then *p is associative.

Proof. By the non-atomicity of the measure w, {σe7":σnτ 7^ 0} is a μ-null set for
each τeΓ. Applying (3.3) with (σ,τ) = (ω,δίί) and then (3.4) with n = 2 and
(α1?σ) = (ω2,ω) gives

= Σ ίί Σ Σ P(ω,α1,ά1)p(ω1,ώ2uα2,ω2uά2)/(α1uω)

= Σ Jίίp(ω2uω3,α1,α2uα3)p(ω1,ω3uα2,ω2uα3)/(α1uω2uω3)
\<x\ = σ

• (̂ω! u α2 u ω3 )ft(ω! u ω2 u α3)dω! rfω2 rfω3 .

On the other hand, applying (3.3) with (σ,τ) = (ω,α3) and then (3.4) with
(α l 5σ) = (ω2,ω) gives for (f*g)*h(σ\

= Σ ίί Σ Σ P(ω,α3,α3)p(ω3,ω2uά2,ώ2uα2)

•/(ω3 u ω2 u α2 )#(ω3 u ώ2 u α2 )/ι(ω u α3

= Σ ίίfp(ω1uω2,α1uα2,α3)p(ω3,ω2uα1,ω1uα2)

Thus if p satisfies (3.8) *p is associative. Π

Thus the a.e. equality (3.8) is a sufficient condition on an essentially bounded
p for the associativity of *p. When X is a separable measure space the condition
is also sufficient. Since the proof does not illuminate the rest of the paper, where
separability plays no role, we defer it to [LP]. In view of (3.5) *p descends to the
quotient of tf(X) by the μ^-null functions. By abuse of notation we also denote
the quotient by jf (A>

Elements p of J%(Γ3), satisfying (3.8) for all (ω,α) in Γ(6) will be called
multipliers. We do not know the answer to the following natural question: suppose
that p belongs to ̂ r(Γ3) and *p is associative, then does p agree almost everywhere
with a multiplier on XΊ A positive answer to this would permit a more liberal
definition of multipliers.
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The first interesting non-trivial multiplier is the Clifford multiplier given by

p(ω, α, β) = ( - \γ«»^<»^\ (3.10)

where n(σ, τ) = #{(s, t)σ x τ:s > t} and > is some measurable ordering on X. We
shall call pairs (Jf (X), *p) Wiener-Clifford algebras on X.

Proposition 3.4. p is a multiplier if and only if there arefe^r(Γ) and
such that

(i) q satisfies the cocycle identity (2.1),
(ii) τfqq = τ2

fq
4=l, <3 n)

Proof. Since p satisfies (3.8) if and only if non-zero multiples of p do, and since
such multiples may be absorbed by / in (3.1 1), we may assume p to be normalised:
p(φ, φ9φ)=ί. Suppose p is a multiplier and define q and / by

q(*9β) = p(φ9*9β)9 f(ω) = p(ω,φ9φ). (3.12)

Putting ω = 0 in (3.8) we see that (up to a null set) q is a 2-cocycle, and putting
α = 0 we obtain the cyclic relation

39ω29ωί). (3.13)

Putting α2 = α3 = ω2 = ω3 = 0 in (3.8) and applying (3.13) gives

/(ω) = p(ω, α, 0)<?(α, ω) = °** g(ω, α)g(α, ω),

so that

Putting ω3 = 0 in (3.13) and using (3.14) gives

^.ω^-^:. (3.15)

Putting oq = α2 = ω2 = 0 in (3.8) and applying (3.15) now yields

^ „ „ x PK,0,α3)p(ω3,0,ω1) f(ωl)f(ω^) ^(ω3,α3)

"— p(ω3,0,α3) /(ω3)

Thus p is composed from a function / and a 2-cocycle q, which stand in the
reciprocal relation (3.14) through the formula (3.11). It remains to show that a
function p given by such a pair ( q , f ) through (3.11) is a multiplier if and only if
τ}q4 ΞΞ 1. Let p be such a function, then the ratio

p(α>2 u ω3, α :, α2 u α3)p(ω:, α2 u ω3, α3 u ω2) (3.16)

may be expressed as a product P^P2P^, where
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c1, α2) q(co2 , α3) g(ω2 , ω3) q(ω3 ,

_
3 ,α2uω1) g(ω2uω3,α2uα3)'

Moreover, by (3.14)
n n q(ω2,ω1)q(θίl,c

g(ω3,ω2) g(α2,α3) g(α1?ω2) ςf(α2,ω1)

Applying the cocycle identity successively to the triples (α1uω2,α2,ω1), (α1uα2,
ω2,ω!) and (ω2,α1,α2), and using the fact that q/q is a product cocycle,

q(oί1 uα2,ω1 uω2) ^f(α1uα2,α

(ΰL^ u ω2, oc2 u ωt) ^(α! u α2 u ω2, ωx) ̂ (α! u ω2, α2)

-Λlq(^9ω2)qlq(d,29ω2)

q(a2 u ω2 , α3 u ω2) g(α2 , α3) ̂ (ω3 , ω2)

^ q *2 ' ω3 '

and similarly,

<?(ω2 u ω3 , α2 u α3) <j(ω2 , α3) <?(ω3 , α2)

Therefore the ratio (3.16) is (<?/<?)2(α2,ω2) or by (3.14),

Thus the identity (3.8) holds for a function p given by (3.11), where q is a 2-cocycle
and τfqq = 1, if and only if τ^q4 = 1, and the proof is complete. Π

A function f:Γs-^C is called multiplicative if

/(α u β) = mm for oc, jg disjoint.

