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Abstract. We show how averaging defines an Ehresmann connection whose
holonomy is the classical adiabatic angles which Hannay defined for families of
completely integrable systems. The averaging formula we obtain for the
connection only requires that the family of Hamiltonians has a continuous
symmetry group. This allows us to extend the notion of the Hannay angles to
families of non-integrable systems with symmetry. We state three geometric
axioms satisfied by the connection. These axioms uniquely determine the
connection, thus enabling us to find new formulas for the connection and its
curvature. Two examples are given.
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Introduction

In (1984) Berry discovered a phase associated to a family of self-adjoint operators.
This phase is determined by a loop in the space which parametrizes the family, and
by initial choice of nondegenerate eigenvalue. In (1985) Hannay found a classical
analogue of this phase. This analogue, called the classical adiabatic angles, or
Hannay angles, is associated to a family of completely integrable systems. The
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angles are determined by a loop in parameter space, together with initial values for
the action variables.

Simon (1983) gave a simple geometric framework for Berry's quantum phase.
The original goal of our paper was to provide an analogous geometric framework
for the classical adiabatic angles. In such a framework the angles (or phase) are the
holonomy of a connection for a bundle over parameter space.

Our formula (2.1) defines such a connection, which we call the Hannay-Berry
connection. In the words of Cushman, this connection is given by declaring that
"averaging defines parallel translation."

From a local point of view, formula (2.1) is not new: Hannay defined his angles
by integrating the local equations of parallel translation thus obtained. However,
by expressing the connection in invariant language, we were led to the following
new results:

(A) The Hannay-Berry connection is defined even if the family of Hamiltonians
is not completely integrable. One only needs the family to admit a continuous
group of symmetries, the group one averages over.

(B) The connection obeys three geometric axioms (see Sect. 3.1):
(1) parallel translation preserves the functions / which generate the symmetry

group (i.e. the components of the associated family of moment maps),
(2) parallel translation is obtained by integrating the flow of a time-dependent

Hamiltonian vector field,
(3) a normalization for the corresponding Hamiltonians.
These three axioms uniquely determine the connection: if there is such a

connection, then it is the Hannay-Berry connection. The necessary and sufficient
condition for the existence of such a connection is the "adiabatic constancy" of the
moment map /, which we write <dM/> = 0.

Result (B), together with a new formula for the connection's curvature, is
summarized in Theorem 2, Sect. 3.

Alan Weinstein suggested the normalization axiom (3) in the completely
integrable case. The reader may also wish to see Weinstein (1988) for another point
of view regarding the connection in this case.

Our paper is devoted to demonstrating result (B), and its consequences. Result
(A), especially its dynamical interpretations and consequences, will be the subject
of a future paper with Marsden and Ratiu (1988). The author is indebted to
Marsden and Ratiu, who felt strongly that integrability must be a spurious
assumption in any nice geometric framework for the Hannay angles. The author
would not have stumbled across (A) without their prodding.

The uniqueness of the connection satisfying the three axioms lets us obtain an
alternate formula, (3.3), for it. This alternative formula becomes especially
simple, Eq. (3.5), when there is an additional symmetry group present which also
acts on parameter space. This same type of extra symmetry has been used in the
quantum case by several authors to explicitly calculate the quantum connection.
Among these are Gerbert (1987), Jackiw (1987), Anandan (1988), and Vinet
(1988).

Equation (3.5) is used to compute the connection and its holonomy for two
examples. The first (Sect. 4) is the Foucault pendulum, and non-integrable
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generalizations of it, Examples la and b. The parameter space is a two-sphere. The
Hannay-Berry connection turns out to be essentially the standard Levi-Civita
connection on the sphere. This result was stated without proof by Hannay (1985).
Koiller (1987b), gave a proof. This paper began as an attempt to geometrize and
extend Koiller's calculations.

The second example (Sect. 6) is a family of linear oscillators. The parameter
space is the set of positive definite matrices with nondegenerate eigenvalues. We
find that the curvature of the Hannay-Berry connection to be zero, but the
holonomy turns out to be non-trivial. Berry obtained these same results in his
original (1984) paper.

1. Families of Hamiltonian Group Actions

Let P be a symplectic manifold with symplectic form ω. A family of Hamiltonian
G-actions on P is a smooth action of the Lie group G on P x M, where M is a
manifold which we call parameter space, and where

(1) each fiber P x {x}, xeM, is invariant under the action,
(2) the action restricted to each fiber is symplectic,
(3) the action admits a smooth family of moment maps J:PxM->g*, (g

denotes the Lie algebra of G, g* its dual).
This last property means that for each λ e cj the corresponding infinitesimal

generator λp x M for the action is equal to the Hamiltonian vector field generated by
the real-valued function Iλ = (I,λy on PxM. This is an equality of "vertical"
vector fields on P x M, where "vertical" means tangent to the fibres. In order to fix
notation we will be more explicit

λp*M = Xlλ>
where

λP x M(p, x) = d(exp(sλ) - (p, xf)/ds\s=0 .

And for / a real valued function on P x M its Hamiltonian vector field, Xf is
defined by

where ω00 denotes the pull-back of ω to P x M by the projection onto P, and
where dp denotes exterior derivative in the P-direction. If we fix canonical
parameter-independent coordinates {(ql, pf)} on P and coordinates {xa} on M then

ωΘO = Σdq1 Λ dPi and Xf = % {(df/dpjd/dq1 - (5f/dcf)d/dPl} .

Note that if G is connected then all the information in the Hamiltonian family is
contained in the family of moment maps I:Px M->cj*. When there will be no
confusion, we will simply refer to / as the moment map.

Example la. Here G will be the circle S1. Suppose the rotation group S0(3) acts in
a Hamiltonian fashion on P with equivariant moment map J : P-»so(3)* = R3. (J is
the angular momentum vector of the system.) Set M = S2C R3, a sphere of radius r
centered at the origin. Identify R3 with the Lie algebra so(3) in the standard
fashion. Define
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For each xeS2, the Hamiltonian flow of /( ,x) defines an S1 action on P. By
having S1 act trivially on S2 we thus obtain an S1 action on P x M, and hence a
family of Hamiltonian S1 actions on P.

Here is an alternative description of this action. First, for each x in S2, embed S1

into 50(3) by the homomorphism ix: S
1 ->S0(3) obtained by thinking of S1 as the

set of (counterclockwise) rotations about the x-axis. Second, compose ix with the
given S0(3) action on P.

Example ίb generalizes the previous example by replacing S0(3) with a compact
Lie group G1 D G acting in a Hamiltonian fashion on P, with equivariant moment
map J: P^g1*, and by replacing S1 by G, a maximal torus in G1. We will identify G
with the isotropy group, G*, of a fixed regular element μ e g1*. Thus G is a maximal
torus. The parameter space M = GJG is the co-adjoint orbit through μ. The family
of moment maps is defined by

(I(p,x),λy = (J(p),ixλy, / l e g ,

where ix: gμ-^gi^g1 is the linear map formed by composing the inclusion g^-^g1

with the isomorphism g* -»g *, defined by ξ\-+Adgξ, where x = (Ad^)~1 *μ. (We need
G abelian in order for this map to be independent of the choice of g.)

