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Abstract. We give a new proof of exponential localization in the Anderson
tight binding model which uses many ideas of the Frohlich, Martinelli, Scoppola
and Spencer proof, but is technically simpler-particularly the probabilistic
estimates.

1. Introduction

The Anderson tight binding model is given by the random Hamiltonian H =
— A 4+ V on I*(Z*), where A(x,y)=1if |x — y| =1 and zero otherwise, and V(x),
xeZ are independent identically distributed random variables with common
probability distribution u. This model was introduced by Anderson [1] to describe
the motion of a quantum-mechanical electron in a crystal with impurities.

It is well known that the spectrum of the Hamiltonian H is given by

oH)=0(—A)+a(V)=[—2d,2d] + supp p

with probability one [2, 3]. The spectrum of H can be decomposed into pure point
spectrum, o,,,(H), absolutely continuous spectrum, o,.(H), and singular continuous
spectrum, o, (H). There exist sets 2, X,., X, <R such that o, (H)=2X,
0,.(H)=2,. and o, (H) = X, with probability one [3].

In this article we are concerned with localization. We say that the random
operator H exhibits localization in an energy interval I if H has pure point spectrum
in I with probability one, ie., if X,,nI=X,nI=¢. We have exponential
localization in [ if we have localization and all the eigenfunctions corresponding
to eigenvalues in I have exponential decay.

Exponential localization for the Anderson tight binding Hamiltonian is well
understood in one dimension [3-6], where it was first established in the continuum
by Gol’dsheid, Molchanov and Pastur [20]. In higher dimensions, the first results
toward localization, for either high disorder or low energy, were due to Frohlich
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and Spencer [7], who proved exponential decay for the Green’s functions. These
were followed by a proof of localization for a hierarchical version of H by
Jona-Lasinio, Martinelli and Scoppola [8], and by a proof of the absence of
absolutely continuous spectrum at higher disorder or low energy by Martinelli
and Scoppola [9]. Subsequently, proofs of exponential localization, at high disorder
or low energy, were given by Frohlich, Martinelli, Scoppola and Spencer [4],
Delyon, Levy and Souillard [10], and Simon and Wolff [11]. All of these higher
dimensional results relied on methods or results of [7].

Recently, von Dreifus and Spencer [12,13] introduced a new proof of the
original Frohlich and Spencer results in [7], which uses the same basic ideas, but
is technically much simpler—particularly the probabilistic estimates. The key new
idea is a scaling argument previously used in the study of bond percolation [14].

In this article we show how the methods of von Dreifus and Spencer can be
used to give a direct proof of exponential localization. This proof uses the basic
ideas behind the Frohlich, Martinelli, Scoppola and Spencer proof [4, 5], but has
much simpler probabilistic estimates. As in [6], we can allow singular distributions
for the potential not permitted in [10,11].

This article is organized as follows: We state our results in Sect. 2. Theorem 2.1
is our result on localization, it follows from Theorems 2.2 and 2.3. Theorem 2.2 is
our basic technical result. Theorems 2.3 and 2.2 are proved in Sects. 3 and 4,
respectively. The Appendix contains a discussion of when the hypotheses of
Theorem 2.1 can be proven so we can conclude localization.

2. Statement of Results

We start with some notations and definitions.

If A cZ¢ we denote by H, the operator H restricted to [*(A) with zero
boundary conditions outside A. The corresponding Green’s function is G 4(z) =
(H 4 —2)7 1, defined for z¢a(H ,). We will write

Gz x,))=(H,—2)7(x,y) for x,yeA.

If A =2Z¢ we simply write G(z;x,y). Notice that we omit the dependence of H ,
and G, on the potential V.

If xeZ?, x = (xy,...,%,), let | x| =max {|x],...,]|x,/}. It will be convenient to
use this norm in Z°. The distances in Z¢ will always be taken with respect to this
norm,

If L>0, xeZ%, we will denote by A, (x) the cube centered at x with sides of
length L, i.e.,

L
A9 = {yeza; ly=xI éz}-

By 0A,(x) we will denote its boundary, i.e.,
d
0AL(x)= { ny 2 yeAL(x), y'¢AL(x), ~—Z1 lyi—yil= 1}-

We will abuse the notation and write yedA,(x) to mean <y, y' >edA.(x) for some
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y'. We will also use

Y. to denote
yedA (x) {y,yedAp(x)

A} (x)={yeZ%{y,y YedAL(x) for some yeA (x)}.
If A cZ% |A| will denote the number of points in A. Notice that
AL S L+ 1), [0AL(x)] S s,L7

where s, is a constant depending only on d.
By P(A4) we will denote the probability of the event 4.

