
Communications in
Commun. Math. Phys. 122, 321-354 (1989) Mathematical

Physics
© Springer-Verlag 1989

The Kowalewski Top 99 Years Later:
A Lax Pair, Generalizations and Explicit Solutions

A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky

Leningrad Branch of V. A. Steklov Mathematical Institute, Fontanka 27,
SU-191011 Leningrad, USSR

Abstract. A "natural" Lax pair for the Kowalewski top is derived by using a
general group-theoretic approach. This gives a new insight into the algebraic
geometry of the top and leads to its complete solution via finite-band
integration theory.

Introduction

In her celebrated paper [1] published in 1889 Kowalewski found a new and highly
nontrivial integrable case of the motion of a heavy rigid body about a fixed point,
completing the list of integrable tops. Two previously known integrable cases are
relatively simple and had been solved already in the XVIIIth century. These are
Euler's top in which the stationary point coincides with the center of mass, and
Lagrange's top which is axially symmetric. The third case discovered by
Kowalewski is rather bizarre: the moments of inertia have a fixed ratio 2 :2 :1 , and
the center of mass lies in the equatorial plane of the top. This case was detected by
requiring that the general solution be given by meromorphic functions of the
complex time variable. Unlike most other integrable systems of mechanics known
in the XIXth century, the Kowalewski top cannot be solved by separation of
variables. To integrate it, Kowalewski used an ingeneous change of variables
which reduced the problem to hyperelliptic quadratures. However, the inverse
change of variables leads to highly complicated expressions in terms of hyperellip-
tic theta functions which seem completely unmanageable (explicit formulae for the
"physical" variables of the top were derived by Kόtter [2]).

The new powerful method of finite-band integration created by Novikov,
Dubrovin, Matveev, Its, Krichever and others (see [3] for a review) has led to a
revival of interest in integrable problems of mechanics. Lax pairs have been found
for many classical integrable systems, in particular, for various integrable cases of
motion of a rigid body and for their multi-dimensional analogs. The Kowalewski
top, however, has long remained a remarkable exception which baffled numerous
attempts to build an adequate Lax pair for it. The only Lax pair known to the
authors before 1987 was proposed by Perelomov [4]; it did not contain a spectral
parameter and so was of no help in solving the equations of motion.
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Recently the last two authors have found a "natural" Lax representation with a
spectral parameter for the Kowalewski top [5]. It is based on a general group-
theoretical approach to integrable systems [6, 7] and makes use of the Lie algebra
S6>(3, 2). We believe that this construction fully explains the peculiar geometry of
the Kowalewski top and the origin of its integrability. It turns out that the
Kowalewski top is the reduction of a more symmetrical system with extra degrees
of freedom, namely, a spherical top interacting with a two-dimensional rotator. As
a matter of fact, the construction leads automatically to a new, more general
integrable system - the Kowalewski gyrostat in two constant field [see formula
(1.5)]. Applying this construction to the Lie algebras so(p,q) we obtain multi-
dimensional analogs of the Kowalewski top [see (2.4)].

The Lax pair given in [5] and reproduced here also provides a new insight into
the algebraic geometry of the Kowalewski top: it leads to an algebraic curve
different from the Kowalewski curve as explained in Sect. 5. The new curve has
genus 3 and is not hyperelliptic but is a two-sheeted cover of an elliptic curve. The
completed complex Liouville torus for the Kowalewski top coincides with the
Prym variety of this covering. Using the machinery of finite-band integration
theory, the first author [13] obtained concise explicit expressions for the solutions
of the Kowalewski top which are much simpler than the original formulae of
Kowalewski and Kόtter [see formulae (7.42), (7.64), (7.74) below]. Their derivation
is natural in the sense that it uses only the standard finite-band integration
technique and avoids any artificial change of variables which was so crucial in the
computations of Kowalewski. Furthermore, this technique also gives explicit
solutions for the Kowalewski gyrostat in two constant fields (we do not present
these latter formulae here because of lack of space).

An alternative algebro-geometric approach to the study of the Kowalewski top
has been recently developed in [8-10], based on a general method due to Adler and
van Moerbeke. It avoids an a priori knowledge of the Lax representation; its
starting point, as in the original Kowalewski paper, is the study of the blow-up of
solutions in the complex time variable. It was shown that the level surfaces defined
by the four constants of the Kowalewski motion complete into Abelian surfaces of
polarization (2.4) by adjoining a divisor 2 = 3ί + ̂ 2? the two isomorphic curves
2γ and 91'2 each have genus 3 and are double covers of elliptic curves. The
compactified Liouville tori in this approach are identified with the duals of the
Prym varieties of any of these coverings. Note that these curves are different from
the ones defined in our paper. A beautiful and detailed analysis of the linear
systems associated with the divisors 2, 3U @2 carried out in [8, 9] allows to
establish a birational isomorphism between the Kowalewski flow on the Liouville
tori and the flows of other algebraically integrable systems that are linearizable on
abelian varieties of the same type. Specifically, the isomorphism in [9] relates the
Kowalewski top to the Manakov top on so(4) and the one in [8] to the Clebsch
case of the motion of a rigid body in ideal fluid. Lax pairs for these systems are well
known and yield as a byproduct Lax representations for the Kowalewski top. In
fact, [9] exhibits a one-parameter family of birational maps and hence a one-
parameter family of the induced Lax pairs. However, the expressions for the Lax
pairs obtained in this way in terms of the dynamical variables of the top are rather
complicated and cannot be extended to the case of the gyrostat in two fields, or to
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the multi-dimensional case. Moreover, the isomorphism established in [8, 9] does
not respect the Hamiltonian structure of the equations, and the parameters of one
system depend on the integrals of motion of the other.

ϊt is also interesting to recall an earlier result of Dubrovin and Novikov [11]
who observed that the equations of motion expressed in the Kowalewski variables
coincide with the so-called Dubrovin equations for the two-band solutions of the
KdV equation (provided that the associated hyperelliptic curves coincide). Hence
the Kowalewski flow is isomorphic up to isogeny to the two-band KdV flow, but
this does not yield a bona fide Lax pair for the Kowalewski top. This realization of
the Kowalewski flow enabled Novikov and Veselov [12] to construct action-angle
variables for the Kowalewski top.

The present paper is a sequel to [5] and contains a detailed exposition of its
results as well as a thorough study of the algebraic geometry of the Kowalewski
top by means of the Lax pair and explicit formulae for its solutions announced in
[13, 22, 23]. The paper is organized as follows. Sections 1 -3 deal with the geometry
of the Lax pair for the generalized Kowalewski system. Section 4 contains
generalities on the linearization of the corresponding equations of motion. In
Sect. 5 we study the algebraic curves associated with the Kowalewski gyrostat in
two fields. Starting with Sect. 6 we confine ourselves to the study of the classical
Kowalewski case. In Sect. 6 the analytic properties of the Baker-Akhiezer function
are described and a general pattern of its computation is outlined. The
computation is carried out in Sect. 7 which culminates in explicit formulae for the
solutions of the Euler-Poisson equations (Theorem 7.7) and for the motion of the
frame attached to the top (No. 7.6). We also discuss the generalized Dubrovin
equations for the divisor of the Baker-Akhiezer function. Finally, in No. 7.9 we
describe solutions of the top in the case (/, g) = 0 which requires special treatment.

1. The Kowalewski Gyrostat in Two Constant Fields

The rotation of a rigid body about a fixed point in two constant fields (say,
gravitational and electric) can be described in the moving frame by the Euler-
Poisson equations

~-[/,ω] + [C

(1.1)
dg dh

Here ί is the angular momentum of the body, g and h are the gravitational and
electric field vectors, the constant vectors c1 and c2 indicate the centers of mass and
charge, [ , ] denotes vector product in 1R3, and ω is the angular velocity related to ί
by

ω = // + κ, (1.2)

where J1 is a symmetric positive definite matrix (f~] is the inertia tensor), and K is
a constant vector, the so-called gyrostatic momentum.
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Equations (1.1) are Hamilton's equations of motion with respect to the
following Poisson brackets:

i ^ijky k ' {ίhhj}=εijkhk9
(1.3)

where the components ίb gb hb i— 1,2,3, are taken in the orthogonal frame (eu e2,
e3) attached to the body. The corresponding Hamiltonian is

where ( , ) denotes euclidean scalar product. Dynamical systems of this kind are
usually called gyrostats. Notice that |g|2, \h\2 and (g,h) are trivial integrals of
motion (Casimir functions) for the Poisson bracket (1.3).