Example 2. A family of completely integrable systems consists of a function H: P
x M-»R such that for each x0 in M, H( -, x0) is completely integrable on P.

Recall this means that ίf( ,x0) can be written as a function of n = ̂ dimP
smooth functions /ι( ,x0)> /2( > xo)> •••>/n('>xo) on Λ called "integrals in invo-
lution," whose Poisson brackets with each other are all zero, and which are
independent (dfv( , x0) Λ df2( , x0) Λ ... Λ d/n( , x0) φ0) almost everywhere. The
fact that their Poisson brackets are zero implies that the flows of their Hamiltonian
vector fields commute. A set of action variables /( 5x0) = (/1( ,x0), /2( ,x0), .. ,
/„( , x0)) for H( , x0) is a set of integrals in involution such that the flow of each
Hamiltonian vector field is 2π-periodic. Action variables always exist locally in a
neighborhood of a point where the common level sets of the ft( , x0) are compact.

Suppose that the family of completely integrable systems admits global smooth
action variables / = (71? /2, ...,/„): P x M->IRn, n = \ dim P. Then / can be viewed as
a family of moment maps for a family of Hamiltonian G-actions, where G is the
rc-torus and R" its dual Lie algebra. The case where H does not admit global action
variable will be discussed in Sect. 5.

What makes a family of Hamiltonian G-actions interesting is that the G-
action can depend on M. Infinitesimal stated, this means that the Lie bracket
[^pχM'0® ̂ J is not zero [see (1.1)]. Here λ eg, V is a vector field on M, and 00 F
denotes its obvious extension to a vector field on P x M. The Hannay-Berry
connection will provide a measure of the extent to which the action depends on the
parameters.

Notation. We will often abuse notation by making the identifications 00 V= V,

ω00 = ω.
One calculates

[ΊpχM> V]=X-dlΛ.v, V a vector field on M. (1.1)
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This formula is key to the proof of our main result, Theorem 2. To prove (1.1), write
V=dί9 thought of as a differential operator, and apply the Lie bracket to a function

where { , } denote Poisson brackets on P.

2. Defining the Connection and Relating it to Hannay

2.1. Defining the Connection

From now on assume that G is compact and connected. Then we can average with
respect to Haar measure, dg, on G. If α is any tensor field defined along (not on) a
G-invariant submanifold of P x M we can form its average

<α>= J(g*α)rfg/vol(G),
G

which is now a G-invariant tensor field.

Definition. The horizontal lift h - v of a vector v e TXM with respect to the Hannay-
Berry connection is the vector field

Λ t; = <00ι;> (2.1)

along Px{x}. Here 0®v denotes the vector field /?h-»(0, v)ε TpP x TXM along
Px{x}cPxM. Π

This defines the horizontal lift for a connection in the sense of Ehresmann on
the bundle π : P x M->M. (At the beginning of Sect. 3 we recall the definition of an
Ehresmann connection in case the reader is unfamiliar with it.) A coordinate
expression may be helpful. Take the case P = 1R2 with coordinates (q,p), M = R
with coordinate x, and G = S1. Let Rθ denote the action of θεS^ In coordinates

Rθ(q, p, x) = (Q(q, p, θ, x\ P(q, p, θ, x), x} .

Then R$d/dx = d/dx + (dQ/dx)d/dq + (dP/dx)d/dp, so that

h υ = d/dx

Remark. If the G-action is independent of M [i.e. (1.1) is zero] then
g*(Q®v) = Q®v. Consequently h-v = 0®v9 hence (2.1) defines the trivial
connection.

The Hannay-Berry connection was motivated by dynamical considerations. A
function H:Px M->IR together with a curve y : R^M, define a time-dependent
Hamiltonian system on P, namely that given by the time-dependent Hamiltonian
Hy(p, t) = H(p, y(t)) on P. This dynamical system is the flow of the vector field XH®γ
on P x imy, where y = dy/dt.

Suppose we believe that the "group variables" G (i.e. coordinates on the
G-orbits) are "fast" relative to the "other variables" (coordinates on P x M/G).
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Then, at least in the case G Abelian, the averaging principle [see, for example,
ArnoΓd (1978)] suggests that it is a good approximation to replace XH®y with its
average <^// + 7>=^<H> + <7>. If H is G-invariant then <//> = //. Thus the
averaging principle says to

"replace XH H- y with XH + h y" . (2.2)

2.2. Relation to Hannay

Suppose we are in the context of Example 2, so that H is a family of completely
integrable systems and / consists of global actions variables. Consider the sets

where μ e R" is a regular value of /( , x), x a fixed parameter. These consist of a
disjoint union of n-tori (Arnold-Liousville theorem). In a neighborhood U C P x M
of any one such torus there exist local angle variables

θ = (θ\θ2,...,θn):UcPxM-*Tn, the w-torus.

These are obtained by choosing a local (Lagrangian) slice, i.e. choice of "0 = 0", for
the toral action, then pushing this around by the toral action. θ( - , x) coordinatizes
our original torus which is a component of E%. For x' near x and μ' near μ, E£ is
also a disjoint union of n-tori, and the component nearest our original torus is
coordinatized by θ( x'}.

The action-angle variables (/, θ) form a parameter-dependent coordinate system
on P. Then {/', Θi9 x

a} form coordinates on P x M, where the xa are fixed
coordinates on M, as above. In these coordinates

α = Σ(dΓ/dxa)d/dI + Σ(dθί/dxa)d/dθ + d/dxa

and

where ω^
It is well-known that the standard actions I (see Sect. 5 for their definition)

satisfy <3/V<9xα> = 0, or, in more invariant notation,

<dM/> = 0, /standard. (2.3)

Here dM denotes exterior differentiation with respect to M. In coordinates {xa} on
M:

dMI = Σ(dl/dxa}dxa , a one-form on P x M .

Warning: Most actions do not satisfy (2.3), for i f / is an action, (i.e. generates the
given toral action), then so is / + /, where / is a function on M. But (dM(I + f ) y

Remark. Equation (2.3) is one of the basic facts regarding slowly varying
completely integrable systems. A proof using generating functions can be put
together from Arnold (1978). Alternatively, see Weinstein (1988), or write the
author.
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For slowly varying one degree of freedom systems (2.3) implies that the
standard actions are adiabatic invariants (Arnold, 1978, 1983). This means that on
a time scale of order 1/ε, where ε measures how slowly the system varies, the actions
vary by at most ε. This is proved by using the S1 averaging theorem. Due to
resonances, a corresponding toral averaging theorem is no longer true for more
than one degree of freedom, so that the standard actions are not in general
adiabatic invariants, even though (2.3) holds (see Arnold, 1983).

