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Abstract. For M a smooth manifold equipped with a Poisson bracket, we
formulate a C*-algebra framework for deformation quantization, including the
possibility of invariance under a Lie group of diffeomorphisms preserving the
Poisson bracket. We then show that the much-studied non-commutative tori
give examples of such deformation quantizations, invariant under the usual
action of ordinary tori. Going beyond this, the main results of the paper provide
a construction of invariant deformation quantizations for those Poisson
brackets on Heisenberg manifolds which are invariant under the action of the
Heisenberg Lie group, and for various generalizations suggested by this class of
examples. Interesting examples are obtained of simple C*-algebras on which the
Heisenberg group acts ergodically.

About a decade ago a new approach to the quantization of classical mechanical
systems was introduced by Vey [30], and Flato, Fronsdal, Lichnerowicz and
coauthors [3,12]. Their approach involves viewing quantization as a deformation
of structure, and goes roughly as follows. A classical mechanical system is given
by its phase space, which is a C°°-manifold M, together with a symplectic structure
which defines a Poisson bracket {,}. To quantize this system, one selects a suitable
algebra A of C°° functions on M (functions of compact support, Schwartz functions,
polynomials, to the extent these make sense), with the product being pointwise
multiplication. One then deforms this product "in the direction of" the Poisson
bracket. That is, if we denote the deformation parameter by "Planck's constant"
ft, taking real values in some interval about 0, then one tries to define a family *ft

of associative but not necessarily commutative products parametrized by ft, in
such a way that for f,geA one has
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and
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as h -» 0. There is by now a quite substantial literature concerning this deformation
quantization (see e.g. [2,13] and the references they give), but almost all of it deals
only with formal deformations, that is with deformations consisting of formal
power-series in h with coefficients in A. Almost no discussion is given concerning
convergence questions. There is good reason for this, in that the convergence
questions appear very difficult in general, and it is even possible that requiring
convergence may sometimes be too restrictive for the applications to physics which
the authors have in mind.

The subject of deformation quantization was brought to my attention quite
recently by Alan Weinstein, who, having looked through some of my recent work
on non-commutative tori [27], pointed out to me that the non-commutative tori
should be able to be considered to be deformation quantizations of ordinary tori
for an appropriate Poisson structure, all in such a way that the convergence
questions could be handled. The purpose of this paper is to formulate precisely
what should be meant by a deformation quantization in the framework of C*-
algebras, so as to make precise Weinstein's observation, and then to go a step
beyond the non-commutative tori by showing that for certain nice Poisson
structures on Heisenberg manifolds, and on various related classes of manifolds,
one can again carry out deformation quantization in such a way that the
convergence questions can be satisfactorially handled. Here, by the Heisenberg
manifolds we mean the quotients of the Heisenberg Lie group of 3 x 3 upper-
triangular matrices with ones on the diagonal by its subgroups of matrices having
integer entries.

There is a further aspect of deformation quantization which is of central interest.
In much of the literature, the classical mechanical systems which are studied possess
a Lie group of symmetries acting on the system, and one seeks deformations which
are compatible with this Lie group action. This situation also holds for the non-
commutative tori, where the ordinary torus acts as a group of symmetries. Now
the Heisenberg Lie group acts on the Heisenberg manifolds, and in the present
paper we will be primarily concerned with deformation quantizations of the
Heisenberg manifolds which are compatible with this action. One reason for our
interest in this aspect is that the action of an ordinary torus on a non-commutative
torus provides the latter with a smooth structure making it a non-commutative
differentiable manifold on which Connes showed [7,8] how to extend the apparatus
of differential geometry involving connections, curvature, Chern classes, etc. In the
same way, the action of the Heisenberg Lie group on the various algebras occurring
in the deformation quantizations of the Heisenberg manifolds provides another
class of examples of non-commutative differentiable manifolds to which Connes'
theory can be applied. This is also true of some of the other related examples we
consider.

By way of contrast, we will show in the last section that the 2-sphere with its
usual action of SO(3) (or (SU(2)) does not admit deformation quantizations, of
the strict kind studied here, which are compatible with the group action. This
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indicates that much remains to be clarified concerning exactly which systems do
admit deformation quantizations of our strict kind.

Recently, Woronowicz [34-36, 23] has obtained a kind of deformation of SU(2)
itself. This does not appear to fall precisely within our framework, since it is not
clear whether his approach can be used to define deformed products on C°°(SC/(2)),
but it would be interesting to clarify exactly what the relationship is.

This paper is organized as follows. In the first section we define carefully our
strict form of deformation quantization and show that the non-commutative tori
indeed do provide examples, as suggested by Alan Weinstein. In the second section
we introduce the Heisenberg manifolds and determine their invariant Poisson
structures. These fall into two types which suggest generalizations in somewhat
different directions. We study the first type of generalization in Sect, three, and
the second type in Sects, four and five. In Sect, six we study briefly the structure
of some of the C*-algebras obtained, the main aim being to show that they are
often simple. Finally, in Sect, seven we discuss the situation for SO(3) acting on
the sphere mentioned above.

We leave to a possible later paper the study of the non-commutative algebraic
topology and differential geometry of the algebras in the deformation quantizations
of the Heisenberg manifolds which we obtain, but our calculations so far support
their being considered "non-commutative Heisenberg manifolds."

1. Strict Deformation Quantization and Non-Commutative Tori

Let M be a C00 manifold, and let C°°(M) denote the associative algebra of C°°
complex- valued functions on M, with pointwise multiplication, and with involution
given by complex conjugation (/* = /). By a Poisson bracket on M is meant a
Lie algebra structure { , } on the linear space C°°(M), such that for every /eC°°(M)
the linear map g*-*{f,g] from C°°(M) to itself is a derivation of the associative
algebra structure on C°°(M). We also require that { , } be real in the sense that
{/*> 9*} = {/> #}*• Let TM denote the tangent bundle of M. Then to give a Poisson
structure on M is the same as to give a skew 2-vector field Λ on M, that is, a
cross-section of Λ2TM, such that if we set

then { , } satisfies the Jacobi identity (which is a quite stringent condition on A).
If M is compact, then for our present purposes C°°(M) seems to be the only

reasonable choice of algebra to consider for deformation quantization. But if M
is not compact, the situation is less clear. One evident candidate is CC°°(M), the
algebra of functions of compact support. But in later sections we will be working
extensively with the Heisenberg group, and with Fourier transforms, and in this
setting the most convenient algebra will consist of the Schwartz functions. But we
do not know how to define Schwartz functions on a general manifold. Another
candidate is C£(M), the C°° functions which vanish at infinity. In view of these
various possibilities, our definition will be formulated in terms of any fixed *-
subalgebra, A, of C£(M) which contains Cf(M) and is closed under taking
Poisson brackets. Note then that M is the maximal ideal space of A.
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1.1 Definition. Let A and A be as above. By a strict deformation quantization of
A in the direction of /i, we will mean an open interval / of real numbers containing
0. together with, for each fte/, an associative product *ft, an involution *», and a
C*-norm || ||Λ (for *fi and **) on A, which for ft = 0 are the original pointwise
product, complex conjugation involution, and supremum norm, such that

1. For every fεA the function h\-^\\f\\h is continuous
2. For every /, geA9 \\(f*hg-g*hf)/ih — {f>0}h converges to 0 as h goes

toO.

We remark that if we let Ah denote the C*-algebra obtained by completing A for
|| l i f t , then condition 1) is exactly what is needed to ensure that the family {Ah}9

together with A viewed as a *-algebra of cross-sections of this family, determines
a continuous field of C*-algebras. This follows from Proposition 10.2.3 and 10.3.2
of [9]. It is condition 2) which formalizes the idea that the deformation is "in the
direction of A." Since this condition is essentially an infinitesimal condition at 0,
one does not expect strict deformation quantizations for a given A to be unique,
and indeed the case of the non-commutative tori considered later in this section
already shows that uniqueness fails. This lack of uniqueness is one reason why
questions of existence are difficult, since it shows that there will not be any canonical
construction of strict deformation quantizations for a given A (unless perhaps
additional structure is imposed, such as perhaps a connection).

In order to make contact with the extensive literature concerning deformation
quantization in terms of formal power series in ft, we would need to require that
the above functions of h should actually be suitably analytic in h. We will not
explicitly need this condition, but it will, in fact, be true for many of the examples
we will construct.

We remark that in most of the existing literature on deformation quantizations,
no involution *ft or norm || ||Λ is considered. In fact, in some of the literature one
of the objectives actually seems to be to get away from Hubert spaces altogether.

We now indicate how to bring group actions into the picture.

1.2. Definition. Let G be a Lie group, and let α be an action of G as a group of
diffeomorphisms of M which preserve the Poisson structure. Assume further that
the corresponding action α of G on C°°(M) carries A into itself. We will say that
a strict deformation quantization of A, as defined above, is invariant under the
action α if

1. For every fte/ and xeG the operator ctx on A is an isometric *-automorphism for
*Λ, **, and || ||ft.

2. For every/eΛ and fte/ the map x*-xxx(f) is a C°° function on G, for the norm

II II*
3. There is an action, α, of the Lie algebra L of G on A which for each fte/ is by

*-derivations of A for *ft and **, such that for XeL andfeA

with respect to
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This definition will be adequate for our present purposes, but it has been shown
by Arnal [1] that there are situations in which it is necessary to also allow the
action α to vary as a function of h. Even more, the example studied in [23] suggests
that at times it will be necessary to perform a deformation quantization of the
acting Lie group as well as of the Poisson manifold.

