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Abstract. In this paper and its companion (II) we prove that the Supersym-
metric N = 1 massless Sine-Gordon field theory, at finite (space) volume, exists
and is analytic in the coupling constant λ. Moreover at finite (space) volume is
Witten index is = l.
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Introduction

Supersymmetry has had in recent years a relevant impact in field theory both on
the physical and on the mathematical side. Specifically a question which has deep
connections with modern mathematics is the presence or not of a spontaneous
breaking of the Supersymmetry in some field theory models (Witten [1]). This
question is connected to the study of the index of an operator (a Dirac operator in a
infinite dimensional space). All this, apart from more phenomenological aspects,
makes it interesting to perform a rigorous mathematical study of the Supersym-
metric field theory models. This problematic is thoroughly discussed in the papers
of Jaffe et al. [2] where they study the N = 1 and N = 2 Wess-Zumino models.
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Here we rigorously study another supersymmetric two dimensional model: the
supersymmetric N = 1 massless Sine-Gordon model. We prove the existence (from
the constructive point of view) of the theory in a finite (spatial) volume for a certain
range of values of its parameters λ and α, the coupling and the wave function
constants of the model, respectively, in the limit of the ultraviolet cutoff going to
infinity. Moreover for a fixed (spatial) volume, the theory is analytic in the coupling
constant λ in a disk of the complex λ plane around the origin whose radius depends
on the volume (it shrinks to zero as the volume tends to infinity). This means that
the perturbation series for the Schwinger functions or for the expectation of any
observable of the theory are convergent. Finally we prove that the supersymmetry
of this model is not spontaneously broken.

These results are obtained using some "Renormalization Group techniques"
developed some years ago by Gallavotti and collaborators [3] to study the Φ*
euclidean quantum field theory and using an expansion, again based on the
Renormalization group, called the "tree expansion" introduced by Gallavotti and
one of the authors (F.N.) [4] to study from this modern point of view the
renormalization of the non-superrenormalizable field theories.

The strategy of this work is the following one: we first introduce a regularized
version of our model that preserves supersymmetry and shows that the tree
expansion is convergent uniformly in the cutoff. The proof follows the strategy
introduced in [14,16] to study the scalar case. Some modifications are needed due
to the presence of the fermions and to the fact that the free theory is massless.
Unfortunately the regularized theory we work with is not Osterwalder-Schrader
(O.S.) positive and we have not been able to find any other regularization sharing
the three following properties:

i) Supersymmetry
ii) O.S. positivity

iii) Exponential decay of the covariances both in space and time that we
require as a crucial technical tool to prove, using the renormalization group, the
convergence of the perturbative series.

The next step then is to consider a lattice version of our model, where we lose
supersymmetry invariance but we gain O.S. positivity and we preserve the
exponential decay properties of the covariances, so that it is possible to apply with
minor changes the previous analysis and prove that also in this case the tree
expansion is uniformly convergent in the cutoff, i.e. now the lattice spacing. The
uniform convergence allow us to remove explicitly the cutoff in both cases and to
show that in this limit the Sch winger functions of the two theories are equal order
by order in perturbation theory. Therefore the limit theory is unique and exhibits
at the same time O.S. positivity and supersymmetry.

1. The Supersymmetric Model: Definitions and Notations

There are many ways of defining a supersymmetric field theory. We will use the
superfield formalism. We start with some definitions.
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As we are interested in the N = ί theory, the spinorial anticommuting
parameters are all real,

£"=«•%, (l.l)
0 1N

-i o (1 2)

(1.3)

We make the following choices of 7 matrices:

{/,/}=2g*v, g™=-g^ = l. (1.5)

We define the scalar superfield (see Wess-Bagger [5], for a more complete
discussion of the mathematical aspects of the Superfield formalism see [17]):

Φ(x,θ) = φ(x) + iθ'ip(x) + l-(θ θ)F(x), (1.6)

where F(x) is the so called "auxiliary field" (real), φ(x) is a real scalar field and ψx is a
Maiorana field (real), (α = l,2).

In the superspace (x, θ) = (x°9x
ί; θ1,^2) we introduce the following covariant

derivatives:

and their conjugate ones

^= W -WJ* ' ^ = u*Pf=(v°W (i 8)

The covariant derivatives Dα, 0α are a realization of the superalgebra on the
superspace; in fact defining

Pμ=-iδμ, (1.9)

we obtain

{Q«,Qβ}=2(y>ίPμ)«β, [βα,PJ=o, [&,PJ=o, (i.io)
which are the commutation and anticommutation relations of the N = 1 graded
Lie algebra. Moreover

{0«,̂ } = 0,Vα,/?. (1.11)

The supersymmetric action of the free theory is

o = ί d2xd2θ\Φ(x, θ) (̂ α)Φ(x, 0)] = - i J d2

X^(ree(φ, ψ, F)

. (1.12)
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The interacting part of the action is:

(:x,θ)] (1.13)

and, in the Minkowski space, the total action is:

+ [/lα2 \p\p cos u.φ —

where

(1.15)

If we consider the supersymmetric massive theory we just have to replace W0(φ)
with

W(φ) = λcosκφ+imφ2. (1.16)

We will call the model we are investigating "massless" in the sense that no
supersymmetric mass term is present in the Lagrangian; this of course will not
exclude the possibility of dynamically generating a mass [11].