In any case, if the actions are standard

h - d/dxa = Σ^dff/dx^d/dθ1 + d/dxa ,

and so for y a curve in M

h y = Σ((dMθly fid/d&φγ , where y = dy/dt .

The equations for parallel translation with respect to the Hannay-Berry connec-
tion are then

dθildt = (dMθi} y, dΓ/dt = 0.

So that

y

where <dM#> is one-form with values in the Lie algebra of the torus. Hannay (1985)
defined

Hannay's angles: - j <<2M0> . (2.4)
y

Thus, in the case where y is a loop contained in our coordinate patch,

Hannay's angles = the holonomy of the Hannay-Berry connection.

[Usually the integral (2.4) is rewritten, using Stoke's formula, as the integral of a
two-form over a disc bounding y.~\ We summarize and extend this discussion in:

Theorem 1. Suppose that I is a set of global action variables for a family of
completely integrable systems, and that <dM/> = 0. Then for small enough loops the
holonomy of the Hannay-Berry connection is the Hannay angles. Parallel trans-
lation with respect to the connection leaves invariant the submanifolds

and hence induces a connection on them. The connection's curvature is given by the
formula of Theorem 2.

Suppose that M is connected. Also suppose that μ is such that the fibers Eμ

x of Eμ

are connected, and that for one parameter value x0 e M, μ is a regular value of

/( ,x0) Then
(1) Eμ->M is a principal torus bundle,
(2) the Hannay-Berry connection, restricted to it, is a connection in the principal

bundle sense.

Proof. The horizontal lift of a vector with respect to the Hannay-Berry connection
is manifestly invariant under the torus action. Hence if Eμ is a principal bundle then
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the connection is a principal bundle connection. In order to show that Eμ is a
principal torus bundle, note that by the connectivity assumption Eμ

0 is an
^-dimensional orbit of the torus action, hence an rc-torus. The same follows for any
Eμ as can be seen by connecting x0 to x by a smooth path y and then parallel
translating along y. (Parallel translation restricted to Eμ is complete since the fibers
of Eμ are compact.) This defines a diffeomorphism from Eμ

0 to Eμ which intertwines
the toral actions. It follows that Eμ is a principal bundle. (It may be that the action
of the torus G on Eμ has a finite nontrivial isotropy group Γ, in which case the
action of G/Γ is free, and G/Γ is the correct structure group for the bundle.) Π

Remark 1. The connectivity of the fiber Eμ is automatic when P is compact. This
was proved by Atiyah (1982) and Guillemin-Sternberg (1984) in their papers on the
convexity of the image of /.

Remark 2. In Sect. 5 we extend Theorem 1 to families of completely integrable
systems which do not admit global actions.

2.3. Dynamical Interpretation of the Holonomy:
Integrable Versus N on- Integrable Case

Let y be a loop in M based at x0 Roughly speaking, the holonomy of the Hannay-
Berry connection around y provides a way of comparing the dynamics for the time-
independent vector field XH obtained by freezing the parameter value at x0 (setting
γ = 0) to the time-dependent dynamics, XH + γ. This is not quite correct, since the
dynamics in the fiber will in general vary as we move along y in parameter space. In
the integrable case this fiber dynamics is easily accounted for as a "dynamic phase"

so that, in the averaging approximation the total angular shift upon going around
the loop is

AΘ = A θdyn + Hannay's angles .

This assumes, of course, that we return to the torus we started on, which is
automatic if the loop is small enough, or if the hypothesis of the second part of
Theorem 1 are satisfied.

The fiber dynamics cannot be so easily accounted for in the non-integrable
case. Qualitatively new phenomena appear which have to do with the bundle of
symplectic reduced spaces

Γ\μ)/Gμ^M. (2.5)

These phenomena mil be the subject of a future paper with Marsden and Ratiu. See
Sect. 8 for more information.

In writing (2.5) we are assuming that / is equivariant. Gu denotes the isotropy
group of μeg*. The bundle (2.5) is sandwiched between /-1(μ) and M:

Its fiber over M is the symplectic reduced space of Marsden and Weinstein (1974).
The dynamics on these fibers will in general be non-integrable, perhaps ergodic, or
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chaotic. In the completely integrable case the fiber is a discrete point set and the
I~1(μ) fiber-dynamics is specified by vectors attached to these points, namely the
frequency vectors ω = (ωί,ω2, ...,ω").

3. Main Results: Geometric Properties of the Connection

3.1. Hamiltonian Connections and the Main Result

To begin our discussion of the geometric properties of the Hannay-Berry
connection, (2.1), we recall some definitions regarding Ehresmann connections. A
connection in the sense of Ehresmann on the bundle π:P x M->M is a smooth
distribution Hor on P x M, called the horizontal distribution, such that TP0Hor
= T(P x M). Equivalently, it is a smooth family of linear endomorphisms
horp tX : TxM^TpP x TXM, called horizontal lifts, satisfying dπpίX° horp x = identity
on TXM. Note we can always write horp tX-v= Y(p, x) v@v, where
Y(p,x): TXM-^TPP is linear. Parallel translation along a path y in M is the (local)
flow defined by the vector field hor ° dy/dt on P x imy. The covariant derivative of a
function / on P x M at x is given by Df -v = d f ' ( h v),a function on P x {x}. Df is
a one-form on M with values in the ring of functions on P x M.

Definition. A Hamiltonian connection for the family of Hamiltonian G-actions
/:PxM-»g* is an Ehresmann connection on PxM->M which satisfies the
following three axioms:

(1) parallel translation preserves the level sets of/,
(2) parallel translation is Hamiltonian,
(3) for each v e TXM the average of the corresponding Hamiltonian function

K v is a constant on P x {x}. Without loss of generality we will take this constant
to be zero.

Explanation. (1) is equivalent to DI = 0.
(2) Means that for each v e TXM there is a function K - v on P such that

= Xκ.v@v. (3.1)

Thus parallel translation is given by the (local) flow of a time-dependent
Hamiltonian vector field. Note that the connection is uniquely determined by the
map

considered as a one-form on M with values in C°°(P x M)/CGO(M). We will call K
the Hamiltonian one- form of the connection. Note that in general K - v is not
G-in variant (since 00ι; is not).

(3) Is a normalization condition: <J£ t;> = 0.

