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Abstract. We consider the Hartree equations for a system of an infinite number
of electrons in a periodic potential consisting of a periodic array of wells. The
filling fraction is assumed to be of one electron per well. We prove that if the
wells are deep enough to admit a bound state and if they are separated by a
distance large enough, then the Hartree equations have a solution in which all
single particle wave functions decay exponentially.

1. Introduction

This note is dedicated to the study of the following eigenvalue problem

— A u 4- Vu + W(u)u = Eu

., | |tι| |2 = l,tφc)>0, ( ' }

where

) (1.2)

and W(u) is the operator of multiplication times

X ίdyW(\y-x\)u(y+ffi2. (1.3)
ieZ3\{0}

Here / and a are positive parameters such that />2α + ε for some fixed constant
ε > 0, Ua(x) is the potential well

I I!*". (I-")

and W(s) is a monotonously decreasing, nonzero function in L°°(R+), such that

O^W(s)^C0s~3-η Vs^O (1.5)

for some constants C0, η > 0.
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Equation (1.1) derives from the Hartree equations for an infinite number of
electrons, one per well, moving in the background potential V and interacting via
the two body potential VF(|x — y\). In fact, if u is a solution of (1.1), then {Wj(x)} feZ3

with ut(x) = u(x —]/), is a solution of the Hartree equations.
Our aim is to give a proof of the following result:

Theorem. Let us suppose that the potential well (1.4) is such that the operator
— A + Ua(x) in L2(IR3) has an isolated eigenvalue E at the bottom of its spectrum.
Then, for all interaction potentials W satisfying the conditions above, there is a
constant /* such that if />/*, then Eq.(\.\) has a solution. This solution is
exponentially decaying.

The existence of such a solution is related to the phenomenon of Mott's
localization [1], which occurs when the bandwidth of the lowest band of — A + Fis
narrow enough. In this case, the repulsive effects of the interaction term get
enhanced and, if the filling fraction is of one electron per atom, there is a solution of
the Hartree equations in which each electron sits on a single well. In [2] we
considered the full Schrόdinger equation in the tight binding approximation for a
system of scalar particles in a periodic background, and we found results in
qualitative agreement with the picture given by the theorem above. We remark
that the Hartree approximation is able to describe only the localization part of
Mott's phenomenon, while all the very rich magnetic effects originating from the
spin of the electron are completely ignored. See, however, [2] for an approximate
treatment of the Hartree-Fock equations which permits us to incorporate the spin
in the picture above.

The proof we give in the next sections is based on an approximation scheme
which has been described in an abstract setting in [3]. We refer the reader to that
paper for the proof of a theorem which will be stated in Sect. 2 and which
represents the starting point of our proof.

2. Strategy of the Proof

Let v0 be the ground state of the operator — Δ + Ua(x) on L2(1R3), and let E be its
eigenvalue. We shall use v0 as an approximate solution of (1.1). According to the
theorem in [3], if the linear eigenvalue problem

? 11

(2.1)

has a solution (£0, MO) with £0 simple and ||MO — v0\\2 small enough, then (1.1) has a
solution u near «0 in the W2-2 norm. To give a more precise statement, let us set

y = dist(£0ϊ σ( - Δ + V+ W(υ0))\{E0}), (2.2)

d
r r / v"*υ/ I I " Ό ' I I ' ' I I I I ""U " U I I 2 > \^ 3)

αι = l+7| |HΠ|+|£ 0 | , (2-4)

(2.5)
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where
\\W\\ =sup Σ W(\x+H\) (2.6)

x ieZ3

Thanks to the hypothesis expressed by (1.5), we have || W\\ < oo. In [3] it is proven
that if

α 0>0 (2.7)

and

"1, (2.8)
o

then the problem (1.1) has a solution u with

\\u-u0\\£^. (2.9)
2«!

In Sect. 3 we study the approximate equation (2.1) and give an upper bound for
\\UQ-v0\\ which tends to zero as Γfoo. We then verify that α0 and the right-hand
side of (2.8) remain uniformly bounded from below by a positive constant as /too.
These two facts imply that as Γfoo, the two conditions (2.7) and (2.8) are eventually
fulfilled. This proves the existence of a solution of the eigenvalue problem in (1.1).