and

Definition. Let m >0, E€R. A cube A[(x) is (m, E)-regular (for a fixed potential) if
E¢o(H 4, () and

|G gpe(Esx, Y| = e~ mL2
for all yedA [ (x). Otherwise we say that A (x) is (m, E)-singular.
We will say that yel?(Z%) decays exponentially fast with mass m > 0 if

— logly()l _ _

Ix]l =0 [ x|

Our results on localization is:
Theorem 2.1. Let EyeR. Suppose that, for some L, > 0, we have:

(P1) P{AL(0) is (m,, EO)-reg’ylar} =1—1/L% for some p>d, my> 0.
(P2) P{d(E, 6(H 4, 0) <e "} <1/Lf for some B and q, 0 < f <1, ¢>4p+6d, all
E with |E — Ey| £#, where n >0, and all L= L,

Then, given m, 0 <m < my, there exists B= B(p,d, B, q, my, m) < oo, such that if
Lo, > B, we can find 6 = (L, mg, m, B,1) > 0, so, with probability one, the spectrum
of H in (Eo— 0, Ey+ ) is pure point and the eigenfunctions corresponding to
eigenvalues in (Ey — 3, Ey + 0) decay exponentially fast at infinity with mass m.

The validity of (P1) and (P2) are discussed in the Appendix. Notice that B and
¢ do not depend on E,,.

By the resolvent equation,

GA Lo(o)(E) = GA Lo(o)(Eo) + (E - EO)GA Lo(o)(E) GA Lo(o)(Eo)-

_1B _B
d(EOaO'(HALO(o)));e Lo’ IE_Eolé%e LO,

we have that d(E,o(H ALD(O)))_Z%e_Lg. If in addition A, (0) is (m,, Ey)-regular
and yedA, (0), we have that

|G, 0(E:0,y)] S e ™00/ 1 2| E — Eq| ¢4,

If

So, given any my and p’, 0 <m <m, and d < p’ < p, if we let
S ___%e—ng(e—m{,Lo/z _ e-mOLO/Z),

it follows from (P1) and (P2) that
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(P1") P{for any Ee(E,—0, Eo+90) AL(0) is (mp, E)-regular}>1—1/L%—
1/L% =1 — 1/L% if L, is sufficiently large, how large depending only on p,q
and p'.

Thus Theorem 2.1 will follow from Theorems 2.2 and 2.3.
Theorem 2.2. Let I = R be an interval. Suppose that, for some Ly >0, we have:

(K1) P{for any Eel either Ay (x) or AL (y) is (mg,E)-regular} 21— 1/LE? for
some p>d, mg >0, anag any x,yeZ? with || x — y| > L.
(K2) P{d(E,o(H 4, )) < e L } < 1/L for some f and q,0 < <1 and q> 4p + 6d,

all E with d(E, I) g%e_"ﬂ, and all L= L,

Then there exists o= a(p,d), 1 <a <2, such that if we set L, =L;, k=0,1,
2,..., and pick m, 0 <m < my, we can find Q = Q(p,d, B, q,mqy,o,m) < co, such that
if Lo > Q, we have that, for any k=0,1,2,...,

2p

1
P{ for any Eel either Ay, (x) or Ay, (y) is (m, E)-regular} 21— (22
k

for any x, yeZ® with |x — y|| > L,.

Remarks. 1. To understand Theorem 2.2, which is our basic technical result, it is
useful to notice that the von Dreifus—Spencer basic technical result [12] states
that, under hypothesis (P1) and (P2),

P{A,(0) is (m, Eo)-regular} = 1 — [%
3
for all k=0,1,..., where L,,,=L{ for some o,1<a<2,0<m<my, if L, is
large enough. From this result the original Frohlich and Spencer results [7] can
be derived [12]. Similarly the Frohlich, Martinelli, Scoppola and Spencer results
[4] follow from Theorem 2.2.

2. In Theorem 2.2 we can pick any a such that 1 <o <o, where op=
(J+ Dp/2p+(J + 1)d, J being the smallest odd integer > (p + d/p — d). Notice
l<oy<2. Ifp>2d,J=3,s0 aq=2p/p+2d.

3. We will need mo >8JLy A, If in (P2) and (K2) we had an estimate on
P{d(E,o(H ) < 1/L*} for some s > 0, we would need my = C(log L/L,), where
C = C(s,d,J) is some constant. Notice that in many cases we have such an estimate
(see the Appendix).

4. Theorem 2.2 is still true if in the deﬁnitior}} of (m, E)-regularity for a cube
Ay (x) we had required that d(E,a(H 4, ) Z e .