All these definitions are formal. In the next section we write the corresponding
formal action in the euclidean formalism and, introducing the appropriate
regularizations, we give a rigorous meaning to it.

2. The Euclidean Continuation, Regularization and Definition
of the Global Measure

A standard procedure to study the field theory described by the action introduced
in Eq. (1.14) is the so-called Euclidean continuation. This is achieved with the
following substitution:

ί->iτ, γθ-+γOE = γ°9 (21)
(xSO-Kx1,*), y1^y1E = iy1

9

φ(x\ t) -+φE(x\ τ) , ψ(xl, ή-ϊψ^x1, τ) ,

1. φ(χi9 ί}_> _ i A φE(χι, τ) , φ(χι? t)^ψ%\x\ τ) , (2.2)

where in general ιp(

E\ Ψ(E} are two independent fermionic Grassmann fields. This is
usually called the "Fermi fields doubling" (see Osterwalder and Schrader [6]). The
explicit expression of these Euclidean fields and their connection with the
Minkowski ones are given in Appendix A.
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With the substitutions (2.1), (2.2) we can write, still formally, the following
Euclidean path integral for a transition amplitude at imaginary times:

ψE9 FE)eί(φE, φ£, FE) exp - f d2x

]} . (2.3)

where H is the Hamiltonian of our system and |/> and |/> two arbitrary final and
initial states. On the right-hand side of Eq. (2.3) everything is expressed in terms of
"Euclidean objects". ef and et are the wave functionals of the final and initial
states. 2φE and 2FE are defined formally as

&ΦE = Π dφE(x)l 2ΈE = Π dF^x) . (2.4)
X X

will be defined in a moment.
Looking at Eq. (2.3) we see that the right-hand side is, formally, the integration

of

exp V(φE, ψ(

E\ ιp(l\ FE) = exp - - J d2x[ιp(

E

}ιp(

E Uα2 cosuφE + 2iF

with respect to a measure which is a product of a gaussian measure for the field φE,
a gaussian measure for the auxiliary field FE and a measure with respect to the
fermionic fields ψ(

E\ ιp(

E\ Notice that in Eq. (2.2) F was continued to iFE to make
convergent the integration with respect to F (see Nicolai [7]).

In [6] it has been proven that it is possible to define two fermionic fields ψ(

E\
ψ(

E

} expressed in terms of anticommuting creation and destruction operators in a
Euclidean Fock space such that:

β)yM = Sβt X*, y) ,

where ψ(x)M is the free fermionic field, in the Minkowski formalism, at imaginary
times. T denotes the time ordered product and <. >M is the vacuum expectation of
the Minkowski fermionic Fock space. <. >£ is the vacuum expectation in the
Euclidean fermionic Fock space. Nicolai in [7] has discussed the modifications
one has to introduce when ψM is a Maiorana spinor instead of a generic Dirac one.
In this case the following relation holds:

ψffiΛ = (CtpJE \. (2.6)

Nevertheless there is still a doubling of the fermionic degrees of freedom as in the
Minkowski space ψM(x) = ΨM(X) while this is not true for ψ(

E\
In the two dimensional case ψ(

E

} are two component spinors and with our
choice of the γ matrices:

C = γ°. (2.7)
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Finally it is well known that one can represent the anticommuting operators in the
holomorphic representation (Faddeev and Slavnov [8]) where they are generators
of an infinite Grassmann algebra. In this framework we can write

where ψΛ(p) is an anticommuting Grassmann variable,

) (2.9)

and prove that, formally

s.,A 30 = Λ7 l ί ̂ y£[eχp ί rf2χ^%*%)v41M>)v42>) (2.10)
This setting fixed, we can give a rigorous definition of the measure of the
interacting theory introducing the appropriate regularizations.

The Regularίzatίon of the Model. We start observing that Eq. (2.3) is correct at the
formal level, that is disregarding the regularizations, although the auxiliary field
F(x) is not a canonical variable because its conjugate momentum is absent. In fact
integrating with respect to FE the right-hand side of (2.3) we obtain the same
expression we would obtain quantizing directly the classical Lagrangian (1.14)
with the field F eliminated using the classical equations of motion and then
reexpressing the transition amplitude in the path integral formalism.