From the proof of the theorem in [3], we can argue that the solution u(x)
satisfies also the positivity condition in (1.1). In fact, u is constructed considering
the following family of eigenvalue problems connecting (2.1) to (1.1):

_ A + V+ W(v0))uβ + β(W(uβ) - W(v0))uβ = Eβuβ

where β<= [0,1], In [3] we prove that if the conditions (2.7) and (2.8) are satisfied,
then there is a smooth curve β\-^uβ<Ξ FF2'2(R3) of solutions of (2.10) such that
uβ β = o = u0 andu = uβ\β = l fulfills (2.9). Moreover, uβ is positive for all β e [0,1]. In
fact, from the proof in [3] it follows that E is separated by a finite gap from the rest
of the spectrum of the operator

(2.11)

for all /?E [0,1]. Hence, uβ is the ground state of (2.11) and it must be positive (see
[4]). Thus, to prove the theorem in Sect. 1 it is enough to verify that the conditions
(2.7) and (2.8) above are satisfied.

3. Solution of the Approximate Equation (2.1)

In this section we prove the existence of a solution (E0, u0) of (2.1). We shall use the
so-called Dirichlet-Neumann bracketing trick, consisting in the use of the
following operator inequalities:

^ -A + F+ W(vQ)^(-A + F+ W(vQ))D, (3.1)
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where N (respectively D) denotes the insertion of Neumann (respectively Dirichlet)
boundary conditions on the set Γ. Γ is the union of periodically spaced planes with
period /, such that the lattice ΪE? is the set of the centers of the cubes Q(ι), (ze^3),
enclosed by Γ. Let us notice that the spectrum of the first and of the third operator
of (3.1), is the union of the spectra [E*(ι)}ne^

 or {^(/)}«eN of the operators (-Δ + V
+ W(VQ)}N D restricted on the cubes Q(i). To prove the existence of an eigenvalue at
the bottom of the spectrum of — A + V+ W(vQ), it is sufficient to prove that the
following inequality holds:

inf EN

n(ί). (3.2)

In fact, in this case (3.1) implies that there is a simple and isolated eigenvalue E0 of
-A + V+ W(v0) in the interval [£#(0), £o(0)] In the following, we shall also prove
some estimates which permit us to control | |MO — vQ\\2, the gap y and α0.

Let us introduce the following notations:

yN(l)= inf E%(i)-E%(0)9 (3.3)
(«,ΐ)φ(θ,θ)

yD(l)= inf ££(/)-£?(9). (3.4)

Lemma 3.1. (i) We have

f
Moreover, we have

yN = inf yN(l)>0 and yD= inf yD(/)>0. (3.5)
l>2a + ε l>2a + ε

0<E°(Q)-E<C1(a,l,U), (3.6)

where Cx(α,/, U) is a constant |0 as /joo.
(ii) //E£(0)<0, weΛαϋβ

0 < EftO) -E?(Q) ̂  C3(α, t/, ε) exp(i£?(0)/) (3.7)

/or some constant C3(a, U, ε).

Proof, (i) This point is a consequence of the hypothesis that the operator
— A + £/JX) on 1R3 has an isolated eigenvalue E at the bottom of its spectrum with
gap γ. As Γfoo, the norm of the operator

i Φ O

converges to zero. Thus yN(l) and 7D(/) tend to the minimum between γ and the
difference between E and the ground state energy of

- A + t/β(x) + J dy W(\y - x\)v0(y)2 (3.9)

on R3. Moreover, (3.6) follows from the fact that the difference between E$(Q) and
the ground state energy E%(0) of — A + Ua(x) with Dirichlet conditions on dQ(0) is
smaller than the norm of the operator (3.8), and that EQ(U) — E decays exponen-
tially fast as /I oo.
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(ii) On the basis of a Green formula, we find

Eg(Q) - EftO) = —^ { J UON[ - A + Ua(x) + W(VO)-]UOD
(UQN,UQD) ((2(0)

+ - ί uODϊ-Δ +
(2(0)

,*^f, (3.10)

where UON and UOD are the eigenfunctions corresponding to £o(0) and £o(9) The
bound (3.7) will follow from an exponential decay estimate on UON and ΫuOD. Let us
consider first UON. Let us rewrite the equation fulfilled by UQN in integral form

UON(X) = J dyG^x,y)lUJ(y)+W(v0)(y]]uON(y)9 (3.11)
(2(0)

where GN(x, y) is the kernel of the operator ( — A— EQ (0)) restricted to β(0) with
Neumann boundary conditions on 5β(0). The following explicit expression for
GN(x9 y) can be found with the method of images (see e.g. [5])

GN(x,y)= Σ G(x-yj) Vx,j;Gρ(0), (3.12)
7 = o

where G is the kernel of the operator (- A — Eo(Q)) on ]R3 and {̂  } CR3 is the set
with yQ = y which is invariant under all reflections with respect to the planes of Γ.
We have i

