
Communications in
Commun. Math. Phys. 124, 285-299 (1989) Mathematical

Physics
© Springer-Verlag 1989

A New Proof of Localization in the Anderson Tight
Binding Model

Henrique von Dreifus* and Abel Klein**
Department of Mathematics, University of California, Irvine, Irvine, CA 92717, USA

Abstract. We give a new proof of exponential localization in the Anderson
tight binding model which uses many ideas of the Frohlich, Martinelli, Scoppola
and Spencer proof, but is technically simpler-particularly the probabilistic
estimates.

1. Introduction

The Anderson tight binding model is given by the random Hamiltonian H =
— A + V on l2{Zd\ where Δ(x9 y) = 1 if |x - y\ = 1 and zero otherwise, and V{x),
xeZd, are independent identically distributed random variables with common
probability distribution μ. This model was introduced by Anderson [1] to describe
the motion of a quantum-mechanical electron in a crystal with impurities.

It is well known that the spectrum of the Hamiltonian H is given by

σ(H) = σ( - A) + σ(V) = [ - 2d, 2d] + supp μ

with probability one [2,3]. The spectrum of H can be decomposed into pure point
spectrum, σ p p(#), absolutely continuous spectrum, σac(if), and singular continuous
spectrum, σsc(H). There exist sets Xpp, Xac, X s c c :R such that σpp(H) = Σpp,
σac(H) = Σac and σsc(H) = Σsc with probability one [3].

In this article we are concerned with localization. We say that the random
operator H exhibits localization in an energy interval / if H has pure point spectrum
in / with probability one, i.e., if Σacnl = Σscnl = φ. We have exponential
localization in / if we have localization and all the eigenfunctions corresponding
to eigenvalues in / have exponential decay.

Exponential localization for the Anderson tight binding Hamiltonian is well
understood in one dimension [3-6], where it was first established in the continuum
by GoΓdsheid, Molchanov and Pastur [20]. In higher dimensions, the first results
toward localization, for either high disorder or low energy, were due to Frohlich
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and Spencer [7], who proved exponential decay for the Green's functions. These
were followed by a proof of localization for a hierarchical version of H by
Jona-Lasinio, Martinelli and Scoppola [8], and by a proof of the absence of
absolutely continuous spectrum at higher disorder or low energy by Martinelli
and Scoppola [9]. Subsequently, proofs of exponential localization, at high disorder
or low energy, were given by Frohlich, Martinelli, Scoppola and Spencer [4],
Delyon, Levy and Souillard [10], and Simon and Wolff [11]. All of these higher
dimensional results relied on methods or results of [7].

Recently, von Dreifus and Spencer [12,13] introduced a new proof of the
original Frohlich and Spencer results in [7], which uses the same basic ideas, but
is technically much simpler—particularly the probabilistic estimates. The key new
idea is a scaling argument previously used in the study of bond percolation [14].

In this article we show how the methods of von Dreifus and Spencer can be
used to give a direct proof of exponential localization. This proof uses the basic
ideas behind the Frohlich, Martinelli, Scoppola and Spencer proof [4,5], but has
much simpler probabilistic estimates. As in [6], we can allow singular distributions
for the potential not permitted in [10,11],

This article is organized as follows: We state our results in Sect. 2. Theorem 2.1
is our result on localization, it follows from Theorems 2.2 and 2.3. Theorem 2.2 is
our basic technical result. Theorems 2.3 and 2.2 are proved in Sects. 3 and 4,
respectively. The Appendix contains a discussion of when the hypotheses of
Theorem 2.1 can be proven so we can conclude localization.

2. Statement of Results

We start with some notations and definitions.
If A c ϊ , we denote by HΛ the operator H restricted to I2(A) with zero

boundary conditions outside A. The corresponding Green's function is GΛ(z) =
{HΛ - z)-\ defined for zφσ(HΛ). We will write

GA(z;x,y) = (HA — z)~ί(x,y) for x,yeA.

If A = Zd we simply write G(z;x,y). Notice that we omit the dependence of HΛ

and GΛ on the potential V.
If xeZd, x = (x1,...,xd), let ||x|| =max{|x1 |,..., |xd |}. It will be convenient to

use this norm in Zd. The distances in Zd will always be taken with respect to this
norm.