The Kowalewski gyrostat in two constant fields is described by the
Hamiltonian

-gi-h2, (1.5)

so that the inertia tensor is / 1= diag(l, 1,1/2). The centers of mass and charge lie
on the orthogonal axes eγ and e2 in the equatorial plane of the inertia ellipsoid,
while the gyrostatic momentum κ = ye3 is parallel to its symmetry axis e3. The
original Kowalewski case corresponds to y = 0, [g, K]=0 (we can simply put h = 0).
In this case the system is S0(2)-symmetric with respect to rotations about the field
vector g, which is reflected by the additional integral of motion F1=(/,g).

There is another case of additional ,SO(2)-symmetry: |g| = |/z|, (g,h) = 0. The
symmetry group here consists of simultaneous rotations about the axes e3 and
[g, K] with Hamiltonian

(1-6)

Theorem 1.1. The Kowalewski gyrostat defined by the Hamiltonian (1.5) is
completely integrable and admits a Lax representation dL/dt = [L,M] given by

h -h2
I

g3

1° ~
+

y 0

1 °
2/3 + 7

12

\-<ι

The invariants of the matrix L(λ)

"gl+^2

- g 3

/ c 2

fi -21

1 2/3 + y

-2/ 3 -y

0

- / 2

£3

~g\-K

gi-hi

1 1

- ' 2

- 2 / 3 -

2λ

/2

1 1

2λ

-2/3-7

are integrals of the

^3 \

- g 3 3 - 1
A

gi+hj

\

1
Λ \

2/3 + y

-2λ/

motion in involution.

(1.7)

(1.8)



The Kowalewski Top 325

In particular, we have H=—l/4Res(trL(λ)2dλ/λ) — y2/2. The coefficients of
trL(l) 4 provide two additional integrals of the motion in involution which ensure
complete integrability:

(1.9)

h3). (1.10)

Observe that if h = 0 the integral lγ reduces to (Λg)2 In the second case of
additional SO(2)-symmetry, where (g,/z) = O, |g| = |/ι| (this integrable case was also
found in [24]) lγ is simply related to the integral F2(1.6):

I1 = \g\2(2H + F2 + 2yF2). (1.11)

I2 is an extension of the integral found by Kowalewski [1] and was indicated
earlier: in [14] for the case y = 0 and in [15] for y + 0, h = 0 (see also [24]).

The matrices L(λ\ M(λ) (1.7)—(1.8) obey the symmetry relations

X(-λ) = ηX(λ)η, (1.12)

X{λy=-ηX(λ)η, (1.13)

where η = ( 2 and σ2 is the usual Pauli matrix, σ2 = ( I. The Lax pair
V 0 σ2j \ i 0 )

(1.7)—(1.8) actually results from the more natural so(3,2)-valued Lax pair, as will be
explained in the next section.

Let us finally point out that the Poisson brackets (1.3) are in fact the Lie-
Poisson brackets for the Lie algebra e(3,2) = so(3) + IR3 +1R3, the semi-direct sum
of 5<9(3) and the abelian space R 3 + R 3 , where so(3) acts on each copy of R 3 in the
usual way. The dual space e(3,2)* is the phase space for Eqs. (1.1) and decomposes
into coadjoint orbits. Generic orbits have dimension 6 and are specified by the
Casimir functions |g|2, \h\2 and (g, h). The condition [g, K]=0, which singles out the
Kowalewski case, determines a family of 4-dimensional orbits; these may be
regarded as orbits of the group of euclidean motions.

2« Multi-Dimensional Generalizations of the Kowalewski Top

The rotation of a p-dimensional rigid body about a fixed point in q different
constant fields is described by the generalized Euler-Poisson equations

at q

— =17,0)]+ I C Λ/;,
at i = i

(2.1)

Here ( e so(p) is the angular momentum of the body, f{ e JRP are the field strength
vectors in the moving frame (Poisson vectors), c,eϊRp are the corresponding



326 A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky

(constant) center of charge vectors, and ω e so(p) is the angular velocity related to /
by a linear transformation β in so{p)\ω = fί.

Equations (2.1) can be written in Hamiltonian form with respect to the
following Poisson brackets in the space of variables / = (/0 ), /„ = (/kn), n=l,...,q:

where the components of / and /„ are taken in the orthogonal frame (eu ...,ep)
attached to the body. The corresponding Hamiltonian is

q

H——\\τ{β£"β)~ V {fi,Ci). (2.3)
i = 1

Note that the phase space for Eqs. (2.1) may be identified with the dual space of
q

the Lie algebra e(p,q) = so(p)+ @1RP, the semi-direct sum of so(p) and q copies of
Rp, so that (2.2) is the associated Lie-Poisson bracket. The inner products (fbfj)
are trivial integrals of motion for the Poisson brackets (2.2) (in general, this is not a
complete set, e.g., for q^p there exist [(/? — q)/2] additional trivial integrals).

Let p^q.A p-dimensional analogue of the Kowalewski top in q constant fields
is defined by the Hamiltonian

\ { p <ι p ) q
H=zj) Σ 4 + Σ 4 + c Σ *ϊj\- Σ (f»ed ( 2 4 )

It describes a partially symmetric top: the kinetic term in (2.4) has symmetry group
SO(q) x SO(p — q), and the centers of different charges lie on the orthogonal axes
e 1 ; ...,eq. The case q = p corresponds to the spherical top; if g = l, (2.4) gives the
generalized Lagrange top (the center of mass lies on the symmetry axis). The
angular velocity matrix ω associated with (2.4) is given by

(2.5)

We shall now exhibit a Lax pair for the generalized Kowalewski top defined by
(2.4). Its coefficients belong to the Lie algebra so(p, q) which consists of (p + q)
x (p + ̂ -matrices X such that

r=-IPtqXIPtq9 (2.6)

where

. . , l , - 1 9 . . . , - 1 ) , Klp,q = p- q (2.7)

Let F be a p x ^-matrix with columns fu ...,fq, let E be a p x ^-matrix with
£ 0 = (5ί7, and let P be the orthogonal projection from 1RP onto R^(]Rg is spanned by
el9...,eq).

Theorem 2.L The Euler-Poisson equations of a multi-dimensional Kowalewski top
with Hamiltonian (2.4) admit a Lax representation which in the natural (p, q)-block
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notation is given by

The invariants of L(λ) are integrals of motion in involution.

In particular, for c = 0, H= -l/4Res(trL(A)2dλ/A). ( Note that the invariants
P \ V

of L(λ) Poisson commute with

For q = 2, the Hamiltonian (2.4) may also include an additional linear term
y*f12. In this case ω 1 2 = 2*f12-f y and in the /YP-block of L(λ) one must replace

±^i2 by ±(^i2 + y).
The matrices L(/l) and M(λ) satisfy, besides (2.6), the symmetry relation

X(λ)=-X(~λ)\ (2.10)

which shows that they belong to the twisted affine Lie algebra based on so(p, q).
The three-dimensional Kowalewski gyrostat discussed in Sect. 1 corresponds

to p = 3, q = 2, and so is described by a 5 x 5 Lax pair with coefficients in so(3,2).
The more convenient 4 x 4 Lax pair (1.7)—(1.8) results by using a 4-dimensional
spinor representation of so(3,2) given by the natural inclusion of so(3,2) into
so(3,3)~sZ(4,]R) or, equivalently, the well-known isomorphism so(3,2)~sp(4,IR).

To conclude the section, let us point out the following relationship between our
Lax pair (2.8)-(2.9) and that of [4]. An easy calculation shows that the evolution of
the upper left q x g-block L in the constant term of L(λ)2 is in turn determined by a
Lax equation d/dtL! = [L', M'], where L = P{12 + FEf + EFf)P and M' = Ft?. For
the case q = p—l this is the representation found in [4].

3. General Construction of Integrable Systems. Proofs

The generalizations of the Kowalewski top and Lax pairs for those described in the
preceding sections result from a general Lie-algebraic construction. The key
observation explaining the peculiar geometry of the Kowalewski top relates it to a
more symmetric system with extra degrees of freedom which is furnished by the
construction outlined below.