G(x -y)= exp(£ff(Q) \x - y\) . (3.13)

From (3.4) we see that GN(x,y)>0, so that from (3.3) we get the bound

uϋN(x)^ \dy GN(x,y)Ua(y)uON(y) . (3.14)

If \y\ ̂  a and x e 8Q(Q), we have

(3.15)

where C2(α, ε) is a constant independent of /. Thus, if x e δβ(0), we find

UON(X) ^ C2(a, ε)/- 1 exp(iE2f(Q)/) (J dy Ua(y}2γ12

/4π \1 / 2

= C2(a, ε) ( — (7V 1 Γ 1 exp(iE2[(Q)/) . (3.16)

One can proceed analogously to bound FwOI). In fact, also in this case the
method of images is applicable to construct an explicit formula for the kernel
GD(x, y) of the operator ( — A— EQ) ~ 1 restricted on Q(0) with Dirichlet boundary
conditions on 3Q(0). We have

(3.17)
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where ε^ is the parity of the number of reflections with respect to the planes of Γ
needed to map y0 into yjf In this way we find a bound of the form (3.16) for FMOD

with a slightly different constant.
To prove (3.7), it remains to show that (UON,UOD) is bounded away from zero

uniformly in /. This follows from the following general fact to which we appeal
again below:

Sublemma 3.2. Let H0 be a Schrόdinger operator with a positive, nondegenerate
ground state u0^0 with energy E0 separated by a gap y0 from the rest of the
spectrum. Then, if u(x) is a positive function such that \\(H0 — E0)u\\ ^ε0, we have

II 1t 1I i i <• Y_ p C\ 1 %\I I a UQ i i —^ OQ . ^j. i o^
y

00

Proof of the Sublemma. If H0 = J λdPλ is the spectral decomposition of H0, we

have

2

(λ-E0)dPλu = J \λ-E0\
2\\dPλu\\

\\u-u0\\2. Q.E.D.

From this sublemma we can argue that (uON, uOD) is exponentially close to one.
In fact, if H0 is the operator — A + Ua(x)-\- W(v0) restricted to β(0) with Neumann
boundary conditions on <9β(0), we have

II (HO - £o (OK* II = EO (Q) - β ,
and the right-hand side is exponentially small thanks to the first part of the
proof. Q.E.D.

This lemma has the following consequences:

Proposition. // / is large enough, then Eq. (2.1) has a solution (E0,u0) such that

γ^γN-C3(a, tf,ε)exp(±ES(Q)/), (3.19)

and there is a constant C4(α, L/, ε) such that

IK-uoJI^C^l/.eiC^l/,/). (3.20)

Proof. To prove (3.20) one can use again Sublemma 3.2. In fact we have

\\(-Δ + V+W(v0)-E0)v0\\2^\E-E0\
2+ X SdxUa(X + il)2v0(x)2

i*0

+ sup Γ Σ ί dyW(\y-x-il\)v0(y)2l2 + 2\\W\\ J dxv0(x)2

*eir<2(Q)|jΦ O iQ(0) J R 2\iQ(0)

^2C,(a,UJ)2 + C5(a,U)e~El

for some constant C5(α, U). Hence we find

UQ-VO ^ y - 3 a ,

whence (3.20) follows. Q.E.D.

, U)eEl),
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To complete the proof of the theorem in Sect. 1, what remains to do is to verify
that (2.7) holds if / is large enough. If /eL2(R3) is such that ||/||2 = 1, we have

rW (MO)[ ]MO

= 2

J dxdy W(\y - x\)u0(y + il)f(y + il)u0(x)f(x)

W(\y-x-il\)]u0(y)f(y)u0(x)f(y)

I- +2 I .
B ]R6\β

where B = (^Q(Q)) x (yβ(Q)). We have

^ sup X W(|x-iϊ|)
i Φ O

(3.21)

(3.22)

Also

= \\W\\

ί f(x)f(y)u0(x)u0(y)
R6\β

ί f(x)f(y) [v0(x)υ0(y) + (u0(x) - V0(x))u0(y)
R6\β

+ (u0(x)-υ0(x))v0(y)']

Thus we have
£W(\x-il\)-\\W\\ J v0(x)2

xeQ(O) i Φ O R3\iQ(0)

(3.23)

(3.24)

Thanks to (1.5), the exponential decay of v0(x) and (3.20), we find that α0 >0 for /
large enough. The proof of the theorem is completed.
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