We now show that the non-commutative tori [27] are strict deformation
quantizations of ordinary tori, thus making precise Alan Weinstein's observation
to me that this should be the case. We let Td denote an ordinary d-dimensional
torus, viewed as Rd/Zd, and let A = C*>(T*). We let G be Rd (or Td\ acting on A
by translation in the evident way, with corresponding action of the Lie algebra
L^Rd. For i = l,...,d let X{ denote the vector field on Td corresponding to
differentiation in the Ith direction. Then it is easily seen that the G-invariant Poisson
structures on Td are of the form

where {θjk} is a real skew-symmetric matrix, and the factor — π"1 is included so
as to simplify later formulas. When convenient, we will also view θ as a skew
bilinear form on Rd or Zd. We let τ be the Lebesgue measure on Td of total
mass 1.

To obtain a corresponding strict deformation quantization, we now take the
Fourier transform of the above set-up, much as one does to obtain the Moyal
product [3] which is the deformation quantization for M = R2n with its standard
Poisson structure. The conventions for the Fourier transform which we now
introduce to do this will also be used in later sections. We let e be the function on
R defined by e(t) = exp(2πiί) We view T as JR/Z, and foτfeC°°(Td) we define its
Fourier transform, /, on Zd by

f(n)=$de(n x)f(x)dτ(x)9

where n-x denotes the standard inner product on Rd. It is well known that the
Fourier transform carries C°°(Γd) onto S(Zd) (the Schwartz space of those functions
on Zd which go to zero at infinity faster than any polynomial grows). Furthermore,
the pointwise product is carried to convolution, the involution is carried to/*(n) =
/( — n), Lebesgue measure τ is carried to evaluation at 0, and translation by ceRd

is carried to pointwise multiplication by n\-^e(n-c). Then the operator Xj corres-
ponds to pointwise multiplication by 2πinj9 and so the Poisson bracket is given,
for </>, ψεS(Zd) and neZd, by

ψ(n - m)0(m, n\

since, for θ viewed as a skew form, 0(m, m) = 0.
Accordingly, as suggested by the Moyal product [3], we let the / of Definition 1.1

be the whole real line R, and for any he I we define a bicharacter σh on Zd by
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We then set

(φ*»(n) = £ φ(m)ψ(n - m)σΛ(m, n).
m

Since σft is skew symmetric, it is appropriate to set

which we will just denote by φ*9 since here it does not depend on h. The functional
τ, defined by τ(φ) = φ(Q), is a trace on S(Zd) for *ft, and a rapid calculation shows that

where the right-hand side is the usual inner-product on L2(Zd), independent of h.
For each h we let πh be the left regular representation of S(Zd) on L2(Zd) via *Λ.
One verifies easily that each πft is faithful on S(Zd). We then set

\\ΦL=\\π*(Φ)\\

It is easily seen that the corresponding completed algebras, Ahθ, are non-
commutative tori, as studied in [27] and the references given there, and that the
notation Ahθ agrees with that in [27]. We must now verify the conditions of
Definition 1.1.

We begin with condition 2, since this is the one which characterizes a
deformation quantization. For any φ, ψeS(Zd), and any h let

ΔΛ = (φ*hψ -ψ*hφ)/ίh - {φ, ψ}.

Then a simple calculation shows that for neZd,

Δh(nϊ = Σ Φ(m)Ψ(n - m)[KK Ό - σ ft(n, m))/ih - 4πθ(m, n)].
m

Let Fh(m9n) denote the expression inside [ ]. It is easily checked that there
is a constant K such that

for every real number ί. Accordingly, one finds that

\Fh(m,n)\^K'\h\\θ(m,n)\2,

where K' is X times a factor of (2π)2. Furthermore, there is a constant M such that

|0(m,tt)|^M|m|M,

where here | | denotes the Euclidean norm on Zd c #d. Thus

^\φ(m)\\φ(n-m)\hK"\m\2\n-m\

where K" = K'M2. Since l^lφKOeSCZ^) and similarly for ψ, the (ordinary)
convolution term is in Ll(Zd). But it is easily seen that the L^norm dominates
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any of the norms || ||Λ, and so

It follows that \\Δh\\h goes to 0 as h goes to 0, so that condition 2 is verified.
We verify condition 1 by appealing to Corollary 2.7 of [28]. In that corollary

it is shown that if G is any amenable discrete group, and if Γ is the compact set
of all normalized two-cocyles on G with values in T with pointwise convergence,
then the assignment γ^Aγ for yeΓ is a continuous field of C*-algebras over Γ9

where Ay is the group C*-algebra of G twisted by y. In the present situation we
take G = Zd. Then the map h\-^σh is a continuous map of R into Γ9 and
Ah = Aσh. It follows that {Ah} also is a continuous field.

We see that the non-commutative d-toή actually form a continuous field of
C*-algebras over the space of skew-symmetric real d x d matrices. If instead of
the straight line path h\-^hθ in the space of skew-symmetric matrices we take any
smooth path which is tangent to this straight line at 0, it is easily seen that the
corresponding field of C*-algebras will be a strict deformation quantization of Td

for the same Poisson structure. This shows the considerable non-uniqueness of
strict deformation quantizations.

Finally, we consider the invariance under the action of Td, as defined in
Definition 1.2, of the above strict deformation quantization. The action of Td is
just the usual dual group action, and so satisfies condition 1 of Definition 1.2. The
fact that the elements of S(Zd) are C°°- vectors for the action (i.e. condition 2), and
that these elements are in the domain of the corresponding Lie algebra action (i.e.
condition 3), essentially goes back to Connes [7], and is discussed in [27] and
elsewhere. It follows that our deformation quantization is indeed invariant. We
summarize the results of this section as

1.3 Theorem. Let θ be a skew-symmetric matrix which defines a Poisson structure A
on C°°(Td) as above. For each real h let Ah denote the corresponding normed * -algebra
obtained by Fourier transform and using the bicharacter σhfor θ as above. Then
the family {Ah} provides a strict deformation quantization for C°°(Td) in the direction
of A, which is invariant under the evident action ofTd.

2. Invariant Poisson Structures on Heisenberg Manifolds

We will parametrize the Heisenberg group, G, by

(x,y,z) =
0 0

so that when it is identified with R3 the product is given by

(x, y, z)(x', y', z'} = (x + x', y + y', z + z' + yx').

For any positive integer c we will let Dc denote the discrete subgroup of G consisting
of those (x, y, z) such that x, y and cz are integers. The corresponding Heisenberg
manifold is Mc — G/DC, on which G acts on the left.
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Let G be any connected Lie group and D any closed subgroup, and set M = G/D.
We wish to determine the G-invariant Poisson structures on M. It is easily seen
that these correspond to the Poisson structures Λ on G which are invariant under
left translation by G and right translation by D. By the G-invariance of Λ, it will
be determined by its value at the identity element of G, and so is given by an
element, say Λ again, of Λ 2L, where L is the Lie algebra of G. Then right translation
invariance under D will be equivalent to invariance of Λ under the restriction to
D of the adjoint representation of G on L, and so on A 2L.

With G now the Heisenberg group, take as basis for L the elements

so that [ Y,^ ] = Z. Then any G-invariant Λ e Λ 2L is of the form

for real numbers μ, v, p. Let S and T denote the elements (1, 0, 0) and (0, 1, 0) of Dc.
Then simple calculations show that

MS(X) = X, Ad s(Y)=y+Z,

From this and the fact that Z is central, it is easily seen that Λ is Dc-invariant if
and only if p = 0, so that

Let us now express Λ more explicitly in terms of the coordinates obtained as
above by identifying G with R3. Let δ, for i = 1, 2, 3 denote the partial differentiation
operators for the standard coordinates on R3. Then straightforward calculations
using the fact that X, Y and Z are to be invariant under left translation show that

It follows that

Λ =(μdί + vδ 2 )Λ δ3.

Because this operator has constant coefficients, it is easily checked directly that
the corresponding Poisson bracket satisfies the Jacobi identity.

We can view the elements of C°°(MC) as elements of C°°(G) which are invariant
under right translation by Dc. Then the Poisson bracket on C°°(MC) is obtained
by applying A directly to such functions.

Probably the most straightforward path to strict deformation quantization of
the Heisenberg manifolds proceeds as follows. Every element of C°°(MC), as a
function on G, can be expressed (not uniquely) as the average over Dc of some
function in the Schwarz space S(G) ~ SCR3), or even of one in C °̂(G). In fact, since
the action of Dc on G is proper, the action of Dc on the C*-algebra C^G) is proper
in the sense defined in [29], where the role of the dense subalgebra can be played
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by S(G) (or Q°(G)). The elements of C°°(MC) will thus be the "integrals" over Dc

of the elements S(G), that is, C°°(MC) is the generalized fixed-point algebra for the
action of G, as defined in [29]. It is natural then to try to proceed by first
constructing a £>c-invariant strict deformation quantization of 5(G) by means of a
minor modification of the Moyal product, then showing that the action of Dc on
this deformation quantization is still proper, and finally showing that the
corresponding field of generalized fixed-point algebras is in fact a strict deformation
quantization of C°°(MC). Thus the deformation quantization of 5(G) is a non-
commutative "covering space" of the one we seek, with Dc the group of "covering
transformations." All of this can be carried out, and the relation so obtained
between the quantization of C°°(MC) and that of S(G) is quite useful in determining
the structure of the quantization of C°°(MC), as we will see later.