Theorem 2.3. Let I =R be an interval, and let p>d, Ly >0, 1 <o <2p/d, m> 0.
Set L,,, =Ly, k=0,1,2,.... Suppose that, for any k=0,1,2,...,

1
P{ for any E€l either Ay, (x) or Ay (y) is (m, Eyregular} 21— I
k

for any x, yeZ? with | x — y| > L,.
Then, with probability one, the spectrum of H in I is pure point and the
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eigenfunctions corresponding to eigenvalues in I decay exponentially fast at infinity
with mass m.

3. Proof of Theorem 2.3.
We follow the strategy of [4, 5].

Definition. E is a generalized eigenvalue for H= — A + V if there exists a nonzero
polynomially bounded function  on Z* such that Hyy = Ey. In this case \ is called
a generalized eigenfunction.

We will use the following basic result [15,16]:

With respect to the spectral measure of H, almost every energy is a generalized
eigenvalue.

Thus Theorem 2.3 follows from

Lemma 3.1. Under the hypothesis of Theorem 2.3, with probability one the genera-
lized eigenfunctions of H= — A + V corresponding to generalized eigenvalues in I
decay exponentially fast at infinity with mass m.

Proof. Let b be a positive integer to be chosen later on. For x,eZ? let
A 1(x0) = App,., , (Xo)\ A 2L, (X0)
for k=0,1,..., and let us define the event
Ei(xo) = {AL,(x,) and A, (x) are (m, E)-singular for some Eel and xe A, (xo)}.
By our hypothesis,
(2bLy,, + 1) < (2b+ 1y

P(Ei(x0)) < L,%p = L]%p-ad :

Since o < 2p/d,
3. PlEyxo)) <o,

so it follows from the Borel Cantelli Lemma that for each x,eZ?,
P{E,(x,) occurs infinitely often} = 0.

Thus
P{E,(x,) occurs infinitely often for some x,eZ} = 0.

So, if we let Q, = {E,(x,) occurs only finitely many times for each x,eZ"}, we
have that P(2,)= 1.

Now let Ve, and let Ecl be a generalized eigenvalue for H= -4+ V,
with the corresponding nonzero polynomially bounded generalized eigenfunction,
ie., HYy = Ey, |Y(x)| £ C(1 + || x|) for some C < oo and positive integer t, and we
can find x,eZ* such that y(x,) # 0.

If E¢o(H, ), we can recover  from its boundary values by

Y(xo) = > GALk(xo)(E; X0, YW(Y).

pyHedA L, (Xo)
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If A (xo) is (m, E)-regular, we get
W(xo)l < saLli” e ™2 C(L+ [l xo || + Ly

Since Y(x,) #0, it follows that there exists k, = k(V; E, x,) such that Ay, (x,)
is (m, E)-singular for all k = k;. On the other hand, since Ve, we can find
k, =k,(V,x,) such that, if k = k,, E,(x,) does not occur. Let us take k5 to be the
biggest of k; and k,, ky=k;3(V,E,x,). If k=k,;, we conclude that A (x) is
(m, E)-regular for all xe A4, , {(x,)

Now, let p, 0 < p < 1, be given, we pick b > 1+ p/1 — p and define

Zk+ 1(x0) = A[Zb/(l +p)1Lic+ l(xo)\A[z/u ~p)]Lk(xo)~
Then Ay, (xo) © Ay (xo), and, if xe A, ,,(x,), we have
d(x,045+1(x0)) Z pllx —xo].

Moreover, if || x — xo]| > Lo/1 — p, we have that xeA, , ,(x,) for some k.
Now let k = k3, so A, (y) is (m, E)-regular for any ye A, ((x,)- As before,

Y= Y Gy (B uy)

Cu' YDA L)

WO = s L™ e ™2 g (uy)|

or

for some ) €A [, (y).

Thus, if xeA,,,(x,) with k>k,, we can repeat this procedure at least
((Ly/2) + 1) Y p||x — x4 || times, and use the polynomial bound on ¥ to obtain

W(x)| = (Ssz_le‘MLk/Z)(L"/ulrlp“x»xouc(l + I %ol + bLy 4 )

We can conclude that, given p’, 0 <p’ <1, we can find k, = k3 such that if
k= k, we have

()| < e b
if [1x — xo | 2 Ly/1 — p.
Thus ¢ decays exponentially, and

lim Mé —p'pm
x| -0 x|

for any p, p’€(0, 1).
Theorem 2.3 is proved.