If L > 0, xeZd, we will* denote by AL(x) the cube centered at x with sides of
length L, i.e.,

By dAL(x) we will denote its boundary, i.e.,

We will abuse the notation and write yedAL(x) to mean (y9y'}edΛL(x) for some
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y'. We will also use

Σ to denote ]Γ
yedΛL(x) (y,y')edΛL(x)

and

dA£(x) = {y'eZd;(y,yyedΛL(x) for some yeΛL(x)}.

If A c Zd, |yi I will denote the number of points in Λ. Notice that

|Λ L (x) |^(L+iy*, \δAL(x)\SsdL
d~\

where sd is a constant depending only on d.

By P(^4) we will denote the probability of the event A.

Definition. Let m > 0, EeR. A cube AL(x) is (m, E)-regular (for a fixed potential) if
Eφσ(HΛL(x)) and

for all yedAL(x). Otherwise we say that AL(x) is (m,E)-singular.
We will say that φel2(Zd) decays exponentially fast with mass m > 0 if

Our results on localization is:

Theorem 2.1. Let EoeR. Suppose that, for some Lo > 0, we have:

(PI) P{/lLo(0) is (mo,Eo)-regular} ^ 1 - ί/Lξfor some p>d,mo>0.
(P2) F{d(E, σ(HΛL{0))) < e~hβ} ^ l/Lq for some β and q, 0 < β < 1, q > Ap + 6d, α//

E with \E — Eo\ ^ η9 where η>0, and all L ^ Lo.

given m, 0 < m < m0, ί/ϊerβ exists B = B(p, d, β, q, m0, m) < oo, SWC/Ϊ ί/iαί if
Lo > J5, we can find δ = <5(L0, m0, m, j?, ?/) > 0, so, with probability one, the spectrum
of H in (Eo — δ, Eo + δ) is pure point and the eigenfunctions corresponding to
eigenvalues in (Eo — δ,E0 + δ) decay exponentially fast at infinity with mass m.

The validity of (PI) and (P2) are discussed in the Appendix. Notice that B and
δ do not depend on Eo.

By the resolvent equation,

W W - Eo)GΛao)(E)GΛLoi0)(E0).
If

we have that d(E,a(HAao)))^^e~L°. If in addition ALo(0) is (ra0, £0)-regular

and yedALo(0), we have that

\GAao)(E;O,y)\ ύ e~moLo/2 + 2\E - E0\e2L°.

So, given any m'o and p\ 0<m'0< m0 and d < p' < p, if we let

<5 = λe-
2Loίe-

m'o V 2 _ e~
moL

it follows from (PI) and (P2) that
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(PΓ) P{for any Ee(E0-δ, E0 + δ) ΛLo(0) is K,£)-regular} ^ 1 - 1/Lg -
1/L$ ^ 1 - 1/Lg' if Lo is sufficiently large, how large depending only on p, q
and p'.

Thus Theorem 2.1 will follow from Theorems 2.2 and 2.3.

Theorem 2.2. Let I czR be an interval Suppose that, for some L o > 0, we have:

(Kl) F{for any Eel either ΛLo(x) or ΛLo{y) is (mo,E)-regular}^l-l/LlP for

some p > d, m0 > 0, and any x,yeZd with \\x — y\\ > Lo.
(K2) P{d(E, σ(HΛL{0))) < e~L*} ^ ί/Ufor some β and q,O<β < 1 and q> Ap + 6d,

αH E with d(E, I) S \e'L\ and all L ^ Lo.

ί/iere exίsίs α = α(p, d), 1 < a < 2, SMC/I ί/zαί if we set Lk + ί=Ll, k = 0,1,
2,..., αnd pίcfe m, 0 < m < m0, we can find Q = Q(p, d, β, q, m0, α, m) < oo, swc/z ί/iαί
ι/ L o > β, we have that, for any fc = 0,1,2,...,

P{/<9r any £ e / βiίΛβr ΛLk(x) or ΛLk(y) is (m,E)-regular} ^ 1 - y ^

/or any x, yeZd with \\x — y\\>Lk.

