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Abstract. The non-linear σ models in two space-time dimensions correspond-
ing to compact homogeneous coset spaces G/H are studied with particular
attention to three problems: first, independence of coordinate choice and
regularization, second, the physical content of the theory, and finally the
regularity of the "physics" in the infrared limit. Concerning in particular the
physical content of the theory, we construct a set of local observables whose
correlation functions depend on a finite number of parameters identified
among those defining the metric tensor of the coset space. For these models, we
give a general proof of renormalizability based on the introduction of a
nilpotent BRS operator which describes the non-linear isometries and a
classical action which contains a mass term for all quantized fields. The mass
term belongs to a finite dimensional representation of the group G, which
allows us to prove the conjecture that the correlation functions of local
observables, i.e., the local operators invariant under G, are regular in the
infrared limit.

1. Introduction

The non-linear σ-models were introduced more than 15 years ago [1,2] to
describe the infrared properties in d > 2 space-time dimensions of systems with a
symmetry spontaneously broken according to the Goldstone-Nambu mechanism.
In 2 space-time dimensions - where the theory is power counting renormalizable -
they appear as an interesting testing ground of theoretical ideas due to their
asymptotic freedom property [3] and, more recently, because of their connection
with the ground state of the string theories [4]. Consequently many efforts have
been devoted to their investigation, both in perturbative and non-perturbative
quantum field theory [5].
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In spite of these efforts, it is not very clear in what sense the non-linear σ-model
is a complete field theory, i.e. a theory of observables in Hubert space. Indeed, for a
generic non-linear σ-model built on a compact manifold whose coordinates are the
fields [6], one immediately encounters two problems:

i) the physical content of the theory should be given in terms of a system of
observables whose Green functions should depend on a finite number of
parameters to be considered as physical;

ii) in a perturbative framework, the theory is affected by infrared singularities
which are due to the masslessness of the coordinate fields, which, in 2 space-time
dimensions, excludes any physical interpretation for these fields.

These are, in our opinion, the two issues to be clarified. The first is connected
with the coordinate choice on the manifold and the other with the infrared
properties of the model. In the standard approach, one introduces a mass term as
an infrared regulator, but then a generic Green function will not a priori possess a
finite zero-mass limit. It is commonly believed that this infrared problem and the
first one are linked in the sense that observables - which correspond to coordinate
frame-independent operators - and hence to intrinsic geometrical properties of the
manifold (such as the geodesic distance between two points) do have infrared regular
correlation functions: the so-called Elitzur conjecture [7]. The idea is that the
infrared singularities are connected with large coordinate fluctuations which
should not affect the intrinsic geometrical properties of a compact manifold [8]. A
parallel problem is that of the stability of the manifold, i.e. the problem of its
parametrization. Indeed, the definition of a metric on a generic Riemannian
manifold a priori requires an infinite number of parameters on which the geometry
is going to depend. Consequently, from the point of view of perturbative
renormalization, one immediately encounters the difficulty of treating an infinite
number of normalization conditions, which makes the whole treatment ill defined.

For these reasons, and to investigate the above-mentioned problems in a well-
defined context, we restrict ourselves to the particular class of non-linear σ-models
built on compact homogeneous (coset G/H) spaces [9]. Then, up to a field
redefinition, the metric depends only on a finite number of parameters and, as we
shall show, the construction of these models as an operator theory of local
observables in Hubert space is possible within a perturbative approach.

This analysis generalizes the results obtained for the 0(N + ί)/0(N) model in
the orthogonal projection by Brezin, Le Guillou, and Zinn-Justin in 1976 for the
ultraviolet problem [3] and by David in 1981 for the infrared limit (with a special
choice of the mass term, i.e. one with a particular covariance under the isometries)
[10a]. The choice of the orthogonal projection is very convenient since in these
coordinates the renormalization is strictly multiplicative, which results in a
considerable simplification of the analysis (see also [11] for other examples of
σ-models in special coordinates). More recently, the generalization to other
theories has brought about the necessity of studying the same model in other
projections [12] or without reference to any special coordinate frame in order to
rely only on the algebraic properties of the isometry group G [13]. Furthermore,
the late interest in supersymmetric non-linear σ-models - which are involved in
superstring theories - needs, lacking a consistent regularization which respects
both the supersymmetry and the geometric properties [14], a regulator free
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treatment. This justifies the necessity of considering the usual bosonic coset space
non-linear σ-models within an approach which does not depend on the regularization
and which is compatible with a suitably general choice of coordinates. As pointed out
above, and as seems to be necessary for the treatment of the ultraviolet problem, a
model in this class has an action that depends on a finite number of parameters; on
the other hand, Elitzur's conjecture is also expected to hold, provided one is able to
construct an infrared regulating mass term depending on a finite number of
parameters and hence belonging to a finite dimensional representation of G. This
point has been overlooked in [10b].

To our knowledge, there are, up to now, no other classes of σ-models for which
the "physics" is defined by a finite number of normalization conditions.

The paper is so organized: Sect. 2 contains the strategy of our approach to the
ultraviolet renormalizability and the infrared limit. In this section, we give a non-
technical description of our method and of the results. In Sect. 3, we introduce the
notation for the non-linear σ-models built on homogeneous (coset) compact
spaces and describe their classical action, including the mass term. The B.R.S.
operator associated to the non-linear symmetry is also identified at the classical
level and translated in functional form in view of quantization which is analyzed in
Sect. 4. The renormalizability of the linear symmetry associated with any compact
group, not necessarily semi-simple, is discussed in Appendix A and the tools
needed to analyze the cohomology of the B.R.S. operator are given in Appendix B.
In Sect. 5 we prove the validity of Elitzur's conjecture by means of a recursive
relation derived from the Ward identities. Some final remarks are contained in the
concluding section.

2. The Strategy

Let us now describe the strategy adopted in this paper to analyze the perturbative
definition of a bosonic non-linear σ-model built on a homogeneous compact space,
within an algebraic approach which depends neither on a coordinate choice nor on
a regularization.

In the geometric approach to general non-linear σ-models, a la Friedan [6], a
coordinate frame is attached to each point of the manifold and the first
characterization of the theory is through its independence with respect to any
particular coordinate choice. This is ensured by a system of identities which
guarantee that changes of the reference point and of the coordinate system do not
affect the action [6,15]. For coset spaces G/H the transitive action of the isometry
group G, connecting the different points of the manifold, ensures these inde-
pendence properties. Therefore the theory is completely defined by the usual set of
Ward identities corresponding to the generators of G. In particular, the generators
of the isotropy subgroup H of the reference point, for a suitable but quite general
class of coordinates act linearly, while the remaining symmetry G/H is non-
linearly realized [2]. This in fact will be the only restriction on the coordinate
choice. As a consequence, the classical action contains a "kinetic" part defined
through the invariant metric gtj (the coordinates being the fields φii = \,...,N) and
a "mass" term which has H as its isotropy group and belongs to a finite
dimensional representation of G. Due to the compactness of G, such a represent-
ation does exist as ensured by a mathematical theorem on G-spaces [16].
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From the point of view of renormalization, the set of Ward identities separates
naturally into two classes which are treated differently. Indeed, the renormaliz-
ation of the linear symmetry can be discussed through a purely algebraic method,
straightforward in the semi-simple case [17 a)]. Here, Abelian factors frequently
appear in H, even when G is semi-simple [18]: therefore, in Appendix A, we
generalize this method to the case of any compact group H.