There can be at most one Hamiltonian connection. For suppose we have two
Hamiltonian connections with horizontal lifts denoted /z1? h2 and Hamiltonian
one-forms denoted K1? K2. Then hί v — h2'V = XKί.v-K2.v, so by property (1)
dI'XKl'v-κ2.v = Q For each ^e9? dIλ XKl.v-K2.v = λPxM[.Kl v-K2 v]9 there-
fore Kί v — K2 v is G-invariant, since G is connected. Consequently
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the normalization property (3). Consequently K±=K2 and the two connections
are equal. Π

Our main result, Theorem 2, states that under the hypothesis

<dMI> = 0 (3.2)

that the Hamiltonian connection exists, and is equal to the Hannay-Berry
connection. Equation (3.2) is a necessary condition for the existence of a
connection satisfying (1) and (2). For then

The second term is the derivative of function with respect to an infinitesimal
generator, and hence has average zero, since G is compact. (Think of the case
G — S1, in which case this term is dK - v/dθ.) Averaging this equation then yields
(3.2).

Theorem 2. Suppose that <dM/> = 0, where I is the moment map for a family of
Hamiltonian G-actions on P, and G is a compact connected Lie group. Then there is a
unique Hamiltonian connection on P x M. It equals the Hannay-Berry connection, as
defined by the averaging formula (2.1):

This can also be written

where the Hamiltonian one- form K satisfies defining axioms (1), (2), and (3) above. Its
horizontal distribution is

a G-invarίant distribution. Its covariant differentiation operator is given by

on functions, and satisfies

for any function or k-form α on P x M. The curvature of the connection is

or equivalently

Proof. See Sect. 7.

Explanation of Curvature. View PxM->M as a symplectic fiber bundle. [See
Gotay et al. (1980) for a treatment of symplectic fiber bundles.] If we want to
preserve the foliation of the total space given by the level sets of/, then the current
structure group for this bundle is the group of symplectic transformations of
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P x {x} which commute with the G-action on P x {x}. (Note that the action of G
defines a natural homomorphism of G into this structure group.) The Lie algebra
of this structure group is the algebra C£(P x {x}) of G-invariant functions on
P x {x} (modulo constants) under Poisson bracket. Our formulas for the curvature
Ω are formulas for 2-forms on M with values in the ring of Q?(PxM) of
G-invariant functions.

Hamίltonian Connection as Induced Connection. In view of axiom (1), D/ = 0, the
Hannay-Berry connection induces a connection on any level set of /. In the
definition (2.1) of the connection, averaging acts like a projection operator applied
to the trivial connection. In these ways the Hannay-Berry connection is analogous
to the induced Levi-Civita connection of a submanifold embedded in a Euclidean
space.

3.2. Regarding the Hypothesis <dM/> = 0

Proposition 1. Suppose Γ.Px M->g* is the moment map for a family of Hamil-
tonian G-actions on P, G compact and connected. Then <dM/> is the pull-back of a
closed one-form on M.

We prove this in Sect. 7.

Corollary. In a neighborhood of any point x0eM there is a §*-valued function f on
M such that /' — / + / ° π satisfies (dMΓy = 0.

Proof of Corollary.

f(x)= } <dM/>,
*0

where by abuse of notation we write <dM/> for the one-form whose pull-back is

<dMI> D

Note that / and /' generate the same g-action, since / is constant on P x {x}.
Thus the G-action on P x M is unaltered by the replacement of/ by /'. Reworded
then, the corollary states that

it is always possible to change the moment map 7,
without changing the G-action, in such a way that <dM/> = 0.

This new choice of/ is global in P, but local in M. It is always possible to make
the choice global if either

(a) M is simply connected,
(b) we allow / to be multiple valued.

3.3. An Alternative Formula for the Connection

For v e TXM, suppose that we have found a smooth function K v on P x {x}
satisfying

dIλ v + {I\K'v} = 0 (3.3a)
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for all λ in g*. [Essentially the same formula appears in Anandan (1988) as
Eq.(13).] Then

K'V = K v-(K vy (3.3b)

defines the Hamiltonian one-form for the Hannay-Berry connection. This is easily
seen by checking the three defining axioms for a Hamiltonian connection, and
invoking uniqueness.

Definition. We say that a function K v satisfying (3.3a) almost generates parallel
translation in the direction v.

3.4. Formula for the Connection in the Presence of Additional Symmetry

Suppose another Lie group G1 (typically containing G) acts separately on P and on
M in such a way that the diagonal action on P x M leaves the moment map
/ : P x M->g* invariant:

x) = Hp,x). (3.4)

Also assume that the Gί action on P is Hamiltonian, with equivariant moment
map J P-^g1*.

Definition. We call a group G1 together with such a diagonal action a symmetry
group of the family of Hamiltonian systems.

Differentiating Eq. (3.4) of invariance with respect to g we obtain Eq. (3.3a):

{I,J*}+dI ξM = 0 for

Here J^ = <J5 £> denotes the ^-component of J, and ξM denotes the infinitesimal
generator on M corresponding to ξ. It follows [Eq. (3.3b)] that the Hamiltonian
function for the horizontal lift of ξM is

K ξM = Jt-(βy. (3.5)

If G1 acts transitively on M this determines the connection. In the next section we
will use (3.5) to calculate the connection for our first examples.

4. Some Examples, Including the Foucault Pendulum

Example la (see Sect. 1). Equivariance of J means that J(g p) = g-J(p\ for
geSO(3). The invariance, (3.4), of easily follows. We can now calculate the
connection by using formula (3.5).

Fix the parameter x E S2. Let [e^ e2, e3} be an oriented orthonormal basis for
R3, with e3 = x/r, where r is the radius of the sphere. Set Jt = < J, et >, i = 1,2,3. Then
I(p, x) = r J3. Let Rθ denote the action of the group G = S1 on the fiber P x {x}. We
have Rθp = Qxpθe3 -p. By equivariance again,

Jl(Rθp) = cos ΘJ^p) + sin ΘJ2(p)

with a similar formula for J2. It follows that <«/ι> = </2)
 = 0 Also <J3> = J3.
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Remembering the identification of so(3) with R3, we note that the infinitesimal
generators are given by ξS2(x) = ξ xx. So at x = re3, (eί)S2 = — re2, (e2}s2 = reι-

Thus K e1=J2/r, and K-e2 = —Jι/r. K can also be expressed by K v = <J,
v x x>r , or

where P^ denotes the orthogonal projection onto the plane tangent to S2 at x.
The curvature is then given by

Rember this is to be interpreted as a vertical vector field by taking its Hamiltonian
vector field. The Hamiltonian vector field corresponding to / is d/dθ, the
infinitesimal generator of the S1 action on P x M. Thus we can write
Ω = d/dθ®r~2dA, where dA is the standard area form on the sphere. Note that
r~2dA is the curvature form of the Levi-Civita connection on our sphere.
Consequently, the holonomy about a loop (based at x) is P^>RAΘ'P, where

of the solid angle subtended by the curve. (4.1)

Foucault Pendulum (see Fig. 1). The holonomy (4.1) has been invoked by Koiller
(1987), and Hannay (1985) as providing an alternative derivation of the precession
of the Foucault pendulum. We will show below that this derivation is not justified,
because the S1 averaging cannot be. But it does give the correct answer, so let us go
through it regardless.