Remarks. 1. To understand Theorem 2.2, which is our basic technical result, it is
useful to notice that the von Dreifus-Spencer basic technical result [12] states
that, under hypothesis (PI) and (P2),

P{ΛLk(0) is (m,£0)-regular} ^ 1 - —

for all k = 0,1,.. ., where Lk + 1= LI for some α, l < α < 2 , 0 < m < m0, if L o is
large enough. From this result the original Frohlich and Spencer results [7] can
be derived [12]. Similarly the Frohlich, Martinelli, Scoppola and Spencer results
[4] follow from Theorem 2.2.

2. In Theorem 2.2 we can pick any α such that 1 < α < α0, where α0 =
(J -f l)p/2p + (J + l)d, J being the smallest odd integer > (p + d/p — d). Notice
1 < α0 < 2. If p > Id, J = 3, so α0 = 2p/p 4- Id.

3. We will need m0 > 8JLQ {ί~β\ If in (P2) and (K2) we had an estimate on
P{d(E,σ{HΛL{0))) < 1/Π} for some s > 0, we would need m0 ^ C(logL0/L0), where
C = C(s, d, J) is some constant. Notice that in many cases we have such an estimate
(see the Appendix).

4. Theorem 2.2 is still true if in the definition of (m, £)-regularity for a cube
AL(x) we had required that d(E,σ(HΛL(x)))^\e~L .

Theorem 2.3. Let I c R be an interval, and let p>d, L o > 0, 1 < α < 2p/d, m > 0.
Seί L f c + ! = LI, k = 0,1,2,.... Suppose that,for any k = 0,l,2,...,

P{/or any Eel either ΛLk(x) or ΛLJy) is (m,E)-regular} ^ 1 j -
Lk

p

for any x, yeZd with \\ x — y \\ > Lk.
Then, with probability one, the spectrum of H in I is pure point and the
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eίgenfunctions corresponding to eigenvalues in I decay exponentially fast at infinity

with mass m.

3. Proof of Theorem 2.3.

We follow the strategy of [4,5].

Definition. E is a generalized eigenvalue for H = — A + V if there exists a nonzero
polynomially bounded function ψ on Zd such that Hφ = Exjj. In this case φ is called
a generalized eigenfunction.

We will use the following basic result [15,16]:
With respect to the spectral measure of H, almost every energy is a generalized

eigenvalue.
Thus Theorem 2.3 follows from

Lemma 3.1. Under the hypothesis of Theorem 23, with probability one the genera-
lized eigenfunctions of H = — A + V corresponding to generalized eigenvalues in I
decay exponentially fast at infinity with mass m.

Proof. Let b be a positive integer to be chosen later on. For xoeZd let

A + 1 (*θ) = Λ 2bLk + ! (*θ)\ Λ 2Lk (*θ)

for fc = 0,1,..., and let us define the event

Ek(x0) = {ΛLk(x0) and ΛLk(x) are (m,£)-singular for some Eel and xeAk+1(x0)}.

By our hypothesis,

Since α < 2p/d,

so it follows from the Borel Cantelli Lemma that for each xoeZd,

F{Ek(x0) occurs infinitely often} = 0.

Thus

F{Ek(x0) occurs infinitely often for some x o eZ d } = 0.

So, if we let Ωo = {Ek(x0) occurs only finitely many times for each xoeZd}, we
have that P ( β o ) = l .

Now let Feί2 0 , and let Eel be a generalized eigenvalue for H = — A + V,
with the corresponding nonzero polynomially bounded generalized eigenfunction,
i.e., Hψ — Eψ, Iψ(x)\ ^ C(l + \\x\\)* for some C < oo and positive integer ί, and we
can find xoeZd such that φ(xo)Φ0.

If Eφσ(HΛL{Xo)\ we can recover ψ from its boundary values by

o) = Σ GΛLk(*o)(E> *
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If ΛLk(x0) is (m, £)-regular, we get

\φ(xo)\ ^ s d L Γ ^ - m L k / 2 C ( l + \\xo\\+Lky.

Since φ{x0) ^0> it follows that there exists kx = fc^F^Xo) such that ΛLk(x0)
is (m, £)-singular for all k^kv On the other hand, since VeΩ0, we can find
^2 = k2(V,x0) such that, if k ^ fc2, £fc(xo) does not occur. Let us take k3 to be the
biggest of kί and fc2, fc3 = /c3(F,£,x0) If &^/c3, we conclude that ΛLk(x) is
(m, £)-regular for all xeAk+1(x0).