Thus multiplicative functions are of the form

where φ is a function on S. Notation: εφ. If φi and φ2 are measurable functions
on X which agree a.e. m, then eφί = £Φ2 a.e. μ. If φeL1(X) then &φeLl(Γx} and
Jε^dμ = exp {J^rfm}. When φeL2(X) sφ is called the exponential vector determined

by <j>.
Note that a product cocycle in ^r(Γ2) must be of unit modulus (outside a null

set in Γ(2)).
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Lemma 3.5. Let qe^r(Γ2) be a 2-cocycle and /eJ^Λ/"1), then the following are
equivalent:

?> -
(ii) q = τhπk, where kk=l, k(S2) c (1, z, — i} andfh2 is multiplicative.

Proof. Suppose that q is of the form (ii), then τfqq = τ//j2πfeπfc = τfh2 = 1 and
τ/<?4 = (τ/&2)2(πfc)4 = 1> so fa) imPues (i) Suppose now that g,/ satisfy (i), let g0 be
a measurable square root of / and let η = τgoq. Then

ηή = τfqq = 1; η4 = τ/2^f4 = 1,

so that η is skew-symmetric with range in {1, i, — 1, — 1}. Let fc^s, ί) = η(s, t), then
^ = τg ιπ f c l for some gfje^ί/"1). Define k2 by

Γ-l, if fc!(s,ί)= -1;
k2(s91) = <

[ 1, otherwise.

Then, since k2 is symmetric, πk2 is trivial: τg2, say. Letting h = g$ Ig^g2 and /c = ̂ ^2
we have q — τhπk and

so that//z2 is multiplicative. Since fc has range in (1, ί, — i} the proof is complete. Π

If ge^(X; C x) and ε is the multiplicative function determined by a measurable
square root of g, then εg(ω) = ε(α u β) ~ 1s(a u ω)ε(ω u j8). By letting g be the function
si— >(fh2)({s}\ Lemma 3.5 combines with Proposition 3.4 to give:

Proposition 3.6. Let p be a multiplier on Γx, then

where fe^^Γ1) and π = πk, where fee J^(S2) is skew-symmetric with range in (1, ± i}.

Note that the functions k that arise in (3.17) are all the functions of the form

r i on F;

fcF:(s,ί)-> <-i on F; (3.18)
I 1 elsewhere,

where F is a (measurable) subset of S(2} satisfying FnF = 0.
Writing p = (/, k) for a multiplier with representation (3.17) we define equivalence

for multipliers by (/, k) w (/', /c') if πfc and πfc, are equivalent cocycles, modulo a
null set — in other words π fc/ = τ^πfc a.e. for some ^fe ̂ r(Γl). We denote the group
of equivalence classes of multipliers by Jf(Γx). The justification for this definition
of equivalence will come later.

Proposition 3.7. Let p = (/, /c), p' = (/', k') be multipliers on Γx. Then the following
are equivalent'.

(i) p«p',
(ii) suppfezlsupp/c' is null.
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Proof. Let E be the symmetric set supp kΔ supp k' and let fcx be the symmetric
function agreeing with k'k'1 outside E and equal to 1 on E. Then πfcl agrees with
πk,πϊl outside the set E = {({s}uα,{ί}uβ): (s,f)e£, α, βeΓ}. Since E is μ2-null
if and only if E is w2-null the result follows Q

Theorem 3.8.

the measure algebra of Γ2 considered as a group under symmetric difference.

Proof. By Proposition 3.7, Φ :[(/,&)]-> [supp /c] is a well-defined injective map
from Jf(Γx) to the equivalence classes of symmetric measurable subsets of
S(2). Let E be such a subset of S(2) then, if FuF is a measurable partition
of E. Φ([(l,fcF)]) = [E], so Φ is bijective. Now suppose that E = E1AE2, where
£1?£2

 are symmetric subsets of S(2), and let jFuF be a measurable partition
of E and F3uF3 a measurable partition of EίnE2. Define /c 1=/cF 3 U F l and
k2 = kp2uFl , where FΓ = F n £, (i = 1, 2), then supp /c£ = Et and supp fc^ = E. Thus
Φ~H[£ι^£2]) = Φ~H[£J)Φ~H[£2])> and the theorem now follows since the
measure algebra of Γ2 is isomorphic to the symmetric measure algebra of X(2\ Π

Suppose that p = (f,k) and p' = (f',k') are equivalent multipliers so that
πk> = τhπk almost everywhere and, for a.a. σ, h(σ)= Y[ (k/k')(s,t) and is {±1}-

{s,t}c:σ

valued. Then Mhflf, is an isomorphism from (3Γ(X\ *p) to (Jf(X)9 *p/), justifying
our notion of equivalence for multipliers. Again Wiener-Clifford algebras of
functions of several variables may be reduced to one variable function algebras
via the natural identification of -Γ(-XΊ) x ••• x Γ(Xn) with Γ(X)9 where X is the
sum of the measure spaces Xl9...9Xtt. In particular super-symmetric Wiener-

Clifford algebras arise by choosing multipliers p of the form (ω9a9β)->Y[p(ωnSi9

f), where P|Γo)(Sl) is a Clifford multiplier for ί = !,...,£, say, and the
Wiener multiplier ( = 1) for i = k + 1, . . . , n.