The renormalization of the non-linear symmetry can then be analyzed on the
restricted class of fully quantized actions which are invariant under H. Following
the approach of [13], to each non-linear generator we associate an anticommuting
onumber. These Faddeev-Popov parameters are used to transform the set of non-
linear Ward identities into an equation a la B.R.S.: the resulting anticommuting
external differential operator d becomes nilpotent when acting on H-invariant
effective actions. The renormalizability proof is therefore reduced to the character-
ization of the first two cohomology classes of the d operator: the Faddeev-Popov
neutral sector is expected to contain only the classical action while the class with a
unit charge, to which possible anomalies belong, ensures, if it is empty, the
renormalizability of the Ward identities. In this paper, the cohomology of the d
operator is studied through a purely algebraic method, sufficient to obtain the
desired result.

The whole analysis is based on the transitive action of G on the manifold
(homogeneity). This guarantees that the only scalar invariant functions are the
constants, a necessary condition to have an action defined by a finite number of
physical parameters. Homogeneity also implies that the mass term is identified by
a finite number of parameters, once the finite linear representation of G to whom it
belongs is chosen: therefore, as an operator it will renormalize multiplicatively
with a field-independent renormalization matrix1. Furthermore, homogeneity
also implies that the d operator is a "perturbation" of the external differential
operator on the tangent space to the manifold. The exact meaning of "perturbation"
is defined by introducing in the space of formal power series in the coordinate fields
a filtration [19] with respect to the number of fields: this isolates in d the flat space
operator d0 from the rest. Now the cohomology of d0 turns out to be trivial in the
Faddeev-Popov charged sectors, which, as explained in Appendix B, is sufficient to
exclude the presence of anomalies and to obtain an isomorphism between the
neutral sector of the cohomology of d and that of dQ. The latter is then shown to
contain the same number of independent parameters as the classical theory,
thereby ensuring the stability of these models and proving the ultraviolet
renorraalizability.

Finally we discuss the validity of Elitzur's conjecture for a generic compact
homogeneous space: the first step is the identification of local observables with the
class of invariant operators under G. The nonexistence of invariant scalar functions
implies that non-trivial local invariant operators must depend upon the space-
time derivatives of the fields, so the simplest ones are given by the invariant
quadratic forms in these field derivatives. Hence they correspond to derivatives of

1 For the 0(N + 1)/0(JV) case in the orthogonal projection discussed in [10a]', the natural choice of
the mass term is the coordinate σ along the axis of projection and the finite linear representation is
carried by π', σ alone: there is then only one mass parameter which renormalizes multiplicatively
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the Lagrangian density with respect to the parameters defining the metric tensor.
Thus the theory admits only a finite number of dimension-two local observables
which, under renormalization, mix with constant (field-independent) coefficients
[20]. In the case of irreducible symmetric spaces where the metric depends on only
one parameter, the corresponding local observable, i.e. the Lagrangian density,
renormalizes multiplicatively. Multilocal observables, for instance the finite
geodesic distance on the manifold, have been considered in the first checks of
Elitzur's conjecture [21] and provide dimensionless invariant quantities which are
discussed by David in the 0(N+\)/0(N) case [10a]. In the concluding section, we
indicate how our analysis could be extended to discuss the infrared behaviour of
their Green functions too.

Having so defined the local observables, we analyze the zero-mass limit of
Green functions built only with invariant operators at non-exceptional momenta
in the sense of Symanzik [22]. The proof relies on known results concerning the
infrared behaviour of Feynman graphs [23], in particular the fact that the domi-
nant infrared singular part of a generic graph decomposes into a finite sum of
contributions, each of which appears as a product of an I.R. regular subgraph
(called a link) of the original diagram times the graph which is obtained
contracting the link to a point. It is this last graph which carries the possible
infrared singularities. The link contains all the external vertices, and the legs
connecting it to the rest of the diagram are amputated and carry zero momentum.
Furthermore, being a subgraph, it belongs to a lower perturbative order compared
to the original diagram. Of course, the link with no external legs gives the regular
part of the diagram.

The iterative argument of the proof is based on the use of a Ward identity: the
symmetry implies, recursively with respect to their number of legs, that the sum of
all links with a given, non-zero, number of amputated legs at zero momentum vanishes
with a power law in the zero-mass limit. This is sufficient to guarantee the infrared
regularity of the complete graph since the infrared singular factors in its
decomposition may diverge at most as powers of Ln m2 due to the fact that the
action, in the zero-mass limit, contains only dimension-2 couplings. This scheme
also parallels the one employed in [lOa] to analyze the same problem for the
sphere in the orthogonal projection.

3. The Classical Theory

3.1. The Algebra

It is well known that any compact homogeneous space, i.e. a space with a transitive
action of a compact Lie group of isometries G, is isomorphic to a coset space G/H,
where H is a closed subgroup [9]. Denoting with ,̂ 2tf the corresponding Lie
algebras, the commutation relations are:

a,fo,c = l,2,...,L, (3.1 a)

[ha,W3=fafWk, WteG-H', i,j,k= 1,2, . . . ,JV, (3.1 b)
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All structure constants are chosen to be real.
Notice that if a subset of the generators Wt commutes with the elements of J^,

this subset generates a subgroup X of G2. Then we decompose & — J4? into the
generators of X, denoted by xu, and a system of elements wn such that

[A«,*J=0, (3.2a)

[fc«,wJ=/«nMWm, (3.2b)

[*«,wJ=/«,>m, (3.2c)

[*u,*J=/Λ>> (3.2d)

K, w J - /πm

kwk + fnm

uxu + fnm

chc . (3.2e)

In order to have a description independent of any particular choice of
coordinates, we adopt the parametrization of Coleman, Wess, and Zumino [2],
where the coordinates on the coset space are given by a real scalar field φ\x)
(i= 1, ..., N) such that for each value of φl there is an associated group element
L[(/>]. If the coordinates φl and φfl are different, the corresponding group elements
L\_φ] and L\_φ'~\ belong to different equivalence classes in G/H. A group element g
of G acts on φi in the following way:

L[_φ-]-*L\_φΊ=gL[_φ-]h-l[_φ,g\, (3.3)

where h\_φ, g] is an element of the subgroup //, depending on g and φ, uniquely
determined by the choice of the element L\_φ~\.

The infinitesimal generators ha, Wi of G may be realized as differential operators
acting on functionals

h . — f J i W x ) , (3.4a)

(34b)

where, due to the homogeneity property of the coset space G/H,

(3.5)

Notice that the generators (3.4b) provide a non-linear realization of the algebra of
X. However, there are two ways to realize the subgroup X in G/H. The standard
left action has already been described in formula (3.3). As X commutes with the
subgroup H, one can also define a right action of X on G/H. A combination of the
left and right actions may be realized linearly on φl through the formula

x , (3.6)

where x is an element of X. The algebra corresponding to this group action is
spanned by the generators

,..., Nx. (3.7)

2 This does occur in most non-symmetric compact coset spaces: one notable exception are the
Kahlerian manifolds where X contains only the identity
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These linear generators satisfy, with the non-linear generators Wt and with
themselves, the following commutation relations:

[*«,*J=/Λ,, (3.8 a)

[*,,wJ=/«*X, (3.8b)

[*u^]=/,,,w*w, (3.8 c)

and

[4A>0. (3.8 d)

3.2. 77ιe Classical Action

3. 2. a. The Invariants. The transitive action of the group G on the manifold
expressed in Eq. (3.5) implies the following (essential) property:

on an homogeneous manifold G/H, the only scalar G-invariant functions of the
coordinates φl are the constants.