Let G be a Lie group and σ an involution in G with fixed point subgroup K. The
phase space of the integrable systems we are going to describe is the cotangent
bundle T*K with canonical symplectic structure. The most interesting examples
are obtained when G is a real simple group and σ a Cartan involution. In that case
K is the maximal compact subgroup of G. Some of the Hamiltonians that we shall
describe are the sum of a left-invariant kinetic energy which is positive and
quadratic in the momenta, and a potential energy depending only on the
configuration variables. Clearly, such Hamiltonians admit a natural mechanical
interpretation. By examining the list of Riemannian symmetric pairs (G, K) we get
a number of interesting mechanical systems [7]. For example, G = SL(n,R),
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K = SO(n) yield rc-dimensional tops in a quadratic potential (and, as a special case,
the Euler-Manakov top). The pair (SO(n, ή), SO(n) x SO(n)) gives rise to a system of
two interacting n-dimensional tops. The exceptional Lie group of type G2 leads to
an exotic family of integrable tops on SO(4). As we shall readily see, the generalized
Kowalewski tops are related to the groups SO(p,q), p>q^ί.

Let us now state the main theorem. Let g be the Lie algebra of G. The
involution on g induced by σ will be denoted by the same letter. Let g = ϊ + p be the
Cartan decomposition with respect to σ (i.e. σ = id on ϊ, σ = — id on p) and let
g* = f* + p* be the dual decomposition. The natural action oϊK on g* (which is the
restriction to K of the coadjoint action of G) leaves ϊ* and p* invariant. Let us
identify T*K with K x t* by means of left translations. Fix two arbitrary elements
a,hep* and to each point ( f c , ρ ) e X x P ^ T * K assign a Lax matrix

L(λ) = Λλ~1 + ρ + Ad*fc"1 αA5 (3.1)

where λ is an auxiliary variable (the "spectral parameter"). Let J(g*) be the algebra
of Ad*G-invariant polynomials on g*. For φe/(g*) we put

φλ(k,Q) = φ(L(λ)). (3.2)

Clearly, φλ is a Laurent polynomial in λ whose coefficients are polynomial
functions of k, ρ. It is more convenient to deal with these coefficients rather than
with the "generating function" φλ. We put

φn = Res(φ{L(λ))λ-n-1dλ). (3.3)

Let P + , P _ be the projection operators acting on Laurent polynomials which
annihilate all terms of nonpositive (respectively strictly positive) degree. For
φe/(g*) let dφ(L)eg be its differential evaluated at Leg*.

Theorem 3.1. (i) The functions φn, φe/(g*), neΈ, are in involution with respect to
the canonical Poisson bracket on T*K.

(ii) The equations of motion induced by the Hamiltonίan φn on T*K give rise to a
generalized Lax equation for L(λ):

~ = ~ a d * M ± L, M ± = ±P±(λ-"dφ(L(λ)). (3.4)

Note that ad*M+ L-=ad*M_ L, since ad*dφ(L) L = 0. In the applications
we have in mind (G, K) is a Riemannian symmetric pair. We shall always identify g*
and g by means of an invariant inner product which is positive definite on ϊ. In that
case (3.4) becomes an ordinary Lax equation

Έ = [ L ' M ± ] (3 4/)

We refer the reader to [7, 16] for a complete proof of this theorem which uses the
twisted loop algebra associated with (g, σ) and the notion of classical r-matrices.
Here we present an elementary proof of the first part of the theorem.

The proof proceeds in two steps. Let us observe first that the set of Lax matrices
of the form

LWhλ' λ (3.5)
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with /rep* fixed, ρeί*, vep*, admits a Poisson structure which agrees with the
canonical Poisson structure on T*K. To describe this structure we shall start with
a slightly more general situation.

Let π be a linear representation of K in a vector space V. Let π* be the dual
representation acting in V*. Let ϊ + V be the semidirect sum of ϊ and V (regarded as
a f-module). The dual space (ϊ + V)* ~ ϊ* + F* is equipped with the corresponding
Lie-Poisson bracket.

Proposition 3.2. Fix an element ae V*. The mapping

*(k-ι)a (3.6)

preserves the Poisson brackets, i.e., maps the canonical Poisson bracket on T*K into
the Lie-Poisson bracket on (!+ V)*.

Proof. From the definition of the Lie-Poisson bracket it is clear that we must check

the equality

lX,Y^oμa = {Xoμa,γoμa} (3.7)

for arbitrary linear functions X, Y on (ϊ+ F)*. The bracket on the left is the Lie
bracket in ϊ + V. The cases when X, Y belong to ϊ or V are treated separately. If
X, YE K both sides of (3.7) are zero. Let Xel The flow generated by X on (ϊ + V)* is
given by the action of the 1-parameter subgroup exp( — tX). The flow of X ° μa on
T*K is given by right multiplication by exp(ίAΓ). Clearly, μa maps the latter flow
onto the former, whence {X ° μωφ° μa} = {X, φ} ° μa for any function φ on (ϊ -f V)*.

In our special case we have F = p and π is the natural representation of K in p.
Part (i) of Theorem 3.1 is now reduced to the following assertion.

Proposition 3.3. Functions of the form φλ(g, v) = φ(L(λ)\ φ e /(§*), are in involution
with respect to the Lie-Poisson bracket on (ί + p)*.

Proof ([17]). Let us denote the Lie-Poisson bracket on (ϊ + p)* by { , }σ. We shall
need two more Poisson brackets defined on the same linear space (fH-p)*~g*,
namely, the Lie-Poisson bracket of g (denoted by { , }) and the bracket { , }h given
by

Consider a linear transformation Tλ on g* defined by
*, vep*. It is easily checked that Tλ carries the bracket { , } into

An invariant function φe/(g*) is a Casimir function with respect to the bracket
{ , }, i.e. {φ, ψ} = 0 for any ψ. Hence φλ = φo Tλ is a Casimir function with respect to
{ , }λ. If ψ is another ad*g-invariant function, we get {φλ,ψμ}λ = 0 = {φλ,ψμ}μ.
Therefore, φλ and ψμ Poisson commute with respect to the bracket λ2{ , }λ

~μ2{ , }μ = (λ2-μ2) { , }σ, i.e. {φλ9ψμ}σ = 0 for λΦμ, and hence for all λ,μ.
It can be shown, more generally, that the φλ's are in involution with respect to a

linear family of Poisson brackets α{ , }σ + β({ , } + { , }h).
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We refer the reader to [7] for an explicit description of all Hamiltonians of the
form (3.3) which are quadratic in the momenta. For our present purposes we shall
need only the simplest of them.

Before applying Theorem 3.1 to concrete systems it is convenient to make a
canonical change of variables {Kρ)\-^(k~1, — Ad*/c ρ) on T*K. In the new
variables the Lax matrix (3.1) takes the form

L{λ) = hλ-ί-Ad*k ρ + Ad*k aλ. (3.8)

Invariant functions on T*K of the form (3.2) have the following obvious
symmetries. Let KVCK be the isotropy subgroup of an element υep. Then the
Hamiltonians φ(L(λ)), φe/($*), are right Kfl-invariant and left KΛ-invariant.
Moreover, L(λ) does not change under the action of Ka by right translation. Hence
L(λ) effectively describes the system reduced with respect to the action oϊKa. These
observations will be important in the study of Kowalewski's top.

As we have already mentioned, the generalized Kowalewski top is connected
with the Lie algebra so(p9q). Recall that by definition it consists of all (p + q)
x (p + g)-matrices satisfying

X^-I^XI^, (3.9)

where Ipjί = diag(l,..., 1, — 1,..., — 1), trlp q = p — q. In the obvious (p,q)-block

notation an element X e so(p, q) has the form

where £= —£t,m= —m*, and s is an arbitrary p x ̂ -matrix. The Cartan involution

σ is given by σ(X)=— X\ The maximal compact subalgebra t = so(p)®so(q)

consists of matrices X with s = 0. The subspace p consists of matrices X with t = 0,

m = 0. The split rank oϊso(p, q) (p ̂  q) is clearly equal to q. We shall identify so(p, q)*

and so(p, q) by means of the invariant inner product

(X,Y)=-trXY, (3.11)

which is positive definite on f. The space /($*) consists of spectral invariants of
matrices and is generated by the functions φs(X) = tΐXs, s^2.

Let keSO(p), reSO(q), ίeso(p\ meso(q) be the position and momentum
variables on T*(SO(p)xSO(q)). By specializing Theorem 3.1 to the present
situation we get the following result.

Theorem 3.4. Let A, H be some fixed p x q-maίrices. The spectral invariants of the
Lax matrix

/ V ( 0 \ / 0 kAΛ

) + )

are in involution with respect to the canonical Poisson bracket on T*(SO(p) x SO(q)).
The associated Hamiltonian equations give rise to Lax equations with the Lax
matrix (3.12).