The Foucault pendulum is a spherical pendulum hanging at a latitude α above
the earth's surface. In the course of one day the pendulum precesses by an amount

Aθ= — 2πcosα. (4.2)

Modulo 2π, this equals 2π(l — cosα) which is the spherical area inside the circle of
lattitude α, hence the holonomy of the Hannay-Berry connection. This precession
is measured in a "lab frame" sitting on the earth near the pendulum and can be
attributed to the Coriolis force.

Fig. 1. Foucault pendulum
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In the lab frame the pendulum's position is described by a point qL on a sphere
with radius equal to the length of the pendulum bob. The coordinates of the
pendulum in the lab frame are related to those of an inertial frame, β, centered at
the earth's center, by Q = Rt(qL + ro)' Here Rt = QxptΩ is the rotation matrix
describing the earth's rotation and r0 is the position vector of the pendulum's
suspension point at some initial time. If instead we use coordinates q e S2 given by
q = RtqL, we find that the Hamiltonian of the Foucault pendulum is

Ha:T*S2xSl^R'9 Ha(q,p;t)=~ \\p\\

where (q, p) e T*S2 = P, \\p\\2 is the squared length of the covector p with respect to
the standard metric on S2, and, < , > is the inner product on R3. Also g is the
acceleration of gravity at the earth's surface, e3 is the initial direction of gravity,
and m is the pendulum's mass. Roughly speaking, the ^-coordinates are ones in
which "directions are inertial," but positions are not. In these coordinates the
direction of gravity, Rte3, is changing. The calculation of the Hamiltonian was
done by starting with the Lagrangian (time-dependent in the ^-coordinates) and
performing the Legendre transformation. Also we used the usual linear approxima-
tion of the gravitational potential, and dropped a term quadratic in Ω. For details
of this calculation, see the forthcoming paper with Marsden and Ratiu (1988).

This Hamiltonian is the restriction of the family of completely integrable
systems

;x) = ± \\p\\2 + <x,^> (4.3)

to T*S2 x y, y the circle of lattitude α. The parameter space S2 represents possible
directions of gravity. For each frozen x, the group of rotations about x leave H
invariant. Consequently, the angular momentum about the x-axis

is conserved, for x frozen. Here J(q, p) = qxpis the moment map for the standard
S0(3) action on T*S2. / defines a family of Hamiltonian S1 actions as in
Example la, immediately above. [SO(3) acts on the parameter space S2 in the
standard way.] As already noted, the holonomy (4.1) of the associated Hannay-
Berry connection gives (4.2). Note that in the course of one day the lab frame
undergoes a rotation of 2π relative to the q frame. Thus to calculate the precession
in the lab frame we should subtract 2π from the ^-precession, thus arriving exactly
at Foucault's result (4.2).

The spherical pendulum is completely integrable, so instead of calculating the
holonomy of the Hannay-Berry connection associated to the family of Hamil-
tonian S1 actions, we could have done the calculation for the connection
associated to a family of integrable systems. The result would be the same. In fact,
the calculation would be the same, since the diagonal action of S0(3) also leaves H
invariant (see Sect. 5). Duistermaat (1980) has shown that the second action
variable for the spherical pendulum cannot be globally defined, so this alternative
calculation will not fit into the framework of this section (see Example 2, above).
We would need the results (Theorem 1 A) of the next section to make this integrable
systems holonomy calculation rigorous.
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Fig. 2. An "azimuthal Foucault pendulum" spins quickly the axis of gravity. Its precession (relative
to the prediction assuming constant azimuthal frequency) will be the same as the standard
Foucault pendulum

Averaging is Unjustified for Foucault. I = θ = 0 are the initial conditions for the
standard Foucault pendulum. Therefore one cannot justify averaging over θ, the
azimuthal angle generated by the S1 action. Averaging over the latitudinal angle φ
which measures the vertical swing of the pendulum is justified, as this oscillation is
fast relative to the earth's rotation. Denote this averaging by < yφ. One finds

(dl/dtyφ = 0 for oscillation (inside separatrix), (4.4a)

ΦO for libration (outside separatrix,
pendulum swinging all the way around) . (4.4b)

This makes it clear that the Hannay-Berry connection is not relevant for a high-
energy Foucault pendulum. The nonzero average for libration can be made
plausible by thinking of such a pendulum as a "Foucault gyroscope": total angular
momentum L is then (approximately) conserved relative to an inertial frame, and
hence its component / in the lab frame will not be conserved.

Averaging about θ is justified if the pendulum has fast azimuthal rotation, i.e. /
is large. This is very different from the standard pendulum, but could be
constructed (see Fig. 2).

Example ίb. Essentially the same reasoning as in Example la leads to the result

for the Hannay-Berry connection. Here JPx:$-+TxM = Qχ± is orthogonal projec-
tion with respect to an Ad-invariant metric on 9. We have also used this inner
product to identify g with g*, and hence the co-adjoint orbit M with an adjoint
orbit in g. The curvature form takes values in the Lie algebra of the maximal torus.
The connection is the pull-back of the standard G-invariant connection on

5. Families of Completely Integrable Systems

Most completely integrable system do not admit global action variables. For one,
there are no action variables at points where some of the frequencies become
infinite, for example, in a neighborhood of the separatrix for the planar
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pendulum, or more generally in a neighborhood of points on the stable or
unstable manifold of a saddle point for the Hamiltonian. Even after deleting such
points, most integrable systems do not admit global action variables. For
example, the spherical pendulum does not (see Duistermaat, 1980). The obstruc-
tion to the existence of global action variables is called monodromy.

Families of completely integrable systems can exhibit a further problem. At
certain parameter values there may be no local action variables, or even functions
in involution, which are continuous in the parameter. An example is provided in
Sect. 6 by a family of linear oscillators at a resonant parameter value.

As a consequence of these two difficulties, a general family of completely
integrable systems does not admit a compatible family of Hamiltonian toral
actions. Since we have no torus action to average over our previous definition of
the Hannay-Berry connection fails. We will get around these difficulties by

(1st) deleting the set of points where the difficulties occur,
(2nd) thus obtaining a family of local Hamiltonian torus actions defined on the

remaining good points,
(3rd) averaging over these local toral actions to construct the Hannay-Berry

connection as before.
We will begin by being more precise about what we mean by a local torus

action.

5.1. Local Actions

Definition. Let 7 be a manifold and G a Lie group. By a local action of G on Y we
mean an open cover {Ua} of Y together with a collection of actions Φa:GxUa-*Ua

on each Ua. Let Aut(G) denote the group of group automorphisms of G. We require
that on the overlaps [7αnU β there be smooth functions Φaβ : UaπUβ-*ΔutG such
that

The point is that the automorphisms Φaβ(p) of G may be outer, and it may be
impossible to piece the local actions on the UΛ together in such a way as to form a
global of G. But the average with respect to a local action is still well-defined, since
Haar measure is invariant under outer automorphisms.