Therefore, the classical invariant action must contain space-time derivatives of
the fields, and we write it as [6],

<o) = ί d2xgίjW] dμφ\x) d"φ*(x) , (3.9)

where gf</[0] is the metric function on the manifold. The easiest way [2c)] to
characterize v4d

(0) is to use the group elements L[</>] and the following elements of
the Lie algebra:

- -

An element g of G acts on eμ, eμ" according to Eq. (3.3) as

ejW W^ejίφ'-] W, = h[_φ, g] <[</>] Wth~ 1 [</>, g] , (3.10a)

<[</>] ha^eμ°[_φΊ ha = h[_φ, g] eμ°[_φ-} hah ~ 1 [0, g] + hίφ, g] dμh ~ ' lφ, g] ,

(3.10b)

and the classical action may then be written as

Ad

(0)=fd2xVμ'[ψ]eμ>[#|, (3.11)

where the λtj are constant parameters. The conditions for the invariance of (3.11)
under the full group G reduce to the invariance under the linear subgroup H, which
reads:

/βί% + /Λ = 0, (3.12)

i.e. λtj is an invariant 2-tensor under H. The number of linearly independent
solutions of (3.12) is thus equal to the number of independent quadratic invariants
under the action of H. The stability analysis of Sect. 4 will also show that, modulo a
coordinate redefinition, this is the general solution. Therefore the classical action
(3.9) depends on the finite number of parameters λ^ determined through Eq. (3.12).

Notice that if there is a non-trivial subgroup X commuting with H, its generic
infinitesimal element x:

jt = l+τ

uxu (3.1 3 a)
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transforms, by Eqs. (3.6, 7), an invariant action with parameters λ^ into a new
invariant action with parameters

λ'y = λti- τUW + fuj%
l)Akl. (3.13 b)

This points out that, for a given choice of coordinates, independent invariant
Lagrangians are connected by the action of the subgroup X. Therefore, it is a
signal that among the parameters λtj there are some, whose number is equal to the
dimension of the subgroup X, which are related to a coordinate redefinition and
which we shall call "non-physical" in the zero mass limit. This redefinition is not a
symmetry of the classical action, but it corresponds to a set of parametric
differential generators; indeed from Eq. (3.13b) we have

^Λc\^=-(fu^} + fu^λkl^Ac\Q}. (3.14)
Oλij

We shall also see that this situation is altered by the introduction of an infrared
regulating mass, but, as discussed in Sect. 5, it is recovered in the zero mass limit.

3.2.b. Infrared Regulator. As remarked in the Introduction, the classical action
(3.9), where all fields φl are massless, is not suitable to discuss the possible quantum
extensions of the theory and an I.R. regulator is needed.

The idea is to include in the action a term v°(φ) which provides a mass to all
fields, together with a set of partners vA(φ) in such a way that {ι?°, VA] carry a finite
dimensional linear representation of G. In order to give mass to all fields, v°(φ)
must contain a term quadratic in φ\ i.e.

vQ(φ) = υ0(0) + aijφψ + Θ(φ3)9 (3.15)

where atj is a symmetric, positive definite matrix which can be reduced to the
identity; now, recalling Eq. (3.5), we have

Wfl°(φ) = vi = aijφ
s+Θ(φ2)9 (3.16)

so that the set {VA} must contain at least the elements v\ which, according to
Eq. (3.16), can be chosen as interpolating fields for φl(x)3.

Next, the general analysis of Coleman, Wess, and Zumino shows that the linear
representation carried by {v°, VA} cannot be arbitrary but it must contain the
identity representation when restricted to the subgroup H. It is therefore natural to
ask that v° be invariant under H (i.e. hav° = 0 for the algebra 3?), and Eq. (3.16) then
implies that H is also the isotropy group of ι;°.

The existence of a set of functions {v°, υA] carrying the linear representation of
G with the desired properties is ensured by the following:

For any compact coset space G/H, one can always find a finite dimensional linear
orthogonal representation of G - hereafter called the mass representation -
containing at least one vector which has H as isotropy group.

This assertion follows directly from a mathematical theorem proved in [16].

3 The minimal situation where {VA} = {v1} is realized in the 0(N + 1)/0(N) symmetric model where
the functions {y°X} are explicitly given in [24]
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Let now Da

β(g) be the representative of the group element g in the mass
representation and η label a basis for the H invariant subspace. Then the most
general system of functions transforming according to the mass representation is

v*W]=ZD*,(LW]W (3.17)
η

for an arbitrary choice of the μη parameters.
However, we wish to introduce v° as a mass term in the action: hence we have

to be sure that it does not contain linear contributions in the fields φl. This condition
is automatically satisfied if the subgroup X is trivial, otherwise it induces as many
constraints on the μη parameters as there are infinitesimal generators of X, i.e. as
there are fields invariant under H. Notice that one can neglect these constraints
and reabsorb the linear terms through a right action of the subgroup X. The action
of X on the μη parameters restores the constraints when the linear contributions
are eliminated. After this we can identify the mass term in the Lagrangian with the
vector v°; the number of new parameters is equal to the difference between the H
invariant independent directions in the mass representation and those in the
representation carried by the fields φl.

In order to characterize the coυariance under the isometries of the mass term in
the action, we couple the t?a's to dimension-2 external fields Ka(x) with vacuum
value qa = m2δa°, and define the new classical action

Ad= f Λcgy[0] dμφ\x)d^φj(x) + ld2x(KΛ(x) + q^[_φ} . (3.18)

From the definition (3.17) we have the infinitesimal representations

vβ

9 (3.19a)

, (3.19b)

and this new action is invariant under the transformations generated by the
modified operators

-—9 (3.20a)

(3.20 b)

Notice the absence oϊqa in Eq. (3.20 a) due to the invariance of v° under ha. Clearly
hα and W f in Eqs. (3.20) obey the algebra (3.1).

If the subgroup X commuting with H is non-trivial, its generic element x acts
on the mass terms in Eq. (3.18) as:

Σ (Ka + qa) D(L[φ])>^ Σ (K* + 4«) D(x

(xγημ\ (3.21)

which amounts to a linear transformation of the sources Ka and a linear mixing of
the parameters μη. In particular, recalling that x acts non-trivially on v° (since it
does not belong to its stability group), the action on the parameters μη provides a
faithful representation of the group X. According to this discussion we can extend
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the parametric equations in (3.14) to the complete classical action

a(x) + q J (TJβ Acl

- Acl . (3.22)

Notice that these parametric equations refer not only to a change of parameters
defining the action, but also to a variation of the covariance of the infrared
regulator and hence of the symmetry properties of the model. Moreover, these
equations are compatible with the constraint that the classical action does not
contain linear terms since the violation induced by the μη dependent term on the
right-hand side is compensated by the action on qa on the left-hand side.

