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Abstract. We consider the Boltzmann equation perturbed by Fokker-Planck
type operator. To overcome the lack of strong a priori estimates and to define a
meaningful collision operator, we introduce a notion of renormalized solution
which enables us to establish stability results for sequences of solutions and
global existence for the Cauchy problem with large data. The proof of stability
and existence combines renormalization with an analysis of a defect measure.
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Introduction

We are concerned with global existence and stability of solutions of the Fokker-
Planck-Boltzmann equation

(FPB) —f + ξ'Vxf -vΔξf = Q(f, /) in (0, oo) x RN x RN,

where NέZ.l,xERN

9ξeRN,v>Q. Except for the additional diffusion or Fokker-
Planck term, — vΔξf, the equation FPB is the Boltzmann equation. The structure
of the collision operator Q is described in Sect. II.

We shall prove that sequences of classical solutions of FPB which satisfy
uniform bounds only on the physical conserved quantities converge to a re-
normalized solution of FPB, a notion that we define below. A straightforward
consequence of this result is global existence of a renormalized solution of FPB
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if the initial data

/(0,x,ξ) = /0(x,<a on RNxRN (1)
satisfy

Og/o, a.e. and JJ /0(1 + |x|2 + \ ξ \ 2 + \logfQ\)dxdξ < oo. (2)
RN*RN

There are several reasons for treating FPB. The present study is part of a series
of papers by the authors devoted to transport equations arising in the kinetic
theory of gases. The primary model is the Boltzmann equation and FPB is a
natural approximation both physically and mathematically. Although the Fokker-
Planck term provides some mild regularizing effects which are absent in the
Boltzman equation, several of the essential difficulties encountered in the study of
the Boltzmann equation are present in FPB. In particular, we mention the lack of a
priori estimates which are sufficiently strong to define the collision operator g(/, /)
in a classical sense. Our renormalization procedure to resolve this difficulty is one of
the key ingredients in our forthcoming paper [5] on the Boltzmann equation which
contains results on sequential stability and global existence for the Cauchy problem
with large data. In the present context of the FPB equation, renormalization is
combined with an analysis of a natural defect measure in order to obtain stability
and existence. Another motivation for the study of FPB stems from the fact that
related equations are of physical interest in the problem of accounting for grazing
collisions (see C. Cercignani [3], p. 90) and in the study of aerosols (see for instance
S. K. Loyalka [13] and the references therein).

As mentioned above the main difficulty in dealing with FPB originates in the
collision term which is defined as follows. If φ(ξ)e@(RN)9 then

Q(φ, φ) = J dξ* J dw{φ(ξ')φ(ξ'J - φ(ξ)φ(ξJ} B(ξ - ξφ, w), (3)
RN S*-1

where ξ' = ξ — (ξ — ξ^ w)w, ξ'^ = ξ + (ξ — ξ^ w)w. The collision kernel B is a given
function satisfying

£ ̂  0, B(z9 w) is a function of |z|, |(z, w)| only. (4)

An additional hypothesis will be imposed on B below. As is well-known, Boltzmann
type equations such as FPB represent a statistical description of a gas of molecules
or particles. The function / represents the density at position x, velocity ξ and
time t. The collision term describes the possible collisions at position x, time t
and ξ, ξj. are the velocities of two molecules before interaction while ξ', ξ'^ are the
velocities after interaction. The precise form of the collision kernel B depends upon
the intermolecular potential. For inverse powers potentials, B takes the form

B(z9 w) = b(θ) I z ~ ? with γ=l-2(N- l)/(s - 1),

where s > 1 is the exponent of the potential, θ is the angle between ξ — ξ^ and w
so that cosθ = (ξ — ξφw)\ξ — ξj"1. In general, b is smooth except at θ= ±f,
where it has a singularity of the form |cos θ\ ~α with α = s + 1/s — 1 when N = 3.
As is customary in the subject, we shall impose a weak assumption of angular
cut-off (see H. Grad [7], C. Cercignani [3], C. Truesdell and R. Muncaster [15])
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namely that B satisfies

This clearly corresponds to a reduction of the strength of the singularity and
physically means that grazing collisions are weakly represented. We note that (5)
holds trivially in the classical case of hard-spheres where

£(z,w) = |(z,w)|.