In the case of a completely integrable system the local torus action are defined
by simply rotating the angles in a set of local action-angle variables. More
precisely, let / : P->RΠ be the set of functions in involution, Σ the set of /'s critical
values, and C its image. Assume that the level sets of/ are compact. Using the flows
of the components of the ft we obtain a local torus action on P\f ~ l(Σ) in the above
sense. The orbits of this local action are the connected components of the level sets
of / The cover {Ua} can be taken to be {/~1(W^ t)}5 where the Wa are simply
connected and cover C/Σ. For further details see Duistermaat (1980).

Remark. There is an alternative bundle theoretic description of a local action. The
Φaβ satisfy the cocycle condition for a bundle (provided the local actions are
effective). In the completely integrable case the ΦΛβ are functions of the / alone,
consequently they define a torus-bundle over C/Σ. Its structure group is
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AutG = S/(n,Z). The bundle is equal to T*(C\Σ)/Γ-+C\Σ, where Γc T*(C\Σ) is a
bundle of lattices over C/Σ. The bundle "acts" fiber-wise on the bundle

5.2. Deleting Points

Definition. A point (p0, x0) e P x M is good for a family of completely integrable
systems if

(a) there exists a neighborhood U CM of x0, and a smooth family
/£/ : P x U-+JBJ1 of functions in involution for H,

(b) /^ , x) is proper in a neighborhood of p0 for each x in U,
(c) PO is a regular value of fv( , x0).
The set of good points will be denoted (P x M)9d, and the set of parameters

satisfying condition (a) by M9d. Both are open sets. The projection of (P x M)gd

onto M is Mgd. Π

It follows from the ArnoPd-Liousville theorem that the component of the
level set of /c/( ,x) near p0 is an ττ-torus. Let {γι(fu(z,x),x), ..., γn(fv(z,x),x)}
denote an n-tuple of loops in P x {x} which represent a basis for the homology of
the torus through (p, x) and which varies smoothly as both the constant fv(p, x)
and x vary. Let β denote a parameter-independent one-form on P satisfying
dβ = ω near (P&XQ). (In case P is a cotangent bundle, β = Σpidqi is the standard
choice.) Then

/>,*)= ί β (5-1)
yj(fu(p,χ),χ)

defines the standard action variables. They are smooth in both p and x. The angle
variables θ are constructed, as usual, by integrating the flows of the /, and so are
also smooth in both variables. This local flow defines a toral action near (p0, x0). In
our parameter-dependent coordinates this action reads (0, /, x)\-^>(θ + φ, I, x). This
torus action depends on fv, but only through the foliation of (P x U)gd whose leaves
are (components of) level sets of fυ intersected with the fibers (P x (x})gd.

We now have a collection of torus actions on (P x M)9d, but not yet a local
torus action. The problem is that there could be more than one choice of fυ for a
given parameter value x0. This problem occurs in a family of linear oscillators at a
resonance (Sect. 6). It is the reason that there are no smooth parameter dependent
functions in involution near a resonant parameter value. To get around this final
difficulty we make

Assumption 1. On the set of good points there exist n smooth global functions in
involution f = (fl,f2,...,fn):(PxM)gd-*JRn compatible with the given family of
completely integrable systems H:P-^JP.

With Assumption 1 in place, there is a uniquely defined local torus action in a
neighborhood of every good point. Set

3? = foliation of (P x M)9d corresponding to this local torus action.

The leaves of ̂  are the connected components of the intersections of level sets of/
with the fibers (P x {x})gd. Now, at last, we can average. If α is any tensor defined
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along a leaf of J^ its average, <α>, is a tensor which is invariant under the local
torus action.

Remark. We do not actually need to find action-angle variables to calculate
averages. They can also be obtained by averaging with respect to the flows of the ft.

Now define the Hannay-Berry connection by formula (2.1). It is defined on
(P x M)gd-+Mgd, which in general is only a submersion, and not a fiber bundle.

Before translating the results of the previous sections to the present context, we
must first better understand the requirement <dM/> = 0. It is well-known that the
standard actions satisfy this requirement. [A proof of this can be pieced together
from Arnold (1978). For an alternative proof suggested by the paper (1988) of
Alan Weinstein, write the author.] The following is easily verified.

Lemma. (1) A set of (f-compatible) action variables satisfies <dM/>=0 if and
only if it is a standard action. Any two such actions are related by Γ — m -1 + c, where
m E Sl(n, Έ) ana c e R" are constant.

(2) The foliation J^DJ^, whose leaves are locally the level sets of standard
actions, is a globally well-defined foliation on (P x M)9d.

Remark 4.3. J^ is the pull-back of Weinstein's (1988) "isodrastic foliation" on the
space of all Lagrangian tori embedded in P.

Result. To translate any result from Sects. 2 or 3 to the present context simply
replace Px M with (P x M)9d and the family of moment maps / by the foliation J ,̂
(equivalently, the collection of local standard actions /).

The definition of a Hannay-Berry connection and Theorem 2 needs no
comment. The results of Sect. 3.5 on symmetry are valid even if we assume
in variance of the functions / (instead of /) under the diagonal action of G1. We
must be a bit more careful with Theorem 1. Let

E^aleaf of J^.

It is possible that the local torus action has "monodromy" in the parameter
direction, as well as in the phase-space direction. (We do not know of any such
examples which also satisfy our Assumption 1.) Consequently, it may be that the
local torus action on E1 cannot be made global, so that E1 is still not a principal
bundle. We will assume this difficulty away.

Theorem 1A. Suppose that #:PxM->IR is a family of completely integrable
systems, and that Assumption 1 holds on (P x M)9d. Then the Hannay-Berry
connection on (P x M)9d induces a connection on E7->M. In local standard action-
angle coordinates the holonomy of the connection is given by the Hannay angles. All
of the formulas, and in particular the curvature formula, of Theorem 2 are valid.

Suppose moreover that M is simply connected. Then
(1) £7->M is a principal torus bundle,
(2) the Hannay-Berry connection restricted to E1 is a connection in the principal

bundle sense.

Proof. The assumption of simple connectivity guarantees that the local action has
no monodromy in the M-direction, and that E7—>M has connected fiber. We can
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thus piece the local toral action on E1 together to form a global fiber-transitive
action on E1. E1 is thus a principal bundle. The proof now follows the lines of the
proof of Theorem 1 . Π

Remarks. 1. Julian Wess asked the author "Is the curvature of this connection
independent of the normalization axiom (3)?". The answer is yes: any Ehresmann
connection satisfying (1) and (2) has curvature Ω(υ1,v2) = ({K vl,K v2}y. This
can be seen by direct calculation:

More generally the curvature is normalization-independent of the G-action makes
P into a non-abelian completely integrable system, or, in Guillemin and
Sternberg's (1984) terminology, a "multiplicity-free space."

