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Abstract. We explicitly construct bases for meromorphic A-differentials over
genus g Riemann surfaces. With the help of these bases we introduce a new
operator formalism over Riemann surfaces which closely resembles the
operator formalism on the sphere. As an application we calculate the
propagators for b—c systems with arbitrary integer or half-integer A (in the
Ramond and Neveu-Schwarz sectors). We also give explicit expressions for the
zero modes and for the Teichmiiller deformations for a generic Riemann
surface.

Introduction

Operator formulations of conformal field theories over a generic Riemann surface
2, as opposed to the path integral formulation, have recently been the object of
intensive research [1-7]. The common feature of these approaches is that they
privilege the local description of conformal field theories over a disk cut out from
the Riemann surface. The globalization is essentially obtained via Bogoliubov
transformations relating states over the disk to states over the Riemann surface
without disk. This formulation finds its natural mathematical framework in the
Grassmannian formalism developed in [8, 9]. In a different mathematical context,
we also recall the important related results of [10, 11] on the action of the Virasoro
algebra on the moduli space. Needless to say, a conformal field theory formulated
in this way over a non-trivial (non-spherical) topology looks rather involved. We
think a simpler and clearer formalism is now at hand, due to the work of Krichever
and Novikov (KN) [12,13], who recently suggested new bases for meromorphic
tensor fields on genusg Riemann surfaces which are holomorphic outside two
points P, and P_. These bases are uniquely determined up to numerical
constants. It is therefore possible to closely mimic a conformal field theory over a
sphere [14, 15] (where P, are identified with the North and South poles), the KN
bases playing the role of the monomials z" (n € Z) over the sphere. In other words
the KN bases provide a mean to globally Laurent-like expand any tensor field of
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the type described before on genus g Riemann surfaces. This fact lends itself to an
operator formalism interpretation similar to the analog over the sphere. As in the
latter case, the coefficients of the above expansions will be interpreted as creation
and annihilation operators acting on a suitable “vacuum” |0), characteristic of the
given Riemann Surface X of genus g. The corresponding excitations do not have, of
course, the same physical meaning as the analogs on the sphere, but are in general
genus dependent combinations of the latter.

A conformal field theory based on the KN bases has already been partially
developedin[16,17,18]. In[16] it was shown that one can construct for a bosonic
string theory over any 2 a BRST charge which becomes nilpotent in D = 26. This
was extended to the superstring case in [17], while in [18] it was shown that the
Sugawara construction can be carried out on any Riemann surface,

In this paper we start developing systematically the operator formalism over a
generic 2 by means of the KN bases, by considering the simplest cases of conformal
field theories: the b— ¢ chiral systems. Throughout this paper b and ¢ are tensors of
weights A and 1 — A respectively; they may be commuting or anticommuting fields.
In string theory the anticommuting system with 1 =2 is of special interest because
it corresponds to reparametrization ghosts. In superstring theory we have in
addition matter with 4 =1/2 and the superghost system with A=3/2. Our aim is to
be able to compute any correlation function for these systems. To this end we need
an explicit expression for the KN bases: we provide it in Sect. I. In particular we
write a basis for the zero modes of arbitrary A-differentials. Next (Sect. II), we
discuss the Laurent-like expansions of these fields, the operator interpretation of
the coefficients and the vacuum state, as well as their relation to the corresponding
genus zero quantities. In Sect. IIT we compute the Szegd kernel for an arbitrary
b—csystem, that is, the relevant b — ¢ system for any genus and any integer or half-
integer A in both Neveu-Schwarz and Ramond cases. In Sect. IV we discuss zero
modes, Teichmiller deformations and the relation with the path integral
approach. In Appendices A and B we set the notation and recall some basic facts
about theta functions, theta divisors, and spin structures.

I. Krichever-Novikov Bases. Explicit Construction

Let 2 be a compact Riemann surface of genusg and P,,P_ two distinguished
points in general position.

The KN bases [12,13] are bases for the spaces of meromorphic tensors of
weight A on the Riemann surface, which are holomorphic outside P, and P _.