3.3. B.R.S. Symmetry

The symmetry (3.20a) corresponding to the H subgroup is linearly realized;
therefore its quantum implementability can be discussed at the level of Ward
identities. On the other hand, a non-linear symmetry such as (3.20 b) is more easily
analyzed by means of a B.R.S. operator, as proposed for the 0(N + 1)/0(JV) case in
[13]. Following these lines we introduce anticommuting, positively charged
parameters C1, Ca and the anticommuting, negatively charged, sources ^-(x), which
are assigned canonical dimension equal to two. The new classical action is

c c _ C*faW(x)-\ y/x) . (3.23)

The tree approximation connected functional generator Zc

d[J, C, y] = Γcl

+ ld2xJi(x)φί(x} satisfies

x Zc

d(J, C, y) = SZc

d(J, C, y) = 0 . (3.24)

Since the C" parameters appear only in couplings linear in the fields, we also have
r\ C

^ Z/!(J, C,y)+\ d2xfjj}(x) — Zc

a(J, C, y) = «βZc

d(/, C, y) = 0 . (3.25)

Anticommuting the two operators in (3.24) and (3.25), we obtain:

(126a)



Renormalizability and Infrared Finiteness of Non-Linear σ-Models 131

and the equation

c

cl(j,C,γ) = 0 (3.26 b)

expresses the invariance of the classical theory under the linear subgroup H.
A notable simplification occurs if we now suppress the Ca parameters, thus

decoupling the analysis of the linear symmetry from that of the non-linear one.
Computing Eq. (3.24) for Ca = 0 and taking (3.25) into account, we get the final
B.R.S. identity corresponding to the non-linear invariance

= j d2x - Jt(x) - τ - (KJix) + qa) C\ Ίyβ — — ZC(J9 K9 C, y)

) = Q, (3.27)

while the Ward operators 2tfa for the linear symmetry are defined in (3. 26 a).
Notice also that after the insertion of the sources y^x), the parametric equation

(3.22) should be modified to

= (μi(Tuγη -j- - λ^b{ + fjδj) - ZC(J, K, C, γ) , (3.28)
\ °V 0/ kl

which is equivalent to

ZC(J, K, C, 7) . (3.29)

The algebraic relations obeyed by the operators S, ffla in (3.26 a), (3.27) are

(3.30a)

(3.30b)

S^iC^/^, (3.30c)

which suggest the strategy we shall follow in the analysis of the quantum
extensions of the model. Indeed due to (3.30b) the linear ffla symmetry and the
non-linear S symmetry can be discussed independently, and by (3.30c) we also see
that if we succeed in implementing first the linear Ward identities, then the S
operator becomes nilpotent in the restricted subspace of the J^-invariant
functionals.
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It is more convenient, in the study of the quantum extension of our identities, to
rewrite them for the vertex functional Γ whose classical limit is given by Eq. (3.23)
at Cfl = 0, i.e.

, γ, C) = J d2xgij[_φ-] dμφ
l(x) d»φ\x) + J d2x

+ $d2x(Ka + q«)v«[φ-]. (3.31)

The linear Ward identities become

(3.32a)

while the B.R.S. identity is

). (3.32b)

The possibility of extending to all perturbative orders the identities in (3.32) will be
discussed in the next section.

4. Ultraviolet Renormalizability

Whenever one wishes to renormalize a theory characterized by a system of Ward
identities without referring to any special invariant regularization procedure, one
meets two main problems. These are:

i) all possible breakings which might affect the Ward identities, order by order
in the radiative corrections, should be reabsorbed by a suitable choice of
counterterms,

ii) these counterterms should be uniquely identified, up to a field redefinition,
by the parameters characterizing the classical action.

To discuss the first point, one looks for the general solution of a linear system of
consistency equations [25] for the breakings and compares it with the possible
corrections which are introduced in the classical Ward identities by an arbitrary
choice of counterterms. The second problem is solved by showing, at the classical
level, that the general solution of the Ward identities in a neighbourhood of the
classical action can be obtained by a variation of the parameters in the action itself.

We shall refer to i) and ii) as the anomaly and stability problems respectively.
The first step in our study is the analysis of the linear symmetry. The possibility

of implementing to all orders the linear symmetry in Eq. (3.32 a) is not trivial due to
the presence of possible Abelian factors in H (for example, homogeneous
Kahlerian non-linear σ-models always contain at least one (7(1) [18]). For this
reason, in Appendix A we prove that
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in a generalized 2-dimensional σ model, any linearly realized symmetry
corresponding to a compact group H can be implemented to all orders in perturbation
theory.

Consequently, from now on we shall restrict ourselves to the class of
functionals Γ whose classical approximation is given in (3.31) and which obey to all
orders

JfβΓ = 0. (4.1)

Concerning the non-linear symmetry (3.32b), both its anomalies and stability
can be discussed in terms of the linearized operator

(x) δyt(x) δy^x) δφl(

- O J d2x(Ka(x) + q«)(Tyβ -^—, (4.2)

satisfying

[DL,Jfβ]=0, (4.3 a)

DL

2 = \ COfi"^. (4.3 b)

Indeed the Quantum Action Principle [26] ensures that at the first non-trivial
order

DΓ = Δ^\ (4.4)

where zl( + ) is a local functional in the field variables φ\ Ka and the Grassmann
variables y{ and Ck, which has at most dimension-2, carries a positive unit of
Faddeev-Popov charge, and is, due to Eqs. (4.1,3), constrained by [26 e)]

DLA( + } = ΰ. (4.5)

Notice that the absence of anomalies, i.e. the compensability condition for A(+\ is
A( + ) = DLA°, Concerning the stability problem, let Γ(1) be a perturbation of the
classical action where Γ(1) is a Faddeev-Popov neutral local functional with
canonical dimension at most equal to two. The stability equation

D(Γcl + εΓ(1)) = i COfJfa1 J d2xγt(x) φk(x) (4.6)

reduces to

DLΓ(1) = 0. (4.7)

Let us remark that the contributions to Γ(1) which can be written as DLA(~}

correspond to field and source redefinitions.
Thus the stability and anomaly analyses are reduced to a standard coho-

mology computation in the space of local, ^-invariant functionals which have at
most dimension two and are limited to the sector with zero Faddeev-Popov
charge (stability) or with a positive unit of Faddeev-Popov charge (anomaly).
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4.1. From Functionals to Functions

According to the previous discussion, it is sufficient to study the action of DL on the
space of integrated local functions of dimension ^ 2. The first step in the analysis of
DL consists in its reduction to an ordinary differential operator, together with the
reduction of the space of functionals upon which DL acts to a space of functions.
The generic element of the functional space is

f Λc[?Λ, Q + hij(Φ, Q dμφ
l(x) 8μφ

j(x) + Ka(x) V\φ, C) + U(φ, C, qj] , (4.8)

where the integrand is identified up to an integration by parts. (Let us recall that
the canonical dimension of φl is zero while y t and Kα have dimension two and the
mass scale is given by qa = ιn2δΛ°.)

Thus, wishing to translate our functional differential equation into an ordinary
differential one, we have to take into account the above-mentioned freedom of
integration by parts and use it to eliminate the second derivatives of φ\ To be more
explicit, we introduce a set of independent fields uμ

ί(x) = dμφ
i(x) - and hence

assigned canonical dimension equal to one - and we study the action of DL in the
space of functions:

Ξ = {ftPfy, C) + h^φ, C) ujuj + Ka(x) V*(φ9 Q + U(φ, C, qa)} , (4.9)

where the coefficients P\ hij9 Fα, and U are formal power series. The action of DL on
(4.8) induces on (4.9) a differential operator Q)L given by

* >ww, (4 10)

The introduction of the uμ(x) as independent fields requires a modification of the
linear operators J»fα in Eq. (3.32a) which become

The operators Q)L and $a still obey the relations (4.3) and we have reduced our
problem to the analysis of the cohomology of Q)L in the space Ξ.