However, the path outlined above becomes notationally more complicated
than necessary, and so we will instead proceed by first making some reductions.
First, to more conveniently handle the factor c, we reparametrize the Heisenberg
group as

so that the product on R3 becomes

(x, y, z)(x', /, z') = (x + x', y + /, z + z' + cyx'\

and now Dc becomes the subgroup with integer entries. It is easily seen that the
only effect this has on the invariant Poisson structures discussed earlier is to change
μ and v, so this effect can be ignored. It is easily checked that for /eC°°(G) the
right translate of/ by (7c,w,w)eDc is

f(x + fc, y + m, z + n + cky).

If we let Ec be the normal subgroup of Dc consisting of elements of form (0, m, n),
then the quotient, JVC, of G by the right action of this subgroup looks like R x T2.
Then to obtain Mc it suffices to take the quotient of Nc by the action, p, of Z
given on functions by

(Pkf)(x> λ z) = f(x + k,y,z + cky).

We will view functions on Nc as functions on G ~ R3 which are invariant under
the right action of Ec, and for notational simplicity we will from now on omit the
dots, e.g. write y instead of y. Then A defines a Poisson bracket on Nc by applying
A directly to such functions. It is clear that G acts on the left on JVC, with this
action commuting with the action p.

Our path to the deformation quantization of Mc will then more or less consist
of forming a deformation quantization of NC9 then showing that the action p on
this quantization is proper and, finally, showing that the corresponding generalized
fixed-point algebras form, in fact, a strict deformation quantization of C°°(MC).

The structure of the resulting algebras is somewhat different depending on
whether or not μ = 0, because our parametrization of the Heisenberg group is not
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symmetric in x and y. We will consider these two cases separately, as they each
suggest different interesting generalizations.

3. The Case μ = 0

In this case A only involves the second and third variables of Nc ~ R x T2, and
in those variables A acts just as for the non-commutative tori discussed earlier.
We generalize this situation as follows. We will replace R by any Lie group G,
and replace Z by any cocompact lattice Γ in G. We will replace T2 by Td for
some positive integer d, and we will take A to be defined on Td exactly as in Sect. 1
for the non-commutative tori. Finally, we will assume that β is a homomorphism
of 7" into SL(d, Z\ with corresponding action on Td, which we require to preserve
A. (We could allow GL(d,Z), but then later formulas would be complicated by
the presence of det (βk) = ± 1.) As before, let θ denote the skew-adjoint real matrix
which defines A with respect to the standard coordinates on Tά. Then a simple
calculation shows that the requirement that β preserve A is equivalent to the
requirement that

for every keΓ, where βf denotes the transpose of βk. Thus βk is "symplectic" with
respect to θ.

We will let A also denote the corresponding Poisson structure on G x Td

coming from A on Td, ignoring the coordinates of G. And we will let p denote
the diagonal action of Γ on G x Td for β and right translation on G, so that for
/ a function on G x Td we have

where tεRd so that ieTd = (R/Z)d. (But from now on we will omit the dots for
notational simplicity.) The action p of Γ on G x Td is free and proper, and so the
quotient M = (G x Td)/p is a manifold, which is compact since Γ is cocompact.
Since A on G x Td is invariant under /?, it defines a Poisson structure on M, which
we also denote by A.

We wish to deform C°°(M) in the direction of A. To do this we follow the path
indicated earlier, of viewing C°°(M) as the generalized fixed-point algebra for the
action p of Γ on G x Td, and so of forming first a p-invariant deformation
quantization of Cf (G x Td). For this purpose we take Fourier series in the variables
of Γd, to obtain S(Zd) with convolution, as in Sect. 1. Thus we want to consider
the C°° -functions on G x Zd which are of compact support in G and all of whose
derivatives with respect to the Lie algebra of G vanish at infinity in the Zd variables
more rapidly than any polynomial grows. We will denote this collection of functions
by SC(G x Zd), and equip it with the product

(φ * ψ)(u, n) = £ φ(u, m)\l/(u, n-m)
m

for we G and m, neZd, and with the corresponding involution. A simple calculation
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shows then that p is given by

The Poisson bracket is now given, using the notation from Sect. 1, by

{φ9 1//} (M, n) = 4π £ φ(u, w)^(w, n - m)0(w, n).
m

A simple calculation shows that p preserves the Poisson bracket in the sense that

Then, following the steps of Sect. 1, we define

σh(m,n) = e(hθ(m,n))9

and then for φ9 ψeSc(G x Zd) we define

(Φ*h\l/)(u9 n) = £ φ(u, m)ψ(u9 n - m)σfi(m, n).
m

Similarly we set
φ**(u9n) = φ(u9 -n),

which we will denote just by φ*. We define a trace τ on SC(G x Zd) by

so that

τ(φ*Λn = <^X

the usual inner-product on L2(G x Zd). Then we have the evident ^representation,
πh, of SC(G x Zd) for each ft, and the corresponding operator norm and C*-
completion. As before, one can show that this provides a strict deformation
quantization for C?(GxTd). The corresponding C*-algebras will just be
C^(G)®Ahθ. We do not examine this in more detail since it is not the algebra
we want. Rather, it can be considered to be a "covering space" of the algebra we
want, with Γ as the group of "covering transformations," and with the algebra
we want being the generalized fixed-point algebra.

Thus what we want to determine is whether the generalized fixed-point algebra
for p is, as h varies, a strict deformation quantization of the algebra for ft = 0, which
is (the partial Fourier transform of) C(M). We remark that we are in the setting
of "crossed products by diagonal actions" studied in [24], except that we are also
keeping track of the C°° -structure. Because p does not depend on ft, it is most
convenient to first go back to Q°(G x Td). In view of the definition of p, the
generalized fixed-point algebra here which is identified with C°°(M), consists of
the FeC°°(G x Td) which satisfy

for all keΓ. Note that derivatives in t of such F need not satisfy this equation,
since translation on Td does not commute with β. But each such F is determined
by its values in a fundamental domain, which can be chosen precompact since Γ
is cocompact. In particular, F is necessarily bounded.
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For any FeC°°(G x Td) let F denote its Fourier transform in the variables of
Td as earlier. Then for any polynomial P in weZd and any finite product X of
elements of the Lie algebra of G, the function P(m)(XF)(u,m) will be bounded for
u in any compact set and for all m. In fact, it is easily seen that this property
characterizes these partial Fourier transforms of functions in C°°(G x Td) from
among the functions in C°°(G x Zd). The invariance under p is expressed by the
same equation as earlier. Thus the generalized fixed-point algebra which we want
to consider consists of the functions ΦeC°°(G x Zd) which satisfy

1. Φ(uk,βϊm) = φ(u,m) for all fceΓ, weG, and meZd.
2. For any polynomial P in weZd, and any finite product, X, of elements of the Lie

algebra of G, the function P(m)(X Φ)(w, m) is uniformly bounded for u in any fixed
compact set and for all m.

We denote this space of functions by Sp. Note that P(m)Φ(u9m) will not usually
satisfy property 1), just as earlier we saw that derivatives of F in the t variables
do not satisfy p-invariance.

For each h and for all Φ, ΨeSp we define the product and involution by the
same formulas as before, so that

(Φ *, Ψ)(u, n) =

= Φ(w, — ή).

It is easily checked that these are again in Sp. We wish to define a ^representation
πh of the resulting algebra on L2(G x Zd) by

(πΛ(ΦK)(ιι, m) = £ Φ(w, m)ξ(u9 n - m)σh(m, n\
m

but we need to examine why the operator so defined is bounded. For this we use
the evident fact that πh(Φ) can be viewed as a field of operators on L2(Zd)
parametrized by ueG, which we denote by πft(Φ(w, )). Now by hypothesis 2 in
the definition of Sp, for any compact subset U c G, and any positive integer q,
there is a constant N such that

for all ueU and meZd. Consequently there is a constant N' such that

| |Φ(tv)|lι^ΛΓ

for all we 17, where || || x is the norm for L1 (Zd). It follows that as operators on L2 (Zd )

for ueU. We must now use condition 1 to extend this bound uniformly over G.
For any fee Γ let Bk be the unitary operator on L2(Zd) defined by

Then a simple calculation shows that for φeS(Zd),
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as operators on L2(Zd), Thus for any ΦeSp and for fixed u and fe,

Since Bk is unitary, we conclude that

as operators on L2(Zd). If we now take as U a compact fundamental domain for
Γ in G and use the earlier estimate, we conclude that || πh(φ(u, •)) || is uniformly
bounded in w, so that πh(Φ) is indeed a bounded operator on L2(G x Zd).
Accordingly, we define

and we let Ah denote the corresponding pre-C*-algebra.
Of course for h = 0 the algebra Ah is just (the partial Fourier transform of)

C°°(M). Our objective is to show that as h varies, the Ah provide a strict deformation
quantization of C°°(M) in the direction of A. Here the Poisson bracket on Sp is
given by exactly the same formula as used above for SC(G x Zd). We begin by
verifying condition 2 of Definition 1.1. Let

Δh = (Φ*hΨ-Ψ*hΦ)/ίh-{Φ,Ψ}.

Then, just as in Sect. 1, we find that

- 4πθ(m,n)].

As in Sect. 1, we let Fh(m,n) denote the expression inside [ ], and, as there, we
find that there is a constant, N, such that for any ueG and neZd we have

In view of property 2 of the definition of Sp, we find, much as in the previous
paragraph, that for any compact subset U of G there is a constant N' such that

for ueI/, as operators on L2(Zd). Since ΔeSp, we can then use property 1 of the
definition of 5P, as done in the previous paragraph, to conclude that || Ah || h ̂  hN'
as an operator on L2(G x Zd). It follows that ||^Jft goes to 0 as ft goes to 0, as
desired.