4. Twisted Wiener-Clifford Algebras

In this section we construct and classify a further class of algebras by means of
an involution on S, that is a map i:S-+S whose square is the identity map. The
Bose and Fermi products, which are discussed extensively in [L M 1], are included
and also some interesting new products. The results of this section subsume those
of the previous one since the involution may be the identity map.

Let Z = (S, m, i, S+), where X = (5, m) is a σ-finite, non-atomic measure space, i is
a measurable involution on S and S+ is a measurable subset of S such that if
SQ = {seS:ί(s) = s} and 5_ = i(S+)9 then 50u5'+ uS_ is a partition of S. Let ~ be
the involution on Γn(S) induced by i: σ = (σn, . . . , σj, where {s^ , . . . , sn} ~= {/(sj, . . . ,
i(sn)}, and for fe^(Γn) let/ be the induced map: /(σ) =/(σ). Note that this does
not conflict with the previous use of ~ . For Z as above, /"(Z) or Γz will denote
the measure space Γ(S9m) together with this extra structure. ~ (and i) will be
referred to as the ίwisί.
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We are interested in those elements p of ^r(Γ3) for which the twisted
convolution

f*pg:σ\-+ £ J/?(ω,α,ά)/(αuώ)^(ωuα)dω (4.1)
αc=σ

defines an associative product on Jf (Z):= Jf (S, m + w). A similar inequality to (3.5)
holds so that Jf (Z) is closed under *p which again descends to the quotient modulo
μ^-null functions.

Proposition 4.1. For pe J%(Γ3), let Dpe^(Γ6) be given by

3,u1, α2uα3)p(ω1,ω3uα2,ω2uα3)

1uα2,α3)p(ω3,α1uώ2,α2uώ1), (4.2)

then the vanishing ofDp (a.e.) is sufficient for the associativity of*p on Jf(Z).

Proof. The same applications of Lemma 3.1 as were used in the proof of
Proposition 3.2 lead to the expression

Σ ί ί ί ̂ p(α> ω)/(αι u ̂ 2 u ̂ 3)̂ (̂ 1 u α2 u cΰa)/^! u ω2 u a3)dω1dω2dω3
\at\ = σ

for {/*(#*/0 — (/*#)*fr}(σ) and the result follows. Π

Elements p oϊ^r(Γ^) for which Dp vanishes identically will be called multipliers
on Γz. In our analysis of multipliers on Γz we continue to denote by τf and
πk the trivial and product cocycles determined by /6JΓ

r(7"1) and /ceJ%(S2)
respectively.

Proposition 4.2. p is a multiplier on Γz if and only if there are fe^^Γ1) and
such that

(i) q satisfies the cocycle identity (2.1),

(ii) τfqq = 1, (4.3)

(4.5,

Proof. Applying identical steps to (4.2) as were applied to (3.7) in the proof of
Proposition 3.4 leads to the identities (4.3) and (4.5), q being a 2-cocycle on Γ(S).
Further identical steps lead to the expression

for the ratio (3.16) ~. Thus p is a multiplier on Γz if and only if p is of the form
(4.5), where (q,f) satisfies (4.3) and q is a 2-cocycle satisfying (4.4). Π

Lemma 4.3. Let qε^r(Γ2) be a 2-cocycle on Γ(S,m) and /eJ^Γ1), then the
following are equivalent:
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(i) τfqq = 1,

(ii) q = τhπkfor some \ where fefe = 1 andfhh is multiplicative.

Proof. Suppose that (q,f) satisfies (i). Then, by Proposition 2.3, q = τhίπkl for some
h^e^r(Γl) and product cocycle πk l, moreover fc2 = (fc1fc1)~1 is both ~ -invariant
and symmetric. Let /c3 be a measurable square root of fe2 which is also ~ -invariant
and symmetric. Then πfc3 = τg for some ge^^Γ1), and if fe = fc1fc3, h = A^" *, then
the pair (A, fc) satisfies (ii). The converse is immediate.

Proposition 4.4. Let p be a multiplier on Γz, then

(4.6)

Γ1) is multiplicative, ge^r(Γl) and π = πk, where k is determined by
a skew-symmetric {±i, 1}-valued function ξ on S0 x 50, a skew-symmetric function y
on S+ x S+ and a {±1}-valued function η on S0 x S+ as follows:

X 00, — <

y(s, t) on S+ x S+

y(s,f) 5 _ x 5 _

on S0 x S+

fife?)

1
1

x o0

x S _
(4.7)

Pro<9/. Combining Proposition 4.2 and Lemma 4.3 we obtain the form (4.6) for p
in which βe^X/^) is multiplicative and π = πk l, where fct satisfies

fcΛ = 1, (4.8a)

-=1. (4.8b)

By the analysis of Sect. 3 we may assume that k1 has the required form on S0 x S0,
and by taking a measurable logarithm of kί on S+ x S+ (and arguing as in the
proof of Proposition 2.3) we may assume that y>=ki\s+xs+ has the required form
also. Let ζ = / c 1 | s + x s _ , δ = kί\s+xSo and α = /c1 |S o X S + then by (4.8b) η:(s,t)\-+
δ(t,s) afoi)"1 is {±l}-valued on S0 x S+, thus k± has the following form on the
rest of S(2):

on S_ x S_
S_ x5 +

(5, ίΓ1!̂ , 3)