For example, the Hamiltonian

m2)-tΐ(kArΉt) (3.13)
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describes two interacting spherical tops of dimensions p and q and gives rise to a
Lax equation dL/dt = [L, M] with

uιr)
The generalized Kowalewski top may be obtained from (3.13) with a special choice
oϊΛ. Recall that the Lax matrix (3.12) actually describes a reduced system since it is
invariant with respect to the right action of Ka. In our case the subgroup Ka

consists of matrices ( such that kAr1 = A. Now, let A be the truncated identity
\0 rj

matrix, A = E, Eίj = δij. Then kArt = A implies that k is a block matrix

where the lower (p — q) x (p — g)-block is an arbitrary orthogonal matrix. Hence
Ka = SO(q)xSO{p — q). Note that the subgroup SO(q)cKa is embedded into
K = SO{p) x SO(q) diagonally:

0

(3.16)

Let us consider a partial reduction of T*K with respect to the action of this
diagonal subgroup. The corresponding moment mapping μ: T*K-*so(q)* is given
by

, (3.17)

where P is the projection operator from W onto the linear span of {eu ...,eq}.
Reduction over zero amounts to imposing the constraints

P / P + ^ - 0 , r=ί (3.18)

(the latter is a natural subsidiary condition). The reduced phase space is naturally
diffeomorphic to T*SO(p) with its canonical Poisson bracket. Inserting the
constraints (3.18) into (3.13) we get the reduced Hamiltonian

HA(ί 4+ Σ ^ ) " Σ (keΛ), (3-19)

which is the generalized Kowalewski Hamiltonian in the stationary frame with
c = 0. Note that to ensure the left invariance of the reduced kinetic energy we need
the bi-invariance of the kinetic energy in (3.13). This explains the choice of the
Hamiltonian (3.13) which might seem arbitrary.

From (3.12), (3.14) we derive a Lax pair for the reduced system



332 A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky

The reduced system still possesses an SO(p — g)-symmetry inherited from the
isotropy subgroup Ka = SO(q) x SO(p — q). In particular, the spectral invariants of
L(λ) are in involution with the generators iV] for i,j>q. Obviously, adding an
so(p — g)-Casimir function Hx=c £ /?. to (3.19) does not damage the integra-

i,j>q

bility of the system (this term may also be obtained by choosing a suitable
invariant of L(λ), see [7]). Moreover, the trajectories of H + Hί are easily
determined once we have found the trajectories of H. Indeed, let y: T*SO(p) x 1R
-^T*SO(p) be the flow of H and yx the flow oϊHv Since {flr,ff1}=0, the flow of

is

Lemma 3.5 [18]. Let μ:Jί-^§* be the moment map for a Hamiltonian action of a
Lie group G on a symplectic manifold Jί, and let Φ be an invariant polynomial on g*.
Then the trajectories of the collective Hamiltonian Φoμ on M are given by
expίX m, where X = dΦ(μ(m)), meJi.

In the case we discuss G = SO(p — g) and Φ = Hλ, so that the flow yx is given by

: ί ? / ) , (3.22)

where 7=
The invariants of L(λ) do not form in general a complete set of integrals of

motion for the generalized Kowalewski top (indeed, they Poisson commute with
the momenta ίtj for ij > q). One can prove, however, that complete integrability
holds modulo the symmetry group SO(p — q): a complete set is obtained by adding
to the spectral invariants of (3.20) a complete involutive set of functions of the
generators (^ i.j>q.

We also observe that if, for q = 2, we reduce over a non-zero point of so(2)* i.e.
replace the constraint (3.18) by

PίP + m=yeι/\e2, (3.23)

we obtain an extra linear "gyrostatic" term y/1 2 in the reduced Hamiltonian (3.19).
The reduced phase space remains the same. In this case ± / 1 2 in the lower q x q-
block of the Lax matrix (3.21) is replaced by ± ( / 1 2 + y)

We have discussed so far the generalized Kowalewski top in the stationary
reference frame. To recover the Lax pair (2.8)-(2.9) we have to go over to the
moving frame which amounts to the gauge transformation

L^k'Lk, M^ttM£+ω (3.24)

with £= ( 1, keSO(p), ω=l j . The matrix coefficients of the

transformed matrices may be expressed through the variables

F = ktH = (fu...Jq), (3.25)

which describe the motion of the top in the Euler-Poisson picture. Note that the
angular velocity ω is expressed through { by (2.5). To finish the proof of
Theorem 2.1 we need the following lemma which is a special case of
Proposition 3.2.
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Lemma 3.6. The mapping

μH: T*SO(p)-+e(p9 q)* : (k9 /)-+(/, &H)

preserves the Poisson brackets.

Remark. The reader might wonder why we have not used the Euler-Poisson
description from the very beginning. To explain the roundabout way taken here
recall that the key ingredient of our argument was the involutivity of invariants
with respect to the Lie-Poisson bracket of the semi-direct sum ϊ + p (Proposi-
tion 3.3). Now, the mapping from T*SO(p) to f*-f p* associated with the Lax
matrix (3.20)

0 \ / 0 kh

o -PiPj^Xβie o

is a Poisson mapping (note that this fact combined with Proposition 3.3 gives a
direct proof of the involutivity of the invariants of the Lax matrix (3.20) without
recourse to Hamiltonian reduction). On the other hand, the mapping from e(p, q)*
to (ϊ + p)* associated with the Lax matrix (2.8),

/ - / 0 \ / O F

does not preserve Poisson brackets.

4. Linearization of the Generalized Kowalewski Flows

Starting from this section we shall consider complexified equations of motion. It
is well known that Lax equations with a spectral parameter are linearizable on
the Jacobian of the spectral curve defined by the equation

det(L(λ)-μ) = 0. (4.1)

More precisely, assume that the curve (4.1) is nonsingular and irreducible. Let Γ be
its nonsingular compactification. Then the eigenspaces of L(λ) combine into a
holomorphic line bundle EL-+Γ. If the matrix L(λ) evolves according to a Lax
equation, the spectral curve remains invariant and the evolution of EL{t) may easily
be determined. We shall analyze this evolution for Lax equations of the form (3.4)
described by Theorem 3.1.

Consider a covering of Γ by two open sets U+ = {peΓ;λ(p)Φco}> [/_ = {peΓ;
λ(p)Φ0}. LQtX = λ~rι~1dφ(L(λ)) be the differential of the Hamiltonian (3.3). Since
[L, X ] = 0 , the eigenvectors of L{λ) are also eigenvectors for X(λ\ hence for an
eigenvector ψp e EL(p) we have

X(λ(p))ψp = v(p)ψp. (4.2)

Obviously, v(p) is a meromorphic function on Γ which is regular in U + n U _. Let Ft

be the one-parameter group of line bundles on Γ defined by the transition function
expίv with respect to the covering {U + , [/__}.
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Theorem 4.1. Suppose L(t) is a solution of the Lax equation (3.4) with the
Hamiltonian (3.3). Then the evolution of EL{t) is linear:

For the proof see [6, 16, 17].
By the classical Jacobi theorem the group of holomorphic line bundles of

degree zero is isomorphic to the Jacobian of Γ denoted by JacΓ. Theorem 4.1
shows that the flow on JacΓ which corresponds to a Lax equation is linear. For its
velocity vector we have the following expression. Recall that the tangent space to
JacΓ is dual to the space Ω(Γ) of abelian differentials. If ωeΩ(Γ), then the
ω-coordinate of the velocity vector V is

ω(F)= I Resp(v(p)ω). (4.3)
p : λ(p) = GO

To solve the Lax equation we use the standard algebro-geometric technique
which allows us to reconstruct the Lax matrix from the algebraic data. The set of
algebraic (spectral) data consists of the spectral curve Γ, the line bundle EL and the
velocity vector V on JacΓ. It is usually more convenient to work with the dual
bundle Ef. One can show that under some regularity conditions the degree of Ef is
given by d = g + n — 1, where g is the genus of Γ and n is the dimension of the Lax
matrix. By the Riemann-Roch theorem Ef{t) has at least n holomorphic sections.
Analytically such sections may be regarded as meromorphic functions on U + CΓ
such that (i) \pe~tv is meromorphic on [/_ CΓ (ii) xp is subordinate to a (constant)
divisor of degree d associated with E*. For generic divisors and almost all t e C the
number of independent sections is precisely w. A basis ψ = (ψ1,...,ψn)mthe space
jS?(££(f)) is called a vector Baker-Akhiezer function. The functions φ 1 ? ...,φM are
determined from the algebraic data uniquely up to a linear transformation
ψ i—• Aψ, A E GL(ri), and satisfy the following basic relations:

which serve to reconstruct the Lax matrices. Since M(λ) is determined by L(λ) [cf.
(3.4)] the only freedom in this reconstruction amounts to conjugations
Li—• ALA ~ \ M \-+ AM A ~λ by a matrix A which does not depend on λ and ί. This
freedom may be further reduced by a priori restrictions on the form of the Lax
matrices.