We now verify condition 1 of Definition 1.1. For this we again view any ΦeSp

as defining, for given ft, a field of operators on L2(Zd) indexed by ueG. It is easily
seen from the continuity of Φ and from condition 2 of the definition of Sp that
WH-> Φ(w, •) is, in fact, continuous from G to l}(Zd). Since the Z^-norm dominates the
operator norms, wi—>Φ(w, ) is continuous for any given operator norm, || ||ft. But,
given any ε > 0 and any ft0, we can apply Theorem 1.3 above, or really the part
of its proof which appeals to Corollary 2.7 of [28], to conclude that for any ueG
there is a neighbourhood Nu of ft0 such that

)iU0-||Φ(", )U<ε/3
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for heNu. Combining this with the norm continuity indicated just above, using a
standard ε/3 compactness argument, we find that for any compact subset U of G
there is a neighborhood Nv of h0 such that

\\\Φ(u, )\\ho-\\Φ(u,')\\h\<ε

for all heNv and all ueU. If we choose U to be a fundamental domain for Γ,
and if we use property 1 in the definition of Sp by means of the device used earlier,
we obtain the above inequality uniformly over G, from which it follows that

ft"—HI Φ\\h is continuous as desired.
Having thus shown that the algebras Ah form a strict deformation quantization,

we now examine the invariance properties. As in Sect. 1 we have the dual action
of Td for the Zd variables. But a simple calculations shows that with this action
an element t of Td does not carry Sp into itself unless βkt = t for all feeΓ. We
denote the subgroup of such ί by (Td)β. We also have an action of G on Sp coming
from left translation of G on itself. Putting these together, we obtain an action α
of the Lie group G x (Td)β on Sp defined by

(α(y>ί)Φ)(w, m) - έ?(ί m)Φ(ιΓ V m)

for (v,t)εG x (Td)β. Since A involves only the variables of Zd, and is of the form
discussed in Sect. 1, it is preserved by the dual action of Td, and so is also preserved
by α. For much the same reasons, α(tv) is a *-automorphism of Ah for each h, so
that condition 1 of Definition 1.2 holds. Conditions 2 and 3 are then verified in
a straightforward was by combining the arguments indicated in Sect. 1 for the Zd

variables with the usual facts about smooth vectors for the left regular representa-
tion of G on itself.

We summarize the results of this section so far by:

3.1 Theorem. Let G be a Lie group, and let Γ be a cocompact lattice in G. Let β
be a homomorphism of Γ into SL(d, Z) with corresponding action on Td, and let p
be the diagonal action of Γ on G x Td obtained from combining β with the right
regular representation ofG on itself. Let M = (G x Td)/p, which is a compact manifold.
Let θ be a skew-adjoint matrix which defines a Poίsson structure on Td for the
standard coordinates ofTd. Assume that βkθβf = θfor keΓ,so that the corresponding
Poisson structure on G x Td is preserved by β, hence θ defines also a Poisson structure,
A, on M. Then a strict deformation quantization for C°°(M) in the direction of A
is obtained, as above, by taking partial Fourier transform in the Td variables, and
then forming the normed *-algebra Ah obtained by twisting the convolution-type
product for the generalized fixed-point algebra for p by the 2-cocyle defined by hθ.
This deformation quantization is invariant under the action α of G x (Td)β defined
above.

We remark that this situation can easily be generalized somewhat further by
replacing Γ by any discrete group, and in the definition of M = (G x Td)/ρ replacing
G by any manifold N on which Γ acts freely and properly on the right with
compact quotient, and on which G acts on the left, the action of G commuting
with that of Γ.

For the purpose of obtaining structural information about the algebras Ah

just constructed, it is useful that, as generalized fixed-point algebras, they are
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closely related to the corresponding crossed-product algebras. This is the case
because we are essentially in the situation discussed by Raeburn and Williams in
Sect. 2 of [24]. The only difference is that we have been working with C°° functions,
whereas they work with continuous functions. This difference has no effect on the
conclusions that are drawn in [24], and essentially no effect on the proofs. Thus
we will simply state here the consequences for the present situation, without proof.
(One could instead apply the slightly more complicated theory of [29].)

Given θ and h, we will let Bh denote SC(G x Zd) with the product *ft and corres-
ponding involution and norm, as discussed near the beginning of this section.
Since A only involves the Zd variables, Bh is a dense *-subalgebra of C^G)® CΛ,
where Ch is the corresponding non-commutative torus. Furthermore, the action
p on Bh defined near the beginning of this section extends in an evident way to
CaQ(G)®Ch, as a diagonal action of /?, extended to Cft, with the right action of G
on itself. The generalized fixed point algebra for this extended action is easily seen
to contain Ah as a dense *-subalgebra. Then from Theorem 2.2 of [24] we
immediately obtain:

3.2 Proposition. The completion, Άh, of the algebra Ah described above is strongly
Morita equivalent to the crossed product algebra (C00(G)® Ch) x PΓ.

We now specialize the results of this section back to Heisenberg manifolds,
with A = — πvd2 Λ <33. The homomorphism β is then given by

1 0

-ck 1

and so the algebra Ah consists of functions Φ on R x Z2 which satisfy

Φ(u -f fe, m — ckn, n) = Φ(w, m, n)

for all wejR and fc, m, rceZ. The cocycle defining the product on Ah is defined by

σ,((m, n\ (p, q)) = e((l/2)hv(mq - np))

for (m, n), (p, q)eZ2. The algebra Bh consists of the functions in SC(R x Z2) with
product and involution defined by the same formulas as for Ah, and with action
p of Z defined by

(Pk(Φ))(u> m>n) = Φ(u + k,m- ckn, n).

Then by the results of Raeburn and Williams, Ah is strongly Morita equivalent
to Bh x PZ. Thus one way to obtain properties of Ah is to study this crossed product.

4. The Case μ φ 0 for the Covering Space

In the case μ / 0 we do not have available the convenient splitting of R from T2

which we used in the previous section. Thus we must employ a different approach,
which is of some interest because it leads to a generalization which works any
time we have an action of Rd on a manifold. In this section we will not yet take
into account the action p of Z described in Sect. 2, and so we obtain a deformation
quantization which can be considered to be a "covering space" of the one we
actually seek, which is treated in the next section. We remark that in this section
we do not need to insist that μ φ 0, but only that one of μ and v be non-zero.
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We recall from Sect. 2 that we consider RxT2 with the Poisson structure
given by

Λ = — π~l(μdί -f v32) Λ 33.

To obtain a deformation quantization we now take the Fourier transform in all
three variables. We obtain S(R x Z2) with convolution, and with Poisson bracket
defined by

{φ9 ψ} (r, m, n) = 4π J Σ [(μs + vp)n - q(μr + vm)] φ(s9 p, q)ψ(r -s9m-p9n- q)ds.
PΛ

Just as for the non-commutative tori, we then define a skew-bicharacter σh on
R x Z2 by

σΛ((r, m, n), (5, p, g)) = e(h(v(pn - qm) + μ(sn - qr))).

Then for φ9 ψeS(R x Z2) and uεR x Z2 we define

(φ *ft ι/0(w) = J φ(v)\l/(u - υ)σh(v9 u - v).
R X Z 2

This gives a strict deformation quantization of S(R x T2) in the direction of Λ .
Let us now consider how the corresponding product is defined on S(R x T2)

itself. We will denote this product by *, and absorb h into μ and v for notational
simplicity. For f,geS(R x T2) we have

sΣ /fe Λ 4)Φ(* + (n - 4)μ) + Ptv + (n - q)v))
P

,n- q)e(r(x - qμ) + m(y - qv))
m

= Σ Φn)Σ/(x + (n - 4)μ> y + (n~ ^)v, q)g(x ~qμ,y- qv, n - q\
q

where / denotes the partial Fourier transform in the third variable.
This last formula looks somewhat like that for the product in the crossed

product algebra [22] for the action α of R on R x T given by

<Xr(*> y) = (χ- rμ, y - rv),
except in a more symmetrical form. Notice that the infinitesimal generator for the
corresponding action on S(R x T) is given by

lim (/(x + rμ, y + rv) - /(x, y))/r = ((μd, + vS2)/)(x, y).
r->0

This suggests the following generalization. We consider a manifold M and a smooth
action α of Rd on M. For n = 1, . . . , d let XM denote the vector field on M corres-
ponding to differentiation along the nth standard basis vector for Rd via α. Thus
for t = (rn)εRd we have

lim (/(αjx)) - f(x))/h = Σ rn(Xnf)(x)
tι-+0

for every /eC°°(M). Then on M x Γd let
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Λ = -π'^XnΛd^

where dn denotes differentiation in the nth direction on Td. (With only minor
modifications to the discussion which follows, we could instead treat M x Rd, in
which case Alan Weinstein has pointed out to me that A is essentially the semi-direct
product Poisson structure, as defined in the appendix of [32], for the action of
Rd on M, where M is given the zero Poisson structure.) Because all the vector
fields involved in the definition of A commute, it is easily seen that A defines a
Poisson structure on M x Td. We seek a strict deformation quantization of M x Td

in the direction of A .
For each /eCc°°(M x Td) define

f(x,p)= S f(x,t)e(p t)dt.
Td

Then feSc(M x Zd\ much as in Sect. 3. The Poisson bracket on SC(M x Z*) from
A will be given by

{ φ, φ} (x, p)=-2iΣΣ (XnΦ)(x, β)(P- - q*W(x, />-«)- 9nΦ(x, «)(*Λ«te P - «)•
q n

(4.1)

Motivated by the formula obtained earlier for the case R x T2, we define, for any
ft, and any φ, ψeSc(M x Zd),

(φ *hψ)(x, p) = £ φ(cch(q_p)(x), q}\l/(ahq(x\ p - q\

Simple calculations show that these define a *-algebra, which we denote by Ah.
One has the evident Z^-norm on this algebra (in the Zd variables, for the sup-norm
in the M variables), and so one can then form the corresponding enveloping
C*-algebra, and then go on to study its structure. However, it is easier to remark
that this C*-algebra is isomorphic to a crossed product algebra, so that we can
appeal to the well-known results about crossed products. To be specific, for any
given h let / be the action of Zd on M defined by yh

p—U-2tιp> anc^ ^et ^ (or Λ)
be the mapping from Ah into the crossed product algebra C*(Zd, C^(M\ /)
defined on functions by

Then

J(φ*hψ)(x, p) = (φ*hψ)(<*hp(x),p)

= Σ ΦfahqW' ^(^
q

= J(φ)*J(ψ)(x,P).