Define k2 on 5(2) by

on
s,ί) 1 on 5+ x 50

ί,s)-1 SQxS +

? V\ <\ V ^t, Λ j OQ A ί3_
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and 1 elsewhere, then k2 satisfies (4.8) and is symmetric, so nk2 is trivial. The product
kίk2 is of the required form and the proof is complete. Π

We write (/,#,/c) for the multiplier (4.6) where ε = εf and π = πk. By taking a
measurable logarithm of /one may divide out the ~ -invariant part of ε to obtain
a representation (/',#', /c) in which /' '=f'~l. Then the extent to which the
representation of a given multiplier is unique is as follows: (/, g, k) = 1 if and only
if k=l,g is multiplicative, εf = gg and is (±l}-valued. As before we define
equivalence for multipliers by equivalence of the corresponding 2-cocycles (modulo
null sets), and denote the group of equivalence classes of multipliers on Γz by
J^(ΓZ). We remind the reader of our convention that a group valued function /
on Yx Yis skew-symmetric if/(ί,s)=/(s,ί)~1.

Lemma 4.5. With the above notation let p and p' be multipliers on Γz. Then p^p'
if and only if almost everywhere ξ/ξ' and y/y' are { ± l}-valued and η = η'.

Proof, p and p' are equivalent if and only if ξ/ξ', y/y' and η/η' are symmetric outside
a null set. But ξ/ξ' and y/y' are skew-symmetric and η/η' (£, s) = η/η' (s, t) if and
only if η/η'(s9 1) = η/η'(t, s) = 1. The result follows. Π

Combining this with Proposition 4.4, identifying η with its support η'1 ({ — !})
and again accommodating the group isomorphism between C x/{ + 1} and C x , we
have:

Theorem 4.6.

x) x (μ(Z0 x Z+),Δ\

where $4r is the group of (equivalence classes of) skew-symmetric functions with
relatively compact range.

Finally notice that if p = (/, g, k) and p' = ( f ' , g ' 9 k') are equivalent multipliers
on ΓZ9 then M^ is an isomorphism from (Jf (S, m9i9S + ), *p) to (Jf (S, w', i, S + ), *p),
where nΐ is the measure given by dm' = (f/f')dm9 if h is the almost everywhere
{ ±l}-valued function σ-> f] (V/k)(s,t).

5. Levy Fields and Bose-Fermi Bridges

In this section X = (S, m) is a fixed (non-atomic, σ-fϊnite) measure space, so we
abbreviate 3Γ(X) to Jf, dm(s) to ds and so on. L2(X) is naturally included in L2(Γ\
in fact in JΓ—we use this without further comment.

A field of operators {/β(/):/eJf}, with common domain Jf, is associated with
each bounded 2-cocycle q. It is shown that δ0 is cyclic for { l q ( f ) : f e L 2 ( X ) } and
that { l q ( f ) J l ( f ) : f e L 2 ( X ) } is irreducible. Local commutation relations are then
obtained under various conditions to be satisfied by the cocycles on sets in Γ(2}

determined by the supports of the test functions. In particular we obtain bridges
from Boson to Fermion quantum fields, and also a continuum of inequivalent
smooth Levy fields with common covariance. This highlights some of the obstacles
in the problem of deducing commutation relations from martingale conditions
which was raised in [AP].



354 J. M. Lindsay and K. R. Parthasarathy

Definition 5.1. Define a map Λ from F(Γ(2)) to operators on F(Γ), a product x on
F(Γ(2)) and a bilinear map F(Γ) x F(Γ(2)) to F(Γ(2)) by

vg(σ)= £ φ1?α2)0(α2), (5.1)
l«l = σ

u x v(σ, τ) = £ φi , α2 u τ)φ2 , τ), (5.2)
|flf| = σ

0.φ ,τ) = #(σ)ι;(σ,τ). (5.3)

The map A is well defined by (3.6) and is clearly injective so that associativity for
the product x follows from the easily verified relation tΓxΊ; = ύϋ. lϊu = g.v where
ge Jf and v is bounded then, by (3.6), u leaves Jf invariant permitting the following

Definition 5.2. For a bounded 2-cocycle q and function f in Jf , define an operator
on L2(Γ) with domain jf by

By the previous remarks each operator leaves Jf invariant and if (qi9 ft) i = 1, . . . , n
are as above ^_

y/l) y/n)=/Γ4l X - X

Moreover

where the right-hand side is independent of bracketing, generalising the associativity
ofoβ(2.8).

Lemma 5.3. Let /e Jf and let q be a bounded 2-cocycle. Then tf c @(lq(f}*) and

Ul(f)dΊ (σ) = f 7(ω)β (ω, σ)βf(σ u ω)dω, (5.6)

w/ier^ /^(/) denotes the restriction oflq(f)* to Jf .

Proof. For #eJf the integral (5.6) is well defined, and the identity is established
by taking inner products and applying the integral-sum lemma. Π

Note. For operators c having domain Jf* we shall consistently use the notation
cr to denote the restriction to Jf of the adjoint of c. Moreover a sentence or
equation involving terms c# is to be understood as two statements: one in which
each # is replaced by f and another in which each # is deleted. Elements of Jf
will sometimes be referred to as test functions, and those whose support is contained
in Γl9Γn or .Γ0u u.Γm (for some m) as 1 -particle, n-particle or finite particle
functions respectively.