Let us now turn to the generalized Kowalewski systems. The Lax pairs
(2.8)-(2.9) and (3.20)—(3.21) give rise to the same set of algebro-geometric data, since
they differ by a ^-independent gauge transformation k(t). [Notice that if p + q is
odd the spectral curve corresponding to the standard representation of so(p, q) is
reducible and contains a rational component associated with the zero eigenvalue
of L(λ). This is the main reason why the spinor representation (1.7)—(1.8) for the
3-dimensional top is more convenient]. Recall now the two additional symmetries
(1.12), (1.13) or (2.6), (2.10) of the Lax pair which we write as

IL(-λ)I, (4.5)

L(λ)=-IL(λ)Ί, (4.6)
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where I = IPtq for the Lax pair (2.8)-(2.9) and I = η for (1.7), (1.8). These symmetries
give rise to two commuting involutions τ 1 ? τ 2 on Γ

τ1(/,μ) = ( - Λ μ ) , τ2(Λ,μ) = (λ, - μ ) . (4.7)

The involution τx can be lifted to the line bundle EL by setting

Let τ*, τ* be the induced involutions on JacΓ.

Lemma 4.5. The velocity vector of the generalized Kowalewski flow on JacΓ is
invariant under τf and changes sign under τf :

τ*V=V, τ%V=~V. (4.8)

Proof. The Hamiltonian of the Kowalewski system is given by
H = -1/4 Re$(tτL(λ)2dλ/λ). Hence its gradient is 1/2L{λ). Therefore the transition
function in Theorem 4.1 is expμ/2 and our claim follows from (4.3).

It is therefore natural to consider the quotient curves C = Γ/τ1, £ = Γ/(τ l 5τ2).
Lemma 4.5 and relation (4.8) show that the Kowalewski flow is confined to the
subtorus JacCc JacΓ and is parallel to the Prym variety of the covering C->£.

To conclude our discussion of the generalized Kowalewski tops we give the
expression for the corresponding velocity vector on JacΓ (also valid on JacC),
which is a specialization of (4.4):

ω(V)= Σ Resp\μω. (4.10)
p: λ(p) = oo

We shall now turn to the 3-dimensional case.

5o The Spectral Curve for the Kowalewski Top

The characteristic Eq. (4.1) for the Lax matrix (1.7) of the 3-dimensional
Kowalewski gyrostat takes the form

μ 4 - 2 d i α
2 ) μ 2 + d 2 μ 2 ) - 0 , (5.1)

where

)-4γ2z. (5.2)

The coverings Γ-+C and C -> E are given by a change of variables z = λ2 and y = μ2

(this is of course true in the general case), so that the curves C and E are defined by
the equations

μ4~2d1(z)μ2 + d2(z) = 0 (5.3)

and

y2-2d1(z)y + d2(z) = 0. (5.4)
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The genera of typical curves depending on the values of the Casimir functions are
given in Table 1 below1

Table 1

general γ = 0 |g| = |/i|,fe,/i) = 0 [g,/z] = O,gΦθ
case

y=0 yφO y=0

Γ
c
E

8
4
1

7
4
1

7
3
1

6
3
1

(Λg)Φ

6
3
1

0 (Λg) =

4
2
0

0 (Λg)Φ0

5
3
1

(Λg) = O

3
9

0

Note that E is in most cases elliptic. The genus of C falls down from 4 to 3 in two
cases characterized by the existence of an additional SO(2)-symmetry of the
system.

Let us now turn to the original Kowalewski top where h — 0, y = 0, and discuss
the related curves in more detail. With no loss of generality we shall assume in the
sequel that |g|2 = l.

The covering Γ-+C is unramified and so is determined by a cycle Z (mod 2) on
C: a loop y on C lifts to a closed loop on Γ if and only if <j, Z> = 0(mod2), where
<j, Z> is the intersection number of y and Z. To put it another way, the function
λ=yz acquires a factor (—l) < y ' z > upon a circuit of y.

The curve C can be thought of as the Riemann surface of the algebraic function
μ = ]fy on E. The covering C-+E defined by the involution π: (μ, z) i—• (— μ, z) has 4
branch points. One can always choose a canonical basis {α;, fcj, z=l,2,3, in
H ^ C Z) so that

πα x = — <23, πbί = —b3, πa2— — fl2, πb2= ~b2. (5.5)

Lemma 5.1. 77ze fcαs/s {α^bj cαrc be chosen in such a way that α2 = Z(mod2).

For the proof, and also for later use, we must have a closer look at the covering
C-+E. The elliptic curve E is a two-sheeted cover of the z-plane. There are two
points oo + at the "infinity" where z has simple poles, and one point 0 where z has a
double zero. The function y has a simple pole at oo + , a simple zero at oo _, a double
pole at 0, and hence two other simple zeros at some points p 1 ; p2. The branch
points of the function μ = yy on E are therefore oo +, oo _, p l 5 p2- Thus C is obtained
by glueing together two copies of E along suitable cuts [oo+, oo_] and [p 1 ? p 2 ]

We choose the cut [oo + , oo _] in such a way that the function λ = ]/z becomes

unramified on £\[oo+, oo_] (notice that oo+ are the only branch points of j/z).

The curve Γ may be thought of as the Riemann surface of the function λ = ]/rz
on C. Hence to determine the ramification cycle Z of the covering Γ->C we must

1 Note that the curves in this table are nonsingular compactifications of the affine curves given by
Eqs. (5.1), (5.3), and (5.4). For special values of the parameters the geometric genera of these curves
drop down (while the arithmetic genera, of course, remain invariant)
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Fig. 1. Shows a plane model of the elliptic curve E. The cut [αc +, oc _] can always be placed inside
the parallelogram; the location of the other cut [_p1,p2] depends on the topology of the covering
Γ->E. The cycles ab b{ are depicted relative to the representation of C as a two-sheeted cover of E:
continuous lines show parts of the cycles on the upper sheet while dotted lines show their parts on
the lower sheet

know the behaviour of λ over the cycles ab bt. Since ]/z is unramified on
£\[oo +, oo _ ] , it is obvious from Fig. 1 that λ changes sign when we make a circuit
of £>2?

 a n d does not ramify over all other basis cycles. Therefore Z = α2(mod2), as
was to be shown.

We may now identify Γ with two copies of C glued together along Z: Γ = C ( 1 )

u z C
{2\ It is natural to choose the contour Z in such a way that πZ = — Z (the minus

sign denotes reversed orientation). Note that there are well-defined branches of
λ = ]fz on C{i)\Z. The involution τγ acts on Γ by permuting the sheets C(ι).

The final thing we need is the behaviour of μ near the points of Γ where λ = oo
or λ = 0. These are the points oo(j} and 0(+} on the sheets C(ι). The curve Γ is
unramified at λ = oo and λ = 0 over the /l-plane λ ~1 is a local parameter at oo (i} and
λ is a local parameter at 0(+. If we arrange the points oo^ into a 4-tuple (oo(i}, oo^^
oo(+}, oo(+}), the 4 branches of μ near λ — oo can be combined into a row-vector

μ{λ) -(0,0,2λ, - 2λ\ + o(l). (5.6)

In a similar way, with respect to the ordering (0{l\ 0(+}, 0 + ̂  0(i}) (this particular
ordering is convenient for the calculations in Sect. 7.4) we have

μ(λ)~-ελ-\\9 -1,1,-1) (5.7)

near λ = 0, with ε= ±1 depending on the location of Z (recall that |g|2 = l). It
always possible to choose Z in such a way that ε = l.

6. Analyticity Properties of the Baker-Akhiezer Function

The principal tool of finite-gap integration techniques is the Baker-Akhiezer
function defined as a solution of the linear system

d
= μ(p)ψ{p), — ψ(p) = - M(λ(p))ψ(p) (6.1)
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which has certain analyticity properties as a vector-valued function on Γ. We can
also require ψ to be symmetric with respect to the involution (4.8):

This enables us to regard ψ as a double-valued function on the curve C = Γ/τί,
which makes all calculations much simpler.