In a similar way one verifies that J(</>*) = J(φ)*> and that J is isometric for the
L1 -norms. It is clear that the range of J is dense in C*(Zd, C^M),/). We can then
take the C*-norm, || ||Λ, on Ah to be that from this crossed product. Since Zd is
amenable, the norm on the crossed product is that obtained from any representation
obtained by inducing [22] a faithful representation of C00(M). But one has such
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a faithful representation of C^M) on L2(M) for any measure on M of full spport.
(Our notation will not explicitly indicate the measure.) The induced representation
then acts on L2(M x Zd\ with the action at the level of functions defined for
ξeL2(M x Zd) and ΦeSc(M x Zd) by

Composing with J, we find that the corresponding representation, πh, oϊAh is defined
by φeAh by

(πh(φ)ξ)(x, p) = £ </>(%_ 2p)(x), q)ξ(x, p - q).
2p)

q

We will take the norm from this representation as defining the norm on Ah. We
recall from definition 3.2 of [28] that an upper semi-continuous field {Bω} of
C* -algebras over a locally compact space Ω, with maximal algebra B of continuous
sections, is said to be Hubert-continuous if there exists a fixed Hubert space H,
and for each ωeΩ a faithful representation πω of Bω on H such that for any beB
the function ωκ->πω(frω) is continuous for the strong operator topology. This implies
that {Bω} is a continuous field.

4.2 Theorem. With A and Ah defined as above, {Ah} is a strict deformation
quantization o/Cc°°(M x Td) in the direction of A. Moreover, via the representations
πh defined above, {Ah} is a Hίlbert-contίnuous field.

Proof. The proof that condition 2 holds is a somewhat simplified version of the
proof of this in the upcoming Theorem 5.4, and so we do not include it here
separately. The proof that condition 1 holds is based on Corollary 3.5 of [28].
For each/eC^M) and peZd the function h\-*yh

p(f) = a-2flp(f) is clearly norm-
continuous from R to C^(M). Thus the main hypothesis of Corollary 3.5 of [28]
is satisfied. From part c) of that corollary we conclude that {C*(Zd, C00(M),yft)}
is a continuous field of C*-algebras over R, with continuity structure given by
ti(Zά,CJ(M)\ and maximal C*-algebra of sections C*(Zd

9CJ(R x M),y), where γ
has the evident meaning. For each h the map Jh carries SC(M x Zd) onto a dense
subalgebra of Ll(Zd, C^M)), and the norm on Ah is defined to be that coming
from C*(Zd, CJM), /) via Jh. For any φeSc(M x Zd) the function

(x, ft, p)*-*(Jhφ)(x,p) = </>(α_2ftpM,P)

is in Cc(Z
d, C^R x M)) at least locally in ft, that is, we can cut it off continuously

outside any interval of ft's of interest so that it is in Cc(Z
d, Cm(R x M)). Since by

part c) of Corollary 3.5 of [28] this space consists of continuous sections for the
field, it follows that fti— > \\φ\\h is continuous. Q.E.D.

We now specialize to the case discussed at the beginning of this section. In
this setting we can use the usual Schwarz space.

4.3 Corollary. For heR let Ah denote S(R x T x Z) with product and involution
defined by
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(Φ *hψ)(χ, y,p) = Σ Φ(χ - % - p)v> y~h(<ι- pK <tiΨ(χ - %μ> y - h<ιv> P - 0)
q

φ*(x,y,p) = φ(x,y, -p)

and with norm coming from the representation on L2(R x T x Z), for Lebesgue
measure, defined by

(Φξ)(χ, y,p) = Σ Φ(χ - n(q - 2p)μ> y - % - 2p)v> 4)ξ(*> y>p- 4)
q

Then, via the partial Fourier transform in the last variable, {Ah} is a strict deformation
quantization of the manifold R x T2 in the direction of the Poisson structure given by

Λ = —π 1(μd1 + vd2) Λ 93.

5. The Case μ φ 0 as Generalized Fixed-Point Algebra

In this section we take into account the action p of Z described in Sect. 2, and we
obtain our desired strict deformation quantizations as generalized fixed-point
algebras under p of the deformation quantizations studied in the previous section.
This approach is useful in proving the continuous field property, as well as in
obtaining information about the structure of the resulting algebras.

Recall from Sect. 2 that the action p on R x T2 was defined by

(Pkf)(x> y> z) = /(* + fc> y> z + kzy).

In keeping with the generalization made in Sect. 4, we wish to define an analogous
action, p, on M x Td, where M replaces R x T, and Td replaces the last T of
R x T2. Accordingly we let β, replacing (x, y)t-+(x + fc, y\ be a (free) proper smooth
action of Z on M which commutes with the smooth action α of Rd, and is such
that the orbit space, M/β, is compact. (Eventually one may want to treat actions
β by other groups than Z, but since matters are complicated enough for Z, it
seems best to restrict to that case here.) As we will see later, we also need to require
that α satisfies the following growth condition with respect to β:

5.1 Definition. With notation as above, we will say that α is ^-bounded if there is a
precompact fundamental domain C in M for β, and a constant fo, such that for any
xeC and any reR* there is a feeZ such that \k\ ^b\\r\\ and αr(x)eβfc(C).

It is clear that when α and β are given on M = R x T by

then α is ^-bounded.
Continuing to generalize the original p, we will replace the factor cy, which

we view as a function on T2 with values in T, by a function, η, on M/β with values
in Td. Since we are viewing Td as Rd/Zd, we will write the law of composition on
Td as addition, and will often think of η as a β-invariant function on M with
values in Rd modulo elements of Zd. We then want to define an action, p, of Z
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on M x Td by

We also want p to preserve the Poisson structure on M x Td used in Sect. 4, and
to be compatible with the deformation quantization defined in Sect. 4. Thus we
need to put conditions on η. For this purpose and later calculations, we will need
to view Td as the dual group of Zd. Since we are writing the law of composition
on Td as addition, we will write the pairing between pεZd and ίeTd as e(t-p\ so
that we can view t-p as coming from the standard inner product on jRd, but defined
only modulo elements of Z.

We will see that the conditions we require of η are given by:

5.2 Definition. Let α and β be comuting smooth actions of Rd and Z on a manifold
M, with β proper and M/β compact. We will say that a C°° -function η from the
manifold M/β to Td is an α-phase if

for all p, geZd, fte# and xeM.
It is clear that the function η(x, y) = cy on R x T with values in T satisfies

these conditions for the specific α and β given earlier.
Returning to the general case, we define an action, p, of Z on M x Td by the

formula given earlier, so that the action on functions F on M x Td is given by

(PkF)(x,t) = F(βk(x\t-kη(x)).

Since β is proper, it is clear that so is p. Let N = (M x Td)/p. Since M/β is compact,
so is N.

On M x Td we have the Poisson structure defined in Sect. 4. Let us show that
p preserves this Poisson structure. If we take the derivative in h at 0 of the α-phase
condition of Definition 5.2, it is easily seen that in terms of standard coordinates
we find that

for any xeM and for 1 ̂  w, n^d, where, even though the values of ηm are
determined only up to elements of Z, the above derivatives are well-defined as
real numbers. If we now take F and G in C°°(M x Td) and calculate (pkF, ρkG}(x9 1)
we obtain, up to the factor — π~ 1, the following, in which for simplicity of notation
it is to be understood that derivatives of F and G are to be evaluated at (βk(x\
t-kη(x)):

) - Σ (3W W^ J(Λ
m J w L m J

= pk({F, G})-k^(dmF)(dnG}(Xnηm)(x) - (dnF)(dmG)(Xnηm)(x).

But the last term is zero because of the fact that Xnηm = Xmηn> as found above.
Thus p preserves the Poisson structure. We also see that, at least in part, the
α-phase condition is a global form of saying that the Poisson structure is preserved.
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It follows that A determines a Poisson structure on (M x Td)/p, which we will
again denote by Λ. We wish to construct a deformation quantization of
C°°((M x Td)/p). As in Sect. 4 we first consider CC°°(M x Td) and take partial
Fourier transforms on Td, to obtain the space SC(M x Zd). Then we find that p is
defined on SC(M x Zd) by

A simple calculation, using the α-phase condition, shows that p is an action on
the algebra Ah defined in Sect. 4, for each h. The Definitions 5.1 and 5.2 give the
properties we will need in order to show that this action is proper, even in the
case of the original p. In fact, one reason for our working in this generality is that
it is notationally less cumbersome than working with the original p.