Case of Integer A

Forinteger A0, 1 and g > 1, the Riemann-Roch theorem guarantees the existence
and uniqueness (up to a multiplicative constant) of tensors of conformal weight 1
which in a neighborhood of P, and P_ have the following behaviour:

[P )=0P* 271+ 0(2.)) (dz.)* (L1)
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where
s()=g/2—Ug—1).

Herez . (P.)=0,where z, arelocal coordinates at P .. The multiplicative constant
may be fixed by requiring ¢{¥* =1. The index j in Eq. (L.1) takes either integer or
half-integer values depending on whether g is even or odd, respectively. When
j=5(4), ..., —s() and 1> 1 we have a basis for zero modes of the d-operator acting
on A-differentials.

Note that uniqueness can also be proved from the Noether “gap” theorem
[19]. In fact, let us assume there are two sections f{* and f;* of K* satisfying (I.1)
and define a function h as the quotient of them. Since f* and f;* have g zeroes
outside P, it follows that & is a meromorphic function with a number of poles
between zero and g. But the Noether “gap” theorem states that there exist no
functions with a number of poles in general position between 1 and g. This implies
that h is necessarily holomorphic and therefore a constant.

For A=0 the behaviour is modified with respect to Eq. (L.1). Let 4;, |/l = g/2+ 1,
be the unique function which in a neighborhood of P has the Laurent expansion

Ajfz)=0fz3 71+ 0(z,)). (L2

(As before, j is integer or half-integer depending on the parity of g). For
j=—g/2,...,g/2—1 we take the functions with the following behaviour:

Afzs)=0aFzE7927 (14 0(z,)). (1.3)

These conditions define 4; uniquely up to addition of a constant. For j=g/2 we
choose A4,/,=1; this completes the basis of meromorphic functions.

~ For /=1, we take the basis of one-forms as follows: in the range |j|=g/2+1,
@’ =f£1j’,. with f) given by (I.1); for j=—g/2,...,g/2—1, those specified by the
local series

wl(z,)=BFzI " 0(1+ 0z ))dz .. (14)

J

Finally, we take w?? as the Abelian differential of the third kind with simple poles
in P, and residues + 1, normalized in such a way that its periods over all cycles
be purely imaginary.

In the g=1 case, the number of zeros is equal to the number of poles for any
section of K*, for any 2; the existence of a holomorphic (and therefore without
zeroes and poles) one-form # enables us to write the KN bases as follows:

[P=Am, (L5)

where the A)’s are defined as before.

Let us now move to the explicit construction of these bases (in what follows, we
will make extensive use of definitions and properties given in Appendix A).
Looking at (I.1), we observe that this behaviour is correctly reproduced by using
prime forms as follows:

[P ~EP, Py SPIEP,P_y*®,
The correct weight in the P-variable is obtained by means of the o-differential

)Fj(l)z(E(P’P+)j—s(A)/E(P’P_)j+s().))O.(P)2/‘.~1 .
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Finally, we require f{*' to be single-valued. To this purpose we introduce a
f-function

E(P,P.)y~*"

SRV =NPP P pyem

o(P)**710(P + e(4,))), (1.6)

where
e(Aj)=(—s(A)P, —(j+s(A)P_+(1-24)4,
and

E(P+a P_)j+s(l)O-(P+)l -ZAh(P+)2(j—s(1)+l)
N (P, +e(2.))

NP, P_)

Note that the O-function gives the g zeroes of f{* outside P.; the constant
NP, P_)is chosen in order to satisfy a duality condition to be defined below.'

For g=1 or 1=0,1, Eq. (1.6) does not work in the interval —g/2<j=<g/2. In
fact, in these cases the f-function has zeroes in P, and P _ which cancel the poles of
the prime forms, as it is easy to verify by using the Riemann vanishing theorem and
the relation @ +2y,; = @, where O is the locus of zeroes of the 0-function and 7,
depends on the Riemann class and on the spin structure (see Appendix B).