In connection with the structure of Q we note that even if all difficulties
concerning integrations at infinity are ignored, the only simple bound one can
expect on Q is

Therefore, in order to give a meaningful interpretation of Q one might try
to derive an estimate of the form

Such an estimate is not available in general. Indeed, it is not obvious that L2 is
natural for FPB.

In order to resolve this classical difficulty of defining β, we introduce a new
formulation of the equation which consists of renormalization by a suitable non-
linear transformation of the dependent variable /. As motivation for the transfor-
mation, let us first suppose that / is a smooth nonnegative solution of FPB and
consider the function βδ(t) = (l/<5)log(l + δt). Notice that the composition gό =
βδ(f) solves the following renormalized version of FPB:

~96 + ξ'Vxgδ - vΔξgδ = ̂ j Q(f, f) + vδ\Vξgδ\
2 (RFPB)

in RN x RN x (0, oo). We shall show below that, for each δ > 0, the normalized
interaction (1 +<5/)~1β(/,/) belongs to L^ and Vξgδ belongs to L2. In the
stability and existence results for solutions of FPB mentioned above, the definition
of renormalized solution requires that for all δ > 0, the composite function βδ(f)
is a distributional solution of RFPB. The precise definition of renormalized solution
is stated in Sect. II.

Our renormalization procedure is applicable to a general class of p.d.e. whose
nonlinearities are not well-defined on the basis of the naturally associated a priori
estimates. In this connection, we mention that renormalization is one of the tools
in our analysis of large data Cauchy problem for the Boltzmann equation [5]. A
second application of renormalization to linear divergence-free transport equations
with bad coefficients will be given in our forthcoming paper [6]. In the context
of quasilinear second order elliptic equations in L1, Ph. Benilan suggested to the
second author that ideas related to our motion of renormalization may turn out
to be useful in the analysis of solutions in a spirit vaguely reminiscent of Ph.
Benilan, H. Brezis and M. G. Crandall [1]. Additional applications to discrete-
velocity models are discussed in Sect. V.

With regard to previous rigorous work on FPB, we are aware only of results
in the small, specifically perturbations of the vacuum state. We refer the reader to
K. Hamdache [8, 9] and to the references cited therein.
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This paper is the first in a series devoted to a systematic study of nonlinear
transport equations. In addition to the Fokker-Planck-Boltzmann equation and
the Boltzmann equation we shall treat the Vlasov-Maxwell system in its classical
and relativistic forms. The latter system arises in theory of collisionless plasmas
for which terms of the type β(/,/) are absent. Basic questions here deal with
global existence with large data and sequential weak stability.

In this general area, several extended systems arise which incorporate both
electrical or electromagnetic effects and collisional effects. In this connection we
mention the Vlasov-Poisson-Boltzmann system which is associated with a medium
of charged and colliding particles. We shall also be concerned in a future publication
with the associated existence and stability problems for VPB for solutions with large
data.

A common aspect for all of these equations is the study of sequences of solutions.
The study of sequences of approximate solutions is relevant to the problem of
existence while the study of sequences of (exact) solutions is relevant to the problem of
stability. In both settings one is presented with a list of physically natural estimates
derived from the associated conservation laws. The laws for energy and entropy are
the prime examples. As usual the basic conservation laws provide information on
the amplitude of the solution but not on its derivatives. Consequently, the problem
of passage to the limit involves further investigation. In this context we are
concerned with the mechanisms of regularization and cancellation which relate to
the limiting behavior of sequences of solutions. Renormalization is one of the tools
which is useful in treating all of the systems above.

I. Basic Formal Conservation Laws and Estimates

In this section we recall a few basic facts concerning Boltzmann type equations and
present some simple applications.