We continue to deal with the classical Kowalewski case: h = 0, y = 0. It is
convenient to express the Lax pair (1.7)--(1.8) in a basis in which η is diagonal, i.e.,

fQ 0 \ / 1 -I"
to conjugate it by the matrix

L(λ) = i

. We get the new Lax pair

M(λ)=-~ .
2\ί1 + V2

0

The matrix η in (6.2) becomes

(6.3)

(6.4)

σ3 0

We recall the definition of the Pauli matrices σ, :

σ, =
0 1

σ,=
0 - ί

σ,=
1 0

0 - 1

The new matrix L(λ) satisfies the following symmetry relations:

0

(6.5)

(6.6)

(6.7)

(6.8)

Let us now state the analyticity properties of ψ which specialize the general
properties of the Baker-Akhiezer function outlined in Sect. 4.
1. ψ is meromorphic on Γ except at λ— oo and ψQXp( — tμ/2) is meromorphic on Γ
except at λ = 0 (recall that in our case dH(L)=l/2L, so that v = μ/2).
2. The divisor of poles of ψ, denoted by S, has degree 8 and is time-independent
(points where λ = oo enter in S if ψ exp( — tμ/2) has poles there).
3. ψ satisfies the symmetry condition (6.2).
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The divisor 3) is not however completely determined by these conditions. If/ is
a meromorphic function on Γ such that f{^\V) — S{v) a n d ( / ) ^ ^ > t n e n Ψ c a n be
replaced by fψ. Using this freedom we can fix two points of S to be 00 + and αo +.
Then §) is the pull-back to Γ of a divisor ^ u o o f on C, and deg^ = 3.

The behaviour of ψ near λ = oo can be reformulated in a more convenient
matrix form. Let Ψ(λ) be the 4 x 4 matrix whose jth column is the value of ψ on the
/ h sheet oϊΓ->{λ} near λ = oo [the ordering of sheets corresponds to the ordering
of points over λ— oo described in Sect. 5, cf. (5.6)]. We can then write Ψ(λ) as

Ψ(λ,t) = (Φ(t) + S(ήλ-1 + ...)disig(ί9l,λe*Λ

9-iλe-?Λ), (6.9)

where the matrices Φ(t\ S(ή do not depend on λ [the factor — i in the last entry of
(6.9) is taken for notational convenience]. Denoting

0 + M1λ,

we have from (6.1), (6.9), and (5.6),

^ ° - 1 , (6.11)

, (6.11')

0 i M 1 ] . (6.12')

The symmetry condition (6.2) takes the form (notice that τ1 permutes the sheets):

.°.)
which gives the symmetry relations for Φ and S:

Combined with (6.11) this implies that Φ(ί) has the form

/I 1 0 0 \

(6.15)

We can set c — \. Relation (6.12') yields differential equations for

dq1/dt = tf3q1,
(6.16)

dq2/dί=-ιt3q2,
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so that

(6.17)

In a similar way, arranging the 4 eigenvectors ψ(0{+) into a 4 x 4 matrix Ψ(0)
according to the ordering of the points 0(j} described in Sect. 5, we have

(cf. (6.13)) and using (5.7), (6.1) we find

fσ3 ° ) ~ 1 ( 0 ) (6.19)

[recall that ε is defined in (5.7)].
The strategy of our further computations will be as follows. Using the

symmetry property (6.2) of ψ we reformulate the problem entirely in terms of the
curve C: the components ψi and ψ3 are single-valued functions on C, whereas ψ2

and ψ4 are double-valued functions which acquire a factor (— l ) < y ' z > upon a circuit
of a loop y on C. The properties of ψ stated above allow us to write explicit
formulae for ψ3, ψ^ which in turn serve to compute the coefficients Stj of S for
Ϊ J = 3,4. From (6.1 Γ) we have the relation

^=-iS33-S43 (6.20)

which by (6.17) yields expressions for q^t), q2{t). Remarkably, the integral in (6.17)
can be evaluated in closed form. After that we can write down the remaining
components φ l 5 ψ2. To determine the constant factors that occur in these formulae
we must use the second symmetry relation (6.8). Combining it with (6.1 Γ) we come
down to the Prym condition for the divisor B and determine the Baker-Akhiezer
function completely. Finally, to derive the evolution of g(ί) we use (6.19).

7. Explicit Formulae for the Solutions

7.1. Theta Functions and Abelian Differentials

We now begin to implement the programme outlined above. First of all we have to
introduce some standard notions.

Recall that Riemann's theta function with characteristics is defined by

= Σ exp{^<J3(m-hα), m + α> + <z + 2πijβ, m + α)} (7.1)

for a symmetric g x g-matrix B with R e 5 < 0 .
Let duk, k=ί,2,3, be the normalized abelian differentials on C:

J duk = 2πiδjk, (7.2)
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and let B be the associated period matrix:

Bjk=\duk. (7.3)
b3

We shall write θ(z) for θ ° (z\B).

Let dΩ be an abelian differential of the second kind on C with a double pole at
oo+ such that dΩ — l/2dμ is regular at oo+ and

$dΩ = O. (7.4)

We put

Ω(p)=]dΩ (7.5)

and fix the constant of integration in (7.5) by the condition

) as p-*oo+ (7.6)

(recall that there is a well-defined branch of λ on C\Z; its sign is specified by
requiring that μ ~ 2A at oo + ) . We remind that the involution π on C acts by π(z, μ)
= (z,-μ).

Lemma 7.1. (i)

π*dΩ=-dΩ. (7.7)

(ii) Let

Vj=$dΩ. (7.8)
bj

Then V = (Vί, V2, V3) coincides with the velocity vector for the Kowalewski flow on
JacC.

Proof (i) The differential π*dΩ has the same principal part as — dΩ at p= oo+.
Since n^a— +ab π*dΩ also satisfies the normalization conditions (7.4) and hence
π*dΩ=-dΩ.

(ii) By the reciprocity law for abelian differentials [19] we have

J dΩ = Resao + Ω(p)duJ{p) = ResoΰJμduJ9 (7.9)
bj

so that (ii) follows from (4.10).
Let dω be an abelian differential of the third kind which has simple poles at oo +

and oo _ with residues 1 and — 1, respectively. We choose a path f from oo + to oo _
and normalize dω by the condition

f dω = 0, (7.10)

where the cycles α,- are supposed not to intersect /. It is easily checked that dω is the
pullback to C of a differential on E given by

* . - « - ± ^ * (7...)



342 A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky

with some constant q, so that π*dω = dω. We put

ω{p)=\dω (7.12)

and fix the constant of integration in (7.12) by the condition

eωip) = λ + O(ί) as p - > o o + . (7.13)

Let
P

u(p) — (ui{p\ U2(P)> ιh(p)) > UJ(P) = ί diij (7.14)
GC 4

be the Abel transform with origin oo+.
We shall need the values of the multi-valued functions Ω(p), eω(p\ and ιij(p) at

the points oo± and 0 + . For that purpose we shall specify the choice of the path £
joining co+ and oo_ by requiring that
a) £ passes through 0 + ;
b) the cycle £ — π£ is homologous to a2;
c) £ does not intersect the ramification contour Z.
Since the periods of dΩ, dω, duu and du3 over a2 are all zero, the multi-valued
analytic functions Ω(p), eω{p\ uγ(p) and u3(p) have single-valued branches in a
neighbourhood of the contour / u π / , determined by the conditions (7.6), (7.13),
and Uj(co+) = 0. The function u2(p) has period 2πί along / u π / .

Lemma 7.2. Let

r= J dω=- J dω. (7.15)
fci b3

Then

u(oo _ ) = \ d u = (r, Tci, — r), § d ω = π i . (7.16)

Proof Since £~π£ = a2, and π*du2= —du2, we have

j du2 = j π*du2 = — j du2 + 2πi,

hence \du2 = πi. Then the reciprocity law for abelian differentials
e

j dω= j diij

gives (7.16).
In particular, eω{p) changes sign when analytically continued along b2.
We shall also need the following lemma.

Lemma 7.3.

(i) Ω(oo_H0. (7.17)

(iii) e°*
p)=-^-+0{\) as p-+oo^; (7.19)

A
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if the path ί joining oo + and oo _ is such that its projection to E is symmetric with
respect to 0 e £ , then a2 = e2ω{0 ^. It will be convenient for us to put a = eω{0 + ).