The reason we prefer to keep FE is that this allows us to regularize the theory in
a obvious supersymmetric way and moreover the regularized fields will transform
exactly in the same way as the unregularized ones. Therefore our procedure will be
to regularize simultaneously and in the same way the fields φ9 ψ9 F. This procedure
is equivalent to choosing a well defined regularization for the Lagrangian
expressed as a function of the fields φ and \p only.

Fixed this regularization strategy, to regularize the model we have to
introduce:
a) an ultraviolet cutoff,
b) a "regularization" due to the fact that we are considering a massless theory in
two dimensions,
c) finite volume boundary conditions.

a) Disregarding for the moment points b) and c), the regularized covariances of a
massive theory in an infinite volume can be defined in the following way:

(ίπf

(2 ">
-(?' + "')

P '
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In this way O.S. positivity is lost and at any fixed cutoff there is not a
corresponding regularized Minkowski field, but the resulting euclidean measure is
supersymmetric, meaning by that the expecation values with respect to this
measure obey the Euclidean version of the Ward Identities associated to the
formal supersymmetric theory (see remark at the end of this section and
Appendix B) φ, φ, F.

b) It is well known that aid = 2 the scalar massless field is not well defined. This
can be cured in the Minkowski formalism (see Wightman [9] and references
therein) defining φM9 ψMί FM as operator valued distributions over the test
functions:

^o = {/e^|/(p = 0) = 0}. (2.12)

This allows us to give a consistent C*-algebraic definition of the observables of the
theory. This procedure is equivalent to the introduction of the following
regularization:

, (2.13)

(214)

This extra regularization does not spoil the supersymmetry of the theory provided
it is consistently introduced in the definition of all the three fields φ, φ, and F
although for the last two it will not be a priori needed.

We shall translate this procedure for our regularized Euclidean field. As (see
next point c) we consider the finite volume case the previous condition to build a
sensible theory amounts simply to eliminate the PI =0 mode in the sum over p1

which replaces the corresponding integral.

c) As we are studying the zero mass case we expect it to be really difficult to
perform the infinite volume limit. Therefore we consider the finite volume theory
and the choice of the boundary conditions is a delicate point. There are still two
alternatives:
i) To consider a finite space volume.

ii) To consider a finite space-time volume.
In the first case we study the Schwinger functions of a finite space volume, say

where Ί[-iV1(p) = ̂ o ( P ) e x P 2 Λ Γ anί^ MP)-^ as pj^ O so that

the interval ——, — . The existence and the analyticity of the Schwinger functions

can be proven, as it will be discussed in the next sections, whatever boundary
conditions are imposed, but to keep this finite volume model supersymmetric we
have to impose periodic boundary conditions, in the space direction, to all three
fields.
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The Euclidean theory is defined on space time cylinders and its covariances are

1 i

L 2π (2ί
Pie —Z p i Φ O

pie —Z p i Φ O

In the second case, to preserve the supersymmetry, periodic boundary conditions
are imposed both in space and time directions and the covariances associated to
the free measure are obtained from the previous ones just substituting the
integration over p0 with the corresponding sum.

Notice that imposing periodic boundary conditions both in space and time
directions, when we consider the finite space-time volume case, we are studying the
Euclidean counterpart of the Supertrace (see Cecotti and Girardello [10]) instead
of the finite temperature states which will require for the fermions anti-
periodic boundary conditions in the time direction.

Remarks. We recall that the regularized fermionic measure is defined in the
following way:

-N3 [exp Jd2V2)[-NVδμ)V1)[-N]))] , (2.16)

where

@¥=N]= 2 πΠ ίdψMqWMqWtK-qWψM-qϊ] (2.17)
ge-^-Z2;$ι>0

and

The regularized free measure given, the interacting one is obtained multiplying it
by evlί N\ where Vl-N] is now expressed in terms of regularized fields. Therefore the
regularized interacting measure of the theory is:

ϊl)eFIί*I(*Isκl vlίI'I pIίNI)(.),
(2-18)

, (2.19)

and we can also integrate with respect to the auxiliary field Fl-N] obtaining

1'vlSNI)(-), (2.20)

2 ΛxΛ

2

Ba
2 J

(2.21)
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where we call λ : λB (see the next section) and with A we indicate the finite space
Γ-L L] Γ-L LΊ t t. J , λ Γ-L Li

time: — , - x — , - or the cylinder: (-00, co) x — , — I

Remarks, i) The supersymmetry of the interacting measure is a direct consequence
of the previous definitions. In fact the action can be expressed in terms of the
regularized superfield and is therefore invariant under the transformations of the
fields φ[-N], ψ[-N\ F[-N] which are exactly of the same kind as those of the fields φ9

ψ, F. The variation δφ[-N\ for instance, is obtained from the formal expression
δφ = Qφ just substituting everywhere the regularized fields to the non-regularized
ones and performing the other substitutions listed in Eqs. (2.1) and (2.2) (see
Appendix B).

ii) With our definitions it follows immediately that after integrating over the
auxiliary field F[-N] a non-local part appears in the regularized Hamiltonian and
therefore in the potential V[=N] of (2.21).