4. Proof of Theorem 2.2.

Let us fix the interval I <R and p >d. For a given L and m >0 we will denote
by R(L,m) the statement:

P{ for any E€l either A (x) or AL(y) is (m, E)-regular}

21_—1— for any x,yeZ* with ||x — y|| > L.

= sz,
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The proof of Theorem 2.1 will proceed by induction. Notice that R(Lg,m) is
just (K1).
The induction step is

Lemma 4.1. Let aq=(J + Dp/2p+(J + 1)d, J being the smallest odd integer >
p+d/p—d. Suppose R(l,m;) holds with m,> 8J/I'~# and (K2) holds for all L=1.
Pick a, 1 <a <o, Then there exists Q1 = Q(p,d, B,q,®) < 00, such that if | > Q,,
then R(L,m,) holds with L=1* and

ngml_[S(J+1)m+ 3 ]> 8J

a1 1 pa=p | =11-8"

The proof of Lemma 4.1 has a deterministic and a probabilistic component.
We start by proving the deterministic step; but first we need the following
(deterministic) definition.

Definition. A cube A (x) is non-resonant at the energy E if d(E, o(H 4, ) Z
te™, ie, if and only if |G A (E)| <2é". In this case we will say that A, (x)
is E— NR.

Lemma 4.2. Let L=1" with 1 <a <2, EeR, J an arbitrary positive integer, and
m, > 8J/I1' ", Suppose:

(i) A (x)is E—NR.
(1) Ajai+n(y)isE—=NRforallj= 1,2,...,J and ye A (x) with A ;34 1)(y) = A(x).
(iii) There exist at most J non-overlapping cubes of side | contained in A (x) that
are (my, E)-singular.
Then there exists Q,=Q,(J,d,B,a) < oo such that if |=Q,, we have A;(x)

(my, E)-regular with
5J+1) 3 8J
mLémt—[ 1 ml+la(1—ﬂ)]gl}—ﬂ'

Proof. By (iii) we have at most J non-overlapping cubes of side [ contained in A;(x)
that are (m, E)-singular. It follows that we can find u;e A (x) with d(u;, 0A (x)) = 1/2,

i=1,...,r,wherer £ J, such that ifueAL(x)/ {J A,(u;) with d(u, 0A [(x)) = /2, then

i=1

Ay(u) is (m, E)-regular.

An easy geometric argument shows that we can find cubes A, < A, (x) with
side Le{j@2l+1), j=1,2,...,J}, i=1,2,...,t, t<r, such that dA,A) 21 if
) R

r t f
U Asw)e U Ay, and Y L<JQI+1).
i=1 j=1 i=1

t
It follows that if ue A (x) / Ay, d(u,0A,(x)) = I/2, we have that A,(u) is (m, E)-
=1

1

t
regular. Also notice that if uedA;! for some j=1,...,¢ then u¢  } A,,.
i=1
The basic tool in the proof is the resolvent identity as used in [7,4]. If A is a
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cube contained in A/(x), let ueA, ve A (x)\A. Then it follows from the resolvent
identity that

GAL(x)(E; u, l)) = Z GA(E: u, W)GAL(x)(E; le U)'
{w,w'HedA

Here 0A denotes the boundary of A in A;(x). Thus

IGAL(x)(E; u, v)] §|: Z |G A(E;u, W)I:]lGAL(x)(E;Wl’U)I 4.1

wedA
for some w, €dA ™.
Let us now fix yedA (x) and let ue A (x), d(u, 0A (x)) < I/2. We have two cases:
(a) A,(u) is (m,, E)-regular. In this case
Z |G A (Esu, W)| < sglt~temmY2, (4.2)
WedA (u)

(b) A,(u)is (m,, E)-singular. It follows that ue A, for somei=1,...,t. Thus (4.1) gives

‘GAL(x)(E; u, y)| §[ z |GA,i(E;u>W)‘jl‘GAL(x)(E;WhU)L

wedAy,

where w,edA;. If d(A,, 0A(x))=1/2+ 1, then d(w,,0A(x)) = I/2. In this case
we use (ii) to estimate the term in brackets and (4.2) to estimate the other factor
getting
|GAL(x)(E; u, Y)l é St:i" 2d(l + 1)2(d— 1)Jd_ le(J(2l+ 1))ﬂ—mzl/2] GAL(x)(E; Wa, y)"
where w,edA;" (w)).
Thus

'GAL(x)(E; u,y) < e_mwzl GAL(x)(E; wa, V), 4.3)
where

2 8J
mi=m ~ LI+ 1 +2(d — Dlog (+ 1) +log (5247 )] Z m — r=3> 0

if [ Z Q4 for some Q5= Q,(J,d, f) < .
If ue A (x), d(u, 0A [(x)) 2 1/2, let

Z) = sl te™™Y2 if y is as case (a)
e ™2 if u is as case (b)’