Now, let p, 0 < p < 1, be given, we pick b > 1 + p/1 — p and define

Then Ak + 1{x0) c Ak + 1(x0), and, if xeλk+ί{x0)9 we have

Moreover, if | |x — x0 \\ > L0/l — p, we have that xeAk+1(x0) for some k.
Now let fc ̂  fe3, so /lLk(y) is (m,£)-regular for any yeAk+ι(x0). As before,

<M,M '>e3ΛL k(y)

or

for some MΊ

Thus, if xeAk+1(x0) with fc^/c3, we can repeat this procedure at least
((Lfc/2) + 1)~ V || x — x0 II times, and use the polynomial bound on φ to obtain

We can conclude that, given p', 0 < p' < 1, we can find fc4 ^ fc3 such that if
fe ^ fc4 we have

if | | x - x o | | ^ L k 4 / l - p .
Thus ι/f decays exponentially, and

log|^(x)l ,
h m ~JχΎ~-~ppm

\\χ\\->oo l l χ l ι

for any p, pre(0,1).
Theorem 2.3 is proved.

4. Proof of Theorem 2.2.

Let us fix the interval / c R and p > d. For a given L and m > 0 we will denote
by JR(L, m) the statement:

P{/or any £ e / either ΛL{x) or ΛL{y) is (m,E)-regular]

= ι - jΰ» f°r any χ>yeZd w ί t h \\χ-y\\>L'
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The proof of Theorem 2.1 will proceed by induction. Notice that R(L0,m) is
just (Kl).

The induction step is

Lemma 4.1. Let α0 = (/ + l)p/2p + {J + l)d, J being the smallest odd integer >
p + d/p- d. Suppose R(l, mt) holds with mι > ^J/li~β and (K2) holds for all L^l.
Pick α, 1 < α < α0. Then there exists Q± = Qι{p, d, β, q, α) < oo, such that ifl>Qu

then R(L, mL) holds with L=l* and

|~5(J+ 8J

The proof of Lemma 4.1 has a deterministic and a probabilistic component.
We start by proving the deterministic step; but first we need the following
(deterministic) definition.

Definition. A cube ΛL(x) is non-resonant at the energy E if d{E, σ(H Λ L ( j c ) )^
\e~L, i.e., if and only if \\GΛL{X)(E)\\ ^2eL. In this case we will say that ΛL(x)
is E - NR.

Lemma 4.2. Let L = la with 1 < α < 2 , £eR, J an arbitrary positive integer, and
/1"^. Suppose:

(i) ΛL(x) is E- NR.
(ii) ^(21+1)00 is E — NRfor allj = 1,2,..., J and ysAL(x) with ΛK2ι+ DCV) C ΛL(X).

(iii) There exist at most J non-overlapping cubes of side I contained in At(x) that
are (mb E)-singular.

Then there exists Q2 = Q2(J>d,β,<x)<co such that if l^Q2, we have AL(x)
(mL, E)-regular with

[5(J+1) 3 Ί 8J

mL ̂  mx - y-^T-m, + j ^ ^ J ^ j ^ .
Proof By (iii) we have at most J non-overlapping cubes of side / contained in AL(x)
that are (m, £)-singular. It follows that we can find wί6ΛL(x) with d(ub δAL(x)) ^ 1/2,

I
i=l9...,r9 where r ^ J, such that if ueAL(x) I (J A2l(ut) with d(u, dAL(x)) ^ //2, then

/ f = i

Λ^u) is (m, £)-regular.
An easy geometric argument shows that we can find cubes Au <^AL(x) with

side ^{.7(2/+1), j = 1,2,...,J}, i = l , 2 , . . . , ί , ί ^ r , such that d{AuΛι^^ if

i=ί 7 = 1 ί = l

/ t

It follows that if ueAL(x) \J Λli9 d(u9dAL(x)) ^ 1/2, we have that Λt{u) is (m,£)-
/ i = l

t

regular. Also notice that if uedA^ for some j = 1,..., t then w<£ (J Au.
i=ί

The basic tool in the proof is the resolvent identity as used in [7,4]. If A is a
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cube contained in AL{x\ let ueΛ, υeΛL(x)\Λ. Then it follows from the resolvent
identity that

G Λ L ( X ) ( £ ; M = Σ GΛ(E',U,W)GΛUX)(E;W\V).
<w,w')edΛ

Here dΛ denotes the boundary of A in ΛL(x). Thus

wedΛ

for some wίedΛ+.