First of all, the symmetries of B such as [4] easily yield that for all
N) (say)

= τ JJ dξdξ* J

ξt9w). (6)

See [3] for details. In particular, if ψ = a + b ξ + c\ξ\2, where a,ceR,beRN, then

RN

This immediately implies that a solution / of FPB formally satisfies the
following identities:

(conservation of mass) JJ /(x, ξ, t)dxdξ is independent of ί, (7)
RNxRN

(conservation of momentum) JJ ζf(x, ζ, t)dxdξ is independent of ί, (8)
RN*RN

(increase of kinetic energy) — JJ \ξ\ 2 f ( x , ξ, ήdxdξ = (2Nv) JJ f ( x , ξ, ήdxdξ.
dtRN*RN RNxRN

(9)
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Observe that by (7) the right-hand side is constant.
Next, we recall another well-known identity which is based upon the remark

that if we take ψ = log φ with φ > 0 in (6) then we obtain

$logφQ(φ9φ)dξ = ± ff dξdξ* f dw{φ(ξ')φ(ξ'J- φ(ξ)φ(ξj}.
RN *RNxRN SN~l

•log ίφ(ξ)φ(ξJ/φ(ξ')φ(ξWB(ξ - £„, w) ̂  0.

Therefore, if we multiply FPB by /log/, recall that / ^ 0 and integrate, we formally
obtain

£ ff f\ogfdxdξ=-v ff \Vξf\
2f-*dxdξ~ ff dξdξ* f

-

00)

It is obvious that (7) and (9) provide some a priori estimates on /. In order
to deduce a bound from (10), we need another estimate. This estimate is obtained
by multiplying FPB by \x 2 and integrating:

^ ff f\x\2dxdξ = 2 ff (x,ξ)fdxdξ.
dtRNxRN RNxRN

Hence by Cauchy-Schwarz inequality

d ί V / 2 / V / 2

- ff f\x\2dxdξ^2( ff f\X\
2dxdξ) ff f \ ξ \ 2 d x d ξ ) . (11)

dtR»xR" \RNxRN / \RNxRN /

As a final remark, observe that if geL^R1* x RN) satisfies

ff g(l + \x2 + \ξ\2)dxdξ^R and ff gloggdxdξ^R (12)
RN*RN RN*RN

for some R ̂  0, then

ff g\logg\dxdξ^CR (13)
RN*RN

for some CR depending only on R. Here we assume gl loggleL 1 so that (12) makes
sense. Indeed, one has obviously

ff g\logg\dxdξί ff glo&gdxdξ + 2 ff l^
RNxRN RNxRN RNxRN

In order to bound the second integral in the right-hand side, we split this integral in
two parts. On the set where log (1/0) ̂  \x\2 + \ξ\2 we bound the corresponding
integral using (12) and obtain

ff g\logg\dxdξ£3R + 2 ff l t o^ e x p_ ( | x |2 + | { |2 ) ) f lflog-dxdξ.
RNxRN RNxRN g

To conclude the verification of (13), we observe that on (0, 1) the function t log (1/ί) is

bounded for example by C0χ/ί for some C0 > 0. Therefore
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Jf g\logg\dxdξ^3R + 2C0 f j exp -i(|.x|2 + \ξ\2)dxdξ ^ 3R + 2C0(2πf.
Λ ^ X Λ " *"x/?"

Throughout the paper we shall use the following notation:

β + (/, /) = fJ dξ*dwfJ'B(ξ - £„, w),
RNxSN~1

Q.(/, /) = Π dξ*dwff*B(ξ - ξ» w) = /•!/,
Λ^xS*- 1

with
J/ = ί/(^M(ς-^)^,A(z)= f B(z,w)dw for zetf",

£* S Λ Γ - 1

where /' = /(ξ'), /„ = /(ξj, /; = /(Q.