The non-local character of this contribution to the interaction is a consequence
of our symmetry preserving way of regularizing the model and it will disappear in
the limit N-+OO.

iii) If we consider a regularized Minkowski theory it is easy to convince oneself
that, after the elimination of the zero mode, the field commutators differ from the
canonical ones by an extra term that goes to zero in the infinite volume limit. This
non-local feature is present also in our model and does not disappear in the limit
JV-κx).

iv) The regularized co variances proposed in Eqs. (2.15), although perfectly
appropriate in the massive case turn out not to have all the right properties in the
massless case especially when we want to decompose them in a sum of covariances
associated to fields of definite frequency following the well known philosophy of
the renormalization group.

This will be discussed in detail in Sect. 4.

3. The Introduction of the Wick Product

Generally in Supersymmetric theories one is not allowed to introduce the Wick
product as this would spoil the supersymmetry of the theory or its introduction
would be useless as the extra bosonic terms will compensate with the extra
fermionic ones. The situation here is different because the Supersymmetric Sine-
Gordon theory is not a polynomial theory and to consider :cosαφ(x): instead of
cosα(/>(x) means to multiply it by a (infinite) constant:

α2

- (φ(x)2ycosaφ(x). (3.1)

On the other side it is known, (see Sect. 9), that the scalar Sine-Gordon theory in a
finite volume is trivial, when α2 < 4π, if we do not introduce the Wick product. This
is what we do here also in the following way: we impose that the bare coupling
constant λB we have introduced in (2.28) has the following JV-dependence

α2

λB(N) = λexp — Cψ N](Q) = Vα2/4π)*C(L, «) , (3.2)
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where C(L, α) is independent from N.
With this definition we have

[^) = \ λBκ
2 f rf2x(φ(2)[-

2 A

4. The Effective Potential

The construction of the theory in the space time volume A in the limit of the
ultraviolet cutoff going to infinity will be done constructing the effective potential
of the theory for any length scale y f c(feeZ+) (see for instance Gallavotti et al. [4],
Gawedzki and Kupiainen [12]). The techniques used to build it will be those of the
"Renormalization Group." The effective potential with a finite cutoff N, V$} (we
omit the volume dependence) is defined by

eT=f ft W>) Π μ(dψw)evm, (4.1)
fc+1 fc+1

where we have alredy eliminated the auxiliary field by integrating it out. P(dφ(h))
and μ(dψ(h}} are defined by the following equations:

P(dφ^)=flhP(dφM), μ(dψ^)=flhμ(dψW). (4.2)
0 0

Following the last remark of Sect. 2, the fields φ[-N\ ιp^=N\ and F[=N} have the
following covariances, different from those introduced in Eqs. (2.15):

e — Z pi Φ O

Then we perform the following decomposition:

N N N N

\ 5 y / L^ L^t \ j y / £-4 ί.^
h=0 1=0 h=0 1=0

with the convention that

«2— v
e x p — V = ,

7
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Finally we make this partial resummation of the co variances:

y). (4.5)

The same kind of decomposition has to be performed for S[-N]. P(dφ(h)\ and
μ(dψw) have the same structure as P(dφ[=N]) and μ(dψ^^ with C[=N] and tf^
substituted by C(h) and S(/I).

Remark. The reason for such an involved way to regularize the fields is that with
the standard regularization proposed in (2.1 5), when the mode pl = 0 is eliminated,
the covariances C(h) and S(h) corresponding to the regularization

2 2 \

exp — 2h — exp 2(h-i) ) °̂ not ^ave ̂ e ήght decay properties. It is a long but

simple task to show that, vice versa the needed exponential decay properties on the
right scale are shared by the covariances C(/l) and §(h\

The Gaussian independent fields φ(h) are associated to the C(/l)'s and the
Grassmann fields ιp(h} to the S(ft)'s. The following relations follow:

φ[=N]=ίhΦ
(h), V[=N]=ίhΨ

(h} (4.6)
o o

The existence of the theory is defined as the existence of the limit

N->OO \Λ\ \A\

where, if A is a space-timer cylinder, dividing by \Λ\ means to divide by the volume
of a truncated cylinder and then performing the limit toward the infinite cylinder.