Let us now fix yedΛL(x) and let ueΛL(x\ d(u, dAL(x)) ^ 1/2. We have two cases:

(a) Λ^u) is (mt,£)-regular. In this case

Σ \GMu)(E;u,w)\^sdl
d-'e-^2. (4.2)

wedΛt(u)

(b) ylf(w) is (mh E)-singular. It follows that ueAh for some i = 1,..., t Thus (4.1) gives

LwεδΛz.

where WieSΛ/J". If rf(Λ/i? dΛL(x)) ^ //2 + 1, then ^(w^δyl^x))^ //2. In this case
we use (ii) to estimate the term in brackets and (4.2) to estimate the other factor
getting

IGA l X x )(E;u, y)\ S s i n + I)2*-*>Jd~ i ^ + ^ - ^ | G Λ L ( ; C ) ( £ ; W2,y)|,

where w26δyl ί

+(w1).
Thus

I G Λ L ( J C ) ( £ ; W, y)) ^ ^ ^ l / 2 | GΛM(E; w2, y)|, (4.3)
where

2 8 f
mί = m, - y [J(2/ + 1)" + 2(d - 1)log(/ + 1) + log(sjVJ*-x)] ^ m, - ^ > 0

if / ̂  ρ 3 for some £ 3 = β 3 (J, d,β)<oo.

If ueΛL(x), d(u,dΛL(x))^l/2,tet

zn_U/~ιe~ml12 if u is as case (a)
W~{β-»'»/2 if t/is as case (b)'

Then (4.1) and (4.2) for case (a), and (4.3) for case (b), say that

\GλL{x){E;u,y)\^Z{u)\GAL(x){E;w,y)\

for some weΛL(x).

To estimate | G Λ J L ( X ) ( £ ; X , y)|, we start from x, the center of the cube AL{x\ and
apply the above procedure repeatedly, when possible, getting, after n steps,

x)(ElWi^^ ^ '" ^
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For this to be possible, we need w1,..., wn _ x to satisfy the conditions of either
(a) or (b).

Now let nx be the number of times we were in case (a), n2 = n — nί. We have

IGΛLix){E;x,y)\ ί(s/~ ^ - " ' ^ H e - ^ 2 ) " 2 ! G Λ i ( x ) (£; wπ+ uy)\.

Since m', > 0, the procedure can always be repeated as long as

L/2 - [J(2J + 1) + 1/2 + 1]
M l - //ΪTΪ

Thus, since ΛL(x) is E — NR by (i), we can always get

\GΛί(x)(E^y
where

Then we have \GΛL{x)(E;x,y)\ £iίΓm i-L /\ where

Recalling L = /α, 1 < α < 2, we get

4(J+1) 21 2dlog/ Iog4+ j

8J

if / ̂  β 4 for some β 4 = Q4(J, d,β,(x)<oo.
Thus if we take β 2 to be the biggest of Q3 and β 4 , we have that Q2 =

62(Λ >̂ β,oc)<oo and Lemma 4.2 holds if / ̂  β 2 .
We now prove Lemma 4.1. Pick α, 1 < α < α0. If / ^ β 2 °f Lemma 4.2, it suffices

to show that we can find Q5 = β5(p, d, β, q, α) such that, if / ̂  Q5, we have that

P{for any Eel, (i), (ii) and (iii) of Lemma 4.2 hold for either

ΛL(x)oτΛL(y)}Zl~

for any x,yeZd with \\x — y\\> L. Here L = /α. If Λr is a cube with side r, let

σ\HAr) = σ(HΛr) n {£GR; i(£, /) ̂  i ^ ^ } .