Proposition 5.4. Let <? !,...,<?„ be bounded 2-cocycles and fί9...9fn belong to
L2(X\ then

n-1

where βπ(s)= f] qi(si;si+l9...,sn)9Ps is the symmetrisation projection: (n!)"1 £ Uπ

π n

((^π/)(s) = f(sπ- i(i) j > sπ- !(«))) an^ the left-hand side is considered as a symmetric
function on S(n\
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In particular for any sequence {#,.:ieN} of bounded 2-cocycles the linear span of

{lt,(f1)-^(fn)S0 neN,fl,...,fneL2(X)}

is dense in L2(Γ).

Proof. A straightforward induction gives the first part and the second part follows
from the fact that, for each n, (βw/ι (8) ••• ® fn:fi€L2(X)} spans L2(Xn) since each
Qn is non-vanishing. Π

Proposition 5.5. Let q be a bounded 2-cocycle, then

[ l q ( f \ ΐ q ( f ) : f e L 2 ( X ) } (5.8)

is irreducible in the sense that the only bounded operators which, together with their
adjoint, leave tf invariant and commute with this set are the multiples of the identity.

Proof. Suppose that T is an operator on L2(Γ) which commutes with the family
(5.8) and, together with its adjoint, leaves Jf invariant. Then, since (5.8) is symmetric,
T1 will commute with this class, and

(5.9)

Letting h = Tδ09 k=T*δ0 and iterating (5.9) we have

for /in Jf0:= linear span {fίo...ofn:neMyfi€L2(X)}. Thus for /eJΓ0,

<δ0,T* f f> = <Λ, ί>=fϊ(σ) f f(σ)iσ,

whereas

<δ09T*gy = <δ09g*ky = g(0)k(0)9

so that h = k(0)δ0. In other words T is a multiple of the identity on Jf 0 which,

by the previous proposition, is dense in L2(Γ). Thus if T is bounded then it must
be a multiple of the identity. Π

Proposition. 5.6. Let /,#eJf and ξ,η be bounded product cocycles, then for ε,(5eC,

where

q(σ9 τ) - £ 0(α)/(ά)f/(α, τ)£(α, τ){f/(α, α) + δξfa α)},
αcσ

and iff and g are one-particle functions, then

where Ω(σ) = $gf(t)ήξ(t,σ)dt.

Proof. Remembering our convention that cocycles take the value 1 on the set
diagonals, these identities are immediate. Π
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For εeC, define a bracket on the algebra of operators on 3C by

For ε = ± 1 this is the anti-commutator (Jordan product) and commutator
(Lie bracket) respectively — in general it is a deformation of these.

Corollary 5.7. Letf.geJ^ and let ξ,η be bounded product cocycles, then for (5,εeC,

(i) if ή + δξ = 0 on supp/ x supp#, then [/„(/), /ξ(0)L = 0,
(ii) if f and g are one-particle functions and ξή + ε = Q on supp / x supper, then
Ul(g\ ^(/)]ε = MΩ , the multiplication operator.,

In particular, if / is a one-particle function and ηη + ε = 0 on supp / x supp /
where ε > 0, then /„(/) is bounded.

Corollary 5.8. Let q be the product cocycle determined by a function of the form kF

(defined in (3.18)) and let E = FuF, then for f, gel? (X\

(i) supp / x supp g c ; ̂ ^ [/(/), ί(flf)]±=0; [/f(

n

(ii) If supp/c: Σ Aj for a finite collection of measurable subsets {Aj} of S for
j=ι

n

which \J AJ x AJ c E, then lq(f) is bounded.
7=1

Proof. On E, q + ̂  = 0 and g| + 1 = 0, whereas on Ec,q = q = q=l. The result
follows from the linearity of lq(-):

lq(f) = ΣWXAjl each ίβ(/^) is bounded. D
j

An interesting class of examples where the above applies is given by X = (Rk,
Lebesgue) and F such that E — {(x,y):\x — y\ < λ}, /le(0, oo), then /(/) is bounded
whenever the test function / has compact support. We shall return to this example
shortly.

Right ^multiplication may be similarly defined:

By the generalised associativity (5.5), the left and right ^multiplication operators
commute. When the cocycle takes particular form we can say more:

Proposition 5.9. Again let q be the product cocycle determined by a function of the
form /CF, then there is a { ± i} -valued function ψ on Γ such that

(5.10)

Proof. Let f,geJf, then

= Σ «(ά,α)/(Φ(ά)= Σ

but q2 is skew-symmetric and {± l}-valued—it is therefore symmetric and so
equal to τ^ for some { ± 1}—valued function ψ. Since ι// = ι//~1 (5.10) follows. Π
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For each multiplier p on Γ and test function / in Jf , let Lp(f\Rp(f) be the
left and right ^multiplication operators on Jf:

Lp(f):g-*f*pg; Rp(f):g->g*pf.

Proposition 5.10. Let p be a multiplier on Γ,f,geJf.

(i) L\(f)g = f*Pg, where #:(ω, α, β) -»p(α, ω, j8).
(ii) // p(ω, α, β) = τ/(α, β)/η(a9 oήη(ω9 β), where η is a skew-symmetric, unit modulus
2-cocycle, then

(iii) If further f is a one-particle function, then

where

Proo/.