4.2. The Cohomology Space of Q)L

The space Ξ decomposes into the finite sum of eigenspaces of the Faddeev-Popov
charge

. (4.12)
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We also introduce a second counting operator

aj.i ' "μ a i ' ~ a7^> (413)ϋφ μ duμ cC

commuting with β, and find that
i) Ξ decomposes into eigenspaces Ξ(v) corresponding to the integer non-

negative eigenvalues v = 0,1,... of N.
ii) Q)L can be written as: @L = Σv$L

(v} with [JV, ̂ L

(v)] = v^L

(v) and in particular
^L

(0) is a nilpotent operator.
Now, as proved in a general context in Appendix B, i) and ii) imply, without

other restrictions on the operator @L and the space Ξ, that:
if the cohomology of ^L

(0) is contained in the Faddeev-Popov neutral sector, then

that of <3)L belongs to the same sector and the two cohomology spaces are isomorphic.

From Eq. (4.10) we find

d δ0L<o)=_Ci +Jq_ 9 (4j4)

where Kt', a linear combination of Ka, is defined by

(4.15)

The introduction of the new sources K corresponds to a change of basis for the
mass representation and, according to (4.15), the K/ transform with the
representation contragradient to that of the φl which coincides with the latter since
it is orthogonal. On the other hand, this representation was carried, in the old
basis, by the sources coupled to the operator vl in (3.16); hence it is possible to
complete the new basis for the mass representation in such a way as to leave
unaltered the action of H. In particular there are as many independent Kt as field
components φl and as many independent Kη

r as there were independent Ka Φ Kt

invariant under H in the old basis. Notice also, for future reference, that the
number of K invariant under H coincides with the number of generators of the
subgroup X.

Clearly the cohomology of ^L

(0) can be discussed separately in every
eigenspace Ξ(v\ In each Ξ(v) the coefficients P\ hip Fα, and U in (4.9) are polynomials
in the fields φ\ so that this eigenspace can be embedded into a Fock space were the
action of a creation operator is identified with the multiplication by the
corresponding variable and the annihilation operator is given by the derivative
with the respect to the same variable. In this framework the adjoint of ^L

(0) is

and the cohomology space H0 of ̂ L

(0) coincides with the kernel of the Laplace-
Beltrami operator

(4,7)
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It is evident that H0 cannot contain contributions from the C\ φ\ K/, and yt.
Consequently, all subspaces H(q)

0 of H0 with a non-vanishing Faddeev-Popov
charge q are empty, which is sufficient to ensure the isomorphism of the
cohomology spaces of ̂ L

(0) and 3)L. The only non-empty subspace is H(0}

0 which
can be parametrized as

H(0)

0 = {/ + ̂ XX, + ίCV}, (4.18)

where /, ηij9 and fη are constants (field independent). The invariance under $a in
(4.11) has been taken into account by limiting the K'a dependence to the sole K'η
components; the same invariance also implies that ηtj is a H invariant 2-tensor, so
it can be identified with λtj in (3.11, 12). Therefore, the cohomology space of S)L,
which is isomorphic to that of ̂ L

(0), depends on the same number of parameters
appearing in the classical action since the η{j correspond to the λtj and the fη to the
non-vanishing parameters μη in the mass representation [see (3.17) and the
following discussion].

This result is sufficient to establish the full renormalίzabίlity of the theory.
Indeed there are no anomalies since all Faddeev-Popov charged sectors of the
cohomology of @L are empty and the model is also stable since the classical action
is identified, modulo a field redefinition, as the general solution of the B.R.S.
identity, i.e. it is isomorphic to the neutral sector of the cohomology of 3)L.

We include here a discussion of the behaviour under renormalization of the
parametric equations (3.28), since they will play a role in identifying the physical
parameters of the theory, although they have no direct relevance to the effects of
the ultraviolet renormalizability of the model. Now the left-hand side of Eq. (3.28)
is well defined at the fully-quantized level being a functional differential operator
which commutes with the B.R.S. identity by construction [see Eq. (3.29)].
According to the Quantum Action Principle [26], this operator is equivalent to
the insertion of an integrated vertex of dimension 2 which, being compatible with
the B.R.S. identity, is itself equivalent to a partial derivative with respect to the
parameters of the theory. Since these partial derivatives act non-trivially on the
parameters appearing in the kinetic part of the Lagrangian at the tree level, they
will also do so at the fully-quantized level.

5. Local Observables and the Infrared Limit

5.1. Green Functions of Local Invariant Operators

According to the argument outlined in the Introduction, we identify the local
observables of the theory with the set of G-invariant non-trivial local operators
&A(x) built with the fields φl'(x) and their space-time derivatives. As a consequence
of the homogeneity of the manifold, the lowest dimensionality J^'s are provided
by the independent terms in the classical invariant action (3.11). For this set of local
observables we shall prove Elitzur's conjecture [7] that the connected Green
functions with external vertices given by local observables at non-exceptional
momenta do possess a finite zero mass limit. We shall call them "invariant Green
functions." The proof parallels the one given in [lOa] for the 0(N + \)/0(N) model.
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In order to keep track of the renormalization of the invariant operators &A(x),
we introduce them in the effective action (3.31), coupled to a set of external fields
ωA(x). As the J^ are G-invariant, the B.R.S. and linear Ward identities hold
unchanged for Zc(JbC\ybKΛ,ωA)ι in particular

S= \d2

V " 'WJ

ikττ+-fijafaikSd2xγk(x)

Under renormalization the &A(x) operators will mix among themselves with a
constant (field-independent) matrix [20].

The generic connected invariant Green function (^(J^^xJ ... J^Jxw))>conn

can be obtained by applying to Zc a multilocal functional derivative operator,
denoted as Tn(δ/δωA), which commutes with the S operator in Eq. (5.1). We have

Z c j = c = y = κ = ω = 0 (5.2a)
L^uy^J

and

?τΓ δ Ί^ n ^ O V Λsτ» 1— zc = 0 (5.2b)
L^ω^J

Elitzur's conjecture asserts that these invariant amplitudes at non-exceptional
momenta have a finite I.R. limit. To simplify the notation, we shall omit in the
formulae the Tn(δ/δωA) operator and refer the discussion to the connected
functional generator Zc(Jί5 C\ y t , KΛ, ωA).

5.2. Infrared Finiteness

As anticipated in the strategy (Sect. 2), the proof relies on known results
concerning the infrared behaviour of Feynman graphs [23], in particular the fact
that the dominant infrared singular part of a generic graph is given by a finite sum
of contributions, each of which appears as a product of an I.R. regular subgraph
(called a link in [23b] of a dominant subgraph in [23a]) of the original diagram
times the graph which is obtained contracting the link to a point, and whose
leading I.R. behaviour is determined, in a minimal renormalization scheme4, up to
logarithms of m2, by standard power counting. It is this last graph which carries the
possible infrared singularities. Such amplitude with no external vertices can be
computed, without loss of generality, in the framework of dimensional renormaliz-
ation. It reduces to the sum of a finite number of contributions of the type:

Π
i= 1

4 By "minimal renormalization" scheme we mean a scheme where the counterterms do not depend
on the mass appearing in the propagators: minimal dimensional renormalization is a possible one
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where μ is the renormalization mass of the theory, r + 5 +1 the number of vertices
of the diagram, Q2r and R2s are monomials of degree 2r and 2s respectively in m
and in the components of the internal momenta fcf (where kt is the f t h line
momentum). Indeed, in the absence of external vertices, m is the only dimensional
parameter of the theory, except for the renormalization mass μ. The renormalized
contribution is computed following the general procedure described by Breiten-
lohner and Maison [26d] and in the limit ε->0 produces only logarithmic
singularities in the mass since this amplitude is dimensionless and develops only
pole singularities in the ε parameter.