It follows from (K2) that if Λu, i = 1,2, are non-overlapping cubes with sides
/; ̂  /, i = 1,2, respectively, then (see [4,5])

P{d(σ'(HΛιlσ\HAι))<e'*} ύ ~ ^ (4.4)

To see that, for any cube A let VΛ={V(x), xeΛ}, FΛ and E^ being the
corresponding probability measure and expectation. Since Ah and Λh are non-
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overlapping VAχ and VΛ[ are independent, so

P{d(σ'(HΛι), σ'(HΛι)) < e^} = E ^ P ^ {d(σ'(HΛι), σ'(HΛι)) < e~*}.

Let us fix VΛh, we can write σ'(HΛι) = {λu...,λk}, where k^(l2 + Vf. We have

P Λ j {d(σ'(HΛι),σ'(HΛι ))<e^}^t ^Λ, W , σ ' { H Λ )) < <--<} ^ ^ - ^

by (K2), the estimate being uniform in VΛ . This proves (4.4).
Let us now fix x, yeZd, || x — y || > L. It follows from (4.4) that, with /L Λ l2 =

smallest of lu /2, we have

P{d(σf(HΛiι{χ,μ
f(HΛi2{y,))<e^^)β for some x'eΛL(x)9yeΛL(y),ll9l2

= L or i(2/ + 1), j = 1,2,..., J, with Λh(x0 c AL{x\ Λh(yf) c

Now let Eel and let /' be the largest of L oτj(2l + l),y = 1,2,... J, such that there
exists ueΛL(z) with Λ Γ (M)C:Λ L (Z), Z being either x or y, with d(E,σf(HΛ{u)))<
\e~ι (if such /' exists). For clarity of argument, say z = x. If the event whose
probability is estimated in (4.5) does not occur, we have that Λv(y') is E — NR for
all yfeΛL(y\ V = L or j(2l + 1), j = 1,..., J, with ΛΓ(/) <= ΛL(y). Thus, for / ̂  β 5 ,

P{for any Eel, (i) and (ii) of Lemma 4.2 hold for either ΛL(x) or /lL(

Now, since J is an odd integer, for any zeZd we have, using the independence of
the potential at different sites, that

P{for some Eel there are at least J + 1 non-overlapping (mb £)-singular
cubes of side / contained in ΛL(z)} ^

P{for some Eel there are at least two non-overlapping (mb £)-singular
cubes of side / contained in A L (z)}] ( J + 1 ) / 2

M i2v I ~ I in I > (4-7)

since R(l, m^ holds by hypothesis.
Thus, combining (4.6) and (4.7) we get

P{for any Eel, (i), (ii) and (iii) of Lemma 4.2 hold for either

ΛL(x) or ΛL(y)} ^ 1 - - ^ for / ̂  Q5,

some Q5 = Q5(p, d, q, α) < oo, since q>4p + 6d and α < α 0 < 2.

This proves Lemma 4.1.
We now complete the proof of Theorem 2.2. Let α 0 and J be as in Lemma 4.1,
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let 1 < α < α0, Lk = L£, k = 0,1,.. ., and suppose Lo > Q1 of Lemma 4.1. Let

= mk-
|"5(J+1) , 3 Ί
\ Ja-ι % + τ α ( l - / ) ) J
L Lk ^ k J

fc = 0,1, Let us pick m, 0 < m < m o . Theorem 2.2 follows immediately from
Lemma 4.1 by an induction argument if

But

1
Σ r«(

if L o ^ Q 6 , some β 6 = Q6(p, d, β, q, mθ9 a, m) < oo.

Theorem 2.2 is proved.

Appendix: Validity of (PI) and (P2)

In this Appendix we will discuss conditions on the potential probability distribution
μ under which (PI) and (P2) have been proven.

A.I. Arbitrary Dimension. For arbitrary dimension hypotheses like (PI) have only
been proven for either "low energy" or "high disorder" (see [7,4,5,12]). For
completeness we will sketch the proof of (PI) under those conditions, notice that
the proofs yield (PI) directly.

For "low energy" the result is

Proposition A.I.I. Let μ be any probability measure, and let L o > 0, p > d and
m0 > 0 be given. Then there exists Eo = E0(μ9L0,p9d,m0) < oo, such that

P{for any E with \E\ ̂ E o ΛLo(0) is (mo,E)-regular] ^ 1 - - p .