(i) Follows from the applications of the integral-sum lemma and (ii) and (iii) are
immediate. Π

Proposition 5.11. Let f,g, /ιeJf and ξ,η be bounded 2-cocycles, then

\^^^ (5.H)
Proof. Several applications of the integral-sum lemma give the identities

< A, lM(0)h > = f Jf S(α u /0/(α)f (α, M7M(y, /0*G» u y)dαd/ί dy,

< h, /?(/)/, to)Λ > = f f f f Λ(α u j8)/(y u δ)ξ(y u 5, α u jS)^(α u y, β u (5)

Applying the estimate f || kα \\2dα ^ \\ ^/3Nk \\2 (fceJf ), which follows from (3.7), then
gives the inequalities (5.11). Π

Corollary 5.12. Let ξ = πkί,η = πk2 be bounded product cocycles and f ^ g be one-
particle functions. For h in the linear span of the exponential vectors {εj!/eL2pί)},

max { || [/4(/) - i,to)]Λ|| J| [/ί(/) - /Jte)]Λ || } ̂ c{ 11/11 || fci-^ || „ + !!/-» II},

where c is a constant dependent only on h.
Let F c S(2) be such that F u F is a measurable partition of S'(2) and consider

the family of 2-cocycles {£v:ve[0, 1]}, where ξv is the product cocycle determined
by the function k:= eίvπ/2χF + e-iv*/2χ?9 then \\ξv- ξψ\\ <((π/2)eπ/2)\v- ψ\, so
(P:/W/ξ (/)|ve[0, 1]} is a homotopy between the boson and fermion Fock
representations over L2(X) — the first Bose-Fermi bridge.

In the notation of (3.7) the following estimates are easily obtained by more
applications of the integral-sum identity.
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Proposition 5.13. Let f,g,hetf and let ξ,η be bounded 2-cocycles, then

^Γ1 \\UKf) -ll(g)m2^ JJ !/(«)! I | Λ
Ei (/,«,-))

+ c(f,g,h)\\f-g\\,

K(ξ, η)~Ί [/«(/) - /,(0)]Λ II 2 ̂  JJ II /' II II fca II II /*

W-flf)| |, (5.12)

where

E! = {(α, jS)esupp / x supp f : ( ξ - ι/)(α), (£ - ι/)(]8) φ 0 as functions of y}9

c(f,g,h)=\\^Nh\\2{\\f-g\\+2\\f\\};

and Sq = {(a,j?):acισ,jSc=τ,q(σ,τ) = 0} with similar definition for one argument
functions.

Let X be a finite dimensional Euclidean space with Lebesgue measure and
{ηλ:λeU + } be the product cocycles determined by functions kFλ (see 3.18)
(Fλ = {(s,ί):|s — t\<λ,s1< ίi}, then for functions / of compact support the sets
Ei(f,ηλ9ημ) (ί = 1,2) tend to zero, as λ approaches μ, in measure. Since, for λ = 0,
IA'/I-^K/) is the boson Fock representation and as λ->oo, I* approaches the
Fermion Fock representation, we have a second Bose-Fermi bridge. In fact,
i f / and g are one particle functions and {\s — t\:f(s)9 g(t) φ 0} c [0, A], then
/$(/), /5(gf) satisfy the canonical anti-commutation relations (Corollary 6.8) whereas
if { I s — 1 1 :/(s), ̂ f(ί) 7^ 0} c= (A, oo) they satisfy the canonical commutation relations.
If / and g have compact support then the former condition will eventually be
satisfied (for large enough λ).

Quasi-free, or positive temperature, Bose-Fermi bridges may also be constructed;
either via fields of operators {Lp(f):feL2(S,m)} defined through suitable multipliers
p on a twisted finite power set Γz, or by employing linear/conjugate linear operators
K, T on L2(S,m) and defining

for well-chosen pairs of 2-cocycles (ξ, η).
The central result of [AP] (see also [P]) is that two smooth Levy boson

(fermion) fields with a given covariance kernel are equivalent, and that smooth
Levy boson (fermion) fields may be constructed for any covariance density. The
question of whether other smooth Levy fields exist or not is left open but has been
a source of lively speculation. We now demonstrate the existence of a plentiful
supply of such smooth Levy fields in which the past and future satisfy no fixed
(anti-) commutation relations. A Levy-type theorem characterising quantum
Brownian motion thus remains beyond our reach at present. The reader is referred
to [A P] for the definitions of Levy-field, covariance kernel etc.

Lemma 5.14. Let ξbea bounded 2-cocycle and letf, g, hεtf be such that supp g
ana supp g u supp h c: ΓJ9 where I n J = 0, then
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0, (5.13)

where g^:=g.

Proof. Under the above asumptions on /, g, h and ξ,

Σ ί(α,%(α)*(α)dσ

by the integral sum identity and (5.13) follows. Π

Proposition 5.15. Let q be a unit modulus 2-cocycle on JΓ(R + ), then the family

is a smooth Levy field, with cyclic vector δ0 and covariance kernel
whenever 3£ consists of bounded operators.