2. In case M is not simply connected, the conclusions of Theorem 1 A may
sometimes still be shown to hold, either by direct calculation of the monodromy in
the parameter direction, or by other means, for example, by using additional
symmetries, as in the next section.

6. Families of Linear Oscillators

Family of Two- Dimensional Oscillators (Fig. 3). The parameter space M is the
space of two-by-two positive definite symmetric matrices.

#:R 2 xR 2 xM->R, given by H(q,p,S) = :

2-(\\p\\2 + qtSq) (6.1)

defines a family of integrable systems on P = R2 x R2 with its standard symplectic
structure. If S has a double eigenvalue then there are no choices of the action
variables which are continuous in a neighborhood of S. Let Σ C M be the ray of
matrices with double eigenvalues:

The space of good parameters is M9d = M/Σ, which is homotopic to S1. The
curvature of the Hannay-Berry connection is zero, but the holonomy around any
loop encircling Σ once is — 1. Berry obtained this result in the quantum case in his
original (1984) paper. As is usual for quadratic Hamiltonians, the classical results
carries over exactly to the quantum case.

From a physical point of fiew this holonomy is obvious. Imagine two identical
planar oscillators oscillating in phase on two separate identically oriented
platforms. Keep the first platform fixed while rotating the other platform by
180 degrees. This rotation represents the fundamental loop y about which we will
parallel translate. The matrix parameter S (eigenvalues and directions), for the
second oscillator will be identical to those of the first after the rotation, but the
second oscillator will be oscillating exactly out of phase from the first.

For S E M/Σ, the actions are given by
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Fig. 3. Eigenvectors for S = [ } plotted in the (x, y)-plane with a > 0 fixed
y a

where λl(S)>λ2(S) are 5"s eigenvalues, and e^(S\ e2(S) the corresponding
normalized eigenvalues, well-defined up to sign. (/1? I2) are global smooth standard
action variables on R4 x M\Σ. They do not extend to R4 x Σ. This can be seen by
direct calculation, or, more pictorially, by considering the maps

el9e2:M/Σ^KP1 = S 1

9 by S^{±eί(S)} and S^{±e2(S}} .

(The + signs cannot be chosen consistently.) See Fig. 3. The calculations resulting
in Fig. 3 are presented nicely by Takens (1979). After contracting M/Σ to a circle,
these maps each have degree 1, hence cannot be continuously extended to Σ.

G/(2) acts by symmetries on our family of integrable systems. It acts on M by
conjugation, and on R2 x R2 by (q, /?)->(g q, (gO ~ 1 p), which is the cotangent lift
of the standard action on R2. The fact that the diagonal action on P x M\Σ leaves
the actions / invariant is easily seen by breaking G/(2) up into rotations, and
dilations along the eigendirections. The rotations rotate the eigenvectors e{

simultaneously with q,p, and consequently leaving the actions invariant. The
dilations rescale the eigencomponents of q, p, and the eigenvalue in such a way as
to leave the actions fixed.

In order to use Eq. (3.5) to calculate the connection we have to be able to
average. Fix SeM\Σ, and let q1 = (q,eίy, q2 = <g, £2) be the coordinates on R2

corresponding to the orthonormal eigenbasis. In these coordinates the angles θl

conjugate to the actions It are defined by

q1 = j/2/j /ω; cos θl , pt = ]/2Iiωi sin θl ,

where ω1 = 4

y/Σi are the frequencies. Rotation of the angle θl by θ is the identity in
the qj — pj planes, 7 φz, and in the q1 — p{ plane it is given by the matrix

cosθ ω

-αλ sinθ cosθ /
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The moment map for the G/(2) action has components qlpj. For example, the
moment map for the 80(1} action is J = qίp2 — q2Pι, and for dilations the moment
maps are g1/?! and Q2P2- Using (6.3) one calculates

It follows from (3.5) that the horizontal lift of a generator ξM is simply ξP@ξM. The
algebra of functions of the form q l p j is closed under Poisson bracket. Consequently
({qlPpqkPi}y~Q> and so the curvature of the Hannay-Berry connection is zero.

A loop in M/Σ encircling Σ can be generated by the S0(2) action. The
horizontal lift of this loop is then generated by the Hamiltonian function
K -v = J — (jy = J, which just generates rotation in P. Since the loop in M\Σ is
completed by rotating half-way around, its horizontal lift consists of rotating each
R2 factor by 180° yielding the holonomy:

Family of n- Dimensional Harmonic Oscillators. H is given by the same formula,
(6.1), with (q, p) e R" x Rn, and SeM, the space of n x n positive-definite
symmetric matrices. Σ is the set of matrices with multiple eigenvalues. Essentially
the same calculation yields essentially the same result: the Hannay-Berry
connection is flat but has nontrivial holonomy. The holonomy around a loop has

thef°rm -1Φ-1Θ...-1Θ1Θ...Θ1,

where each 1 or — 1 acts on a four dimensional symplectic subspace of R2". This
decomposition of R2n is determined by the decomposition of R" into the one-
dimensional eigenspaces of S. A — 1 or 1 occurs depending on whether or not these
eigenspaces "switch places" an odd or even number of times as γ is traversed.

The calculation can be done by the same method, replacing the symmetry
group G/(2) by G/(n), or, conceptually simpler, 80(2} by S0(n) and the two dilations
by n dilations, one for each eigendirection.

7. Proofs

Throughout we will work along a fixed fiber P x {x}, and v e TXM. We will continue
to abuse notation by letting v denote the vector field Q®v along P x {x}. We also let
/ l e g denote its infinitesimal generator λPxM.

Proof of Theorem 2. We first show that the Hannay-Berry connection satisfies the
three defining axioms for a Hamiltonian connection.

Proof of Property (3), assuming the validity of property (2). Then
0 = <<v> — v> = <Jtκ υ)— ̂ <κ y > j so that (K vy is constant. This constant can be
arranged to be zero.

Proof of Property (2). Write g G G in the form g = exp λ,λεQ. Using the Lie bracket
formula (1.1) for \λ,v we find that

1 d 1

g*v= \ — (expsλ*υ)ds + v = f
o as
i

= J
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where i

is a function on P. The last step, going from the integral to Xf, is valid because
exps/l is fiber- wise symplectic. Now write F(g,p) — f(p). There is more than one
way to write g = exp/l, so F is only defined modulo constants. This constant can be
fixed in a consistent smooth manner, for example by requiring f(pQ) = 0 for some
fixed PO, or requiring that the integral of / over P vanish. Thus we have
<*;> = Xκ .v + υ, where

K υ(p)=lϊF(g,p)dgl/vol(G).
\G J

This proves property (2) and even gives a formula for K - v.
In order to prove property (1) we will first prove the Covariant Differentiation

Formula] D<α) = <(Dα) = <dα> o h for functions, α = /,

= vol(G)-2 ίj g*vdgl Γ j g'*fdg']
\G 1 LG J

= vol(G)-2 f J g*vίg'*ndgdg'
[GXG

= vol(G)- 1ίf <t;>[
J

= <d/ <u» (using that <ι;> is G-in variant) .