II. Sequential Stability and Strategy of the Proof: Normalized
Interactions, Defect Measures and Hypoellipticity

To simplify the presentation, we consider a sequence /" of smooth nonnegative
solutions of FPB. We assume for instance that fnεW2'°°(RN x RN x [0, oo)), /"^O
as (x, ξ)-+ oo uniformly in ίe[0, Γ] for all T < oo and that there exists a constant
Cτ independent of n such that

j] /"(x, ξ, ί)(l + M2 + \ξ\2 + \\ogfn\)dxdξ ^ Cτ, (14)
RN*RN

}dt f j

(15)

for all T < oo. In view of the facts in the preceding section, these bounds are
automatically satisfied provided the basic physical identities (7), (9-11) in Sect. I
are justified and provided (14) holds at t = 0. The justification of these and related
identities becomes necessary only when we address the question of the existence
of a solution of FPB and analyze sequences of approximate solutions. For the
moment we shall assume for simplicity that (14) and (15) hold. Because of (14) we
may assume by passing to a subsequence that/" converges weakly in L^jR^ x RN

x (0, T)) to some / for all T.

Definition. A nonnegative element / of C([0, oo); L1^^ x ,R^)) is a renormalized
solution of FPB if the composite function gδ = βδ(f) satisfies RFPB in the sense
of distributions, where βδ(t) = l/<51og(l + δt).

Theorem 1. Assume that B satisfies the following mild growth condition:

•oo, for all R<oo. (16)
BR®

Then Vp, T < oo, the sequence /" converges in Z/(0, T; L1 (R% x Rς) to a renormalized
solution f which satisfies (14) for a.e. f e(0, T) and (15). Furthermore, for any δ > 0, the
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normalized interaction terms satisfy

olLRxBJ), V£ < αo

)xRN

xxBR\ V K , Γ < o o ( j

and ^6L2((0, T) x R^ H^B^VR, T < oo).

Remarks: i) Many variants of this result are possible. In particular, the smoothness
assumption on /" is not necessary. In this connection we note that /" could be a
solution of an approximate equation. We shall use this fact to prove the global
existence result. Finally, the method we introduce below applies to various
Boltzmann type equations (see Sect. V).

ii) The above result implies that in fact fn converges strongly to /. We shall
see in Sect. V that the particular choice of βδ which enters the definition of
renormalized solution is not fundamental. Indeed, / has the following property: for
all nonnegative functions β in C2[0, oo) such that

0(0) = 0, \β' ^ WΊ=

then g = β(f) solves

Notice that β ' ( f ) Q ( f , f ) e L l c 9 and that (15) implies that β"(f)\V'ξf\
2elϊ. The

choice β=\/δ log (1 + δf) is merely a convenient representative of this general class.

iii) Notice that the uniform bound (15) implies that V//EL2((0, T)
xR^H\R^).

We conclude this section by explaining briefly the strategy of the proof. First, we
observe that gn

δ = βδ(f") solves RFPB and that Q _ (/", /")(! + δ f n ) ~1 is bounded in
L°°(0, T; L1^ x 5Λ))(VJR, T < oo). The latter fact is a consequence of the structure
of g_ and of the bounds (14). Then, integrating RFPB we deduce that the
normalized positive interaction Q + ( f " 9 f n ) ( l + δfn)~1 is bounded in L\(09 T) x

Next, we observe that these bounds mean that Lvgδ is bounded in !/(((), T) x
RX x BR)(VR, T < oo) where Lv is the partial diffusive transport operator

_ d
v = ~dt + X~V ξ'

Using the fact that Lv is hypoelliptic in the sense of L. Hormander [11], we deduce
that gn

δ is compact in ̂ ((0, T) x Rx x R^). The strong convergence of/" to / then
follows by a relaxation argument.

The bounds stated in Theorem 1 are fairly straightforward. It remains to prove
that gδ solves RFPB. From the above compactness argument, we deduce the
existence of a bounded nonnegative measure μ on (0, T) x Rx x R^ for all T < oo
such that
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The measure μ is the "defect measure" due to the weak convergence of Vξg"δ. The
proof that μ vanishes and that gδ is thus a solution of RFPB involves a delicate
argument. Formally, it is not difficult to understand why μ should vanish. Indeed,
the ^-equation means that / should "solve" the equation

The statement of conservation of mass, i.e. if /(x, ξ, t)dxdξ is independent of
XxV

ί, leads one to suspect that for all T < oo that

ff (l+δf)dμ = 0.
N*RN

Hence μ should vanish. A modification of this formal argument using a special
set of multipliers produces the desired result that μ vanishes.