Proof. Since Iβ(/) = i{X(/) - iX(i/)}, <50 is cyclic for the linear span of { X ( f l ) - - -
X(fn)δ0:neU9fteL2(R+\i = l9...9n} by Proposition 5.4. (fι,...,fn)»X(fn)δ0b
clearly real multilinear, and for fixed f(1\...,f(n) the continuity of the map
t^X(f(

t^)'"X(f^)δ0 is ensured by the estimates (5.11). The martingale property:
(u9X(f[t)vy = 0 whenever suppu,ϋ c /"[0,ί], is an instance of Lemma 5.14; in fact

= J
Γ[Q,t} t t

in other words 3£ is a Levy field with the given cyclic vector and covariance kernel.
Now suppose that uεL2(Γ) has support in Γ[ΌfS] and /,#eL2(IR+) have support in
[s,ί], then it is easy to see that f(f)l(g)u = </,0>n, so that

= \\u\\2\\f°g\\2^4\\u\\2\\f®g\\2.

The smoothness condition now follows from this inequality by the dominated
convergence theorem. Π

Theorem 5.16. For λ Ξ> 0 let Xλ be the Levy field (5.14) in which the 2-cocycle is the
(skew-symmetric) product cocycle determined by the function

i on Fλ;

-i onFλ;

I elsewhere,

where Fλ = {(s,t):s<t<λ or λ<s<t}. Then the family {Xλ:λ^0} consists of
inequivalent smooth Levy fields with common covariance kernel (/,#)-»J fg.
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Proof. By Corollary 5.8 (ii) 3EA consists of bounded operators for each λ (IR+ =
[0,λ)u[λ,oo), (Q,λ) x [0,>l)u[;i,oQ) x [A, oo) = FAuFΛ). Since these fields satisfy
distinct local commutation relations, they must be inequivalent.

Remark. The Levy field 3£° is equivalent to the Levy fermion field. Smooth Levy
fields with more general covariance kernels (inequivalent to the Bose and Fermi
fields) may be constructed from operators lq(f), where q is a 2-cocycle on
Γ(S, w, i, S+) in which S + = J x {0}, 50 = /, S _ = {0} x J, where / u J is a partition
of U + ,i interchanges (5,0) and (0,s) and m 0 ,m + ,m_ are absolutely continuous
measures on the line.

6. Differential Equations with Mixed Noise

In the final section we solve linear stochastic differential equations driven by mixed
noise, giving the action of solutions on vectors from Jf explicitly. This extends
results from [HP 1,2, Maa, ApH, Mel and LM2]. Our formula (6.2) for the
solution is inspired by Theorem 5.3 of [Maa]. The equations we treat are those
having the form

dXt = ] Σ AW Φ(Φ(ί)(; t))dAf(t) + Σ Mtj
i

; t))dAj(t) + K(t)dt\Xt (6.1)
J

on h0®L2(Γ(U + )n) = L2(Γ(U + )n;h0). The reader is referred to [HP1] for the
definitions of the creation, gauge and annihilation processes: Af^A^ and Aj
respectively, and for the meaning of Eq. (6.1) and a solution for (6.1). For a linear
operator T on φ(n)L2([R+), Φ(T) denotes the operator defined on β\— linear span
{υ®ε{:υeh0,ΐe®(n)L2(R + ) } by Φ(7>®εf=ι;®ετf. Li9Mij9Nj and K are locally
bounded, strongly measurable Λ(Λ0)- valued maps on (R + and φ(ί\λ(ij) and ψ(j) are
locally bounded, measurable diagonal MΠ(C)- valued maps on R+ which are
adapted in the sense that they take the value / on {(s,t):s > t}. Here Λ(Λ0) is the
algebra of bounded linear operators on the complex separable Hubert space
/ι0, Mn(C) is the algebra of n x n complex matrices and the indices z, j run from 1 to n.

To state the theorem we need a little more notation. β=(β{) will denote a
matrix of elements of Γ(R + ), while β' will denote the n-tuple of sets whose zth

component is βlvβfv-'V β" with β. similarly defined. For n-tuples of sets α, 7,
the π-tuple whose f t h component is α uy; will be denoted aruχand dμn(ώ) will be
abbreviated to dω.

Theorem 6.1. The quantum stochastic differential equation (6.1) has a unique solution,
with initial condition X0 = /, given by: for ίeR + , |σ| c [0, ί] and /ce^ with support

(Xtk)(*) = ί Σ p(r> «> & G>M«> A ω)k(ωuβ. u γ)dω, (6.2)
αu/Γuy=σ

where, if \(<x,β, γ)\ = {tl < tz < ••• < tN}, the kernel xt is given by

x,(«4 7) = P(«υβ , «,£, γ)rt(a,&, γ),

rt(oι, ~β, γ) = K.CR,;1 G(t~)RtN) (R,' ί 0(1, )Rtl),



Cohomology of Power Sets 361

R being the solution of the ordinary differential equation

dR_

~dt~ ; ° '

G being given by

G(ί)= M0.(t) if teβi,

(Nj(t) if teyj

and the multiplier P being given by

P(ω,a,β, γ) = P1(ω,a)P2(ω,β)P3(ω,γ)

= ι <Π <n Π j ΦV(t,fl)4' Λ(ί,VWbc).

Proof (sketch). In the above notation consider the family of functions J^ =
{F(u,v;f,g,-):u,veh0,f,ge®ML2(U+)} given by

ίπ-> $ X (V(a,β,γ)u®εf,rt(a,β,γ)Uβ
Γ([0,t])" auβ ^γ^ω ~

where V(a, β, γ) is the product ViV2 VN in which

f <P(<?%r,))t/;t if tte*t

4 if **e/ϊ/

if

and U is defined by ([/αfe)(ω) = fc(ωuα), (ί/{fc)(») = Λ(β»u(0,...,0,ί,0,...,0))
with t in the ιth place.