For A=0 the expressions for any g are defined by |j| > g/2:

A(P)=as (L6) with 1=0,
—g/25j<g/2—1:

(P>P+)j_g/2E(P5 Pg+ 1)

E
Aj(P)=N(jO)(Pi>Pg+1) E(P,P_)y*92+1

x a(P)" 0P +e(j) —afP s, Py ) —aPs, Py ), (L7
where
eN)=0—g2P,—(+g/2+1)P_+P; 1 +4,
1
aj(Ping+l): —Ei(Aj(P)+aj(Pian+1))wg/2$
and

(P+’P—)j+g/2+10(P+)h(P+)2(j_g/2)
0P +eG)EP,., P, )

E
NP4, Py )=

Here P, , ; is an arbitrary point different from P, [as we have already said, the 4;’s
defined by (I.3) are fixed up to addition of a constant; this arbitrariness is reflected
in (I.7) through the point P, ], »¥?* is given below in Eq. (1.9), and C is any
contour which separates P, and P_). Finally we take A,,=1.

! One can check that this choice of the coefficient N makes f{* single-valued and with the right
weight in both P, and P_ variables
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For =1 the elements of the basis of one-forms take the following form:
1>g/2
w(P)=f%), according to (L.6)
—g/25j=g/2—1

E(P,P_y*92g(P)
E(P,P.y **TE(P, P, )

Wi(P)=NUYP, P, 1) 0P+e().  (L8)

where
e()=0(+g2P_—(—g2+1)P,—P, ,—4,
and
_E(P,P_) IT2EP,, P, )h(P )20
NEP s Pyei)= 0P, +eljolP )
i=g/2
w¥(P)=d([In(E(P, P ,)/E(P,P_))]—2ni i_ Im (Pf ;7,.> (ImQ);; 'nP), (L9)

where #; are the g holomorphic differentials with the standard normalization (see
Appendix A).?

In the genus one case, considering Eq. (I.5) we can define the following
expressions:

for |jl>1/2

E(P,P,)y"'2

AP =NAP P g p oy

a(PY* 1P +e(j) (L.10)

where
e()=(j—1/2P, —(j+1/2P_+4,
NP, P )= E(P+’6’(’I;i”+le/;§§1>+)2’;
for |j|=1/2
fIB(P)=a(P)**
and

E(P, Py)a(P)** !
E(P,P,)E(P,P_)

—c(P 4, P)f{H(P), (111

fill)/Z(P):N(f)l/Z(PiaPZ)

0P —e)

% Note that in Eq. (I.8) we have no pole in P, , because the O-function has a zero there which
cancels the zero of E(P, P, ;) for any j=—g/2,...,g/2—1
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where e=P,+P_—P,— A4, and

E(P+,P_)a(P+)‘1>21 <E(P,P2)9(P—e) 2
O(P, —e)E(P,,P,)) 4nit E(P,P+)E(P,P_)>

Py, Py)= <

and

E(P-HP—)
O(P. —e)E(P,,P,)’

N(j)l/Z(P+, P )=

Let us now recall the definition of the contours C, [12]. On X there exists a
Q

well-defined harmonic function of Q:Re(j wg/2> (Qo€2 is an arbitrary re-
Qo

ference point). The contours C, are defined as the level lines of this function, i.e.

C.= {QeZ:Re(}2 w”/2> =r}.
Qo

For 7— + oo the contours C, become small circles around P. The coordinate t
plays the role of (euclidean) time, and the level lines C, can be interpreted as the
position of the string at a given time 7. So we have a pictorial image of the string
propagating on the Riemann surface, with as many splittings and joinings
(interaction) as the genus g of Z. As for the orientation, C, as well as any inte-
gration contour separating P, and P_ is understood henceforth to encircle
P, in an anticlockwise way.
The dual section of f{*, f4_,), is defined by the following duality relation:

1 . .
Eﬁg [P~ =01 (L.12)
The bases defined before satisfy this relation with f _, =/, ” [in the particular
case: 4 =0,for g =2 this relation is also verified by the 4’s and w;’s given in (1.6-8)].
The constants were chosen in order for (I.12) to hold.

Case of Half-Integer A

Let us now consider sections of K* with a given spin structure [a, f]. We are
interested in two kinds of bases:

i) Basis for the space of tensors of weight A with the spin structure [, f] which
are holomorphic outside P, and P_ and a slit from P, to P_ (“Ramond-type”
bases);

il) Basis for thespace of tensors of weight A with the spin structure [o, f]
which are holomorphic outside P, and P_ (“Neveu-Schwarz(NS)-type” bases).