Since β is proper, it is clear that the generalized fixed-point algebra for />, if it
makes sense, should be the space Sp of functions defined by:

5.3. Notation. Let Sp denote the space of C°° functions Φ on M x Zd which satisfy

a) Φ(βk(x\p) = e(kp-η(x))Φ(x,p) for each fceZ.
b) For every polynomial P on Zd, and every finite product X of smooth vector

fields on M the function P(p)(XΦ)(x,p) is bounded on K x Zd for any
compact subset K of M.

Note that because β is free and proper, there are plenty of functions in Sp; for
any φeSc(M x Zd) the function ^pk(φ) will be in Sp. Now given any h and any

k
Φ, ΨeSp, we define the corresponding product and involution by the same
formulas as before, so that

(Φ *, Ψ)(x9 p) = Σ Φ(α%-p)M, q) Ψ(^(x\ P - q\

Φ*(x,p)=Φ(x,-p).

Then it is easily verified that these are again in Sp, because of the conditions
imposed on η. We will denote the corresponding *-algebra by Dh. It might seem
desirable now to try to pass to a formula for the product which is closer to that
for an ordinary crossed product, much as done in Sect. 4. But when one tries this,
the image of Sp depends on ft, and this obscures the situation. Thus we will not
make this passage.

Since at the level of C*-algebras we will wish to view Dh as consisting of
multipliers on Ah, we need to define the norm on Dh by extending to multipliers
the representation on L2(M x Zd) used in the previous section to define the norm
on Ah. Thus for ΦeDh and ξeL2(M x Zd) we set

(πh(Φ)ξ)(x, p) = £ Φ(α%_2p)(x, q))ξ(x, p - q).
ι

It is easily seen that Φ defines a bounded operator on L2(M x Zd). In fact, because
M/β is compact, it follows from the definition of Sp that we can find, for any ΦeSp,
a function feLl(Zd) such that |Φ(x,p)|g/(p) for all peZd and xeM, so that

| ^ || / H i - We will use this observation shortly. Anyway, for ΦeSp we set
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On Sp we find that the Poisson structure A is given by formula 4.1. Because
we checked that A is p-invariant, it is clear that if Φ, ΨESP, then {Φ, Ψ}εSp.

The following theorem is the main result of this paper. The term "saturated"
used here is defined in Definition 1.6 of [29].

5.4 Theorem. With A and Dh defined as above, {Dh} is a strict deformation
quantization of C™((M x Td)/p) in the direction of A. For each h the action p of Z
on Ah defined earlier is proper, and Dh is the generalized fixed-point algebra for this
action. The action p is also saturated, and so Dh is strongly Morita equivalent to
AhxpZ.

Proof. We verify condition 2 of Definition 1.1 first. Let Φ, ΨeSp, and for any h φ 0
let

Δh = (Φ*fi Ψ - Ψ*h Φ)/ih - {Φ, Ψ}.

Now a change of variables in one term shows that

which can be rewritten as

+ Σ ΦKP-?)M, <ύίΨ(**(x), P-9)- Ψ^-,q(x), P - «)]•
«

Splitting {Φ, Ψ} into two corresponding terms, we can write Ah as A'h + Δ'^ where

Δ'h(x,p)= -i
4

n - pn) Ψ(χ99p- q)\
J

and similarly for A"h.
It suffices to show that | |2l^| |Λ and | |4J| |Λ converge to 0 as h goes to 0. We

give the argument only for Δ'h, since the argument for Δ'ί is similar. We only need
consider small ft's. So choose ε > 0 and consider only ft's for which | f t | ^ ε. Let K
be a fixed compact subset of M containing a fundamental domain C for /?. Fix p
and g, and let

which is again compact. Let 0 be a function in CC°°(M) which agrees with Φ( ,q)
on a neighborhood of K'. Now φ is a C°° -vector for the action α, essentially by
hypothesis (see chapter 8 of [11]), and so we can form the three-term Taylor
expansion in h of

But for I ft I ̂  ε and xeK the terms in φ agree with the corresponding terms in Φ.
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Thus for each such h and x we obtain a number, h, between 0 and h such that

- Pn)(XnΦ)(x, q) + h2Σ (qn - pn)(qm - Pm)((^nXmΦ)(αM<I_p)(x), q)
n n,m

-(XnXmΦ)(*h(p-q)(x),q)).

It is at this point that we must use the growth conditions imposed earlier on β
and η. If we differentiate conditon a) of Notation 5.3 using α, in the direction of
the nth standard basis vector of Rd, we find that for yeM

(XnΦ)(βk(y\P) = e(kp η(y))(XnΦ)(y,p) + e(kp η(y))2πϊkp (Xaη)(y)Φ(y9p)9

where Xnη is defined either by the induced action of α on M/β, or equivalently by
viewing η as a function on M. A second differentiation, in the mth direction, yields

(XmXnΦ}(βk(y\p) = e(kP η(y))(XmXnΦ)(y,p)

+ e(kp η(y))2πikp (Xmη)(y)(XnΦ)(y,p)

+ e(kp η(y))2πikp'(Xnη)(y)(XmΦ)(y,p)

+ e(kp η(y))2πikp (XmXnη)(x)Φ(y,p)

- 4π2k2e(kp'η(y))(p'(Xmη)(y))(P'(Xnη)(y)) Φ(y,p).

For the fundamental domain C let b be a bound as in Definition 5.1. Then for
given xeM and qeZ, we can find a /ceZ with \k\ ^b\\hq\\9 and a yεC such that
«A« W = βk(y\ Consequently,

\(XmXnΦ)(κhq(x\p)\ ^ \(XmXnΦ)(y,p)\

+ 2πb\\hq\\ \\p\\ \\(Xmη)(y)\\\(XnΦ)(y,p)\

+ 2πb\\hq\\\\p\\\\(Xnη)(y)\\\(XmΦ)(y,p)\

+ 2πb\\Λq\\\\p\\\\(XJ[llη)(y)\\\Φ(y9p)\

+ 4π2b2 1| hq \\2 \\p\\2 || (Xmη)(y) \\ \\ (Xnη}(y) \\ \ Φ(y, p)\.

Since M/β is compact, we can find a common bound for all the above derivatives
of η. By part b) of Definition 5.3 we can find one/mneS(Zd) which dominates on
C all of the products of derivatives of Φ with the common bound, constants, and
powers of ||p||, in the above expression, so that

\(XmXnΦ)(ahq(x),p)\ 5^(1 + || ft? || + \\hq \\2)fmn(p)

for all p9 qeZd, \h\ ^ ε, and xeC. We can also find geS(Zd) such that

for all p, q, h and xeC. Now \Λ'h(x,p)\ can itself be rewritten as a sum of two
terms to yield
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Σ (φ(%-P)M> 9) -
« L

,P - ί)

Σ Σ («. - P«)(*«Φ)(*> «) C ψ(**(χ\ p-q)- ψ(χ, P -+ 2

By the previous inequalities and the earlier Taylor expansion, the first of these
two terms is

q n,m

= ft ΣΣfmn(q)hmtt(p - «) = ft Σ (/mn*Ό(p),
m,n 4 m,n

where /ιmn(p — g) is the product of g(p — q) by the term in p — q appearing as
coefficients. Since each/wπ and hmn is in S(Zd), so is the sum of their convolutions.
By a similar but easier argument we can dominate the second term in the splitting
of Δ'h by the product of ft with an element of S(Zd). We can apply similar arguments
to Δ'i. Putting all this together, we fmd/eS(Zd) such that

for all p and all xeC. But ΔheSp, and so by condition a) of Definition 5.3 this
inequality holds for all xeM. Then

from which it is clear that | |4 f t | |Λ-»0 as ft-»0. Thus condition 2 of Definition 1.1
has been verified.

We now verify condition 1. For this purpose it is not necessary to keep track
of the C°°-structure, and it is simpler not to do so. Accordingly we will from now
on let Dh denote the C*-algebra completion of the algebra Dh used above. We
need to show that {Dh} is a continuous field over R, where as continuity structure
we can, instead of 5P, just take the simpler space, Cp, of functions Φ on M x Zd

which are of compact support on Zd and satisfy condition a) of Notation 5.3.
We wish to appeal to Theorem 3.2 of [29], and so we must verify the hypotheses

of that theorem. For each h let Ah denote the C*-completion of the Ah of Sect. 4.
Then when convenient, we can view Ah as the completion of CC(M x Zd) instead
of SC(M x Zd). According to Theorem 4.2, the field {Ah} is Hubert-continuous,
with representations σh of Ah on L2(M x Zd) defined by the same formula as that
which defines the representation nh of Dh given above. It is clear that the algebra,
A, of continuous cross sections of {Ah} which vanish at infinity, has A° =
CC(M x Zd x R) as dense *-subalgebra, with operations defined as above except
parametrized by fteR. We let πh be the evident homomorphism of A onto Ah,
and we let p denote, in addition to the action on each AΛ9 also the action on A
defined for FeA° by

(pk(F))(x, P> h) = e(kp η(x))F(βk(x\ p, ft)
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for /ceZ. Then each πh is equi variant for p. Thus p is a continuous field of actions,
as defined in Definition 3.1 of [28]. We wish to show that p is in fact a continuous
field of proper actions, as defined in Definition 3.1 of [29], that is, that p as an
action on A is proper, as defined in Definition 1.2 [29]. As dense *-subalgebra for
Definition 1.2 we take A° defined above. Now because β is a proper action of Z
on M, a straightforward examination shows that for each F, GeA° there is only
a finite set of ks for which Fpk(G) Φ 0. Thus condition 1) of Definition 1.2 is satisfied.