Remark. Here and in the sequel we use the same notation V$} for V(φ, ψ) and for
V(φ, φ, F), but no ambiguity can arise in any specific context.

5. The Results: The Existence and the Analyticity of the Theory

The proof of the existence of the theory is achieved by proving that the effective
potential V^ admits a well defined limit as N goes to infinity, for a fixed volume.
This result, although hard to obtain, is, nevertheless, someway expected as, for
α2<4π, the theory is superrenormalizable (compared to the scalar case, (see
Sect. 9), the properties of this model are similar if we shift α2 by 4π).

What is more relevant is that for α2 < 2π one can extend to the supersymmetric
model another result proved by Frόhlich and Seiler [13], for α2 < 4π, and then with
a different technique by Benfatto [14] when α2<6π, namely that the theory is
analytic. Analyticity means that the effective potential can be written as a power
series in the coupling constant λ, each term being a functional of the fields φ and ψ
such that its coefficient satisfies an appropriate bound. This allows us immediately
to obtain the Schwinger functions of the theory or its vacuum energy as a
convergent power series in λ in a appropriate disk around λ = 0 of the complex λ
plane.
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We stress that this result is independent on which boundary conditions we
choose. The choice of the boundary conditions is crucial only for the results
described in Corollary 3.

We state, now, a theorem which collects the results already discussed.

Theorem 1. Let V(N} = V[=N\φ[=N\ ιpl=N]) if we impose periodic b.c. (see Eq. (3.3)Λ

M(α)

V^=V^\φ^\ψ^)+ Σ* Ck(L,a,N)λ*,
0

otherwise, where the Ck(L, α, N) are constant counterterms uniformly bounded in N.
Let V$} be the effective potential defined in (4.1) where the covariances associated to
the free measures have the appropriate boundary conditions.

Then: i) The effective potential V^ has the following expression:

(-!,+!) (0,1)

Σ Σ

+ (constant terms) (5.1)

(here all the ip's are ψ(^s).
ii) We define the following norm

HWίf t l l = Σ Σ ί dxδ(Xl)\W^N(κ,σ,β)\, (5.2)
σ β Λn

then, if α2<2π we have the following inequalities:

||tO^Cw, fc^O, V n e Z + , (5.3)

where C depends on α but is fc, JV, L independent,

(5.4)

where C(L) is still N independent, but lim C(L)=oo.
L-+OO

From Theorem 1 easily follows:

Corollary 1. Let us define

F '̂ ^logfW^V^ (5.5)

Then, if α2<2π, ^v~1} is, for any N and also in the JV->oo limit, at fixed A, an
analytic function of λ in a disk of the λ complex plane whose radius depends on L
but not on N and shrinks to zero as L->oo.

Proof. Define (/>(~1) = ιp(~1) = 0 and substitute —1 in the place of fc in the previous
theorem.

Remark. From this theorem the expectation values of the theory at finite space-
volume are analytic functions of λ. Since our estimates of the convergence radius of
the series in λ shrinks to zero in the infinite volume limit we expect that non-
perturbative effects could arise in this case.
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The proof of Theorem 1 is rather cumbersome and its details will be given in
the companion paper (II). In Sect. 8 of this paper we briefly discuss the strategy of
the proof and the techniques used.

Looking through the proof it will be easily recognized that the choice of the
boundary conditions is not relevant and this is expected since this result is the
solution of a "ultraviolet" problem where we never use the supersymmetry of the
theory. A complete different situation, vice versa, is that of the next result where to
preserve the supersymmetry after the regularization turns out to be crucial.

Corollary 2. For arbitrary N and L and periodic boundary conditions:

^"1} = 0, (5.6)

both in the infinite cylinder and in the finite space-time volume case,

Proof. By definition

) evl~N]: = ev[* 1] , (5.7)

and since, by Corollary 1, we have that V&~ υ is an analytic function ofλ, recalling
Eq. (2.26) we have that

|-log j P(dφ^ιn)μ(d^I^P(d^I^evl''rί

Vλ p.b.c.

= i I d2x(ψ(2)lίN\x)ψmίSf<\x)a:cosaφ^N\x):
2 Λ

N\X):yλ,Λ,N, (5.8)

where

<( )>Λ,Λ,*: = ̂ -1 ί /W^MdVISWJrtSΛVv!SKI( ). (5-9)
p.b.c.

As, see Eqs. (2.6), (2.7):

(φ<2> ψ<D) = X φWφW = - 2!yι

1V2

1> = - 2iΨlψ2 , (5.10)
α

and in Appendix B, see Eq. (B.9), the following relation is proven:

)̂ ^ (5.11)

It follows that — V^ υ(/l) = 0 for any N and λ such that |A|<A0(L) and since
oλ

p^<-1)(0) = 0 Corollary 2 holds.