Then (4.1) and (4.2) for case (a), and (4.3) for case (b), say that

| GAL(x)(E; u, Y| = Z(u)| GAL(x)(E; w, y)|
for some weA (x).
To estimate |G 4, ,(E; x, y)|, we start from x, the center of the cube A (x), and
apply the above procedure repeatedly, when possible, getting, after n steps,
'GAL(x)(E; X)) £ Z(x)'GAL(x)(E; Wi Y)| S Z(x)Z(WI)'GAL(x)(E; wy )| S £
SZ(X)Z(Wy)+ Z(Wn— 1)1 G pp ) (Es Wy V)
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For this to be possible, we need w,,...,w,_; to satisfy the conditions of either
(a) or (b).

Now let n, be the number of times we were in case (a), n, =n —n,;. We have
1
(G A 0B %)) < (500~ te b2y (g2 G A o Es Wi )
Since m; >0, the procedure can always be repeated as long as

L2—[JRI+1)+12+1]
2+1 '

Thus, since A;(x) is E— NR by (i), we can always get

|G arm(Esx, )| < (gl te” "'"/2)"32eLp,

ny =

where
L2 —[JQI+ 1)+ 12+ 1]
n;y < —
2+ 1
Then we have |G 4, ) (E; X, y)| £ e ™2, where

41(J+1)+g] 2

1.

2 2
log (s~ 1) — Zlog 2——

L 1 LIF

Recalling L=1% 1 <a <2, we get

4J+1) 27 2dlogl logd 2
MLEMTI| S | T T e TR

ngml_ml[

5J+1) 3 S 8J
-1 - =5 =11-8

Zm—m

if [=Q, for some Q, =Q,(J,d,f,0) < co.

Thus if we take Q, to be the biggest of Q5 and Q,, we have that 0, =
0,(J,d,B,0) < co and Lemma 4.2 holds if [ = Q,.

We now prove Lemma 4.1. Pick o, 1 <a <ag. If 1 = Q, of Lemma 4.2, it suffices
to show that we can find Qs = Qs(p, d, B, g, ®) such that, if | = Q, we have that

P{for any Eel, (i), (ii) and (iii) of Lemma 4.2 hold for either

1
Ayor AL0)} 21—

for any x, yeZ® with ||x — y|| > L. Here L =I*. If A, is a cube with side r, let
o'(H,)=0(H ,){EeR;d(E, ) < ke ).
It follows from (K2) that if A,, i= 1,2, are non-overlapping cubes with sides
;=1 i=1,2, respectively, then (see [4,5])
(I, + e
.
To see that, for any cube A let V,={V(x), xeA}, P, and E, being the
corresponding probability measure and expectation. Since A;, and A,, are non-

P{d(c'(H,, ).0'(H, ) <e ™} < 4.4)



294 H. von Dreifus and A. Klein
overlapping V, and V, are independent, so

/ - ’ ’ — B
P{d(d'(H,, ), 0'(H, ) <e i = E, P, {do'(H,)0'(H, ) <e i,
Let us fix VA:Z’ we can write a’(HAlz) ={A,..., 4}, where k < (I, + 1)*. We have

_# k , _ I, + 1)
PA,‘ {d(GI(HAl!), OJ(HA,‘)) <e )< ‘:21 PAll{d(lia g (HA,‘)) <e IB} <( I )

by (K2), the estimate being uniform in V, . This proves (4.4).
Let us now fix x, yeZ? |x—y| > L. It follows from (4.4) that, with [, A l, =
smallest of [, [,, we have

P{d(c'(H,, ).0'(H, ) <e "% for some x'eA,(x),y'eA, () 1L,
=Lorj2l+1),j=1,2,...,J, with A, (x") = Ay (x), A,()) = AL, (»)}
AL
= @+ “5)

Now let E€l and let I' be the largest of L or j(2I+ 1), j=1,2,... J, such that there

ex1sts ueA;(z) with A, (u) = A,(z), z being either x or y, w1th d(E,s'(H A w) <
le - (if such I’ exists). For clarity of argument, say z = x. If the event whose
probability is estimated in (4.5) does not occur, we have that A,(y) is E — NR for

all yeA,(y), I =L or j2l+1),j=1,...,J, with A.(y) = A(y). Thus, for [ = Qs,
P{for any Ee€l, (i) and (ii) of Lemma 4.2 hold for either A (x) or A.(y)}