Proof. Note that || ΔΛL (0) || g || A || = 2d, so if we have | V(x)\ ̂ E0-2d- em°L°/2

for all xeΛLo{0), we ge t l GΛφ)(E) \\ ^ e" W o L o / 2 for all E with | £ | ̂  Eo.
Since we have that

P{I V(x)\ ̂ E0-2d- emoL°/2 for all xeALo{0)}

= [μ{[ - Eo + 2d + βm o L o / 2,E0 -2d- e

moL^2}ΎLo + 1 ) d -^ 1 as Eo -> oo,

the proposition follows.

We will say that a probability measure μ is Holder continuous of order p > 0
[6] if δpiμy1 = inf sup \b - αΓ p μ([α,b]) < oo. In this case we will call δ (μ)

τ>0 \b-a\ gτ

the disorder of μ. Notice that if μ is absolutely continuous with a density in Lα,
1 < q ̂  oo, then μ is Holder continuous of order l/qf = 1 — 1/q, and δ1/q(μ)~1 ^
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|| dμ/dv \\q. Thus if μ has a bounded density our notion of disorder coincides with the
one in [7,4,5].

Given such μ and λ > 0, let μλ be the probability distribution of λV, i.e.,

Notice that δp(μλ) = λpδp(μ). For "high disorder" we have

Proposition A.1.2. Let μ = (1 — t)μλ -f ίv, vvftβre μi is a Holder continuous probability
measure, v is an arbitrary probability measure, λ>0, 0 ^ f < 1. Let L o > 0, p > d
and m o > 0 be given. Then, given η>0, there exist λί= λί(μ1,L0,p9d9m0)< co
and 0 ^ tx = ^ ( L Q J P , d, m0) < 1, swc/z ί/zαί

P{/or any £ e [ £ 0 ~ ^ ^ o + *β ΛLo(O) W (W0, E)-regular

^l~—for any EoeR,λ^λ1 and O^t^tv

Proof. Fix £ o eR, fj>0. Notice that if \V(x)-E\^2d + η + emoLo/2 for all
xeΛLo(0), we get || G Λ L O ( 0 ) ( £ ) || ^ β " ^ ^ 2 for all £ G [ £ 0 - IJ, £ 0 + ηl Since

P{ | 7(x) - E o | < 2rf + 2f| + emoLo12 for some xeylLo(0)}

^ (L o + l)VC^o -2d~2η- e

moLo/2, E0 + 2d + 2η + e

moLo/2l

the proposition follows.
We will now list conditions under which (P2) has been proven for arbitrary

dimension.

Theorem A.1.3.

(i) If μ is absolutely continuous with a bounded density, then for any L>0, EeR
and ε > 0,

dμ

dv

- 1

(L + l)dε.

(ii) lfμ{\_a,b~])^δ~1\b-a\f)for someO<p<l, δ>0, and all a<beR, we have

?{d(E,σ{HΛLi0)))^ε}^2{\-py1δ-1{L+l)dεpfor all EeR, L > 0 and ε > 0 .

(iii) Let μ be Holder continuous of order p > 0, i.e., δp(μ) > 0. Then for any
0 < δ < δp(μ), we can find η = η(μ, δ)>0 such that

,σ(HΛL{0))) S ή £ δ

for all EeR, ε > 0 and L> 0 such that ε(L -I- Vf < η.
(iv) Let μ = (1 — t)μ1 + tμ2, where 0 ^ t < 1 and μl9 μ2 are probability measures with

compact support such that μx is Holder continuous of order p > 0 and μ2 is
otherwise arbitrary. Let 0 < δ < δ^μ^ and suppose 0 < εa

L < (L + l ) " d for and
some 0 <a<\and allL large enough. Then there exist t(d), where t(l) = ί(2) = 1
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and 0 < t(d) < 1 for d ^ 3, such that for all L large enough we have

P{d(E,σ(HΛL(0)))^εL} ^δ'12^(L+ ψ 1+p)ε*L + εlfor some

a = α((5, p, a) > 0 and η = η(t) > 0 for 0 ^ t < t(d\

and η{t) -> oo as t -> 0.

(i) was proven by Frohlich and Spencer [7] from Wegner's estimate on the density
of states [17]. (ii), (iii) and (iv) were proven by Carmona, Klein and Martinelli
[6].