6. The Lattice Regularization and O.S. Positivity

In this section we will study a discrete version of the model associated to the formal
action (1.14). We will discuss explicitly only the finite space-time volume case, but
the same results hold in the infinite-cylinder case.

Suppose that the region Λ is a square of side L (integer) and consider a square

lattice Za, with spacing α, such that — is an integer. If we define on the lattice Za a
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scalar field φ(na) and two Maiorana spinor fields φ(κ)(nα), (K = 1, 2) we can write the
following Euclidean action:

•<*=il Σ (Φ(na + eμa)-φ(na))2

£ neΛ μ=l ;2

+ ? Σ Σ [ψ(2)(«α)(-/>
£ neΛ μ=ί;2

eμa) ( - /

+ α2 Σ (~ ψ(2\na)ψ{1\na)λoί2 cosoίφ(na)
QeΛ

- Σ Σ sinaφ(na)smuφ(n'a)Da(na-n'a), (6.1)
ueΛ n'eΛ

where β are the lattice unit vectors and

,6.2,

2α

is the discrete version of the D[-N](x,>;) introduced in Eq. (2.15).

Remark. Often, in the literature, another term is added to the fermionic part of the
action to avoid the "proliferation" of the fermions [15]. This term is not needed
here because we will consider the limit 0-»0 but its presence would not affect the
forthcoming arguments. Starting from the action (6.1) we obtain the following
measure:

^\ (6.3)

where

Va(φ,ιp) = a2 Σ (-Ψ(2\na)ιp(l\na)λoc2cosocφ(nά))
ueΛ

-a2 Σ Σ sinaφ(na)smaφ(n'a)Da(na-n'a) (6.4)
neΛ n'eΛ

and Pa(dφ\ μa(dψ) are defined by their co variances:

L L . , „ ' < *
2 2α" 2α~ ιb(a-a)2π—

L L
2)2

ίWfi —ff'\9ir—-
2α 2α /,'*

(0 β)2l tL

(6.6)
/ ^ \

~2α~ ~2α~ "' """ ~*

For any finite a and L the measure (6.3) is well defined and it is a standard matter to
check that it is also O.S. positive.
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To study the limit α->0 we introduce in analogy with the continuous case [see
Eqs. (4.5) and (4.6)] the independent random fields associated to well defined
"frequencies" φ(h) and ψ(h) such that:

Φ(na) = Σ» Φ(h\na) , ψ(na) = £, ιp*\na) . (6.7)
o o

The fields φ(h} and ιp(h} are defined through a decomposition of the covariances
Ca(na — n'ά) and Sa(na — n'a) of the same kind as that described in Sect. 4, Eqs. (4.4),
(4-5). " , / fl N

We denote 2 Σμ I 1 — cos2π — fc 1 : = p2a2 and we rewrite the denominator of
o \ L J

Ca(na — n'ά) in the following way:

with

i i vi i ^ (6'9)
s ; fc,0)=' W

G(p2;0,0)=^-

In the last three terms the fact that p1 is different from zero is crucial. Therefore

Ca(na-n'a)= £ £ C(hJ\na-n'a), (6.10)

where JV is defined by the relation: a = yN.
The same decomposition is applied to Sa(na — n'a) after we rewrite its

denominator as

We proceed now exactly as in Sect. 4 and we define the covariances C(h\na — n'a)
and §(h\na — n'a) through the same relations as before:

C(na-n'a)= Σ ( Σ &l'h\na-n'a)\ 4- Σ ( Σ C(hJ\na-n'a)

:= Σ C(h\na-n'a) (6.12)

and the analogous one for S(na — n'a).



696 M. Cassandro, F. Nicolό, and B. Scoppola

C(h\na — n'a) and §(h\na — n'ά) are the covariances associated to the fields φ(h)

and \p(h\ As in the continuous case it is a standard task to show that these
co variances have the exponential decay on the right scale, namely C(h\na — n'ά)
decays exponentially on the scale y~h.

The general properties of the co variances C(h\na — n'a) and S(h\na — n'ά) allow
us to prove, also in the lattice case, Theorem 1 and Corollaries 1 and 2 of Sect. 5.

Therefore, as the limit α->0 of the lattice theory is the same as the limit JV-»oo
of the continuous theory (each term of the perturbative expansion is the same and
in both cases the series are convergent) our limit Euclidean Theory is Supersym-
metric and fulfills all the requirements of the O.S. reconstruction program.