We verify condition 2) of Definition 1.2 in the slightly stronger form that, for
every FεA° there is a ΘeM(A) which carries A° into itself and is such that for
all GeA° we have

The natural candidate for Θ is defined, as a function, by

<9(x, p, ft) = £ ph(F)(x, p, ft),

= Σe(kp η(x))F(βk(x),p,tί).
k

Because F has compact support and β is proper, Θ is well defined. It is clear that
<9(γ,ft) is invariant under p for each ft, so that ΘeCc(R,Cp). Since each element
of Cp defines an element of M(A^ for any ft, with norm uniformly bounded in ft,
and since Θ carries A° into itself, it is clear that Θ defines an element of M(AΌ).
A simple calculation then shows that £ Gρk(F) = GΘ for any GeA°. Thus p does
indeed satisfy all the conditions for being a proper action of Z on A.

Because Z is amenable, the full and reduced crossed products of Z with each
Ah agree [22], And we have seen in Theorem 4.2 that the field {Ah} is
Hubert-continuous. Thus we have verified the hypotheses of Theorem 3.2 of [29],
and can conclude that the field of generalized fixed-point algebras is continuous.
But we have seen above that this field is just {Dh}. This concludes the proof that
{Dh} is a strict deformation quantization of C°°((M x Td)/p).

Next, we show that the action p on Ah is saturated. For this we use criterion
3) of Proposition 2.3 of [29], namely we show that the ideal E defined there, which
is the closed linear span of functions <ψ,^*>£(fc) = φpk(Ψ) in CC(Z,CC(M x Zd)),
for φ,ψeCc(Mx Zd\ is carried into itself by the dual action p. We could instead
use criterion 2), consisting of showing directly that E contains an approximate
identity for the crossed-product, by means of arguments similar to those in [26],
but this would be more complicated. However, we should remark that the proof
of criterion 3) given in [29] depends on a substantial theorem of Gootman and
Lazar.

The argument which follows is simply a slightly more complicated version of
the argument used in the proof of Corollary 2.4 of [29]. Let teT = Z, and let φ,
ψeCc(M x Zd). It suffices to show that &« </>,!/'*>£;) is again in E. We can assume
that φ and ψ are each, in their second variable, supported on only one point of
Zd, since otherwise we can express each of them as a finite sum of elements of
CC(M x Zd) which have this property. Suppose the supports are at q and p — q
respectively. Then for all feeZ,

* yE(k) = φ)(φpk(ψ))9
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which will only be non-zero at p, and evaluated there and at any xeM, is

= e(kt)φ(κh(q_p](x\ q)e(k(p - q)'η(xhq(x)M(βk(ahq(x)lp- q).

Since β is a free and proper action of Z, we can assume that all the translates of
the closure of the support of x\-*ψ(x,p — q) are disjoint, for if this is not the case,
then we can express ψ as a finite sum of elements of CC(M x Zd) which do have
this property, and are all still supported at p — q in the second variable. Likewise
we can then assume that there is at most one fc0eZ such that the support of
χι-^φ(α%_p)(x),g) meets the support of x\-*ψ(βk0(oίhq(x)), p — q). If there is no
such &0, then < φ, ψ >£ = 0, and so pt applied to it is in E. Otherwise, let θ = e(k0t)ψ.
Then for any xeM and /ceZ,

A « Φ> Ά* >*)(*, x) = e(kt) < φ, ψ* >£(/c, x),

which, by the computation above, is 0 if k Φ /c0, and so can be rewritten as

= Φ(*h(q-P}(x\ l}e(k(p - q)-η(cίhq(x)))e(k0t)ιl/(βk(cίhq(x)\p- q)

= <Φ,θ*yE(x,k),
as desired.

We are now in a position to apply Corollary 1.7 of [29] to conclude that each
Dh is strongly Morita equivalent to Ah x pZ. Q.E.D.

We now specialize the above theorem to the Heisenberg manifolds.

5.5 Theorem. For any positive integer c let Sc denote the space of C™ functions Φ on
R x T x Z which satisfy

a) Φ(x + fe, y, p) = e(ckpy)Φ(x, y, p) for all fceZ.
b) For every polynomial P on Z and every partial differential operator

X = dm+n/dxmdyn onRxT the function P(p)(X Φ)(x,y,p) is bounded on K x Z
for any compact subset K of R x T.

For each fteR let Dh denote Sc with product and involution defined by

(Φ * ψ)(x, y, p) = Σ φ(* ~ h(V - PK y~^(q- p)v, q) Ψ(x - hqμ, y - hqv, p - q\

Φ*(x9y,p)=Φ(x9y9-p)9

and with norm coming from the representation on L2(R x T x Z), for Lebesgue
measure, defined by

Then, via the partial Fourier transform in the last variable, {Dh} is a strict deformation
quantization of the Heisenberg manifold C°°(MC) in the direction of the Poisson
structure given by

A = —π~1(μd1 + vd2) Λ δ3.

The norm completion of each Dh is strongly Morita equivalent to the crossed product
Ah x pZ, where Ah is the C*-algebra defined in Corollary 4.3, with space S(R x T x Z)
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and with product, involution and norm defined by the same formulas as above, and
where p is the saturated proper action defined by

(ρkφ)(x, y, p) = e(ckpy)φ(x + fe, y, p).

Finally we record the formulas for the action of the Heisenberg group on the
deformed algebras. It is easily verified that under the partial Fourier transform
the left action of the Heisenberg group is given on S(R x T x Z) by

(L(ΓAί)ψ)(x, y, p) = e(p(t + cs(x - r))φ(x -r,y-s9 p\

for r, s,teR. This action, of course, commutes with the action p of Z on S(R x T x Z)
defined early in this section. Consequently, we would expect that the same formula
would give an action of the Heisenberg group on the generalized fixed-point algebra
for p. It is easily checked that this action does indeed carry S° into itself, and that
for each h it is a *-homomorphism for the product and involution on Sc which
defines Dh. So we must check how things mesh with the norm. For any r, s, teR
define a unitary operator U(ftStt) on L2(R x T x Z), depending on ft, by

(U(r,s,t)ξ)(x, y, P) = e(p(t + cs(x + hpμ - r))ξ(x -r,y-s, p).

Then it is easily checked that, as operators on L2(R x T x Z),

It follows that each L(Γι 5fί) gives an automorphism of the norm closure of Dh, so
that condition 1 of Definition 1.2 is satisfied. But the fact that the Φ's are C00

functions whose values in the first variable are determined by the values on [0,1],
together with the evident smoothness of L(ΓjSjί) and U(,tStt)9 make it easy to verify
also conditions 2 and 3 of Definition 1.2. Thus we have shown:

5.6 Proposition. The strict deformation quantization of the Heisenberg manifolds
described in Theorem 5.5 is invariant for the action of the Heisenberg group.

Let Dh now denote the completed C*-algebra. Each Dh is a C*-algebra with
identity element on which the Heisenberg group acts. We recall that for any action
α of a group G on a C*-algebra A with identity element, we say that α is ergodic
if the only elements of A left fixed under α are the scalar multiples of the identity
element. Not surprisingly we have:

5.7 Proposition. The action of the Heisenberg group on each Dh is ergodic.

Proof. Note that for ΦeSc we have (L(0,o,f) Φ)(x, )>, p) = e(pt) Φ(x9 y, p), so Lf - L(0>0jί)

can be viewed as defining an action of T rather than R. We can then average Lt over
T to obtain a faithful conditional expectation, E, ofDh onto its fixed point algebra for
Lf. The range of £ quite clearly consists of the operators corresponding to Φ's of the
form

where F is any continuous function on T2, and δ0 is the delta-function on Z at
0. Identifying the range of E with C(T2) in this way, we see that any fixed points
for L must lie in C(T2). But L(r>Sj0) carries C(T2) into itself, and gives there the
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evident ergodic action of R x T by translation on C(T2). Thus the fixed-points for
L on Dh must be scalar multiples of the identity, as desired. Q.E.D.

We remark that if we compose E with integration of elements of C(T2) over
T2, we obtain an L-invariant trace on Dh, which is faithful because E is.

In [5] some non-ergodic actions of the Heisenberg group on non-commutative
tori are constructed. It would be interesting to have some kind of classification of all
ergodic actions of the Heisenberg group on C*-algebras, much as exists for compact
Abelian group [17], though the fact that the Heisenberg group is not compact
will make matters more complicated.

6. Properties of the non-Commutative Heisenberg Manifolds

In this section we will obtain some of the more accessible properties of the deformed
Heisenberg manifolds and related C*-algebras constructed in the previous sections.
We concentrate on those constructed in Sect. 5, but this will require looking at
those of Sect. 4. For the specific case of Heisenberg manifolds this will include
those of Sect. 3.