J+ DAL+ 1)*
= @Iy

Now, since J is an odd integer, for any zeZ® we have, using the independence of
the potential at different sites, that

4.6)

P{for some E€l there are at least J + 1 non-overlapping (m,, E)-singular
cubes of side I/ contained in A,(z)} <

P{for some E€l there are at least two non-overlapping (m;, E)-singular
cubes of side ! contained in A;(z)}]Y* V2

- [(L " 3)2"]““”2 _ [(L;Lp 1)“}“1, (47)

since R(l,m;) holds by hypothesis.
Thus, combining (4.6) and (4.7) we get

P{for any E€l, (i), (ii) and (iii) of Lemma 4.2 hold for either
1
Aux) or A )} 2 1 =5 for 12 Qs,

some Qs = Qs(p,d,q,0) < o0, since ¢ >4p+ 6d and a <oy < 2.

This proves Lemma 4.1.
We now complete the proof of Theorem 2.2. Let oy and J be as in Lemma 4.1,
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let 1<a<og Ly=L k=0,1,...,and suppose L, > 0, of Lemma 4.1. Let
5(J +1) 3
My =My — L,a:_l mk+Lz(1_B) >

k=0,1,.... Let us pick m, 0 <m<m, Theorem 2.2 follows immediately from
Lemma 4.1 by an induction argument if

o0
Zo(mk—mk+l)§m0—m'

But

® 1 & 1

S (m, —me 1) < 50 + )m SIE S S
S on-me)zs0ime 3 +3 %

0

1 @ 1
< 5(J + Dmy k;) [ +3 ’;O Lap <mg—m

if LO QG’ some Q6 - Q6(p9d ﬁ q, My, &, m) < .
Theorem 2.2 is proved.

Appendix: Validity of (P1) and (P2)

In this Appendix we will discuss conditions on the potential probability distribution
1 under which (P1) and (P2) have been proven.

A.l. Arbitrary Dimension. For arbitrary dimension hypotheses like (P1) have only
been proven for either “low energy” or “high disorder” (see [7,4,5,12]). For
completeness we will sketch the proof of (P1) under those conditions, notice that
the proofs yield (P1) directly.

For “low energy” the result is

Proposition A.1.1. Let u be any probability measure, and let Ly>0, p>d and
mo >0 be given. Then there exists E, = Eq(u, Ly, p,d, my) < 00, such that

P{ for any E with |E| Z Ey AL(0) is (mg, E)-regular} = 1 —LP.
0
Proof . Note that |4, [ <II4]=2d, so if we have |V(x)| < E, — 2d — e"o"o?
for all xeA, (0), we get IG aoEN s e~moLo/2 for all E with |E| = E,,.
Since we have that

P{|V(x)| £ E; —2d — e™"™/* for all xeA, )}

=[u{[ — Eq+2d + e™2 Ey — 2d — emoLo/2} Lot )7 | a5 E — o0,
the proposition follows.

We will say that a probability measure u is Holder continuous of order p >0
[6]if 6,(w'=inf sup |b—al Pu([a,b])< co. In this case we will call 0,(1)

t>0 |b—a|=1t
the disorder of u. Notice that if u is absolutely continuous with a density in L4,
1 <g = oo, then u is Holder continuous of order 1/g'=1—1/g, and 6,,(p) ™' <
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|du/dv |, Thus if u has a bounded density our notion of disorder coincides with the
one in [7,4,5].
Given such u and 4> 0, let u; be the probability distribution of AV, i.e.,

u(la,b]) = u([j—’ﬂ)

Notice that 6,(u;) = 4?6 ,(u). For “high disorder” we have

Proposition A.1.2. Let yu= (1 —t)u, + tv, where u, is a Holder continuous probability
measure, v is an arbitrary probability measure, A>0,0<t<1. Let L,>0, p>d
and my>0 be given. Then, given n >0, there exist A, = A,(t1, Lo, p,d, my) < o0
and 0= t, = t,(Lg, p,d,mo) <1, such that

P{ for any E€[Eq—n,Eo+ 1] Ay 0, is (g, E)-regular}
1
>1 —Efor any EqeR, A2 4, and 0ZLt=t,.
0

Proof. Fix E,eR, n>0. Notice that if |V(x)— E|=2d +n+e™™? for all
xeAL,(0), we get |G, (Bl < e moLo/2 for all E€[E, — 1, E, + n]. Since

P{|V(x) — Eq| < 2d + 21 + €™"/* for some xeAy )}
S(Lo+ 1)ulEy —2d — 25y — e™to2, Eo + 2d + 25 + e™oLo/?],

the proposition follows.
We will now list conditions under which (P2) has been proven for arbitrary
dimension.