7. The Results: The Supersymmetry is not Spontaneously Broken

The results of the previous two sections allow us to conclude that in this theory the
supersymmetry is not spontaneously broken. In fact the possibility of going back
to the Minkowski theory, via the Reconstruction theorem, allows to define field
operators and charges also in the case of the limit theory and therefore to interpret
the result of Corollary 2 as the fact that the Witten index of the theory is equal to
one which just excludes the spontaneous breaking of the supersymmetry.

On the other side, as a corollary of the fact that the theory is analytic, it follows
that the Euclidean Ward identities associated to the regularized theory are
satisfied also by the limiting theory. This is enough to prove that the supersymme-
try is not spontaneously broken without using explicitly Corollary 2.

Finally we remark that, as already pointed in subsection b of Sect. 2, to define
this massless theory, we are obliged to eliminate the zero mode from the beginning
which, of course, makes in some sense obvious the fact that the resulting theory is
not spontaneously broken.

8. The Strategy of the Proofs

From the discussion in Sects. 5 and 6 it is clear that all our results are based on the
proof of Theorem 1. Roughly all amounts to have a well organized way of
expanding the effective potential in a sum of terms we can separately bound with
estimates good enough not to destroy the inequality (5.3).

This is obtained using the ideas of the Renormalization Group, performing one
after the other the integrations over the different momentum scales (different
"frequencies") so to use at its best the "locality" one has at each scale. The
integration, frequency by frequency, coupled to the expansion in powers of λ gives
the so-called "tree expansion" that Gallavotti and one of the present authors (F.N.)
have introduced in [4] to study the connection between the perturbative
renormalization and the constructive one in the φ* field theory. The expansion is
such that to each tree (for a precise definition of a tree see [4]) is associated a well
defined expression obtained combining many truncated expectations of products
of fields on different scales. These terms can be well estimated and moreover at
each order λn their number grows as Cn so that, if one is able to prove that no
factorials are produced in the various estimates, one has the possibility of proving
the analyticity of the theory. The details of the proof are complicated, also because
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one has to disentangle the bosonic and the fermionic factors to apply separately
different estimates. The paper (II) is mainly devoted to the proof of Theorem 1.

9. Some Remarks on the Scalar Sine-Gordon Field Theory

We briefly recall some results on the scalar Sine-Gordon theory which have in part
guided us in this investigation. It has been proven (Frohlich etal. [13] and
references therein) that if α2<4π the massive Sine-Gordon theory exists. The
interaction for this theory is (its regularized version), in a finite volume,

V^=N] = λ f d2x:cosaφ[=N\x):. (9.1)
A

If α2<4π, Frohlich has proven, among other things, the ultraviolet stability:

eE-w\Λ\^ iPΛ(dφ^)evlΛ-N]^eE+(»M, (9.2)

where E(.}(λ) does not depend on ΛΓand is 0(λ). If α2 ̂ 4π, Benfatto, Gallavotti and
Nicolό, Nicolό and Nicolό, Renn and Steinmann [16] have proven that:

If

α2e[4π,α2],

the ultraviolet stability becomes

(M(α) \

Σfc ck(Λ,*,N)λk+E_(λ)\Λ\j ^ f ̂

M(α)

(9.3)

where Ck(Λ, α, N) are constants diverging, if k is even, as N goes to infinity and
£(.)(λ) is N independent and 0(λn+ε\ ε>0. From this result it follows that the
Schwinger functions of the theory exist as any expression

M(α)

is equal to the same expression with V^-N] replaced by V[-N]— Σk Ck(Λ,a,N)λk

which satisfies the ultraviolet stability. 1

The three following remarks conclude and justify this very short summary.
α) It is clear that as α2-»8π the number of counterterms tend to infinity; at

α2 = 8π the theory needs also field dependent counterterms and it is not anymore
superrenormalizable but only renormalizable. Above 8π the theory is not
renormalizable. We expect that a similar situation occurs in the Supersymmetric
model at α2 = 4π.

β) To insert the Wick product is equivalent to have a theory without the Wick
product but with interaction

Aexp - C[/N\Q) J d2xcosaφ^N\x), (9.5)
2
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with the coupling constant going to infinity when JV~> oo as /ty(α2/4π)ΛΓ(y > 1, γN is the
ultraviolet cutoff).

γ) If α2 < 6π, Benfatto [14] has proven that the theory is analytic in the sense
previously discussed for the supersymmetric theory.

10. Conclusions and Discussions

It is now time to complete the discussion about the meaning of the two
dimensional massless theory. If the masses are zero, as we have already discussed at
the end of Sect. 2, we have to subtract the zero mode to get a well defined theory
(see Wigthman [9]). In the finite volume case the resulting theory is not local; this
is reflected by the fact that, eliminating the zero mode, the free fields do not satisfy
the usual commutation relations for the presence of a constant term which goes to
zero as the volume tends to infinity. The presence of the interaction does not cure,
at least at finite volume, this problem.