Proof, (i) In view of (7.6) and (7.7) we have Ω(πp)= —Ω(p) in the vicinity of ί\jπί.
Since πoo_ = oo_, (7.17) follows.

(ii) We only have to observe that eω{πp)= ~eω{p) near / u π / .
(iii) We consider dω as a differential on E and let ρ be the symmetry of E given

by reflection at QeE (this is the involution that permutes the roots y\, y2 of
ρp p

Eq. (5.4): see Fig. 1). Then ρ*dω= —dω, so that J dω = — J dω. Together with
o o

2(ρp)= —λ(p) and ρoo + = oo _ this easily leads to (7.19).

12. The Baker-Akhiezer Function

Let D be a vector in C 3 such that the divisor of θ(u(p) + D)onC coincides with the
divisor 2 introduced above.

Proposition 7.4. The functions ψi(p, t) defined by

= θ(

= 6>[c](κ(p)+Kt + D)fl[β](D + Jt) Ω(p)t
ψ2 θ(u(p) + D)O(Vt + D + R) 6 '

) ( )

( ( p ) ) ( ) n ( p ) ,

Θ ( ( ) D)0(7 D Λ)

(0 0 0)

have the following analyticity properties:

(i) φu φ3 are single-valued on C while φ2, Φ4 are double-valued on C and
acquire a factor (— l)<^'fl2> when analytically continued along a closed path y.

(ii) (φ 1 ,φ 2 ,φ 3 ,φ 4 )(oo_) = (l, 1,0,0),

(iii) The divisor of poles of φ{ in the affine part of C coincides with $).

The proof is straightforward and follows from the periodicity properties of θ(u)
and the analyticity properties of Ω(p\ ω(p) displayed above.

There is an obvious relationship between the φt and the components \pt of the
Baker-Akhiezer function:



344 A. I. Bobenko, A. G. Reyman, and M. A. Semenov-Tian-Shansky

The expressions (7.20) for ψ3 = φ3 and ψ4 = φ4 enable us to calculate ^3(f).

Lemma 7.5.

β

t3(t)-~ijt log

Proof. From (6.20) we get

<?3{t) = lim λ(-i

-~θlέ]{u{p)+Vt + D + R) ~θ{u{p) +
ok ok

(7.23)

where k — λ ι is a local parameter at p = oo +. Recall now the formula (4.10) for the
velocity vector of the Kowalewski flow. Let duj = fj(k)dk. Clearly, (4.10) implies
that V = f(0). On the other hand, the Abel transform near p= oo+ is given by

u(p)= J du = f(0)k + O(k2).
GO +

Hence the dervative d/dk in (7.23) at fe = 0 may be replaced by d/dt, which yields
(7.22).

We can now substitute (7.22) into (6.17) to find the q^t). The integrand in (6.17)
turns out to be an exact derivative and so we get

«•"+"+« ' (724)

where the constants of integration α, β are still to be determined. This gives the
following expressions for the Baker-Akhiezer function.

Proposition 7.6. The Baker-Akhiezer function ψ(p, t) is given by

θ{u{p)+Vt + D)θ[_ε\{D + R) Ω{p)t

ψ ί a θ(u{p) + D)θ(Vt + D + R)

m = R θle](u{p)+Vt + D)θlέ]{D + R)
Ψl P θ(u(p) + D)θ[εl(Vt + D + R) ? l j

73. The Prym Condition

It is now time to take into account the second symmetry condition (6.8), which is
best done in the resultant formulae for the solutions. Substituting (7.25), (7.20) into
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(6.11') gives the coefficients of L o :

(L) - 2S - 2 / ( F ί + j D ) θ [ ε ] ( D + * )

θ(Vt + D + R)θ(D) '

(^0)42 = ~2iS 3 1 g 2 = -— α

2α2

α 0

Relation (6.8) implies ( L o ) 1 3 = —(L 0) 4 2, ( L 0 ) 2 4 ^ —(L 0) 3 1, which gives

θ(Vt + D)
[ }

[recall that a2 is defined by (7.19)]. For this equality to hold identically, the theta
functions depending on t must cancel out:

with some constant c. Since π * F = — V, π*R = R and moreover,

0(-u) = 0(w), 0(π*u) = 0(u),

this implies

π*D + D = - 2R (modulo periods). (7.28)

It is not hard to show that one can add a period to D so as to make (7.28) an exact
equality. This choice of D enters in all the subsequent formulae. Substituting

D = P-R9 (7.29)

we have π*P=-P. (7.30)

The relations (7.29), (7.30) imply that

Θ(P-R) ίaθ(P-R)
β ' β

 ^
 ( 7 3 1 )

i + ί / 2 = χ - ^ ( V τ ; V ' (7 32)

where the constant A is still to be determined.

7.4. The Poisson Vector

It remains to calculate the Poisson vector g(ί) using (6.19); recall that
g3 = l. In view of (6.18), we can write ^(0) as

Ψ(0)=<?(A σ 3 ^ σ i W (7.33)
\B σ3BσJ
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where

gΩ(O-)ί

X <"

To verify these formulae recall that ψj{0ψ) = ( - lyψ/Oψ) and eω(0 ±} = + α. Also, it
can easily be shown that

M(0±) = i j R ± C , π*C=-C. (7.35)

This and the relation θ(u) = θ( — π*u) imply

^ κ _ υ u Q ' ( 7 3 6 )

so that

Therefore (6.19) can be written as

r 1 ^ " 1 (7.37)

with

(7.38)
Aσ3 - r " "

[we have assumed that ε = 1 in (6.19), which can always be achieved by a suitable
choice of the contour Z, cf. (5.7)]. After simple calculations we find

where the Sj are defined by

ΣSjσj = ̂ σ3^~ι. (7.40)
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By equating the matrix coefficients (L_ 1 ) 3 2 = (L_ 1 ) 1 4 we finally get z!2 = 1 and

We can now sum up our calculations.

Theorem 7.7. The general solution of the equations of motion for the Kowalewski
top is given by

(7.42)

CD

^ - 0 [ β ] ( 7 ί

AD-B

,4D + 5C"

where

(0 0 0)1

(0 1/2 0)J'

(7.43)

Remark. The polar singularities of the Poisson vector g(t) are in fact the same as
those of the angular momentum £(t) (see Sect. 7.6).

7.5. The Geometry of the Liouville Tori

The remaining indeterminacy in the expressions (7.42) for the dynamical variables
(the change of sign A t-^ — A and the permutation 0 + i—>0_) reflects the freedom in
reconstructing the Lax matrix (6.3) from the algebraic data. It is easily verified that
this freedom amounts to conjugation, L\-^ALA~ι, by a matrix A of the form

Λ = diag(l, 1 , - 1 , - 1 ) . (7.44)
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This is equivalent to a renormalization of the Baker-Akhiezer function ψ κ+ Λψ
and induces a symmetry of the Kowalewski top:

t\-*B{, gv-^-Bg,
8 (7.45)

B = d i a g ( - l , - l , l ) .

Clearly, (7.45) leaves the Hamiltonian invariant but changes the sign of Fv = (*f, g).
Recall that only the square Iγ=F\ is a spectral invariant.

We may summarize the situation as follows.

Theorem 7.8. // lγ 4=0, the common level surface of the spectral invariants H,IUI2

consists of two components (Liouville tori) each of which is an affine part of an
abelian variety isomorphic to Prym C/E. These components are permuted by the
transformation (7.45).

If lγ = 0, the level surface is irreducible. In this case the curve E is rational, C has
genus 2, and Prym C/E coincides with JacC. The mapping of the Liouville torus to
JacC becomes an unramified two-sheeted covering (for more details see Sect. 7.9).