Theorem A.1.3.

(i) If u is absolutely continuous with a bounded density, then for any L >0, E€R
and ¢ >0,
-1

il TR

P{d(E,0(H 4, () <&} <2 i

jes)

(1) If u([a,b]) <67 |b—al’ for some 0<p<1,5>0, and all a<beR, we have
P{d(E,0(H 4, () <&} £2(1 — p)~ 6~ (L + 1)%¢” for all E€R, L>0 and ¢>0.

(i) Let u be Holder continuous of order p>0, ie., 6,(u)>0. Then for any
0 <6 < d,(u), we can find n = n(u, 6) >0 such that

P{d(E,0(H 4,(0))) S &} S 07 12°(L + 1)"1 ¥ P¢P

for all E€R, ¢ >0 and L> 0 such that (L + 1) <.

(iv) Let u=(1 —t)u, + tu,, where 0 <t < 1 and u,, u, are probability measures with
compact support such that p, is Holder continuous of order p >0 and p, is
otherwise arbitrary. Let 0 <8 < ,(1;) and suppose 0 <¢f <(L+ 1) for and
some 0 < a <% and all L large enough. Then there exist t(d), where t(1) =t(2) = 1
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and 0 < t(d) < 1 for d = 3, such that for all L large enough we have

P{d(E,0(H 4,0)) S 6.} S 07 12°(L + 1)/ *P¢f + ] for some
a=a(d,p,a)>0 and n=n(t) >0 for 0 <t <t(d),
and n(t)— oo as t —0.

(i) was proven by Frohlich and Spencer [7] from Wegner’s estimate on the density
of states [17]. (ii), (iii) and (iv) were proven by Carmona, Klein and Martinelli
(6]

A.2. One Dimension. If y1 is not a single delta function and j\vl"d,u(v) < oo for some

n >0, (P1) and (P2) always hold in one dimension. The proof in this generality use

the Theory of Random Matrices, namely the circle of ideas associated to

Furstenberg’s Theorem (e.g., [18]).

(P2) was proved by Carmona, Klein and Martinelli [6]. Their precise result is

Theorem A.2.1. Let d = 1. Suppose the support of u is not concentrated in a single
point and jlvl"d,u(v)< oo for some n>0. Let I be a compact interval. For any
0< <1 and 6 >0 there exist Ly = LI, B, 06) < oo and © =1(1, B, 0) > 0 such that

P{d(E, o(H 4, () = e“’l‘ﬂ} < e forall Eel and LZ=L,.

We now turn to (P1). Frohlich, Martinelli, Scoppola and Spencer [4, 5] showed
how to obtain a related hypothesis from Furstenberg’s theorem. For completeness
we will sketch a proof of (P1), based on a similar result for the strip by Klein,
Lacroix and Speis [19]. We will denote by y(E) the Lyapunov exponent (e.g., [ 18]).

Theorem A.2.2. Let d = 1. Suppose the support of u is not concentrated in a single

point and [ |v|"du(v) < oo for some n>0. Let ¢>0 and 0< B <1 be given. Fix

EqeR. Then there exist Ly = Lo(E, ¢, f) < o0 and k = k(E,, ¢, ) > 0 such that
P{A,(0) is (Y(Eo) — &, Eo)-regular} > 1 —e ™ for all L= L,.

Proof. We will use the notation Hyj, ;,;, Gy, j(E), [j1,j2] being an interval in Z.
Notice that A;(0)=[ —L/2,L/2] if L in an even positive integer.
It suffices to show that, for given E €R, ¢ >0 and 0 < f < 1, we can find N,
and k > 0 such that
P{E0¢U(H[—-n,n]) and |Gy, ,(Eq, 0,n)| = e_(Y(EO)_E)"} 21— ek’

for all integers n = N,,.
By the resolvent identity,
G[—n,n](E0307 n)= G[o,n](EmOa n)+ G[—n,n](Eo; 0, — I)G[O,n](EO, 0,n)
= G[O,n](EO; 03 n)(l + G[—n,n](EO’ 0’ - 1))

In view of Theorem A.2.1, it suffices to prove that given E,eR, ¢>0 and
0 < f <1, there exist N; and 6 > 0 such that

P{EO¢U(H[0,n]) and [Gro.m(Eo; 0,n)| < e_(Y(EO)—s)"}
>1—e® forall n>N,.
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Let us consider the operator
H[O,n] = H[o’n] - lP

where P, is the projection onto the delta function at the lattice site n ie.,
P,p = ¢(n)d,, where 6,(x) =1 if x =n and 0 otherwise.