Given a graph G, its links or dominant subgraphs are those which contain all
external vertices of G (that is those carrying non-exceptional momenta) and which
are minimal in the sense that the removal of any piece5 destroys this property.
Moreover, the legs connecting it to the rest of the diagram are amputated and
carry zero momentum. Of course, among the possible links, there can be the whole
graph which does not contain any amputated zero momentum field leg and to
which does not correspond any singular factor. This is the regular part of our
amplitude. In the following we shall disregard it and concentrate our attention on
the singular parts. Hence we shall call links those with at least one field leg.

The crucial point will be that, as a consequence of the symmetry, the finite
sum of all links with a given, non-zero, number of amputated legs at zero
momentum, and with only invariant external vertices, vanishes with a power law in
the zero mass limit. We call these combinations "invariant links" and shall prove
this property at the tree approximation, and then recursively in the loop
expansion.

5.2.a) Vanishing of the "Invariant Tree Links" Taking the derivative of the B.R.S.
identity (5.1) with respect to the parameter C and setting J. = y. = Cl = 0, we have

= 0. (5.4)

At Kα = 0, denoting the Fourier transform with a , we get

3)|J = c = γ = κ = 0 = 0. (5.5)

Now the operator generated by the functional derivative with respect to Ka will in
general contain a linear part in the fields and a non-linear part. In the tree
approximation, the contributions to Eq. (5.5) coming from the non-linear part
vanish proportionally to m2, since in this case the graphs contributing to
δZJδKβ(ϋ) are regular in the zero mass limit. Now, for every choice of the index (/),
the insertions appearing in Eq. (5.5) contain an independent term linear in the
fields, hence Eq. (5.5) implies the vanishing, in the tree approximation, of the
invariant amplitudes containing one amputated6 field leg carrying zero momen-
tum, i.e. of "invariant tree links" with one leg.

5 Each graph decomposes naturally into pieces consisting of maximal 1 PI subgraphs and single
lines
6 The amputation at zero momentum corresponds to a multiplication by a factor m2
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Then, consider the identity

^^2...^nZc = 0. (5.6)

At Ka = 0, it implies

where P(n~ υ(x) is a polynomial of degree (n— 1) in the variable x without constant
term. At the tree approximation, in both terms of Eq. (5.7), the contributions of the
non-linear couplings of the Ka fields vanish again as positive integer powers of m2.
Hence Eq. (5.7) shows that in the zero mass limit, the invariant amplitudes with n
amputated field legs are linearly related to amplitudes with less than n amputated
field legs, and hence one recursively sees that they all vanish since they do for one
field leg.

5.2.b) Vanishing of the "Invariant Links." We shall now show that the vanishing at
m2 = 0 of the "invariant links," proved at the tree approximation in the previous
subsection, extends to all orders. As a recursive hypothesis, we assume that they
vanish up to the loop order v.

Let us introduce an arbitrary system of operators of zero canonical dimension
coupled to external sources τA. We shall first show that, at the order v + 1, we have
for a generic invariant amplitude with N such zero dimensional insertions,

2)*], (5.8)

where the first term on the right-hand side represents a linear combination of
invariant amplitudes with amputated field legs carrying zero momentum and α is a
positive number.

To prove Eq. (5.8), let us analyze the infrared properties of its left-hand side
and remark that every operator insertion can contain a linear part and a non-
linear one. The linear part automatically contributes to the first term on the right-
hand side.

Considering amplitudes where at least one operator is non-linear, we have to
distinguish contributions coming from links containing the non-linear operators
from the others (notice that these integrated operators have to be considered as
internal vertices of the diagram). In the case in which at least one non-linear
operator belongs to the link, the corresponding m2 factor makes it vanish since the
link is by construction regular in the limit m 2— »0. The singular part corresponding
to this situation diverges at most logarithmically since every quadratic divergence
introduced by a zero dimensional operator is compensated by an m2 factor. We
remain with contributions where the links do not contain any non-linear
operators. These are the "invariant links" of loop order less than v + 1, hence, by the
recursion hypothesis, they vanish as a positive power of m2 which cannot be
overcome by the logarithmically divergent part. This proves Eq. (5.8).
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We now complete the recursive proof and show that the "invariant links"
vanish up to order v + 1 by going back to the Ward identities (5.5) and (5.7) which
have already been discussed in the tree approximation. Consider these identities at
v + 1 loops and assume as before that the "invariant links" vanish up to v loops.
Since Eq. (5.8) is valid at the order v + 1 as shown before, we can use it by
identifying the sources τA with the Ka, and write Eq. (5.5) as

zc[J,C,y,K,ω]|}ί^y = κ = 0 = ^[(m2r], (5.9)

and Eq. (5.7) as

"S 1
WJ

z +p<»-1> z rj c v KW- Zc[ΛC,7,K,

with α and β positive, and the matrix Ztj is non-singular due to Eq. (4.15). These
two equations, in much the same way as in the tree approximation, prove the
vanishing of the "invariant links" up to the order v + 1.

5.2.c) Infrared Regularity. Having thus shown by recursion in the loop order that
the "invariant links" vanish in the zero mass limit as positive powers of the mass,
the regularity of the invariant amplitudes in this limit follows from the fact that the
singular parts diverge at most logarithmically.

5.3. Physical Parameters in the Infrared Limit

Let us finally discuss the case in which there exists a subgroup X commuting with
H, and hence the I.R. regularized theory satisfies the parametric equation (3.28).
The right transformations corresponding to X act non-trivially on the space of
local invariant operators £CA(x) in much the same way as they do for the kinetic
part of the Lagrangian. Thus, in the presence of the sources ωA, the parametric
equations should be modified in order to take into account this action. In the zero-
mass limit, considering only Zc( Jf = 0, Cl = 0, y f = 0, Kα = 0, ωA) they become

j(ω) = Q, (5.11)

where Atj is given, at the tree approximation, by Λij = λkl(fuί

kδj

l + fuj

kδi

l). This
exhibits the degeneracy of the theory with respect to as many parameters
appearing in the metric as there are generators in the subgroup X.

6. Conclusion

We have proved in a regularization independent way the renormalizability of all
non-linear σ-models built on compact coset spaces, and we have shown the
existence of a finite zero-mass limit for the Green functions of a suitable class of
invariant local operators. We have thus exhibited the parameters upon which
these Green functions depend, noticing in particular that the theory could have less
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free parameters than the metrics defined on the coset space have. Indeed, two
theories corresponding to different metrics could lead to the same invariant Green
functions. We have identified the origin of this degeneracy with the presence of a
subgroup X of the isometry group G, commuting with the isotropy group H.

The infrared properties of multilocal invariant operators, such as the geodesic
distance between two points on the manifold, could be investigated following the
lines we have adopted for the local observables, provided one is able to control
their behaviour under renormalization.

The analysis presented here for the bosonic case can be generalized to N = 1
supersymmetric σ-models built on homogeneous compact spaces. Indeed our
proof does not rely on any regularization procedure, and a theorem proved by
Piguet et al. [27] ensures that there are no new anomalies due to a global
supersymmetric extension.

We have a final remark, concerning the generalization to other models of the
ultraviolet renormalizability analyzed for homogeneous coset spaces in Sect. 4.
The same technique can be employed to study the coordinate dependence of any
renormalized version of non-linear σ-models; the argument we have used to show
the vanishing of the second cohomology class would guarantee the independence
with respect to field parametrization in a quite general context [6, 1 5], since in this
case too, one encounters differential operators which are a perturbation of the one
corresponding to the same dimensionality flat manifold.