By Riemann-Roch theorem, there exists a unique (up to a normalization
constant) section f;* which in neighborhoods of P, have the form (when the spin
structure is odd, the following expression is slightly modified in the NS sector in the
cases A=1/2 with |[n|=1/2 or g=1, see below)

Wz =a;zE" (14 0(z24)) (dz.4)*, (L13)
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where n takes integer values in the Ramond case i), and half-integer values in the
NS case ii).

Even though (I1.13) looks like (I.1), there is however a difference due to the fact
that the indices j or n, run in general over distinct values. Throughout this section
indices i, j, k will be used to label the elements of the bases for integer A, and I, m, n to
label the elements of the bases for half-integer A.

Let us now consider the NS sector with odd spin structure, and A=1/2. If
n=+ +1/2, then Eq. (I.13) still holds. For n= +1/2 we take the sections as follows:

fil1//22)(zi)=aE 122+ Y1+ 0(z4)) (dz )",
1(/12/2)(Zi)=‘11i/2(1 +0(z4)) (dzi)l/z .

Considering as before the NS sector, odd spin structure, but g =1, we can define for
any half integer A

(1.14)

f® =constant 4%, (L15)

where we take the spin structure of #'/* odd.
The explicit construction of these bases is made in the same way as for integer J,
but now we have to take into account the spin structure. This is accomplished by

. . . . T .
introducing 0-functions with characteristics [ ﬁ]' Then, we write

E(P, Py
E(P, P_)n+s(l)

o

a(P)“"IQ[ﬁ

fAP)=NPP,,P_) }(P+e(i, n),  (L16)

where
e(n)=mn—s(A)P, —(n+s(A)P_+{(1-204,
_E(PL Py (P )

NP, P_)=
o
0[ :I (P, +e(l,n)
p
For the particular case of ; corresponding to an odd spin structure, NS sector
and A1=1/2 we have for |[n|=1/2,
o
JP(P)=NYP(P ., P)0 [ﬁ] (P—P_)/E(P,P_), (1.17)
where
E(P,,P_)a(P
NP, poy= T2 P,
ol ro
and

E(P,R)
(P’P+)E(P’P—)

9[“} (P+e), (L18)

2y py=N42(P,,R
f 1/2( ) 1/2( + )E B
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where e=R— P, —P_, and
EP,.,P_) o
NURYP,,R)=— "0 P
i2(P+,R) E(P.. RoP.) | p (P, +e),

where R is a generic fixed point. The dual bases are defined as in the 1 integer case.
This completes the explicit construction of the KN bases.

The Structure Constants Cj;

As animmediate application, the expressions for the bases given above can be used
to explicitly write the structure constants C;; of the Krichever-Novikov algebra

[12]

90
[ei:ejjz > ijeﬁj—s’ (1.19)

$= —4go

where ¢;=£{"" and g,=3g/2. By integrating with the dual toe,,;_, we have

1 L
CS=— § Qi [e. o 1.20)
i C§ [ese;], (1.20)

u

where Q*= f}. Now we can insert the explicit formulas given by (1.6) for 1= —1
and its dual, and so obtain the C}/’s in terms of 0-functions and their derivatives.

In [12] the Cj/’s were given only for s= —g, and s=g, (g>1):
(—D- -1~
. - . P Dj
co=(—i), Cyo=(-)T— P .
i+j+go

Fors=—gy,+1,...,g2,—1, the structure constants will depend on the succes-
sive coefficients of the expansion of ¢; around P, or P _ [cf. (1.1)], which can also be
written in terms of f-functions and their derivatives using the formulas given
above. For example

QDT =(—1)yTe EP P )2i0(P_ +e(—1,i) <0'(P,)>“1.