If E€R, H[o = — E is always invertible. To see this notice that if (H o.m— E)o =0,
then [(H[o m— E)p](x) =0 for xe[0,n— 1]. From the uniqueness of solutions it
follows that @ = ¢(0)p,, where ¢, is real valued. But then (H ) — E)p, =0, so
we can conclude that ¢,(n) = (p 1(n—1)=0, and hence that ¢, is identically zero.

Let G[0 nlE) = (H[O . — E)™1, and let y; be the unique solution of the equation

Hyo g =Eyy with yg0)=1.
It follows that
Giom(E; 0,n) = Yrg(n + 1) — ity ().

A careful analysis of Lemma 5.1 in [6] and its proof, followed by the use of
Chebychev’s inequality, gives that, for given E,eR and ¢ >0,

c . —(y(Eo)—
P{|Gyo,(Eq; 0,n)| 2 e @ =am}
= e~ ™ for some 1> 0 and all n = N, for some N, < c0.

By the resolvent equation,
G[O,n](EO) = G[O,n](EO) - lﬁ[o,nl(Eo)P nG[o,n](Eo)

and hence _
G[O,n](EO; 0,n)= G[O,n}(EO; 0,nm[1— iG[o,nl(Eo§ n,n)].
If
,G[O,n](EO; 0,n) S e~ VEI | Gy (Eo) |l €™,
we get

I G[O,n](EO; 03 n)l é e ~((Eo) = 2e)n

for all n = N, for some N; < co.

Using once again Theorem A.2.1, the Theorem follows.

Theorems A.2.1 and A.2.2 have been extended to a one-dimensional strip by
Klein, Lacroix and Speis [9].

References

1. Anderson, P.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

2. Pastur, L. A.: Spectra of random self adjoint operators. Russ. Math. Surv. 28, 1 (1973)

3. Kunz, H., Souillard, B.: Sur le spectre des operateurs aux differences finies aleatoires. Commun.
Math. Phys. 78, 201-246 (1980)

4. Frohlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the
Anderson tight binding model. Commun. Math. Phys. 101, 21-46 (1985)

5. Martinelli, F., Scoppola, E.: Introduction to the mathematical theory of Anderson localization. Riv.
Nuovo Cim. 10, N.10 (1987)

6. Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular
potentials. Commun. Math. Phys. 108, 41-66 (1987)



Localization 299

7.

8.

9.

10.

11.

12.

13.
14.

15.
16.
17.
18.
19.

20.

Frohlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder
or low energy. Commun. Math. Phys. 88, 151-184 (1983)

Jona-Lasino, G., Martinelli, F., Scoppola, E.: A quantum particle in a hierarchical potential with
tunneling over arbitrarily large scales. J. Phys. A17, L635-L638 (1984)

Martinelli, F., Scoppola, E.: Remark on the absence of absolutely continuous spectrum in the
Anderson model for large disorder or low energy. Commun. Math. Phys. 97, 465-471 (1985)
Delyon, F., Levy, T., Souillard, B.: Anderson localization for one and quasi one-dimensional systems.
J. Stat. Phys. 41, 375 (1985)

Simon, B., Wolff, T.: Singular continuum spectrum under rank one perturbations and localization for
random Hamiltonians. Commun. Pure. Appl. Math. 39, 75-90 (1986)

von Dreifus, H.: On the effects of randomness in ferromagnetic models and Schrédinger operators.
Ph.D. thesis, New York University (1987)

Spencer, T.: Localization for random and quasi-periodic potentials. J. Stat. Phys. 51, 1009 (1988)
Chayes, J., Chayes, L.: In: Critical phenomena, random systems and gauge theories. Osterwalder, K.,
Stora, R.: (eds.). Amsterdam: North Holland 1986

Berezanskii, J. M.: Expansion in eigenfunctions of self-adjoint operators. Transl. Math. Monographs
vol. 17. Providence, R. L: American Mathematical Society 1968

Simon, B.: Schrodinger semigroups. Bull. Am. Math. Soc. 7, 447 (1983)

Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B44, 9-15 (1981)
Bougerol, P., Lacroix, J.: Products of random matrices with applications to Schrédinger operators.
Boston, MA: Birkhduser 1985

Klein, A., Lacroix, J., Speis, A.: Localization for the Anderson model on a strip with singular
potentials. Preprint

Gol’dsheid, Ya., Molchanov, S., Pastur, L.: Pure point spectrum of stochastic one dimensional
Schrodinger operators. Funct. Anal. Appl. 11, 1 (1977)

Communicated by T. Spencer

Received October 17, 1988; in revised form December 23, 1988