A.2. One Dimension. If μ is not a single delta function and §\v\ndμ(v) < oo for some
η > 0, (PI) and (P2) always hold in one dimension. The proof in this generality use
the Theory of Random Matrices, namely the circle of ideas associated to
Furstenberg's Theorem (e.g., [18]).

(P2) was proved by Carmona, Klein and Martinelli [6]. Their precise result is

Theorem A.2.1. Let d=l. Suppose the support of μ is not concentrated in a single
point and §\v\ηdμ(v)< oo for some η>0. Let I be a compact interval. For any
0 < β < 1 and σ > 0 there exist L o = Lo(/, β, σ) < oo and τ = τ(I, β, σ) > 0 such that

L(O))Se-σLβ}Se~τLP far all Eel and L^L0.

We now turn to (PI). Frohlich, Martinelli, Scoppola and Spencer [4,5] showed
how to obtain a related hypothesis from Furstenberg's theorem. For completeness
we will sketch a proof of (PI), based on a similar result for the strip by Klein,
Lacroix and Speis [19]. We will denote by y(E) the Lyapunov exponent (e.g., [18]).

Theorem A.2.2. Let d=ί. Suppose the support of μ is not concentrated in a single
point and \\υ\ηdμ(υ) < oo for some η>0. Let ε > 0 and 0 < β < 1 be given. Fix
EOGR. Then there exist L o = L o(£ o, ε, β) < oo and k = k(E0, ε, β) > 0 such that

P{ΛL(0) is (y(Eo) - ε,E0)-regular} ^ 1 - e~kLβ for all L ^ Lo.

Proof. We will use the notation HUιj2], G [ j l j 2 ] (£), [ Ί J 2 ] being an interval in Z.
Notice that ΛL(0) = [ — L/2, L/2] if L in an even positive integer.

It suffices to show that, for given EoεR, ε > 0 and 0 < β < 1, we can find No

and k> 0 such that

~knβσ{H{.n9n{i a n d \G{^n]{Eθ909n)\^e-^EQ^n} ^ l-e

for all integers n^zN0.
By the resolvent identity,

G{-n9n}(EO90,n) = G[Oin](Eo,0,n) + G{-ntn](Eo;09 - 1)G [ ( M ] (£ O ,0,n)

= G [ O t l l ] (£ o ;0 ,n)( l + G{-ntn]{EO909 - 1)).

In view of Theorem A.2.1, it suffices to prove that given EoeR, ε > 0 and
0 < β < 1, there exist N1 and θ > 0 such that

P{Eoφσ(H[O,n]) and |G [ O,M ](£ o;0,rc) | g<r<**»-*)»}

^l-e~θnβ for all n^Nv
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Let us consider the operator

where Pn is the projection onto the delta function at the lattice site n i.e.,
Pnψ = φ f a ) ^ where δn(x) = 1 if x = n and 0 otherwise.

If £eR, H[On] — E is always invertible. To see this notice that if (H[OfΠ] - £)φ = 0,
then [{H[O,n] — E)φ'](x) = 0 for x e [ 0 , n - 1]. From the uniqueness of solutions it
follows that φ = φ(0)φ l9 where φ x is real valued. But then ( H [ 0 π ] — E)φ1 = 0, so
we can conclude that φ^n) = φx{n — 1) = 0, and hence that φx is identically zero.

Let G[On](E) = (i?[Ojfl] — £ ) " \ and let φE be the unique solution of the equation

HIO.*»ΨE = EΨE with ^ 0 ) = l .

It follows that

G[o,n](E; 0, n) = ^ £ (n + 1) - iφE(n).

A careful analysis of Lemma 5.1 in [6] and its proof, followed by the use of
Chebychev's inequality, gives that, for given EoeR and ε >0,

^e~ τ n for some τ > 0 and all n^N2 for some N2 < oo.

By the resolvent equation,

G[o,«](£o) = Gi0%n]{E0) - iG[O^n](Eo)PnG[Otn](Eo)
and hence

G[o,n](^o; 0, n) = G[Ofn]{Eo; 0, n)[l - iG[Otn](Eo; n, n)].
If

we get

for all n^N3 for some N3< oo.
Using once again Theorem A.2.1, the Theorem follows.
Theorems A.2.1 and A.2.2 have been extended to a one-dimensional strip by

Klein, Lacroix and Speis [9].
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