Nevertheless the Euclidean regularized theory is still supersymmetric in the
sense that the Ward identities are satisfied. As it is possible to prove that in the limit
of removing the cutoff the Hamiltonian and the charges can be built, using the
reconstruction theorem, they will satisfy the supersymmetric algebra. Therefore we
can conclude that in the Λf->oo limit we have built a supersymmetric quantum
model with infinite degrees of freedom and at the same time an infinite dimensional
realization of the supersymmetric algebra.

Many other aspects deserve to be investigated in this model; we think the most
interesting ones are:

α) the infinite volume limit for the "massless" theory and the possibility of a
dynamical mass generation,

β) the study of the supersymmetric "massive" theory.
The first problem is a difficult one. We would expect, as in the scalar theory,

(Brydges et al. [11]) a dynamical generation of mass both for the Fermi and for the
Bose fields which should allow us to control the infinite volume limit. In this case
the analyticity in λ would be lost, but, nevertheless, with a resummation one could
possibly produce again convergent series for the Schwinger functions, at least for λ
real. At the present stage we are not able to extract any conclusion about the
infinite volume theory.

Referring to β) it is clear, from our analysis of the effective potential of the
theory, that if we add a bosonic and a fermionic mass term to the free part of the
Lagrangian only, Theorem 1 is still valid and the theory is a perfectly defined field
theory, but, unfortunately, the supersymmetry is explicitly broken. To construct
the supersymmetric massive Sine-Gordon theory we have to add to the interaction
a term proportional to mλ J φ sinαφ [see Eqs. (1.14), (1.15), and (1.16)]. To prove

Λ

that such a theory exists should not be too hard but we are not able to control the
convergence of the λ series when this extra massive term is present.

Finally there are many other aspects of the Sine-Gordon theory which could be
investigated as, for instance, the existence of infinite conserved currents; but we
were more interested to look to this model as an explicit lab for testing
Supersymmetry ideas than to see how much Supersymmetry modifies the
properties of the scalar model.
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Appendix A

To construct the Euclidean Maiorana Spinors we follow Nicolai [7]. We have only
to apply his results, mainly based on Osterwalder, Schrader [6] to the two
dimensional case.

With our definitions of the y matrices (see Sect. 1) we have:

m Ί1/2

— J e-^1

f d2p ΣJ LB+(pJ)Vj(p) + B(-pJ)CΛpVJ(p) ] , (A.2)
L ω(P) J i

where
ω+m—p

.

- ' (A3)

ω+m

and the b's satisfy, as usual, the following anticommutation relations:

0. (A.4)

-pΓ1), (A'5)

where

and

SE{ )= 1 !

where |p|=(po+P2)1/2 and the B's satisfy the anticommutation relations:

(A.7)

,jl B+(p',f)} = δj,rδ(p-p') , {B(p,jl B(p',j')} = {B+(pJ\ B+(p',/)} =0.
(A.8)

Appendix B

From Sect. 1 the free Lagrangian density is proportional to Φ(x, θ) (^α

α̂)Φ(x, θ) in
the superfield formalism. Defining

ξιQ2)Φ, (B.I)
it is easy to prove that, at the first order in ξ

(B.2)
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is a total derivative. The same result holds for the interacting part of the
Lagrangian. Passing to the fields φ, ψ9 and F we get:

)a lζα ^(y ς)" μ9)' ( ' }

-(ίy^φ).

The corresponding Euclidean transformations are:

where d+=d0±idΐ.
The regularized version of Eqs. (2.8) is (we omit the index E):

~

»-A Σ

It is also immediate to write the corresponding expressions when A is a cylinder. If
we define the transformations:

(B.6)

withδφ[=N\ διp[

a=
N\ and 5F[=^] defined as in Eqs. (B.4) with the regularized fields

everywhere, the regularized measure (6.8) is invariant under these transformations;
the proof is just a matter of computation or the translation of the formal result plus
the relations (1.10).

Proof ofEq. (6.10). From the invariance under (B.6) of the regularized measure it
follows that

λ^ N = (x) sinα(0^ + δφ^ (x)\Λ,N.

(E.I)

Choosing β = l, using the explicit expressions:

-(ξ,F-ξ2d+φ), (B.8)
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and remembering that ξi and ξ2 are independent Grassmann variables we get

z^2-Jd2xδ

where we omitted all the regularization indices. The first relation is exactly
Eq. (5.1 1). Therefore Eq. (5.1 1) is proved and the proof of Theorem 2 is completed.
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