And <d/ - <t;» = <D/ - 1;> = <d/>(Λ - υ).
The proof for fc-forms can be done the same way, except with more integrals.

Alternatively, it could be done by noting that all three operators are graded
derivations with respect to the wedge product, and then checking the formula for
one-forms "on P" and "on M.")

Proof of Property (1)

As noted immediately following Eq. (3.3), (λ[K u]> = 0, being the average of the
differential of a function in a group direction. Therefore D/ = 0 if and only if

<dMιy=o.
Proof of Curvature Formula. We prove the second formula. The first formula is a
direct consequence of the second.

Extend the tangent vectors v and w at x to vector fields. Write v = 3 l5 w = δ2?
 and

K v = Kί9 K w = K2. If 7 e T(P x Jί), then its i erίicα/ projection isY-h TπΎ.
The curvature is defined by

where "vert" means vertical projection composed with the identification of the
resulting G-invariant Hamiltonian vector field with its G-invariant Hamiltonian
function.
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Now

= IX ̂  *κ2l + [δl5 xκj = [32, **J + ldl9 32]
= *F

where

(The minus sign in the first term is correct: [_Xκ^Xκ^]=X -{κί,κ2}'^ tne

[di,^/]^^/ was shown immediately following Eq.(l.l).)
Recall from Sect. 3.3 the definition of "almost generating": the function K u

almost generates parallel translation in the direction u provided
dl u + {/, K u] = 0. Also recall in this case h u = X% . u + u — X^ . u>. It follows that
vQrt(Xκ.u + u) = <^ * w) Now Fj 2 necessarily almost generates parallel translation
in the direction [<91?δ2]. Consequently,

2y = (DίK2y (we showed above that D< >-<D »

K1} + d1K2y.

Hence <31X2> = <{X1,X2}>. Similarly, -<52X1> = <{^1,X2}>. Thus <F12> =

Proof of Proposition 2. Let λ eg be an element that generates an S1 subgroup,
S1^) C G, so that e = Qxpλ is the identity element. Apply the integral formula for g*v
found in the proof of Theorem 2 to the case g = e = exp λ. We have v = e*υ = Xf + v.
Consequently, Xf = Q, so that / = a constant function on P, where
/ = - I dlλ - v. It follows that <<iM/A> t; = const, since by Fubini's theorem we

Sl(λ)

can do the integral over G by considering G as the bundle G^G/SL(λ) and doing
the integral over the S1 fibers first. This fiber integral is the line integral we just did,
so all these fiber integrals are constants (perhaps depending on the fiber);
consequently the integral over all of G is a constant. Since g has a basis consisting
of elements which generate S1?s, we have shown that <dM/> is independent of P,
hence is the pull-back of a one-form on M.

In order to see that this one-form is closed, we will use the same notation we
used above in calculating the curvature. Let {xa} be coordinates on M. Then the
dx1 Λdx2 component of d<dM/> is dί(d2iy — d2(81iy. Now we have just shown
that <32/> is a function of M alone. Therefore 31<<92/> = D1<52/>. Also <<32/>
= <D2/>, since, as we have already shown [immediately following Eq. (3.3)],
<{/?K2}> = 0, and in fact <{/, any thing} > = 0. Thus

D

8. Generalizations and Future Directions

Generalization to Symplectίc Fiber Bundles. Replace π :PxM-»Mbya symplectic
fiber bundle π:S-+M and ω® 0 by a closed two-form ω on S whose restriction to
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each fiber is symplectic. See Gotay et al. (1980) for definitions and properties of
symplectic fiber bundles. There is a natural Ehresmann connection associated with
ω, namely

Hors = the ω-orthogonal complement to ker Tπs , for s e S

defines a horizontal distribution. We will denote the associated horizontal lift by
h0. As shown in the last few pages of Gotay et al., parallel translation with respect
to h0 is a (perhaps only locally defined) symplectic map from fiber to fiber.

Suppose G acts on S by symplectic fiber bundle automorphisms which cover
the identity. Thus G preserves the restriction of ω to each fiber, but not necessarily
co. Also suppose that this action admits a fiber- wise moment map / : S— >cj*. Then
h v = </z0 vy defines the Hannay-Berry connection on 5. The defining axioms (1),
(2), and (3) for a Hamiltonian connection all make sense, provided we replace Q@v
by h0 v. All of our results, in particular Theorem 2, still hold in this generality.

Holonomy in the Nonintegrable Case. As mentioned in Sect. 2.3, the bundle of
symplectic reduced spaces,

will play a crucial role in the non-integrable case. The fibers of this bundle are
symplectic manifolds, and the reduced dynamics on each fiber (induced, say, by a
given G-invariant family of Hamiltonians) can be very non-trivial. In order to
(approximately) reconstruct the original dynamics on I~1(μ) from these reduced
dynamics we will need a consistent way of lifting curves from the reduced spaces,
i.e. we will need fiber-wise connections on (I~ί(μ)nPx{x}-^(I~]L(μ)/Gμ)x, for
x e M. In a future paper with Marsden and Ratiu we propose to use a construction of
Kummer (1981) to construct these fiber-wise connections.

These fiber-wise connections, together with the Hannay-Berry connection on
I~l(μ)-+M, induce a connection on I~1(μ)^I~i(μ)/Gμ. We feel that the holonomy
of this pieced-together connection, together with some information regarding the
reduced dynamics, will yield useful information regarding the original dynamics.

Slowly Moving Constrained Systems. Many of the interesting physical examples of
the Hannay angles, for example the rotating hoop, fall into this category. Strictly
speaking, this category does not fit the framework of a slowly varying family of
Hamiltonians. (Hannay and Berry made the hoop fit by replacing its moving
constraint by a moving strongly constraining potential on a larger configuration
space.) In the previously announced paper with Marsden and Ratiu, we will show
how the notion of a Cartan connection on the space of motions of the constrained
submanifold leads to another type of holonomy, also relevant to adiabatic motion.
In cases where the group G of the present paper is an isometry group of the
constraint manifold we will relate the Cartan and Hannay-Berry connections.
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Note added in proof. The proof in Sect. 7 of the validity of Property 1, D/ = 0, is incorrect for the
non-abelian case. (This is because <7> φ /.) Property 1 still holds in this case, and can be proved as
follows. Note that [<u>, λ] =0, and apply this Lie bracket to an arbitrary function / to conclude
that Dvl

λ is constant. The proof then continues as before.
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2nd Note added in proof. The author has just received a preprint of Golin, Knauf, and Marmi
entitled "The Hannay Angles: Geometry, Adiabaticity, and an Example". Their main result,
Theorem 2, is almost identical to ours. In addition they have obtained some estimates regarding
the accuracy of the Hannay angle approximation.