By extracting the highest component s = tN from |ω|, taking into account
each of the possibilities seα;,/?| or yjf applying the integral-sum identity and
differentiating, it may be seen that the family 3F satisfies the system of ordinary
differential equations

dF
— (u, v f, g, t) = £/t(ί)F(L?(f)«> v; φV(; t)f, g; ί)

i9i(t)F (Mfj(t)u, v; λ" Λ( , ί)f, g; t)

j

F(K*(t)u,v;f,g,t),

On the other hand, applying the commutation relation

υk

sΦ(φ) = φk(s)Φ(φ)Uk

s for φ = diag[^1;. ..,(/.„]

and the integral-sum identity, it may be seen that

F(u, v; ί, g; t) = < u ® εf, Xtv®εg >, (6.4)
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where Xt is given by (6.2). Combining (6.3) and (6.4) we see that X is a solution
of (6.1). Uniqueness for solutions of (6.1) follows by minor modifications of the
arguments employed in [H P1], Π

Remark. Equation (6.2) makes good sense when fee Jf, moreover Xtke3f for each t.
Here Jf has to be redefined to take into account the initial Hubert space h0:

Jf := (feeL2(Γ; ft0): α"fceL2(Γ; ft0) Ma > 0}.

The quantum I to formula [H P 1] yields sufficient conditions for a process X
satisfying (6.1) to be isometry valued and necessary conditions for it to be
co-isometry or unitary valued. The following are necessary conditions for X to be
unitary valued:

(i) Mtj= Uij — δij, where {l/ί<7 } is unitary MM(^(/ι0))-valued;

(ii) JV, = ΣLf l/u;
i

(iii) K = ίH — % Σ LfLh where H is self-adjoint valued;

(iv) φ(i) and ψ(ί) are unitary (diagonal) Mn(C)-valued;

(v) {[/y® Φ(λ?s) + δis® U- Φ(Λ")]} is unitary Mn(Λ(Λ0(g)L2(Γ")))-valued;

(vi) NjΦ(ψu>) + LJ[Φ(<P) - Φ(φu)λjj)-] + £Lf UijΦtfVλV) = 0;
i

(vii) L7* Φ((p) 4- Nj[Φ(ψ(j)) - Φ(I^>α))] + X AT,l/JjΦ(I lV(ί)) - 0;
ΐ (6.5)

they are also sufficient conditions for X to be isometry valued. We leave the
non-trivial question of whether (6.5) implies unitarity for the solution of (6.1), and
indeed the more general question of whether reasonable conditions may be found
on a kernel x for the corresponding operator:

(Xk)(σ) = f £ x(ω, x, β, γ)k(ωuβ. u γ)dω
<x\jβ '\jγ=σ

to be unitary.

Remark. The following special cases of isometry-valued processes satisfying a
quantum stochastic differential equation of the type (6.1) may be noted:

(i) ιl/^ = φ^;λίj = φ(^φ(j\

(ii) <p = <pα<' = Vn°n {(s9t):s<t};Nj= - LJ Ujj (i.e. ^LfC/^O).;
i*j

(iii) φ(j) = <p; λij = 0 on {(s, ί):s < ί}; N^ = - LJ8

and when n=l:

(iv) ψ = φιλ = χE:, for each ί dί/zer >l t =l or N(t)=—L*(t), where £c=[R2 is
measurable and contains {(s,i):s> ί};

(v)(^tfe)(σ)= Σ

(vi)
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in which conditions (i)-(iv) of (6.5) are understood in each case, (iv) is the general
solution to (6.5) in the case n = 1. (v) is the special case of (iv) in which K = L = N = 0,
and is unitary valued by the characterisation of unitary valued martingales in
[HLP]. (vi) is the special case of (iv) in which K = M = 0 and h0 = C—these are
analogues of Weyl operators and satisfy

d

fa

We end with a few remarks on quantum stochastic integrals. The following
extensions may be defined:

\_A*(F)k](σ) = £ [F(α)/c](ά), (6.6)

A(F)k=$F(ω)Uωkdω9 (6.7)

Λ(F) = A*(FU), (6.8)

where (Uωk)(σ) = fe(σuω), (6.7) is a Bochner integral and the following identity for
the singular operators {Uω} is pertinent:

J | |aNUωk\\2dω = ||(1 + a2)N/2k\\2 (a> 0) (6.9)

from which, in particular, we see that for each fceJf, C/ωfceJΓ for almost all ω.
Thus kε2(A(F)\ the domain of the operator A(F\ if and only if ω\-+F(ω)Uωke
Ll(Γ; tf} (3tf = /ι0®L2(Γ)) and, if F is 1-particle, the condition: J || F(s)ef \\ 2ds < ooV/
(from [HP1]) amounts to δ c= 2 (A(F)\ Sufficient conditions for k to lie in &(A*(F))
or 3>(A(F)) (and also for A*(F)k,A(F)k to belong to Jf) are obtained from the
estimate

|| aNA*(F)k ||2 g f || (a^/2)N+ilωF(ω)k ||2rfω (a > 0). (6.10)

Equations (6.9) and (6.10) follow from the integral-sum identity, as does the fact
that the definitions (6.6 - 6.8) do extend those of [HP1] and that

ϊ = A*(F*); A (F)1 = A (F*).

An advantage of these definitions is that no adaptedness conditions are required,
but we shall not pursue this further here.
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