The argument sketched above is relevant to a general class of transport
equations. Here attention is focused on the FPB equation for concreteness. The last
section contains a discussion of extensions of the results above to equations with
more general linear parts and to discrete velocity analogues.

III. Proof of Theorem 1: Sequential Weak Stability

To simplify the presentation, we shall first treat the case where
BEL1nLco(RN;L1(SN~1)). Then we shall discuss the modifications needed to
accommodate the general case where B satisfies (16). We now follow the strategy of
proof sketched at the end of Sect. II.

Stepl. We first remark that β _(/",/")(!+ δfn}~1 is bounded in L°°(0, T;
L1^ x /φ). Indeed, we have

β-(Λ/π)(l +<5/T1 =/"(! +<5/T

The results follow since AeL\RN) and /" is bounded in L°°(0, T L1^ x R%))
by (14).

Next, since gn

δ solves RFPB, we deduce, at least formally by integrating over
R% x R% x (0, T) that

r

= J <
0 R N

X R N

JJ g"ίl(X,ξ,T)-g"d(X,ξ,Q)dxdξ = ldt JJ dκdξ[_(\ + δf"Γ1Q(f",f")

]. (18)

Using (14) and the above bound on Q~(f", /")(! + δfT1, we deduce from (18) that

]dt JJ dxdξt(l+δf»Γ1Q + (fnJn) + vδ\Vξg"d\
2l^Cτ

0 R^R"

for some constant C τ ^0 independent of n. Therefore, provided we justify (18),
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we have proven that β+(/",/")(l + of")'1 and \Vξg
n

δ\
2 are bounded in ^((0, T) x

R* x R*). We mention in passing that the bound on |V^|2 also follows
immediately from (15).

Justifying (18), i.e. the integration over RN x RN, is an easy matter. Take
φe@(RN\ φ = 1 on Bί9 0 ̂  φ <£ 1 on RN and set φε( ) = φ(ε ). Multiply RFPB by
φε(x)φε(ζ) and integrating by parts to obtain

}dt jj

J Λ Π
0 N

T

\dt ίί
We conclude easily letting ε go to 0 since

\ξ Vx<Pe(x)\9e(ξ) ^ C ε \ ξ \ , \φε(x)ΔξφJίξ)\ ^ Cs2

for some constant C ̂  0 independent of ε.
It is worth remarking that the L1 bound on β+(/",/")(l 4- δfn)~l can also be

deduced from the bound (15). Indeed, one just has to observe that for all K>1,

#* ί
SN-1 *

(19)

and the second term in the right-hand side is clearly bounded in L1 in view of (15).

Step 2. The preceding bounds show that Lvg
n

δ is bounded in !/(((), T) x RN x RN).
Of course, because of (14), gn

δ is bounded in C([0, T]; L1^ x RN)). At this point,
we use the fact that Lv is an hypoelliptic operator to deduce the compactness of
gn

δ in ^((0, T) x RN x RN). We shall first prove the compactness of gn

δ in Ll((Q, T) x
BR x BR)(MR, T < oo ). Combining this result with (14) easily yields the compactness
of g"δ in L\(09 T) x RN x RN).

In order to establish local compactness of gn

δ we consider any cut-off function
φ(x, ξ) in @(RN x RN), and we observe that Lv(φg§ is bounded in L\(09 T) x RN x
RN) and has compact support in [0, T] x RN x RN uniformly in n. This implies
that φgn

δ is compact in !/(((), T) x RN x RN). We prove this rather technical point
in the Appendix. We mention here that the only fact which is required to obtain
L1 compactness is the existence of a continuous fundamental solution. The
fundamental solution is actually C°° and an explicit formula is available, see for
instance Hόrmander [11].

The compactness of gδ in !/(((), T) x RN x RN) yields, by classical results of
measure theory, the compactness of gn

δ in the topology of convergence in measure.
We recall that φn converges to φ in measure if meas(|φπ — φ\ >(5)->0 for any

n

δ > 0. Since fn = (l/<5) [exp (δgn

δ) — 1], /" is also compact in this topology on every