0P, +e(—1,i) \a(P,)

/

II. The Operator Formalism

Any tensor F?(P) (P e C,) of weight A which is smooth (or piecewise smooth) over
C, can be expanded in the basis { f;*} [12,13],

FOP)=Y. a, fi(P). (IL1)
k

Therefore, if we have a tensor over X which is smooth except possibly in P, the
expansion (IL.1) will hold for any C, — oo <t<o0, with coefficients generally
depending on 1. But if we consider a meromorphic F*’ which is holomorphic
outside P, the coefficients g, will be t-independent. This is the case for b—c¢
systems, as the tensors b and ¢ are supposed to satisfy db(P)= 0= 0c(P) everywhere
except at P, (a discussion concerning the zero modes, ie., the globally
holomorphic tensors of the b and ¢ type, will be given in Sect. IV). So let us expand
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them according to (IL.1),
b(P)= Z b f&(P),
(IL2)
co(P)=Y. " f7A(P).

k
The summations run over the integers or half-integers depending on the case we

are considering (cf. previous section).
Upon quantization, b(P) and ¢(P) become operators and satisfy canonical
(anti-)commutation relations. Henceforth we will consider for simplicity the case of

anticommuting b and c fields with integer 2> 1, g > 1. Then, the coefficients b,’s and
cPs will satisfy the standard anticommutation rules

{bi e’} =],
{c,c1}=0={b,b;}.
They are operators in a Fock space with vacuum state |0); satisfying the conditions
*0);=0, k<s(1-2),
bl0)s=0, kz=s(1—1).
We can represent the vacuum as the semi-infinite form
0)y =/ "PALS P A (IL.5)

[from now on we drop the label (1) when it is not strictly necessary]. Then the
action of ¢* and b, on the vacuum admits the explicit representation (right action)

(IL3)

(IL4)

by=f*n
0 =iy J0)s= ;i;ﬁ) (i (VO PA A fiA, (IL6)

where i, denotes the usual antiderivation defined by

lfkfj (&fkfj

and " denotes omission. Analogously we can define the dual vacuum 5(0] by means

of
E(Olck=0) kés(l_)")a
(IL.7)
H0lb,=0, k<s(1—21).
It can be usefully given the representation [12,13]
sSO=Ffa-nArfa-nein--s (IL8)
¢* and b, act on this semi-infinite form (left action) as
K=fin. b=ipm. (11.9)

Moreover there exists a pairing such that
5(0[0)y=1. (I1.10)
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Itis now time to comment on the meaning of this vacuum and of the excitations
which are created out of it or destroyed by the operators c* and b,. First of all, we
have to emphasize that both these operators and the vacuum state are globally
defined over X, due to the fact that the KN bases are globally defined. In this sense
our approach is different from the previous ones [3-7], where two vacua are
generally used, one related to a disk singled out of the surface and the other related
to the rest of 2.

Itis evident that the c* and b, modes are related in a complicated (g-dependent)
way to the usual g=0 modes, which are the string modes with associated particle
interpretation. Let us find the relation between the genus g modes and the genus
zero modes. We pick a coordinate z near P, z(P,)=0, and the circle C = {|z|=1}.
A basis for tensors of weight A over this circle is given by

S D) =z""1 A dz)!
fu(2)=2"""Hdz)*,

where n is integer. The restrictions {f{' ~*} and {f,} of the bases {f{' ~*} and
{12 ,1)} on C are dense in the space of the corresponding tensors on C [12]. There-
fore, we can expand

(IL11)

/‘__(1 -2 _ A"(l ]‘(1 l)

J

f;l—bzng, (1=,
J

_ 4 (11.12)
o= CUDT»
7&) =2 Dj’(i)f({{) )
where !
Aj(1— —M“ Moy
(IL.13)

. 1
Bl —2)= 5§ 707, ete

It is easy to see that A(1—2A)=B(1—2)"!, C(A)=D(A)~ ', and C(1)=B(1—1). The
entries of the A(1—7) matrix vanish for n<j+s(2)—4, and are given by the
coefficients of the Laurent tail in Eq. (I.1) otherwise. Similarly Bi(1— 1) vanish if
n>j+s(4)— A, and is otherwise given by the coefficients of the Laurent expansion
of f} ,ynear P. Weremark that in general the matrices A(1— ) and B(1 — 1) have
an infinite number of non-vanishing entries and stress that they can be explicitly
calculated.

Now we are able to calculate the relation between creation and annihilation
operators on the sphere and on genusg Riemann surfaces. Let b and ¢ be the
restrictions of b and ¢ to the circle C, then we can consider both expansions

B(P)=§b S P) =X b, J(P)

) . (IL.14)
AP)=Y c/f{1 " H(P) =L A (P).