7.6. Complete Description of the Motion of the Kowalewski Top

The solution (7.42) of the Euler-Poisson equations does not contain enough
information to determine the rotation of the complete top's frame k(t) e SO(3). To
find it we still have to solve the linear differential equation

k-ιft=ω(t) (7.46)

with initial condition fc(0) = fco supplemented by the known evolution of the
Poisson vector (assuming e3 to be the gravity vector in the rest frame):

k-ι(t)e3 = g(t). (7.47)

It turns out, however, that the Baker-Akhiezer function for the Lax pair (6.3)-(6.4)
contains more information than the Euler-Poisson equations themselves and
allows us to find k(t) without solving (7.46). The point is that ψ(λ) satisfies (at
λ = 0) the equation ,

= M ψ ( 7 4 8 )

where Mo essentially coincides with the angular velocity ω (see (6.4)). To make
this more precise, observe that Mo decomposes into two 2 x 2-blocks in the
subspaces spanned by the standard basis vectors in (C4 with odd (even) indices.
(This corresponds to the decomposition of (C4 with respect to the action of so(3)
Cso(3,2).) The first of these blocks is given by

ά>=ψΣ°>j<rj' ( 7 4 9 )
Zl j

Here and below we use the standard spinor notation for traceless 2 x 2-matrices

* ^ ( 7 5°)
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It follows from (7.48) that the matrix

satisfies

From (7.34) we find

Vi(0+A

V>3(0+)/

dφ
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(7.51)

(7.52)

1

= aθ{P~R)
θ{Vt + P)

0

_) + P-.R)

0
0(u(O+

(7.53)

where ±b = Ω(0 + ) and j / is given by

(7.54)

Notice that in view of (7.36) JS/ can also be written as in (7.34). It is easily checked
that the time evolution of the Poisson vector g(ί) is given by

g(t)=^τφ(t)σ3φ(ty (7.55)

An arbitrary solution of (7.52) satisfying (7.55) may differ from φ(ί) by a constant
gauge factor

φ'(t) = φ(t)C9 [ C , σ 3 ] = 0 . (7.56)

Recall that the rest frame of the top is chosen in such a way that the gravity vector is
directed along e3. The evolution of two other vectors eί9 e2 is given in the moving
frame by

(t)CC~ι(yi. (7.57)

The remaining freedom (7.56) in φ(t) corresponds to the (so far unspecified) initial
conditions which indicate the relative positions of the two frames at t = 0. By
inverting we also obtain the evolution of the top in the rest frame. For example,
the motion of the symmetry axis s(t) of the top in the rest frame is given by

j-bt-bo

0

0 0
v-bt-bi

(7.58)
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Remark. Tt follows from (7.52) and trω = 0 that

detφ = const.

Together with (7.36) this yields the identity

AD + BC = const θ{Vt + P)θ[ε~]{Vt + P)

(7.59)

(7.60)

for A, J5, C, D given by (7.43). Therefore the polar divisors of/f(i), g^t) and of other
coordinates of the top's frame are determined by the zeros of the theta functions
θ(Vt + P) and 0[ε](Fί + P). This result agrees with the analysis in [9] and [10].

Ί J. Reduction to Two-Dimensional Theta Functions

Since the Kowalewski flow on JacC is parallel to the Prym variety of the covering
C-+E, it is desirable to express the dynamics entirely in terms of the theta functions
related to this Prym variety (the elliptic theta function related to E will enter
through constant coefficients). The Prymian has polarization (1.2) and its period
matrix is

12 f (du.+dui) J (d
b b

\

Let \BQ be the period of E:

2 j du2
bx

J du2
b

(7.61)

(7.62)

We write the Prym vectors V and P entering in (7.42), and C defined by (7.35), as

V = (vJ2,v2,vJ2), P = (PiAp 2 ?Pι/2), C = (cJ2,c2,cJ2), (7.63)

and denote

w = {vxt + pl9 v2t+p2), c = {cu c2).

We then have the following expressions for the theta functions occurring in (7.42):

(0|B0)>

u(Q±)) =
(0 0)"

(0 0).
( w ± C | i 7 ) 0 | o | ( r | f l o )

(r\B0)

w\Π)θ^] (0|S0)
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(1/2 0)

(0 l/2)_

1/2"

0

Remark. Adding to w a period vector of the form

M.NeZ2, (7.65)
2

0

0

1

\

π )

(M

does not change the solutions (7.42). This shows that the mapping of the Liouville
torus to Prym C/E is one-to-one, as was already mentioned in Theorem 7.8.

7.8. The Kowalewski-Dubrovin Equations

In Sect. 4 the evolution of the line bundle EL of eigenvectors of L{λ) was described
in terms of the transition function etv. An alternative description in terms of the
associated varying divisor is provided by the so-called Dubrovin equations. We
shall derive these equations for the classical Kowalewski case. The divisor in
question can be thought of as the divisor of zeros of any given component of the
Baker-Akhiezer function, so let yγ{t\ y2(ή, y3{t) be the zeros oϊ\pι. The evolution
equations for yjίt) are an immediate consequence of the fact that the flow linearizes
on the Jacobian. From (7.20) we have

Σt (7.66)
i

where K is Riemann's constant. Hence

Σjtu{yti)) = V. (7.67)

To write this more explicitly we choose a basis of holomorphic differentials on C
[recall that C is defined by (5.3)]:

dz

μz(μ2~d1(z))'

d -(— - — 2 —2 \μz μ(μ2~d1{z))

Here dv is a differential on E, and dwt are Prym differentials. Recalling the
expression (4.10) for V (equivalently, du{p) — {VJto{\))dk as p ^ c o + , where
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k = ί/yz is a local parameter at oo+) we have

Σ-7^4^=0, (7.69)
7 μZiμfdάZ))

where z—zfo) and /!; = /*()>;).
It remains an interesting problem to determine the Hamiltonian structure for

(7.69) and to use these equations to compute the action-angle variables of the
Kowalewski top following the pattern indicated by Novikov and Veselov [12].

7.9. Motion of the Kowalewski Top in the Case (*f, g) = 0

If (/, g) = 0, the curve E degenerates into a rational curve which is a two-sheeted
cover of the z-plane,

{y-d,{z))2 = 4(z2-2Hz + \+H2-\/4I2). (7.70)

The curve C is given by the equation μ2 = y, or

(μ2-d1(z))2 = 4(z2-2Hz+l+H2-ί/4I2) (7.71)

and has genus 2. The covering C-^E has 6 ramification points oo ± , 0 +, pu p2 (we

use the same notation as in Sect. 5: z(oo±)=oo, z(0±) = 0, y(oo_) = 0, y(oo+) = GO).

The flip of sign μ f—• — μ defines a hyperelliptic involution on C. In the variables

u = ]/2μzx, x = ί/2(μ2 — ί/z\ Eq. (7.71) takes on the usual hyperelliptic form:

u2 = x(x2 + 2Hx + l/4I2){x2 + 2Hx + l/4I2-l). (7.72)

Notice that it is different from the Kowalewski curve which for (/, g) = 0 is given by

u2 = x((x-~H)2-ί/4I2){(x-H)2-l/4I2 + l). (7.73)

The fact that there are various hyperelliptic curves associated with the Kowalew-
ski top which are different from the classical Kowalewski curve was pointed out in
[10]. The motion of the top linearizes on the Jacobians of the curves (7.72), (7.73)
which are isogeneous to one another.

Let us regard the curve C defined by (7.72) as a two-sheeted covering of the
x-plane. The fixed points of the hyperelliptic involution u h~> — u are oo +, 0 ± , p {, p2.
We choose a canonical basis of cycles on C as shown on Fig. 2.

Fig. 2. Represents the curve C in the case (zf, g) = 0 as two copies of the x-plane glued along the cuts
[oo +, 0 + ], [0_, cc _] and [p1? p2] Continuous lines show (parts of) the cycles on the upper sheet,
dotted lines refer to the lower sheet
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As usual, we define the period matrix with respect to this basis. Let θ\ be the

associated Riemann's theta function with characteristics. Then the solutions of the
equations of motion are given by

2 0)

1 ( 0
(0 0)

(0 0)J
(w)

"(0 0)

JO 1/2)

(0 0)

(0 1/2)

(w)

(0 0)

(0 0)
(w)

(0 0 ) 1 / Γ ( 0 0)
(O1/2)J(W) (1(1/2 0).

(0 0)

(0 0)

(0 0)

(1/2 1/2)J

w
(1/2 0)

(1/2 0)
(7.74)

(w) S

where

(0 0)

(0 1/2)

(0 0)1 Γ(l/2 0)

(1/2 0 ) J W L(V2 1/2).

(0 0)

.(1/2 1/2)

(o 0 ) 1 , ^ Γ ( o o)

(w) S

[w

(w)

(1/2 0)

(1/2 1/2).
(w).

Here w=Vt + D and F is the velocity vector of the Kowalewski flow on Jac C given
by (4.10). Formulae (7.74) imply that the (compactified) Liouville torus is in the
present case an unramified double covering of JacC. Its polarization is again (1.2).
This is in agreement with the qualitative analysis in [10].

To conclude, we point out the following curious fact: by deleting the first row
and column in (6.3) one gets the L-matrix of a Lax pair for the Goryachev-
Chaplygin top, which leads to new formulae for its solutions [211.
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