Appendix A. Renormalization of a Linear Symmetry
in a 2-Dimensional Compact σ-Model

The theory is classically assigned through the H-invariant action

in terms of the dimensionless coordinate field with components φi (i = 1 , . . . , N). We
want to show that it is always possible to build a quantum extension of the theory
preserving a linearly realized symmetry corresponding to a compact group H with
infinitesimal transformations

δφ\x) = vf(T^i

jφ\x)9 (A.2)

in other words that in a generalized bosonic 2-dimensional σ-model, any linearly
realized symmetry corresponding to a compact group H can be implemented to all
orders in perturbation theory.

This means that the theory (A.I) admits a quantum extension whose vertex
functional Γ[φ] satisfies the perturbative Ward identity

0. (A.3)

The proof proceeds via a standard recursive method based on the assumption
that Eq. (A.3) holds true up to the nίh order in the loop parameter h in power series
of which Γ is formally developed,

\ ΉαΓ(v) = 0, v^n. (A.4)
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According to the Quantum Action Principle [26], for a generic choice of the
(rc + l)th order counterterms we shall have

//αΓ("+1) = zJα" + 1, (A.5)

where Aa

n+ΐ stands for an integrated local functional of dimension rg2, which, in
the absence of skew-symmetric tensors, can be written as

Δ: + 1 = I d2x[ya, άφ) dμφ' &ψ + cβ(ψ)] , (A.6)

where y α ? I 7 and εα are formal power series in the field components. We want to
prove that by a suitable choice of supplementary finite counterterms at the (n + l)th

order,
Θ = \ d2x\_σ^φ) dμφ

l d»φj + τ(φ)-] , (A.7)

we can implement Eq. (A.4) to this order (as yα tj and εα are, σtj and τ will also be
formal power series in φ). Of course this result would imply the renormalizability
of Eq. (A.3).

The first step of the proof consists in applying the Ward operator Hβ to both
sides of Eq. (A.5) and selecting the skew-symmetric contribution in the indices α
and β, to obtain, as a consequence of the algebra of //,

[Hβ,H,]=/β/ffy, (A.8a)

the Wess-Zumino [25] consistency conditions

faβ*Ay»
+1=HΛAβ»

 + ί-HβΔa»
+i (A.8b)

(the coefficients faβ

y represent the structure constants of the group //). Let us
introduce a non-degenerate //-invariant rank two symmetric tensor KΆβ, whose
existence is guaranteed by the compactness of H:

Kaη = Q. (A.9)

From Eq. (A.8b) we obtain:

H2Ay

n+1

(A.10)

where H2 = KaβHΛHβ is the quadratic Casimir operator of// which commutes with
HΛ. Due to the compactness of //, the linear space Φ whose elements are the local
functionals appearing in Eqs. (A.6, 7) decomposes into an infinite sequence of finite
dimensional subspaces ΦN (in which the coefficient functions σip yα ip τ, and εα are
polynomials in φl) each carrying an irreducible representation of //. For the
moment, we distinguish in this functional space two subspaces Φ*, carrying the
identity representation of //, and Φb carrying the rest; Φ* is the Kernel of H2.
Decomposing Eq. (A. 10) according to the φ and b components, we find for the b
component:

H2Ab

y

n+ΐ = HyK
aβHaA

b

β

n+1=HyA^n+l => Ab

β

n+1 =HβA
b>n + 1 , (A.ll)

where Δ'b'n+1 and Ab'n + 1 belong to the same space Φb of local functionals. On the
other hand, the # component of Eq. (A. 10) gives no information. However it is
possible to find a constraint on A* " + 1 expressing its invariance under //:



Renormalizability and Infrared Finiteness of Non-Linear σ-Models 143

Eq. (A.8b) gives

/β,MV+1=° (A 12)
Hence the # component of Ay

n+1, if any, is restricted to the Abelian invariant
factors of H.

Up to this point we have followed the standard treatment used to analyze the
perturbative renormalizability of a linear symmetry in the semi-simple case [17 a)].
In our case, as remarked in Sect. 2, H generally contains LΓ(1) factors which
contribute # Abelian components of Ay

n+1: we shall now exclude the existence of
these components. The idea of the proof is that, due to the complete reducibility, it is
contradictory for a local functional to be at the same time invariant under H and a
variation under H (of a non-local functional) [17b)].

It is possible to define the adjoint space Φ to Φ by introducing its formal basis
whose elements are the functional differential operators:

and
Γ . δ Ί f>

(A.14)» = t f Γf"N Nr
where the coefficient functions FN. [x] and HNι[x] vary over all the possible
monomials of degree N. ΞN and ΩN define linear functionals on Φ and it is easy to
verify that the conditions on Θ E Φ,

(ΩN,Θy = (ΞN,Θy=Q, V7V (A.I 5)

implies Θ = 0 (of course in the sense of formal power series).
We also notice that, even if the functional Γ(n + 1} does not belong to Φ since it is

a formal power series in the fields φl but with non-local coefficients, the action of ΩN

and ΞN on Γ("+1) is well defined for every N since our theory contains an I.R.
regulator (mass term). A second important remark is that in much the same way as
Φ, its adjoint space Φ decomposes into an infinite sequence of finite dimensional
subspaces, whose elements

(A 16'
have homogeneous polynomial coefficients ^^[x] and ̂ [x] and transform,
under the induced action of if, according to its irreducible representations. In
particular we shall label by Σ* N the invariant element of Φ. It is apparent that the
condition

(Σ*N,Θ*y = Q, for 6>*eΦ* and VW (A.I 7)

implies Θ*=0. Now, applying Σ*N to both sides of Eq. (A.5) we get, taking
Eq. (A.ll) into account,



144 C. Becchi, A. Blasi, G. Bonneau, R. Collina, and F. Delduc

for any N. It follows that A*Λ

n+1 =0 and then

Aa

n+1 = A\n+ΐ=HaA
b<n + 1. (A. 19)

If we now introduce into the effective action the finite supplementary counter-
terms: — [/z" + 1] Ab'n + 1, we have that Γ(v) remains unchanged for v^n while

[^+1]Γ(n+1)-^[ft"+l]Γ("+1)-[ft"+1]^'"+1Ξ[r+1]Γ/("+1) (A.20)

and, for the modified theory, we have

As promised, we have shown that the Ward identity can be implemented to the
next (rc + l)th order, and thus the proof of the renormalizability of the linear
symmetry holds to all orders.

Appendix B. Isomorphism of the Cohomology Spaces of 3>L and of £ [̂0)

In this Appendix we prove the assertion of Sect. 4 about the isomorphism of the
cohomology spaces of Q)L and ̂ L

(0) when the last one has a non-trivial cohomology
only in the neutral Faddeev-Popov sector. Since the results we shall derive do not
depend on the explicit form of ^L, we refer the analysis to any linear nilpotent
operator D of Faddeev-Popov charge + 1, acting on a linear space V. Let us
emphasize that we do not suppose V to be a Hilbert space: this, in the absence of an
adjoint operator for D and a scalar product in V, makes the study more delicate.