We begin with the general case considered in Sect. 4 coming from a smooth
action α of jRd on a manifold M with deformed algebras Ah. We will here let Ah

denote the completed C*-algebra. As seen in Sect. 4, Ah is isomorphic to the
transformation group C*-algebra C*(Zd, C00(M), /). Thus various structural
questions can be handled by the extensive methods which have been developed
for handling transformation group algebras (see [15] and references given there).
So, for example, Theorem 5.3 of [33] gives a precise description of the primitive
ideal space of Ah in terms of the stability subgroups for the action /, and the

closures of /-orbits in M.
We turn next to the more specific algebras Ah described in Corollary 4.3, where

again we now take C*-completions. In the previous sections, where we were
concerned with actually constructing a deformation quantization, it was important
that we kept the role of h explicit. But now, when we are concerned only with the
properties of the algebras so constructed, we notice that they form a field in the
two parameters μ and v. Thus for notational simplicity and precision, we will now
absorb h into μ and v (i.e. set h = 1) and write AμtV instead of Ah. (The case h = 0
is then just the case μ = 0 = v.) As discussed above, these algebras will be isomorphic
to C*(Z, R x T, yμ'v) where now

If μ Φ 0 then yμ'v is a proper (so free) action. By a theorem of P. Green [10], the
crossed product will then be isomorphic to C((R x T)/yμ'v)(x)K, where K denotes
the algebra of compact operators.

Now it is easily checked that (R x T)/yμ'v becomes identified with T2 under
the mapping

as long as μ Φ 0. In this way the primitive ideal space, Prim (AμtV), oϊAμtV is identified
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with T2. If we now compose with J, we find that any FeC(T2), acting on the
crossed product as a central multiplier in the evident way, is pulled back to a
central multiplier F(x, y)δ0(p) on AβtV by the same formula as that defining the
product in AμtV, where F = F°j, and δQ is the delta-function at 0 on Z. If we then
consider how the action p of Z on Aμ>v9 defined near the beginning of Sect. 5, lifts
to act on F9 ana so on F, we find that (ρkF)(x, y, p) = 0 if p Φ 0, while

(pkF)(x, y, 0) = F((x + fc)/2μ, y - (v/μ)(x - /c)),

independent of c. Thus if we let p denote the action of p on T2 obtained from
the identification of T2 with Prim (AβtV) indicated above, we find that

If μ is irrational, then this action is free. Furthermore, a little calculation shows
that {1, l/2μ, v/μ} is independent over the rationals exactly if (1, μ, v} is, and it is
well known that exactly in this case all the orbits for the action on T2 will be
dense, so that there will only be one orbit closure. This means that there will be
no p-invariant ideals in AμtV. Applying Theorems 3.1 and 4.6(i), (vi) of [16] and
examining separately the case μ = 0, we obtain:

6.1 Lemma. The crossed product AμtVxpZ is simple if and only if (l,μ, v} is
independent over the rationals.

Let us now denote by Dc

μ v the C*-completion of the algebras which in Theorem
5.5 were denoted by Dh. As seen there, Dc

μv is strongly Morita equivalent to
Aμ>v x PZ (where p also should be decorated with a c). But from Theorem 3.1 of
[25] it follows immediately that strong Morita equivalence preserves simplicity.
We thus obtain:

6.2 Theorem. With notation as above, Dc

μtV is a simple C*-algebra if and only if
(l,μ, v} is independent over the rationals.

If desired, the route indicated above can also be used to describe the primitive
ideal space of Dc

μ v when it is not simple.
We remark that the twisted Heisenberg group C*-algebras which have been

studied by Packer [18-21] have some resemblance to the algebras Dc

μ v, and it is
an interesting question as to how strong a relationship there is. The relation seems
likely at least to be an extension of the relationship between C*(//), where now
H is the discrete Heisenberg group, and C(G/H\ where G is the Heisenberg Lie
group, which is discussed in [18-20] in connection with calculating K-groups. But
it is not clear how to formalize this relationship just at the level of C*-algebras.

7. Rigidity for the SO(3) Action of the Sphere

It is well known [4, 6, 14] that there is a symplectic form, and so Poisson structure
A , on the 2-sphere S2, which is invariant under the action of S0(3) (and so of
SU(2)). We show in this section that there does not exist any strict deformation
quantization of S2 in the direction of Λ which is invariant under the action of
50(3). Here we are using the strong form of invariance defined in Sect. 1. This will

leave open the interesting question of whether there exist deformation quantizations
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which need not be invariant at all, or whether such exist which are invariant in the
weaker sense described in [1], as well as what the relation is with the "quantum
spheres" of [23].

As we are about to see, the lack of S0(3)-invariant deformation has little to
do with Poisson structures, but reflects the fact that one cannot modify the product
on C(S2) in an invariant way to get a non-commutative algebra. (There do exist
fairly trivial modifications which given commutative algebras.) This rigidity was
suggested by the results of A. Wassermann [31] showing that SU(2) does not have
any ergodic actions on non-type I von Neumann algebras, and indeed our proof
is basically just a small fragment of his proof of that result.

7.1 Theorem. On C°°(S2) with its usual action of SO (3), any new product, involution,
and C*-norm for which the action of SO (3) is by ^-automorphisms, must be commuta-
tive.

Proof. This is essentially case (V) of the section entitled "Gap strategy" of [31].
Since the argument is fairly simple, we include a self-contained sketch of it here.
It depends strongly on the fact that we know exactly how the action of SO (3) on
C°°(S2) decomposes into irreducible representations, namely that there is one
irreducible representation for each odd dimension.

So suppose that we have a new product, involution and C*-norm, denoted by
•,*, and || || respectively. For each odd integer n let An be the subspace of A = C00^2)
for the n-dimensional representation of SO (3). It is clear that left multiplication
(for the new product) on A by any element of A± intertwines the action, and so
carries such An into itself and acts there as a scalar multiple of the identity operator.
In particular, (A^2 ^A^. Since * clearly must carry each An into itself, and the
norm is a C*-norm, we cannot have (AJ2 = 0, so Aί is spanned by a self-adjoint
idempotent, say e. Then e must act on each An on the left as either 0 or 1, and
the same on the right because of *. In particular, e is central.

Let [ , ] denote the commutator for the new product. As a map from A3 ®A^
into A it intertwines the diagonal action of SO(3) on A3®A3 with the action of
50(3) on A. Thus [v43,,43] must be an SO (3) invariant subspace of A. But the map
into A clearly factors through the skew tensor product A3 Λ A39 which is known
to carry exactly the three-dimensional irreducible representation of S0(3). Thus
[A3,^43] must be either 0 or A3. We wish to show that it must be 0.

Suppose that [^3,A3] were A3. Choose a maximal torus in SO(3), and
corresponding weight vectors al9 a0, fl_x in A3. By adjusting by scalar multiples,
we can arrange that [_a0,a^ = 2α1? [^α^] = — 2α_ l 5 [aί9a-.ί'] = a0. Let B be
the *-subalgebra of A generated by A3. Then B is SΌ(3)-invariant, and so must
be a direct sum of certain of the An's. For any k let Bk denote the linear span of
products of fe or less elements of A39 so Bk + i = Bk + BkA3. By considering the well
known decomposition for inner tensor products of representations of SO (3), it is
easily seen by induction that Bk is contained in Aι@ ®A2k + \. Suppose that
one actually had equality here for each k. For any k let c be a highest weight
vector in A2k +1 Then c would be a product of k elements selected from {a0, aί, a_ 1},
and so, considering the weights involved, it must be (αj* up to a scalar multiple.
We thus find that (α1)

k Φ 0 for all k. But by Leibnitz's rule,
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Thus taking commutators with α0 would be an unbounded operator in the C*-
completion of A. It follows that we must have Bk + 1=Bk for some /c, so that
B = Bk and B is finite dimensional. Thus we find that there is some n such that
C = A! 0 ••• ®An is a subalgebra of A. Now C is a finite-dimensional C*-algebra,
and so a direct sum of full matrix algebras. But 50(3) has an action on C, and
for this action the trivial representation has multiplicity 1. It follows from this
that C is exactly one full matrix algebra. Let C denote the commutant of C in A.
Then SO(3) carries C into itself, and also A^C®C, with this decomposition
respecting the action. But if W is the subspace in C for some irreducible representa-
tion of SO(3), then Aί® W and A $®W will both contain subrepresentations
equivalent to W> contradicting the fact that irreducible representations of SO (3)
occur in A with multiplicity 1. Consequently we cannot have [43,y43] = A3.

Thus the only possibility left is that [X3,43] = 0. Let B and Bk be defined as
above. If Bk + l =Bk for some fe, then B is a finite dimensional commutative C*-
algebra on which SO (3) acts. But SO (3) is connected, and so its action on the
primitive ideal space of B would be trivial, and so its action on C would be trivial,
contradicting the fact that the trivial representation occurs with multiplicity 1.
Thus we conclude that Bk = A1® --®A2k + l for all /c, so that B = A9 and A is
commutative. Q.E.D.

We remark that there are several articles in the literature about invariant
deformation quantization for the sphere [3,6,14]. But in these articles the algebra
of functions involved consists only of polynomials, and the deformations are in
terms of formal power series.

It seems very likely that the results of Wassermann [31] can be used to show
that invariant deformations do not exist for invariant Poisson structures on other
homogeneous spaces of SC7(2), especially for the action of SU(2) on itself.

If we pass to SU(3), it is not difficult to see that if one chooses a maximal torus
T2 in S£/(3) and chooses a Poisson structure for T2 as in Sect. 1, then this Poisson
structure can be extended to all of SL/(3), and that the deformations of T2 described
in Sect. 1 can be induced to SU(3) to give invariant strict deformation quantizations
of S(/(3) acting on itself. But it is not at all clear whether any less trivial kinds of
deformation quantizations can be constructed.

Acknowledgement, I would like to express here my warm thanks to Alan Weinstein, not only for having
pointed out to me that non-commutative tori were examples of deformation quantization, but also
for some very helpful discussions, and for showing me many articles on the subject of deformation
quantization.
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