In the space V we have two compatible gradings; one due to the Faddeev-
Popov charge Q whose eigenvalues in V are the integers q with associated
eigenspaces V(q). This grading corresponds to a separation of V according to the
ghost number, and recall that the D operator is homogeneous with ghost number
+ 1 . The second, essential grading in our analysis is due to the existence of a linear
(counting) operator N acting on V with the following properties:

i) N has integer, non-negative eigenvalues v = 0, 1, 2, . . . in V with correspond-
ing eigenspaces F(v).

ii) The operator D decomposes as

D = £ D( v) such that [N, D(v)] = vD( v) , (B.I)
v = 0

hence D(v)F(μ) is a subspace of F(μ + v). The special role played by D(0) comes from
the fact that it leaves each F(μ) invariant. Moreover, the nilpotency of D induces on
the D(v) operators the relations

Σ D(μ)D(v-μ) = Q, v-0,1,2,..., (B.2)
μ = 0

hence D(0) is still a nilpotent operator.
iii) N commutes with the Faddeev-Popov charge operator Q, so each eigenspace

V(v} can be further analyzed in ghost content and each D(v} has a Faddeev-Popov
charge +1.

The cohomology space HD of D is the subspace of vectors h e V such that Dh = 0
and h φ Dy for y e F, i.e. the vectors h are cocycles but not coboundaries.
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Since D(0) commutes with N, we can separately analyze its cohomology H0

(v) in
each subspace V(v\ In this general framework we first show that, if the cohomology
of D(0) is contained in the zero Faddeev-Popov sector, then, given a basis for the
cocycles of D(0), one can construct a set of cocycles for D. This follows from:

Lemma. // the cohomology subspaces H0

(v} of D(0) are empty in all non-zero
Faddeev-Popov sectors for all v = 0,1,2,..., then for each non-trivial /Z ( V ) E// O

( V )

there exist Faddeev-Popov neutral elements Xv

(v + τ )e F(v + τ) (τ = 0, 1,2, ...), with
Kv

(v) = 0, identified by the equation:

D(μ)h(v)+ £ D(μ~τ}Kv

(v+τ} = 0 μ = 0,l,2,. . . . (B.3)
τ = 0

The proof of (B.3) will be by induction on the index μ. The value μ = 0 simply
yields D(0}h(v} = 0 and, since /z(v) e H0

(v), the vanishing of Kv

(v) in Eq. (B.3) is
consistent. At the next step μ = 1 we have to analyze D(1)/z(v); now from (B.2) we

fmd D(0)D(1)/z(v)= -D(1)D(0)/z(v)-0. (B.4)

The cohomology of D(0) being trivial in the Faddeev-Popov charged sectors by
hypothesis and since D(1)/z(v) has a Faddeev-Popov charge +1, we obtain as the
solution of (B.4)

+1), (B.5)

which fixes Kv

(v+l} up to a D(0)-cocycle.
This simple case illustrates the idea of the procedure; suppose that Eq. (B.3)

holds up to the value μ = λ. At the next step the nilpotency of D expressed through
Eq. (B.2) is written as

λ

(v) = 0. (B.6)

Substituting the induction hypothesis for D(σ]h(v\ one obtains after simple
algebraic manipulations on summations and use of the nilpotency of D,

(B.7b)
L

The parenthesis being Faddeev-Popov charged, the corresponding triviality of the
cohomology of D(0) allows the identification of a neutral XV

( V + A + 1 ) such that

τ = 0

thus completing the recursive proof of Eq. (B.3).
This lemma can now be used to construct a linear relation, denoted as τ,

between the cocycles of D(0) and those of D. First choose for each value of v a set of
D(0)-cocycles /z f

( v ) such that the cohomology classes [/z/v)] of D(0) in the subspace
V(v) form a basis of H0

(v\ For each ht

(v\ we specify a particular set of Kt ? v

( v + τ) such
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that, as a consequence of the lemma,

f ί f v = V v )+ Σ ^ ,v ( v + τ) (B.9)
τ= 1

is a D-cocycle.

We also need a set of vectors y/v ) such that the D(0)yt

 (v) form a basis of the D(0)

coboundaries. Then any D(0)-cocycle may be written as

where the λ\ and μ*v are parameters. We define the image of c under τ to be
;^)]J (B.ll)

and τ(c) is clearly a D-cocycle. It is also straightforward to show that τ induces a
linear relation τ between the cohomology spaces H0 and H of D(0) and D
respectively.

We shall now show that τ is an isomorphism. Let us first show that τ (and thus τ)
is surjective, i.e. if C is a D-cocycle, it is the image by τ of a D(0)-cocycle. Obviously, if
C is a D-cocycle, its lowest component C(0) is a D(0)-cocycle. We shall use an
important property of τ, which is that it reduces to the identity at the lowest non-
trivial level, i.e.

Thus, C — τ(C(0)) is a D-cocycle beginning at level 1 . We shall now show recursively
that one can find for any n a D(0)-cocycle cn such that C — τ(cn) begins at level n + ί.
This property is true for n = 0 with c0 = C(0), and we suppose it to hold up to order
N. Then

^)]=0 (B.13)

gives at the lowest non-trivial order,

and then

is a D(0)-cocycle. Consider now the quantity

As a consequence of the recursion hypothesis, it vanishes up to level N. Using
again the properties of τ, the order N + 1 is also zero. We have thus constructed a c
whose τ-image is C: this completes the proof of the surjectivity of τ.

We now discuss the injectivity property o f f : this amounts to proving that any
D-coboundary has as inverse τ-image only D(0)-coboundaries. Obviously, if
X = τ(χ) is a D-coboundary, i.e. X = Dω, its lowest component X{0} = x(0) is a D(0)-
coboundary, x(0) = D(0)ω(0), and can be decomposed on our basis,

)}, with 3;(0) = Σ ίμ
l

0y ί

(0). (B.17)

As ω(0) — y(0) is a D(0)-cocycle, its τ-image is a D-cocycle. Defining

n- 1
v v v v(v) ft* 1 δ\Xπ — X — 2^ x j (rS.lδj
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we get

τ(xι) = Dω-τ(x(0)) = D(ω-y(V) = D[ω-y(0)-τ(ω(0)-y(V)']. (B.19)

The quantity

ωι = ω - j/0) - τ[ω(0) - j/ 0)] (B.20)

begins at the level 1.
Assume as recursion hypothesis that one can find two vectors

y(n) = Z^nyW (B.21a)

and ωn+1 beginning at level n+1, such that

and τ(xn + 1) = Dωn + ί . (B.21b)

We have just shown that this holds for n = 0 and we suppose it to be true up to N.
The equation τ(xN+ί) = DωN+l writes, at the lowest non-trivial level,

N+ί)
(N + 1\ (B.22)

and x(N + 1\ being a D(0)-coboundary, can be decomposed on our basis,

χ(N+i) = D«»y(N+i)9 with y^+^ = Σiμ
i

N+ίyi

(N+1}. (B.23)

As (ωN+l)
(N+l) — y(N+l} is a D(0)-cocycle, its image by τ is a D-cocycle. Then

τ(xN + 2) = DωN + 1 - τ(x<* + ' >) = D(ωN + , - y " + ' >)

^[^i-y^-Ti^^1'-^1')]. (B.24)

The vector
— m 1;(^+1) rΠm }
— ωN+l ~y ~τl(ωN+ΐ)

begins at the level N + 2, which shows that the recursion hypothesis holds up to
N + l.

Therefore x is a D(0)-coboundary and consequently Ker(τ) reduces to the null
vector, thus showing the announced injectivity of τ.

Notice that the τ isomorphism ensures that the cohomology space of D also
belongs to the null Faddeev-Popov charge sector.
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